JPH0894595A - Longitudinal-ultrasonic-wave angle beam probe - Google Patents

Longitudinal-ultrasonic-wave angle beam probe

Info

Publication number
JPH0894595A
JPH0894595A JP7042749A JP4274995A JPH0894595A JP H0894595 A JPH0894595 A JP H0894595A JP 7042749 A JP7042749 A JP 7042749A JP 4274995 A JP4274995 A JP 4274995A JP H0894595 A JPH0894595 A JP H0894595A
Authority
JP
Japan
Prior art keywords
transmitting
receiving
ultrasonic
oscillator
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7042749A
Other languages
Japanese (ja)
Other versions
JP2661580B2 (en
Inventor
Hirotsugu Tanaka
洋次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7042749A priority Critical patent/JP2661580B2/en
Publication of JPH0894595A publication Critical patent/JPH0894595A/en
Application granted granted Critical
Publication of JP2661580B2 publication Critical patent/JP2661580B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide an ultrasonic probe whose defect detecting ability can be secured sufficiently to cover a broad range of the surface portion of a side on which the probe is placed. CONSTITUTION: A transmitting oscillator 3 and a receiving oscillator 4 are placed respectively in front and rear positions along the direction of propagation of an ultrasonic wave. When the transmitting oscillator 3 is placed in front of the receiving oscillator 4, the transmission angle θT of the ultrasonic wave becomes smaller than the reception angle θR of the wave, with the result that apparent angle is reduced. With this phenomenon, the efficiency with which the ultrasonic wave impinges on a test piece 8 from a transmitting wedge is enhanced, and thereby the rate at which a longitudinal ultrasonic wave 9 is transmitted back and forth through the test piece is made higher as a whole than if the transmission angle θT is the same as the reception angle θR.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、溶接部の欠陥検出、
角ビレット等の主に表層部の欠陥検出を行なう超音波探
傷装置用の超音波縦波斜角探触子に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the detection of defects in welds,
The present invention relates to an ultrasonic longitudinal wave bevel probe for an ultrasonic flaw detector, which mainly detects defects in the surface layer of a square billet or the like.

【0002】[0002]

【従来の技術】図4は例えば昭和57年9月に発行され
た日本非破壊検査協会第2分科会資料、No.2931
「クリーピングウェーブとその応用(1)」に示されて
いる超音波探触子を示す図であり、図4(a)は斜視
図、図4(b)は側面断面図、図4(c)は後面断面図
である。図において、1は送信用楔、2は受信用楔、3
は送信用楔1に取付けられた送信用振動子、4は受信用
楔2に取付けられた受信用振動子、5は送信用楔1を伝
播する超音波が受信用楔2に伝播するのを防ぐ遮音板、
6はコネクタ、7はケース、θ1 は送信用楔1に設けら
れた超音波入射角度、θ2 は受信用楔2に設けられた超
音波受信角度である。
2. Description of the Related Art FIG. 4 shows, for example, No. 2 of Subcommittee of Japan Non-Destructive Inspection Association, published in September 1982. 2931
It is a figure which shows the ultrasonic probe shown by "creeping wave and its application (1)", FIG.4 (a) is a perspective view, FIG.4 (b) is a side sectional view, FIG.4 (c). ) Is a rear sectional view. In the figure, 1 is a transmitting wedge, 2 is a receiving wedge, 3
Is a transmitting oscillator attached to the transmitting wedge 1, 4 is a receiving oscillator attached to the receiving wedge 2, and 5 is an ultrasonic wave propagating through the transmitting wedge 1 to the receiving wedge 2. Soundproof plate to prevent,
6 is a connector, 7 is a case, θ 1 is an ultrasonic wave incident angle provided on the transmitting wedge 1, and θ 2 is an ultrasonic wave receiving angle provided on the receiving wedge 2.

【0003】従来の超音波探触子は図4に示すように送
信用振動子3と受信用振動子4を各々1枚有し、送信用
振動子3と受信用振動子4が超音波の伝播方向に対して
左右方向で、かつ前後方向にはズレがないように配置さ
れている。このような超音波探触子で縦波を被検材に斜
めに伝播させて超音波探触子を配置した面の表層部を超
音波探傷する場合には被検材中の超音波屈折角を約70
〜75゜程度にする必要がある。この様子を図5に示し
た。
A conventional ultrasonic probe has one transmitting oscillator 3 and one receiving oscillator 4 as shown in FIG. 4, and the transmitting oscillator 3 and the receiving oscillator 4 generate ultrasonic waves. It is arranged in the left-right direction with respect to the propagation direction and without any deviation in the front-back direction. When ultrasonic waves are obliquely propagated to the test material by such an ultrasonic probe to perform ultrasonic flaw detection on the surface layer portion of the surface on which the ultrasonic probe is arranged, the ultrasonic refraction angle in the test material is About 70
It is necessary to set it to about 75 °. This state is shown in FIG.

【0004】図5は、斜角探傷法の幾何学図である。図
において、1は楔、3は振動子、8は試験体、Aは振動
子3の実際の寸法、Bは振動子3の見掛け上の寸法、S
は試験体8の表面、θ1 は試験体8の表面Sと直交する
法線YーY´に対する超音波の入射角度、θS は試験体
8の表面Sと直交する法線Y−Y´に対する超音波の屈
折角度、θは超音波の指向角度である。
FIG. 5 is a geometrical diagram of the bevel flaw detection method. In the figure, 1 is a wedge, 3 is a vibrator, 8 is a test body, A is an actual size of the vibrator 3, B is an apparent size of the vibrator 3, and S is an S size.
Is the surface of the test body 8, θ 1 is the incident angle of the ultrasonic wave with respect to the normal line YY ′ orthogonal to the surface S of the test body 8, and θ S is the normal line YY ′ orthogonal to the surface S of the test body 8. Is the refraction angle of the ultrasonic wave, and θ is the directivity angle of the ultrasonic wave.

【0005】ここで屈折角度θS を仮に75゜に設定し
た場合の楔1中の入射角度は、スネルの法則により下記
値となる。 θ1 =sin-1(sin75゜×C1 /C2 ) ≒26.7゜ ・・・・・(1) 但し、 C1 =2.748km/S(楔の縦波音速) C2 =5.9km/S(被検材の縦波音速) また、被検材8の中の超音波の指向角は下式により求め
ることができる。 θ=K×λ/B ・・・・・(2) 但し、B=A×cosθS /cosθ1 ・・・・・(3) つまり、このような縦波斜角探触子では上記(2),
(3)式から明らかなように、屈折角度θs と入射角度
θ1 の差が大きいために大きな指向角度θが得られ、試
験体8の表層部からある程度の深部までの広範囲を検査
することが可能となる利点があるので、しばしば使用さ
れる。
Here, when the refraction angle θ S is set to 75 °, the incident angle in the wedge 1 has the following value according to Snell's law. θ 1 = sin -1 (sin 75 ゜ C 1 / C 2 ) {26.7} (1) where C 1 = 2.748 km / S (longitudinal sound speed of wedge) C 2 = 5 .9 km / S (longitudinal wave sound velocity of the test material) The directivity angle of the ultrasonic wave in the test material 8 can be obtained by the following equation. θ = K × λ / B (2) However, B = A × cos θ S / cos θ 1 (3) That is, in such a longitudinal wave bevel probe, the above (2 ),
As is clear from the equation (3), a large directivity angle θ can be obtained because the difference between the refraction angle θ s and the incident angle θ 1 is large, and a wide range from the surface layer of the test body 8 to a certain depth should be inspected. Is often used because it has the advantage that

【0006】[0006]

【発明が解決しようとする課題】しかし、この従来の縦
波斜角探触子においては、探触子を配置した面の表層部
(例えば3〜10mm程度)での欠陥検出能は、探触子
と欠陥の位置関係が比較的近い場合(例えば20〜30
mm程度)には良いが、遠くなるほど表面に近い欠陥の
検出能は低下する欠点を有することになる。すなわち、
探触子と欠陥との相対位置が遠くなるほど、超音波の指
向角範囲の大きな角度成分が必要となるが、80゜を越
えると縦波の臨界角に近づくために楔と銅の境界面にお
ける超音波の往復通過率が急激に低下し、欠陥検出能の
低下をまねくことになる。
However, in this conventional longitudinal wave bevel probe, the defect detection ability in the surface layer portion (for example, about 3 to 10 mm) of the surface on which the probe is arranged is When the positional relationship between the child and the defect is relatively close (for example, 20 to 30)
mm), but the further the distance, the lower the ability to detect defects near the surface. That is,
The farther the relative position between the probe and the defect is, the larger the angle component of the ultrasonic directivity angle range is required. However, when the probe exceeds 80 °, the critical angle of the longitudinal wave is approached, so that the interface between the wedge and the copper is increased. The round-trip transmission rate of ultrasonic waves is sharply reduced, leading to a decrease in defect detectability.

【0007】この発明は、従来の欠点を改善する目的で
なされたもので、探触子を配置した面の表層部の広範囲
にわたって欠陥検出能を十分確保できる超音波探触子を
提案することを目的とする。
The present invention has been made in order to improve the conventional drawbacks, and it is an object of the present invention to propose an ultrasonic probe capable of sufficiently ensuring defect detection capability over a wide range of the surface layer portion of the surface on which the probe is arranged. To aim.

【0008】[0008]

【課題を解決するための手段】この発明に係る超音波縦
波斜角探触子は、(θT +θR )/2(θT は超音波の
送信角度、θR は超音波の受信角度)を示す見掛け上の
角度が小さくなるように、超音波の伝播方向に対して前
後関係の位置に送信用楔と受信用楔を配置するととも
に、上記それぞれの楔の試験体と当接する反対の面に送
信用振動子と受信用振動子をそれぞれ具備する。
An ultrasonic longitudinal wave bevel probe according to the present invention is (θ T + θ R ) / 2 (θ T is an ultrasonic wave transmission angle, and θ R is an ultrasonic wave reception angle). ), The transmitting wedge and the receiving wedge are arranged at positions in the front-rear direction with respect to the propagation direction of the ultrasonic waves, and the opposite of the wedges for abutting the test body. The surface is provided with a transmitting oscillator and a receiving oscillator.

【0009】また、この発明は、1個の送信用振動子を
所定の角度で固定する送信用楔と、2個以上の受信用振
動子を所定の角度で固定する受信用楔と、上記それぞれ
の楔の試験体と当接する反対面に1個の送信用振動子と
2個以上の受信用振動子をそれぞれ具備させ、2個以上
の受信用振動子は超音波の伝播方向に対して送信用振動
子より前方に配置したものである。
Further, according to the present invention, a transmitting wedge for fixing one transmitting oscillator at a predetermined angle, a receiving wedge for fixing two or more receiving oscillators at a predetermined angle, and each of the above One transmitter oscillator and two or more receiver oscillators are respectively provided on the opposite surfaces of the wedges that contact the test body, and two or more receiver oscillators are transmitted in the ultrasonic wave propagation direction. It is placed in front of the credit oscillator.

【0010】この発明は、2個以上の送信用振動子を所
定の角度で固定する送信用楔と、1個の受信用振動子を
所定の角度で固定する受信用楔と、上記それぞれの楔の
試験体と当接する反対面に2個以上の送信用振動子と1
個の受信用振動子をそれぞれ具備させ、上記2個以上の
送信用振動子は超音波の伝播方向に対して受信用振動子
より前方に配置したものである。
According to the present invention, a transmitting wedge for fixing two or more transmitting oscillators at a predetermined angle, a receiving wedge for fixing one receiving oscillator at a predetermined angle, and each of the above wedges. 2 or more transmitting transducers and 1
Each of the two receiving oscillators is provided, and the two or more transmitting oscillators are arranged in front of the receiving oscillator in the propagation direction of the ultrasonic waves.

【0011】[0011]

【作用】この発明は見掛け上の角度が小さくなるように
送信用振動子と受信用振動子との位置関係を設定するこ
とにより超音波エネルギーの通過率を向上させることが
できる。
According to the present invention, the transmission rate of ultrasonic energy can be improved by setting the positional relationship between the transmitting oscillator and the receiving oscillator so that the apparent angle becomes small.

【0012】また、この発明は、2個以上の受信用振動
子を1個の送信用振動子より前方に配置することにより
見掛け上の角度を小さくできる。
Further, according to the present invention, the apparent angle can be reduced by disposing two or more receiving oscillators in front of one transmitting oscillator.

【0013】この発明は、2個以上の送信用振動子を1
個の受信用振動子より前方に配置することにより見掛け
上の角度を小さくできる。
The present invention includes two or more transmitting oscillators
The apparent angle can be made smaller by arranging them in front of the individual receiving oscillators.

【0014】[0014]

【実施例】【Example】

実施例1.図1は、この発明の一実施例を示す超音波探
触子の断面図である。図において、1は送信用楔、2は
受信用楔、3は送信用振動子、4は受信用振動子、5は
遮音板、6はコネクタ、7はケースである。図2はこの
発明による超音波探触子の鋼中での超音波ビームの概念
図である。図において、3は送信用振動子、4は受信用
振動子、9は送信用振動子3から放射される縦波超音
波、10は送信用振動子3から放射される横波超音波、
11は受信用振動子4で受信する縦波超音波、12は受
信用振動子4で受信する横波超音波、θT は超音波の送
信角度、θR は超音波の受信角度である。
Example 1. FIG. 1 is a sectional view of an ultrasonic probe showing an embodiment of the present invention. In the figure, 1 is a transmitting wedge, 2 is a receiving wedge, 3 is a transmitting oscillator, 4 is a receiving oscillator, 5 is a sound insulating plate, 6 is a connector, and 7 is a case. FIG. 2 is a conceptual diagram of an ultrasonic beam in steel of the ultrasonic probe according to the present invention. In the figure, 3 is a transmitting oscillator, 4 is a receiving oscillator, 9 is a longitudinal ultrasonic wave emitted from the transmitting oscillator 3, 10 is a transverse ultrasonic wave emitted from the transmitting oscillator 3,
Reference numeral 11 is a longitudinal ultrasonic wave received by the receiving vibrator 4, 12 is a transverse ultrasonic wave received by the receiving vibrator 4, θ T is an ultrasonic wave transmission angle, and θ R is an ultrasonic wave reception angle.

【0015】図3はこの発明による超音波探触子の送受
信の縦波超音波に対する往復通過率を示す図であり、β
は送信角度θT と受信角度θR の和を2で割った見掛け
上の角度、Hは相対感度、13は往復通過率を示す曲線
である。
FIG. 3 is a graph showing the round-trip passage rate for longitudinal ultrasonic waves transmitted and received by the ultrasonic probe according to the present invention.
Is an apparent angle obtained by dividing the sum of the transmission angle θ T and the reception angle θ R by 2, H is the relative sensitivity, and 13 is the curve showing the round-trip passage rate.

【0016】図において、往復通過率は送信時における
送信用楔1から試験体8へ投入される超音波エネルギー
と、受信時における試験体8から受信用楔2へ投入され
る超音波エネルギーとの積で表わされ、縦波超音波では
0゜での送受信条件が最も超音波エネルギーの通過率が
大きく、送受信における見掛け上の角度βが大きくなる
ほど超音波エネルギーの通過率が小さくなる特性があ
る。従って、上記見掛け上の角度βが小さくなるように
送信用振動子3と受信用振動子4との位置関係を構成す
る必要がある。
In the figure, the round-trip passing rate is the ultrasonic energy applied from the transmitting wedge 1 to the test body 8 during transmission and the ultrasonic energy applied from the test body 8 to the receiving wedge 2 during reception. The longitudinal wave ultrasonic wave has a characteristic that the transmission rate of ultrasonic energy is the largest under the transmission / reception condition at 0 °, and the transmission rate of the ultrasonic energy decreases as the apparent angle β in transmission / reception increases. . Therefore, it is necessary to configure the positional relationship between the transmitting oscillator 3 and the receiving oscillator 4 so that the apparent angle β becomes small.

【0017】すなわち、上記のように超音波の伝播方向
に対して前後の位置に送信用振動子3と受信用振動子4
を配置する超音波探触子においては、送信用振動子3が
受信用振動子4の前方に配置すると、必ず超音波の送信
角度θT が受信角度θR に対して小さくなり、その結
果、見掛け上の角度βが小さくなる。この現象は送信用
楔1から試験体8への超音波の入射効率が向上するた
め、送信角度θT と受信角度θR が同一な場合に比べて
縦波超音波9の往復通過率が総合的に向上することにな
る。特にこの特性は、探触子と欠陥の相対位置が遠く
て、かつ、探触子を配置する試験体8表面に近い欠陥ほ
ど顕著な差として現われ、欠陥信号を大きなレベルで検
出できる。
That is, as described above, the transducer 3 for transmission and the transducer 4 for reception are provided at the front and rear positions with respect to the propagation direction of ultrasonic waves.
In the ultrasonic probe in which is arranged, when the transmitting transducer 3 is arranged in front of the receiving transducer 4, the ultrasonic transmitting angle θ T is always smaller than the receiving angle θ R , and as a result, The apparent angle β becomes smaller. This phenomenon improves the efficiency of incidence of ultrasonic waves from the transmitting wedge 1 to the test body 8. Therefore, compared with the case where the transmitting angle θ T and the receiving angle θ R are the same, the round-trip passing rate of the longitudinal ultrasonic waves 9 is higher. Will be improved. In particular, this characteristic appears as a more significant difference when the relative position between the probe and the defect is far and the defect is closer to the surface of the test body 8 on which the probe is arranged, and the defect signal can be detected at a large level.

【0018】また、縦波斜角探触子の特徴として次の利
点を備える。すなわち送信用振動子3のほぼ直下に存在
する欠陥に対しては横波超音波10が有効に作用し、こ
れも欠陥信号を大きなレベルで検出できることになり、
大幅にS/N比を向上させることが可能となる。
The longitudinal wave bevel probe has the following advantages. That is, the transverse ultrasonic wave 10 effectively acts on the defect existing directly below the transmitting oscillator 3, and this also enables the defect signal to be detected at a large level.
It is possible to significantly improve the S / N ratio.

【0019】この発明による探触子は超音波の伝播方向
に対して平行な方向に探触子または、試験体を走査しな
い探傷方式、すなわち自動探傷装置用としてかなり有効
性を示すものである。
The probe according to the present invention is considerably effective for a flaw detection system in which the probe or the test body is not scanned in a direction parallel to the propagation direction of ultrasonic waves, that is, for an automatic flaw detector.

【0020】実施例2.ところで上記説明では、送信用
振動子2個を受信用振動子の前に配置した例を示した
が、逆に受信用振動子2個を送信用振動子の前に配置し
たり、あるいは送受信用振動子の数の組み合わせを変え
ても類似の結果が得られるので、この発明の適用はまぬ
がれない。
Example 2. By the way, in the above description, the example in which the two transducers for transmission are arranged in front of the transducer for reception is shown. However, conversely, two transducers for reception are arranged in front of the transducer for transmission, or for transmission / reception. Since the similar result can be obtained even if the combination of the number of oscillators is changed, the application of the present invention is inevitable.

【0021】なお、超音波の伝播方向に対して前後関係
の位置に振動子を配置している探触子として実開昭52
−115272号公報に示されたものがあるが、この探
触子は、見掛け上の角度βを小さくして超音波エネルギ
ーの通過率を向上させるために振動子を前後関係の位置
に配置したものではない。
Incidentally, as a probe in which a transducer is arranged at a position in a front-rear direction with respect to the direction of propagation of ultrasonic waves, the actual probe 52 is used.
There is one disclosed in Japanese Patent Laid-Open No. 115272, but in this probe, a transducer is arranged in a front-rear position in order to reduce an apparent angle β and improve a passing rate of ultrasonic energy. is not.

【0022】[0022]

【発明の効果】この発明は、(θT +θR )/2(θT
は超音波の送信角度、θR は超音波の受信角度)を示す
見掛け上の角度が小さくなるように、超音波の伝播方向
に対して前後関係の位置に送信用楔と受信用楔を配置す
るとともに、上記それぞれの楔の試験体と当接する反対
の面に送信用振動子と受信用振動子をそれぞれ具備させ
ることにより特に自動探傷装置で問題となる検査時間の
短縮のために、超音波の伝播方向に対して探触子を前後
走査しない探傷方式において、試験体表層部の広範囲に
わたって高いS/N比を確保できる効果がある。
EFFECTS OF THE INVENTION The present invention is (θ T + θ R ) / 2 (θ T
Is the transmission angle of the ultrasonic wave, and θ R is the reception angle of the ultrasonic wave). The transmission wedge and the reception wedge are arranged at positions in front of and behind the propagation direction of the ultrasonic wave so that the apparent angle becomes small. In order to reduce the inspection time, which is a problem especially in the automatic flaw detector, by providing the transmitting oscillator and the receiving oscillator on the opposite surfaces of the wedges that come into contact with the test body, the ultrasonic wave is used. In the flaw detection method in which the probe is not scanned back and forth with respect to the propagation direction of 1, the high S / N ratio can be secured over a wide range of the surface layer of the test body.

【0023】また、この発明は、1個の送信用振動子を
所定の角度で固定する送信用楔と、2個以上の受信用振
動子を所定の角度で固定する受信用楔と、上記それぞれ
の楔の試験体と当接する反対面に1個の送信用振動子と
2個以上の受信用振動子をそれぞれ具備させ、2個以上
の受信用振動子は超音波の伝播方向に対して送信用振動
子より前方に配置することにより上記同様の効果を有す
る。
Further, according to the present invention, a transmitting wedge for fixing one transmitting oscillator at a predetermined angle, a receiving wedge for fixing two or more receiving oscillators at a predetermined angle, and each of the above One transmitter oscillator and two or more receiver oscillators are respectively provided on the opposite surfaces of the wedges that contact the test body, and two or more receiver oscillators are transmitted in the ultrasonic wave propagation direction. By arranging it in front of the credit oscillator, the same effect as above can be obtained.

【0024】この発明は、2個以上の送信用振動子を所
定の角度で固定する送信用楔と、1個の受信用振動子を
所定の角度で固定する受信用楔と、上記それぞれの楔の
試験体と当接する反対面に2個以上の送信用振動子と1
個の受信用振動子をそれぞれ具備させ、上記2個以上の
送信用振動子は超音波の伝播方向に対して受信用振動子
より前方に配置することにより上記同様の効果を有す
る。
According to the present invention, a transmitting wedge for fixing two or more transmitting oscillators at a predetermined angle, a receiving wedge for fixing one receiving oscillator at a predetermined angle, and each of the above wedges. 2 or more transmitting transducers and 1
The same effect as described above can be obtained by providing each of the receiving oscillators and arranging the two or more transmitting oscillators in front of the receiving oscillator in the propagation direction of ultrasonic waves.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例を示す探触子の断面図であ
る。
FIG. 1 is a cross-sectional view of a probe showing an embodiment of the present invention.

【図2】 この発明における超音波ビームの概念図であ
る。
FIG. 2 is a conceptual diagram of an ultrasonic beam according to the present invention.

【図3】 この発明における縦波超音波の往復通過率を
示す図である。
FIG. 3 is a diagram showing a round-trip passage rate of longitudinal ultrasonic waves in the present invention.

【図4】 従来の超音波探触子を示す斜視図と断面図で
ある。
FIG. 4 is a perspective view and a sectional view showing a conventional ultrasonic probe.

【図5】 斜角探傷法の幾何学図である。FIG. 5 is a geometrical diagram of the bevel flaw detection method.

【符号の説明】[Explanation of symbols]

1 送信用楔、2 受信用楔、3 送信用振動子、4
受信用振動子。
1 transmitting wedge, 2 receiving wedge, 3 transmitting oscillator, 4
Receiving oscillator.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (θT +θR )/2(θT は超音波の送
信角度、θR は超音波の受信角度)を示す見掛け上の角
度が小さくなるように、超音波の伝播方向に対して前後
関係の位置に送信用楔と受信用楔を配置するとともに、
上記それぞれの楔の試験体と当接する反対の面に送信用
振動子と受信用振動子をそれぞれ具備させたことを特徴
とする超音波縦波斜角探触子。
1. The propagation direction of ultrasonic waves is reduced so that the apparent angle indicating (θ T + θ R ) / 2 (θ T is the ultrasonic wave transmission angle and θ R is the ultrasonic wave reception angle) is small. On the other hand, the transmission wedge and the reception wedge are arranged at the positions of the front-rear relationship,
An ultrasonic longitudinal wave bevel probe, characterized in that a transmitting oscillator and a receiving oscillator are respectively provided on the opposite surfaces of the respective wedges that come into contact with the test body.
【請求項2】 1個の送信用振動子を所定の角度で固定
する送信用楔と、2個以上の受信用振動子を所定の角度
で固定する受信用楔と、上記それぞれの楔の試験体と当
接する反対面に1個の送信用振動子と2個以上の受信用
振動子をそれぞれ具備させ、2個以上の受信用振動子は
超音波の伝播方向に対して送信用振動子より前方に配置
したことを特徴とする超音波縦波斜角探触子。
2. A transmitting wedge for fixing one transmitting oscillator at a predetermined angle, a receiving wedge for fixing two or more receiving oscillators at a predetermined angle, and a test for each of the wedges. One transmitting oscillator and two or more receiving oscillators are provided on the opposite surface that contacts the body, and two or more receiving oscillators are provided from the transmitting oscillator in the ultrasonic wave propagation direction. An ultrasonic longitudinal wave bevel probe characterized by being placed in front.
【請求項3】 2個以上の送信用振動子を所定の角度で
固定する送信用楔と、1個の受信用振動子を所定の角度
で固定する受信用楔と、上記それぞれの楔の試験体と当
接する反対面に2個以上の送信用振動子と1個の受信用
振動子をそれぞれ具備させ、上記2個以上の送信用振動
子は超音波の伝播方向に対して受信用振動子より前方に
配置したことを特徴とする超音波縦波斜角探触子。
3. A transmitting wedge for fixing two or more transmitting oscillators at a predetermined angle, a receiving wedge for fixing one receiving oscillator at a predetermined angle, and a test for each of the wedges. Two or more transmitting oscillators and one receiving oscillator are respectively provided on the opposite surface contacting the body, and the two or more transmitting oscillators are receiving oscillators in the propagation direction of ultrasonic waves. An ultrasonic longitudinal wave bevel probe characterized by being arranged further forward.
JP7042749A 1995-03-02 1995-03-02 Ultrasonic longitudinal wave bevel probe Expired - Lifetime JP2661580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7042749A JP2661580B2 (en) 1995-03-02 1995-03-02 Ultrasonic longitudinal wave bevel probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7042749A JP2661580B2 (en) 1995-03-02 1995-03-02 Ultrasonic longitudinal wave bevel probe

Publications (2)

Publication Number Publication Date
JPH0894595A true JPH0894595A (en) 1996-04-12
JP2661580B2 JP2661580B2 (en) 1997-10-08

Family

ID=12644668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7042749A Expired - Lifetime JP2661580B2 (en) 1995-03-02 1995-03-02 Ultrasonic longitudinal wave bevel probe

Country Status (1)

Country Link
JP (1) JP2661580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023406B1 (en) * 2021-09-02 2022-02-21 三菱重工パワー検査株式会社 Ultrasonic probe and ultrasonic flaw detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141188A (en) * 1978-04-25 1979-11-02 Hitachi Shipbuilding Eng Co Method of ultrasonic flaw detection
JPS5667750A (en) * 1979-11-08 1981-06-08 Kawasaki Steel Corp Automatic ultrasonic flaw detecting method
JPS59133457A (en) * 1983-01-20 1984-07-31 Mitsubishi Electric Corp Ultrasonic flaw detector for steel plate
JPH0521011U (en) * 1991-09-02 1993-03-19 日本建鐵株式会社 Horizontal material roll prevention structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54141188A (en) * 1978-04-25 1979-11-02 Hitachi Shipbuilding Eng Co Method of ultrasonic flaw detection
JPS5667750A (en) * 1979-11-08 1981-06-08 Kawasaki Steel Corp Automatic ultrasonic flaw detecting method
JPS59133457A (en) * 1983-01-20 1984-07-31 Mitsubishi Electric Corp Ultrasonic flaw detector for steel plate
JPH0521011U (en) * 1991-09-02 1993-03-19 日本建鐵株式会社 Horizontal material roll prevention structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023406B1 (en) * 2021-09-02 2022-02-21 三菱重工パワー検査株式会社 Ultrasonic probe and ultrasonic flaw detection method

Also Published As

Publication number Publication date
JP2661580B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US5431054A (en) Ultrasonic flaw detection device
JP6797788B2 (en) Ultrasonic probe
JP3023641B2 (en) Composite longitudinal wave bevel probe for ultrasonic flaw detection of pipe welds
JP2002062281A (en) Flaw depth measuring method and its device
JPH11118770A (en) Ultrasonic flaw-detecting method and device
JPH0894595A (en) Longitudinal-ultrasonic-wave angle beam probe
JP3140157B2 (en) Ultrasonic flaw detection method for planar defects
JP7074488B2 (en) Ultrasonic probe
JP2001305111A (en) Ultrasonic rail flaw detector
JPH0521011Y2 (en)
JP2001228126A (en) Ultrasonic flaw detector
JPH04157360A (en) Supersonic probe
JP3176495B2 (en) Bevel probe for ultrasonic inspection of socket weld joint
JP2978708B2 (en) Composite angle beam probe
JP4171130B2 (en) Ultrasonic rail flaw detector
JPH07253414A (en) Method and apparatus for ultrasonic flaw detection
JPH05119025A (en) Flaw detection method of circumference welding part
JPH0810793Y2 (en) Attenuator Material Probe
JP3036632B2 (en) Local water immersion ultrasonic testing equipment
JPH10111281A (en) Ultrasonic flaw detection and ultrasonic probe
JPH11316216A (en) Ultrasonic probe
JPH07260747A (en) Method and device for ultrasonic flaw detection
JPH1151909A (en) Ultrasonic wave flaw detecting method
JPH0545346A (en) Ultrasonic probe
JP3095055B2 (en) Electronic scanning probe for angle beam inspection