JPH0894554A - Method for estimating ash content of coke by fluorescent x-ray spectroscopy - Google Patents

Method for estimating ash content of coke by fluorescent x-ray spectroscopy

Info

Publication number
JPH0894554A
JPH0894554A JP25744894A JP25744894A JPH0894554A JP H0894554 A JPH0894554 A JP H0894554A JP 25744894 A JP25744894 A JP 25744894A JP 25744894 A JP25744894 A JP 25744894A JP H0894554 A JPH0894554 A JP H0894554A
Authority
JP
Japan
Prior art keywords
coke
ash
ray
fluorescent
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25744894A
Other languages
Japanese (ja)
Inventor
Motokazu Miyawaki
元和 宮脇
Masaji Takenaka
政次 竹中
Kiichiro Shimura
喜一郎 志村
Yoshiaki Hayashi
義昭 林
Minoru Nakazawa
稔 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25744894A priority Critical patent/JPH0894554A/en
Publication of JPH0894554A publication Critical patent/JPH0894554A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enable estimating the ash content of coke with high accuracy by mixing a binding agent in the coke crushed, pressure molding the coke into a briquette shape, then calculating the content of each of specific four elements from a preset calibration curve and in accordance with the X-ray intensities of the specific four elements which are measured with a fluorescent X-ray emission spectrometer, and using a specific equation. CONSTITUTION: Coke is crushed with the addition of a binding agent and is pressure molded into a briquette-shaped sample. The X-ray intensities of Si, Al, Ca and Fe in the molding are measured with an X-ray fluorescent emission spectrometer. In accordance with the intensities, the contents of SiO2 , Al2 O3 , Cab, and Fe2 O3 are calculated from a preset calibration curve on which, when the elements are zero, the fluorescent X-ray intensities are zero. The ash content AΔh of the coke is calculated on the basis of the equation (A1 =1.039, B1 =1.240, C1 =1.865, D1 =1.188, K1 =0.311). Thus the time required to measure the ash content can be reduced and the labor required of analysis persons reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、コークス中の灰分を
短時間で高精度で推定できる蛍光X線分析による石炭灰
分推定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating coal ash content by fluorescent X-ray analysis capable of accurately estimating ash content in coke in a short time.

【0002】[0002]

【従来の技術】高炉用コークスは、通常水分8〜10%
の原料石炭を数種ないし十余種、所定比率、所定粒度に
配合・粉砕して装入炭を調製し、室炉式コークス炉の炭
化室に装入し、高温乾留して製造されている。高炉用コ
ークスは、高炉の安定操業、熱バランスの観点からコー
クス強度、コークス灰分を所定値に管理することが行わ
れている。上記コークス灰分の管理は、装入炭の調製段
階において各石炭銘柄別の灰分をJIS M 88
12に規定の石炭類およびコークス類の工業分析法によ
る化学分析により測定し、コークス灰分が所定値となる
よう原料石炭の配合を行い、乾留したコークスの灰分を
測定することにより行われていた。
Blast furnace coke usually has a water content of 8 to 10%.
It is manufactured by blending and pulverizing several types of raw material coal of several types to more than 10 types in a predetermined ratio and with a predetermined particle size to prepare a charging coal, charging it into a carbonization chamber of a chamber furnace type coke oven, and performing high temperature carbonization. . The coke strength and coke ash content of the blast furnace coke are controlled to predetermined values from the viewpoint of stable operation of the blast furnace and heat balance. The management of the coke ash content is based on JIS M 88
It was carried out by measuring the ash content of dry-distilled coke by blending the raw material coal so that the coke ash content would be a predetermined value, which was measured by chemical analysis by the industrial analysis method of coals and cokes specified in 12.

【0003】上記JIS M 8812に規定の石
炭類およびコークス類の工業分析法によるコークス中の
灰分測定は、コークスを空気中で815℃±10℃で加
熱灰化(燃焼)し、冷却させたのち直ちに質量を秤量し
て灰量を求め、灰分を所定の計算式により求めていた。
しかしながら、JIS M 8812に規定の方法
では、測定に少なくとも4〜5時間を費やし、非能率的
であるばかりでなく、その測定工数は多大なものであ
る。
The ash content in the coke according to the industrial analysis method for coals and cokes prescribed in JIS M 8812 is as follows: after the coke is ashed (burned) at 815 ° C. ± 10 ° C. in air and then cooled. The mass was immediately weighed to obtain the ash amount, and the ash content was obtained by a predetermined calculation formula.
However, the method specified in JIS M 8812 requires at least 4 to 5 hours for measurement, which is inefficient, and the measurement man-hour is enormous.

【0004】コークス中の灰分を短時間で推定する方法
としては、微細化したコークス試料を粘結剤で結合し成
型したコークスを蛍光X線分析計にかけて、そのコーク
ス中のSi、Ca、Al、Fe、Mgを測定し、これに
よりSiO2、CaO、Al2O3、Fe2O3、Mg
Oの各成分量を検量し、それら各成分量の合計からコー
クス中の灰分を推定する方法(特開昭51−10649
0号公報)、コークス中のりん、全硫黄または灰分組成
を分析するにあたり、粉砕コークス試料の加圧成型物を
蛍光X線分析装置を用いて分析を行う方法(特開昭60
−253957号公報)等が提案されている。
As a method for estimating the ash content in the coke in a short time, the coke formed by binding a finely divided coke sample with a binder is subjected to a fluorescent X-ray analyzer, and Si, Ca, Al in the coke, Fe and Mg are measured, and SiO2, CaO, Al2O3, Fe2O3, Mg
A method in which the amount of each component of O is calibrated and the ash content in coke is estimated from the total of the amounts of each component (JP-A-51-10649).
No. 0), in analyzing the composition of phosphorus, total sulfur, or ash in coke, a method of performing pressure analysis of a crushed coke sample using a fluorescent X-ray analyzer (Japanese Patent Laid-Open No. Sho 60).
No. 253957) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記特開昭51−10
6490号公報に開示の方法は、コークスを60メッシ
ュ以下に粉砕し、次いで粉砕したコークスを容器に入
れ、その上から圧力20〜35t/cm2、加圧時間5
〜15秒程度加圧してブリケット状の試料とし、蛍光X
線分析計にかけ、コークス中のSiO2、CaO、Al2
3、Fe23、MgOの各成分量を、蛍光X線分析計
に表示されるSi、Ca、Al、Fe、MgのX線強度
表示に基づいて予め設定された検量線から読み取り、そ
れら各成分量の合計をコークス灰分の近似値として推定
するものである。しかしながら、特開昭51−1064
90号公報に開示の方法は、試料をブリケット状に加圧
成型する際に表面に亀裂が発生し易く、また、各元素の
含有量が零の場合でもX線強度が確認されたり、逆に検
量線におけるX線強度が零のとき、元素が検出されると
いう現象が発生して分析精度が悪化し、灰分推定値とJ
IS M 8812に規定の工業分析法による灰分
値との誤差が大きく、実操業における生産管理にコーク
ス推定灰分値を採用することはできないという欠点を有
している。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the method disclosed in Japanese Patent No. 6490, coke is crushed to 60 mesh or less, and then the crushed coke is put in a container, and a pressure of 20 to 35 t / cm 2 and a pressurization time of 5 are applied from above.
Press for about 15 seconds to make a briquette-like sample, and use fluorescent X
Line analyzer, SiO 2 , CaO, Al 2 in coke
The amount of each component of O 3 , Fe 2 O 3 and MgO is read from the calibration curve set in advance based on the X-ray intensity display of Si, Ca, Al, Fe and Mg displayed on the fluorescent X-ray analyzer, The sum of the amounts of these components is estimated as an approximate value of coke ash content. However, JP-A-51-1064
The method disclosed in Japanese Patent Publication No. 90 tends to cause cracks on the surface when the sample is pressure-molded into a briquette, and the X-ray intensity is confirmed even when the content of each element is zero, or conversely. When the X-ray intensity in the calibration curve is zero, the phenomenon that elements are detected occurs and the analysis accuracy deteriorates.
It has a drawback that the coke estimated ash value cannot be used for production control in actual operation because the error with the ash value by the industrial analysis method prescribed in IS M 8812 is large.

【0006】また、特開昭60−253957号公報に
開示の灰分推定方法は、沸点70〜100℃の溶剤、例
えばエタノールを加えて加圧成型した試料を蛍光X線分
析計にかけ、SiO2、CaO、Al23、Fe23
MgO、Na2O、K2O、TiO2の各成分量を、蛍光
X線分析計に表示されるSi、Ca、Al、Fe、M
g、Na、K、TiのX線強度表示に基づいて予め設定
された検量線から読み取り、それら各成分量の合計をコ
ークス灰分の近似値として推定するものである。しかし
ながら、特開昭60−253957号公報に開示の方法
は、特開昭51−106490号公報に開示の方法と同
様に、各元素の含有量が零の場合でもX線強度が確認さ
れたり、逆に検量線におけるX線強度が零のとき、元素
が検出されるという現象が発生して分析精度が悪く、J
IS M 8812に規定の工業分析法による灰分
値との誤差が大きく、実操業における生産管理にコーク
ス推定灰分値を採用することはできない。
Further, the ash content estimation method disclosed in JP-A-60-253957 discloses a method in which a solvent having a boiling point of 70 to 100 ° C., for example, ethanol is added and pressure-molded, and the sample is subjected to a fluorescent X-ray analyzer to obtain SiO 2 , CaO, Al 2 O 3 , Fe 2 O 3 ,
The amount of each component of MgO, Na 2 O, K 2 O, and TiO 2 is displayed on a fluorescent X-ray analyzer such as Si, Ca, Al, Fe, and M.
It reads from the calibration curve set up beforehand based on the X-ray-intensity display of g, Na, K, and Ti, and estimates the total of each component amount as an approximate value of coke ash content. However, the method disclosed in JP-A-60-253957 is similar to the method disclosed in JP-A-51-106490, in that the X-ray intensity is confirmed even when the content of each element is zero, On the contrary, when the X-ray intensity in the calibration curve is zero, the phenomenon that elements are detected occurs and the analysis accuracy is poor.
There is a large error from the ash value by the industrial analysis method prescribed in IS M 8812, and the coke estimated ash value cannot be adopted for production control in actual operation.

【0007】この発明の目的は、前記特開昭51−10
6490号公報、特開昭60−253957号公報に開
示の方法の欠点を解消し、JIS M 8812に
規定の工業分析法による灰分値との誤差が極めて小さい
蛍光X線分析によるコークス灰分推定方法を提供するこ
とにある。
The object of the present invention is the above-mentioned Japanese Patent Laid-Open No. 51-10.
A method for estimating coke ash content by fluorescent X-ray analysis, which solves the drawbacks of the methods disclosed in Japanese Patent No. 6490 and JP-A-60-253957, and has an extremely small error from the ash value by the industrial analysis method specified in JIS M 8812. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々試験検討を重ねた。その結果、試料を
ブリケット状に加圧成型する際にバインダーとしてスチ
レンマイン酸ポリマーを添加することによって、試料表
面の亀裂発生を防止できると共に、コークス含有率を増
量できること、検量線を元素零のときX線強度零となる
よう改善することによって、各成分量の検出精度が向上
すること、検量線から求めた各成分含有率から所定の推
定式に基づいてコークス灰分量を算出することによっ
て、JISM 8812に規定の工業分析法による灰
分値との誤差が±0.2%以下と極めて小さくなること
を究明し、この発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted various tests and examinations in order to achieve the above object. As a result, by adding a styrene-amic acid polymer as a binder when pressure-molding a sample into a briquette, it is possible to prevent the occurrence of cracks on the sample surface, increase the coke content rate, and when the calibration curve is zero. By improving the X-ray intensity to zero, the detection accuracy of each component amount is improved, and by calculating the coke ash content from each component content rate obtained from the calibration curve based on a predetermined estimation formula, JISM It was clarified that the error from the ash value by the industrial analysis method prescribed in 8812 was as small as ± 0.2% or less, and the present invention was reached.

【0009】すなわち本願の第1発明は、コークス中の
灰分を蛍光X線分析により推定する方法において、コー
クスを粉砕して結合剤を添加混合し、加圧成型してブリ
ケット状の試料となし、蛍光X線分析計にかけてSi、
Al、Ca、FeのX線強度を測定し、測定したSi、
Al、Ca、FeのX線強度に基づいて予め設定された
元素零のときX線強度零の検量線からSiO2、Al2
3、CaO、Fe23の各成分含有率を換算し、該各成
分含有率から下記灰分推定式(1)に基づいてコークス
灰分量を算出することを特徴とする蛍光X線分析による
コークス灰分推定方法である。 Ash(%)=(A1×SiO2+B1×Al23+C1×
CaO+D1×Fe23)−K1…(1) ただし、A1=1.039、B1=1.240、C1
1.865、D1=1.188、K1=0.311
That is, the first invention of the present application is a method for estimating the ash content in coke by fluorescent X-ray analysis, in which coke is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, Si by fluorescent X-ray analyzer
The X-ray intensity of Al, Ca, Fe was measured, and the measured Si,
When the element is preset to zero based on the X-ray intensities of Al, Ca, and Fe, the calibration curve of zero X-ray intensity indicates SiO 2 , Al 2 O.
Coke by fluorescent X-ray analysis, characterized in that the content of each component of 3 , CaO, Fe 2 O 3 is converted, and the amount of coke ash is calculated from the content of each component based on the following ash content estimation formula (1). This is an ash estimation method. Ash (%) = (A 1 × SiO 2 + B 1 × Al 2 O 3 + C 1 ×
CaO + D 1 × Fe 2 O 3) -K 1 ... (1) However, A 1 = 1.039, B 1 = 1.240, C 1 =
1.865, D 1 = 1.188, K 1 = 0.311

【0010】本願の第2発明は、コークス中の灰分を蛍
光X線分析により推定する方法において、コークスを粉
砕して結合剤を添加混合し、加圧成型してブリケット状
の試料となし、蛍光X線分析計にかけてSi、Al、C
a、TiのX線強度を測定し、測定した各元素のX線強
度に基づいて予め設定された元素零のとき蛍光X線強度
零の検量線からSiO2、Al23、CaO、TiO2
各成分含有率を換算し、該各成分含有率から下記灰分推
定式(2)に基づいてコークス灰分量を算出することを
特徴とする蛍光X線分析によるコークス灰分推定方法で
ある。 Ash(%)=(A2×SiO2+B2×Al23+C2×
CaO+E1×TiO2)−K2…(2) ただし、A2=1.020、B2=1.396、C2
2.300、E1=1.297、K2=0.320
The second invention of the present application is a method for estimating the ash content in coke by fluorescent X-ray analysis, in which coke is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample. X-ray analyzer, Si, Al, C
a, X-ray intensities of Ti are measured, and when the element is preset to zero based on the measured X-ray intensities of the respective elements, SiO 2 , Al 2 O 3 , CaO, TiO is obtained from the calibration curve of zero fluorescent X-ray intensity. The coke ash content estimation method by fluorescent X-ray analysis is characterized in that the content rate of each component of 2 is converted and the coke ash content is calculated from the content rate of each component based on the following ash content estimation formula (2). Ash (%) = (A 2 × SiO 2 + B 2 × Al 2 O 3 + C 2 ×
CaO + E 1 × TiO 2) -K 2 ... (2) However, A 2 = 1.020, B 2 = 1.396, C 2 =
2.300, E 1 = 1.297, K 2 = 0.320

【0011】本願の第3発明は、コークス中の灰分を蛍
光X線分析により推定する方法において、コークスを粉
砕して結合剤を添加混合し、加圧成型してブリケット状
の試料となし、蛍光X線分析計にかけてSi、Al、C
a、Fe、TiのX線強度を測定し、測定した各元素の
X線強度に基づいて予め設定された元素零のとき蛍光X
線強度零の検量線からSiO2、Al23、CaO、F
23、TiO2の各成分含有率を換算し、該各成分含
有率から下記灰分推定式(3)に基づいてコークス灰分
量を算出することを特徴とする蛍光X線分析によるコー
クス灰分推定方法である。 Ash(%)=(A3×SiO2+B3×Al23+C3×
CaO+D2×Fe23+E2×TiO2)−K3…(3) ただし、A3=1.037、B2=1.127、C2
1.725、D2=1.371、E2=1.282、K3
=0.204
The third invention of the present application is a method for estimating the ash content in coke by fluorescent X-ray analysis, in which coke is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample. X-ray analyzer, Si, Al, C
X-ray intensities of a, Fe, and Ti are measured, and fluorescence X is obtained when the element is zero, which is preset based on the measured X-ray intensities of the respective elements.
From the calibration curve with zero line intensity, SiO 2 , Al 2 O 3 , CaO, F
Coke ash content by fluorescent X-ray analysis, characterized in that the content of each component of e 2 O 3 and TiO 2 is converted and the amount of coke ash is calculated from the content of each component based on the following ash content estimation formula (3). This is an estimation method. Ash (%) = (A 3 × SiO 2 + B 3 × Al 2 O 3 + C 3 ×
CaO + D 2 × Fe 2 O 3 + E 2 × TiO 2) -K 3 ... (3) However, A 3 = 1.037, B 2 = 1.127, C 2 =
1.725, D2 = 1.371, E 2 = 1.282, K 3
= 0.204

【0012】本願の第4発明は、コークス中の灰分を蛍
光X線分析により推定する方法において、コークスを粉
砕して結合剤を添加混合し、加圧成型してブリケット状
の試料となし、蛍光X線分析計にかけてSi、Al、C
a、Ti、P、MgのX線強度を測定し、測定した各元
素のX線強度に基づいて予め設定された元素零のとき蛍
光X線強度零の検量線からSiO2、Al23、Ca
O、TiO2、P25、MgOの各成分含有率を換算
し、該各成分含有率から下記灰分推定式(4)に基づい
てコークス灰分量を算出することを特徴とする蛍光X線
分析によるコークス灰分推定方法である。 Ash(%)=(A4×SiO2+B4×Al23+C4×
CaO+E3×TiO2+F1×P25+G1×MgO)−
4…(4) ただし、A4=0.982、B4=1.356、C4
1.921、E3=1.197、F1=0.835、G1
=1.176、K4=0.082
A fourth invention of the present application is a method for estimating ash content in coke by fluorescent X-ray analysis, in which coke is crushed, a binder is added and mixed, and pressure molding is performed to obtain a briquette-shaped sample. X-ray analyzer, Si, Al, C
The X-ray intensities of a, Ti, P, and Mg are measured, and when the element is preset to zero based on the measured X-ray intensities of the respective elements, SiO 2 , Al 2 O 3 is obtained from the calibration curve of zero fluorescent X-ray intensity. , Ca
A fluorescent X-ray characterized by converting the content ratio of each component of O, TiO 2 , P 2 O 5 , and MgO, and calculating the coke ash content from the content ratio of each component based on the following ash content estimation formula (4). It is a method of estimating coke ash content by analysis. Ash (%) = (A 4 × SiO 2 + B 4 × Al 2 O 3 + C 4 ×
CaO + E 3 × TiO 2 + F 1 × P 2 O 5 + G 1 × MgO) -
K 4 (4) where A 4 = 0.982, B 4 = 1.356, C 4 =
1.921, E 3 = 1.197, F 1 = 0.835, G 1
= 1.176, K 4 = 0.082

【0013】本願の第5発明は、コークス中の灰分を蛍
光X線分析により推定する方法において、コークスを粉
砕して結合剤を添加混合し、加圧成型してブリケット状
の試料となし、蛍光X線分析計にかけてSi、Al、C
a、Fe、Ti、P、Mg、Mn、SのX線強度を測定
し、測定した各元素のX線強度に基づいて予め設定され
た元素零のとき蛍光X線強度零の検量線からSiO2
Al23、CaO、Fe23、TiO2、P25、Mg
O、MnO、Total Sの各成分含有率を換算し、
該各成分含有率から下記灰分推定式(5)に基づいてコ
ークス灰分量を算出することを特徴とする蛍光X線分析
によるコークス灰分推定方法である。 Ash(%)=(A5×SiO2+B5×Al23+C5×
CaO+D3×Fe23+E4×TiO2+P25+Mg
O+MnO+H1×Total S)−K5…(5) ただし、A5=1.057、B5=0.994、C5
0.983、D3=0.951、E4=1.106、H1
=1.033、K5=0.173
A fifth invention of the present application is a method for estimating ash content in coke by fluorescent X-ray analysis, wherein coke is crushed, a binder is added and mixed, and pressure molding is carried out to form a briquette-like sample. X-ray analyzer, Si, Al, C
The X-ray intensities of a, Fe, Ti, P, Mg, Mn, and S were measured, and when the element was preset to zero based on the measured X-ray intensities of the respective elements, the fluorescence X-ray intensity was zero. 2 ,
Al 2 O 3 , CaO, Fe 2 O 3 , TiO 2 , P 2 O 5 , Mg
Converting the content rate of each component of O, MnO, and Total S,
A method for estimating coke ash content by fluorescent X-ray analysis, characterized in that the amount of coke ash content is calculated from the content rate of each component based on the following ash content estimation formula (5). Ash (%) = (A 5 × SiO 2 + B 5 × Al 2 O 3 + C 5 ×
CaO + D 3 × Fe 2 O 3 + E 4 × TiO 2 + P 2 O 5 + Mg
O + MnO + H 1 × Total S) -K 5 ... (5) provided that, A 5 = 1.057, B 5 = 0.994, C 5 =
0.983, D3 = 0.951, E 4 = 1.106, H 1
= 1.033, K 5 = 0.173

【0014】[0014]

【作用】この発明においては、コークスを粉砕して結合
剤を添加混合し、加圧成型してブリケット状の試料とす
ることによって、加圧成型時の表面の亀裂発生が防止さ
れ、各元素の分析精度を向上することができる。本願の
第1発明においては、蛍光X線分析により測定したS
i、Al、Ca、FeのX線強度に基づき、予め設定さ
れた元素零のとき蛍光X線強度零の検量線から算出した
SiO2、Al23、CaO、Fe23の各成分含有率
から前記灰分推定式(1)に基づいてコークス灰分量を
算出することによって、灰分推定値とJIS M88
12に規定の化学分析法による灰分値との誤差を、実操
業のコークス灰分管理に適用できる±0.2%以下とす
ることができ、実操業のコークス灰分管理に用いる灰分
測定を、JIS M8812に規定の化学分析法から
蛍光X線分析法に置換可能となる。この結果、灰分測定
に要する工数は、1銘柄約4時間から30分へと約1/
8に大幅に短縮することができ、分析要員の省力化を図
ることができる。
In the present invention, the coke is crushed, the binder is added and mixed, and the mixture is pressure-molded to form a briquette-like sample, which prevents the occurrence of cracks on the surface during pressure-molding. The analysis accuracy can be improved. In the first invention of the present application, S measured by fluorescent X-ray analysis
Based on the X-ray intensities of i, Al, Ca, and Fe, each component of SiO 2 , Al 2 O 3 , CaO, and Fe 2 O 3 calculated from a calibration curve of zero fluorescent X-ray intensity when the element was set to zero in advance. By calculating the amount of coke ash from the content based on the ash estimation formula (1), the estimated ash content and JIS M88
The error from the ash value by the chemical analysis method specified in 12 can be set to ± 0.2% or less which can be applied to the coke ash management in the actual operation, and the ash measurement used in the coke ash management in the actual operation can be measured according to JIS M8812. It becomes possible to replace the chemical analysis method prescribed in the above with the fluorescent X-ray analysis method. As a result, the number of man-hours required to measure ash content was reduced from about 4 hours for one brand to 30 minutes by about 1 /
The number can be significantly shortened to 8, and labor saving of analysis personnel can be achieved.

【0015】本願の第2発明においては、蛍光X線分析
により測定したSi、Al、Ca、TiののX線強度に
基づき、予め設定された元素零のとき蛍光X線強度零の
検量線から算出したSiO2、Al23、CaO、Ti
2の各成分含有率から前記灰分推定式(2)に基づい
てコークス灰分量を算出することによって、灰分推定値
とJIS M8812に規定の化学分析法による灰分
値との誤差を、実操業のコークス灰分管理に適用できる
±0.2%以下とすることができ、実操業のコークス灰
分管理に用いる灰分測定を、JIS M8812に規
定の化学分析法から蛍光X線分析法に置換可能となる。
この結果、灰分測定に要する工数は、1銘柄約4時間か
ら30分へと約1/8に大幅に短縮することができ、分
析要員の省力化を図ることができる。
In the second invention of the present application, based on the X-ray intensities of Si, Al, Ca, and Ti measured by fluorescent X-ray analysis, a calibration curve of zero fluorescent X-ray intensity when the element is preset is zero. Calculated SiO 2 , Al 2 O 3 , CaO, Ti
By calculating the amount of coke ash based on the ash content estimation formula (2) from the content of each component of O 2 , the error between the ash content estimated value and the ash content value according to the chemical analysis method specified in JIS M8812 can be calculated. It can be set to ± 0.2% or less applicable to coke ash management, and the ash measurement used for actual coke ash management can be replaced with the fluorescent X-ray analysis method from the chemical analysis method specified in JIS M8812.
As a result, the number of man-hours required for ash content measurement can be significantly reduced from about 4 hours for one brand to 30 minutes, about 1/8, and labor saving of analysis personnel can be achieved.

【0016】本願の第3発明においては、蛍光X線分析
により測定したSi、Al、Ca、Fe、TiのX線強
度に基づき、予め設定された元素零のとき蛍光X線強度
零の検量線から算出したSiO2、Al23、CaO、
Fe23、TiO2の各成分含有率から前記灰分推定式
(3)に基づいてコークス灰分量を算出することによっ
て、灰分推定値とJIS M8812に規定の化学分
析法による灰分値との誤差を、実操業のコークス灰分管
理に適用できる±0.2%以下とすることができ、実操
業のコークス灰分管理に用いる灰分測定を、JIS
M8812に規定の化学分析法から蛍光X線分析法に置
換可能となる。この結果、灰分測定に要する工数は、1
銘柄約4時間から30分へと約1/8に大幅に短縮する
ことができ、分析要員の省力化を図ることができる。
In the third invention of the present application, based on the X-ray intensities of Si, Al, Ca, Fe, and Ti measured by fluorescent X-ray analysis, a calibration curve of zero fluorescent X-ray intensity when the element is preset is zero. Calculated from SiO 2 , Al 2 O 3 , CaO,
By calculating the amount of coke ash based on the ash content estimation formula (3) from the content of each component of Fe 2 O 3 and TiO 2 , the difference between the ash content and the ash content by the chemical analysis method specified in JIS M8812 is calculated. Can be set to ± 0.2% or less applicable to the coke ash management of the actual operation, and the ash measurement used for the coke ash management of the actual operation can be measured according to JIS.
The chemical analysis method specified in M8812 can be replaced with the fluorescent X-ray analysis method. As a result, the man-hours required for ash measurement are 1
The number of brands can be drastically shortened to about 1/8 from 4 hours to 30 minutes, and labor saving of analysis personnel can be achieved.

【0017】本願の第4発明においては、蛍光X線分析
により測定したSi、Al、Ca、Ti、P、MgのX
線強度に基づき、予め設定された元素零のとき蛍光X線
強度零の検量線から算出したSiO2、Al23、Ca
O、TiO2、P25、MgOの各成分含有率から前記
灰分推定式(4)に基づいてコークス灰分量を算出する
ことによって、灰分推定値とJIS M8812に規
定の化学分析法による灰分値との誤差を、実操業のコー
クス灰分管理に適用できる±0.2%以下とすることが
でき、実操業のコークス灰分管理に用いる灰分測定を、
JIS M8812に規定の化学分析法から蛍光X線
分析法に置換可能となる。この結果、灰分測定に要する
工数は、1銘柄約4時間から30分へと約1/8に大幅
に短縮することができ、分析要員の省力化を図ることが
できる。
In the fourth invention of the present application, X of Si, Al, Ca, Ti, P and Mg measured by X-ray fluorescence analysis.
SiO 2 , Al 2 O 3 and Ca calculated from a calibration curve of zero fluorescent X-ray intensity when the element is preset to zero based on the linear intensity.
By calculating the amount of coke ash based on the ash content estimation formula (4) from the content of each of O, TiO 2 , P 2 O 5 , and MgO, the estimated ash content and the ash content by the chemical analysis method specified in JIS M8812 are calculated. The error with the value can be set to ± 0.2% or less which can be applied to the coke ash management of the actual operation, and the ash measurement used for the coke ash management of the actual operation can be
The chemical analysis method specified in JIS M8812 can be replaced with the fluorescent X-ray analysis method. As a result, the number of man-hours required for ash content measurement can be significantly reduced from about 4 hours for one brand to 30 minutes, about 1/8, and labor saving of analysis personnel can be achieved.

【0018】本願の第5発明においては、蛍光X線分析
により測定したSi、Al、Ca、Fe、Ti、P、M
g、Mn、SのX線強度に基づき、予め設定された元素
零のとき蛍光X線強度零の検量線から算出したSi
2、Al23、CaO、Fe23、TiO2、P25
MgO、MnO、Total Sの各成分含有率から前
記灰分推定式(5)に基づいてコークス灰分量を算出す
ることによって、灰分推定値とJIS M8812に
規定の化学分析法による灰分値との誤差を、実操業のコ
ークス灰分管理に適用できる±0.2%以下とすること
ができ、実操業のコークス灰分管理に用いる灰分測定
を、JIS M8812に規定の化学分析法から蛍光
X線分析法に置換可能となる。この結果、灰分測定に要
する工数は、1銘柄約4時間から30分へと約1/8に
大幅に短縮することができ、分析要員の省力化を図るこ
とができる。
In the fifth invention of the present application, Si, Al, Ca, Fe, Ti, P and M measured by X-ray fluorescence analysis.
Si calculated from a calibration curve of zero fluorescent X-ray intensity when a preset element is zero, based on X-ray intensities of g, Mn, and S
O 2 , Al 2 O 3 , CaO, Fe 2 O 3 , TiO 2 , P 2 O 5 ,
By calculating the amount of coke ash based on the ash content estimation formula (5) from the content of each component of MgO, MnO, and Total S, the error between the ash content estimated value and the ash content value by the chemical analysis method prescribed in JIS M8812 is calculated. , Which can be applied to the management of coke ash in the actual operation, can be set to ± 0.2% or less, and the ash measurement used for the management of coke ash in the actual operation is replaced with the fluorescent X-ray analysis method from the chemical analysis method specified in JIS M8812. It will be possible. As a result, the number of man-hours required for ash content measurement can be significantly reduced from about 4 hours for one brand to 30 minutes, about 1/8, and labor saving of analysis personnel can be achieved.

【0019】この発明において、加圧成型時に粉砕した
コークスに添加混合する結合剤としては、ポリスチレン
マレイン酸ポリマーを使用することによって、成型試料
中のコークス量を上昇でき、X線強度を向上でき、分析
精度の向上を図ることができる。ブリケット状の試料に
加圧成型する場合の圧力は、3t/cm2以上、望まし
くは20〜35t/cm2である。ブリケット状の試料
は、測定面が外径20mm以上必要であるので、加圧成
型時に外径25〜35mmのリング容器を使用するのが
望ましい。
In the present invention, by using polystyrene maleic acid polymer as a binder to be added to and mixed with the coke crushed at the time of pressure molding, the amount of coke in the molded sample can be increased and the X-ray intensity can be improved. It is possible to improve the analysis accuracy. Pressure when press-molding a briquette-like sample, 3t / cm 2 or more, desirably 20~35t / cm 2. Since the briquette-like sample needs to have a measuring surface of 20 mm or more in outer diameter, it is desirable to use a ring container having an outer diameter of 25 to 35 mm during pressure molding.

【0020】本願の第1発明における蛍光X線分析計に
より測定したSi、Al、Ca、FeのX線強度X線強
度に基づく各成分含有率の算出は、測定された各元素の
X線強度に基づいて予め設定された元素零のときX線強
度零の検量線から読み取ることもできるが、Si、A
l、Ca、Feの各元素の蛍光X線強度を下記式に代入
し、SiO2、Al23、CaO、Fe23の各成分含
有率を算出することもできる。 SiO2=0.158×Io+0.212 Al23=0.179×I1+0.497 CaO=0.024×I2+0.045 Fe23=0.005×I3+0.033 ただし、Io〜I3は各元素のX線強度
X-ray intensity of Si, Al, Ca, Fe measured by the fluorescent X-ray analyzer in the first invention of the present application. The calculation of the content rate of each component based on the X-ray intensity is performed by measuring the X-ray intensity of each measured element. It is possible to read from a calibration curve of zero X-ray intensity when the element is zero, which is preset based on
The fluorescent X-ray intensity of each element of l, Ca, and Fe can be substituted in the following formula to calculate the content of each component of SiO 2 , Al 2 O 3 , CaO, and Fe 2 O 3 . SiO 2 = 0.158 × I o +0.212 Al 2 O 3 = 0.179 × I 1 +0.497 CaO = 0.024 × I 2 +0.045 Fe 2 O 3 = 0.005 × I 3 +0. 033 where I o to I 3 are X-ray intensities of the respective elements

【0021】本願の第2発明における蛍光X線分析計に
より測定したSi、Al、Ca、TiのX線強度に基づ
く各成分含有率の算出は、測定された各元素のX線強度
に基づいて予め設定された元素零のときX線強度零の検
量線から読み取ることもできるが、Si、Al、Ca、
Tiの各元素の蛍光X線強度を下記式に代入し、SiO
2、Al23、CaO、TiO2の各成分含有率を算出す
ることもできる。 SiO2=0.158×Io+0.212 Al23=0.179×I1+0.497 CaO=0.024×I2+0.045 TiO2=0.137×I4−0.040 ただし、Io〜I2、I4は各元素のX線強度
The calculation of the content rate of each component based on the X-ray intensity of Si, Al, Ca, Ti measured by the fluorescent X-ray analyzer in the second invention of the present application is based on the measured X-ray intensity of each element. It can be read from a calibration curve of zero X-ray intensity when the element is preset to zero, but Si, Al, Ca,
Substituting the fluorescent X-ray intensity of each element of Ti into the following formula, SiO
It is also possible to calculate the content of each component of 2 , Al 2 O 3 , CaO, and TiO 2 . SiO 2 = 0.158 × I o +0.212 Al 2 O 3 = 0.179 × I 1 +0.497 CaO = 0.024 × I 2 +0.045 TiO 2 = 0.137 × I 4 -0.040 However, I o ~I 2, I 4 is the X-ray intensity of each element

【0022】本願の第3発明における蛍光X線分析計に
より測定したSi、Al、Ca、Fe、TiのX線強度
に基づく各成分含有率の算出は、測定した各元素のX線
強度に基づいて予め設定された元素零のときX線強度零
の検量線から読み取ることもできるが、Si、Al、C
a、Fe、TiのX線強度を下記式に代入し、Si
2、Al23、CaO、Fe23、TiO2の各成分含
有率を算出することもできる。 SiO2=0.158×Io+0.212 Al23=0.179×I1+0.497 CaO=0.024×I2+0.045 Fe23=0.005×I3+0.033 TiO2=0.137×I4−0.040 ただし、Io〜I4は各元素のX線強度
The calculation of the content rate of each component based on the X-ray intensity of Si, Al, Ca, Fe and Ti measured by the fluorescent X-ray analyzer in the third invention of the present application is based on the measured X-ray intensity of each element. It can be read from the calibration curve of zero X-ray intensity when the element is preset to zero, but Si, Al, C
Substituting the X-ray intensities of a, Fe, and Ti into the following equation, Si
It is also possible to calculate the content of each component of O 2 , Al 2 O 3 , CaO, Fe 2 O 3 , and TiO 2 . SiO 2 = 0.158 × I o +0.212 Al 2 O 3 = 0.179 × I 1 +0.497 CaO = 0.024 × I 2 +0.045 Fe 2 O 3 = 0.005 × I 3 +0. 033 TiO 2 = 0.137 × I 4 −0.040 where I o to I 4 are X-ray intensities of the respective elements

【0023】本願の第4発明における蛍光X線分析計に
より測定したSi、Al、Ca、Ti、P、MgのX線
強度に基づく各成分含有率の算出は、測定した各元素の
X線強度に基づいて予め設定された元素零のときX線強
度零の検量線から読み取ることもできるが、Si、A
l、Ca、Ti、P、MgのX線強度を下記式に代入
し、SiO2、Al23、CaO、TiO2、P25、M
gOの各成分含有率を算出することもできる。 SiO2=0.158×Io+0.212 Al23=0.179×I1+0.497 CaO=0.024×I2+0.045 TiO2=0.137×I4−0.040 P25=0.049×I5+0.006 MgO=0.954×I6+0.062 ただし、Io〜I2、I4〜I6は各元素のX線強度
The calculation of the content rate of each component based on the X-ray intensities of Si, Al, Ca, Ti, P and Mg measured by the fluorescent X-ray analyzer in the fourth invention of the present application is carried out by measuring the X-ray intensities of the respective elements. It is possible to read from a calibration curve of zero X-ray intensity when the element is zero, which is preset based on
Substituting the X-ray intensities of 1, Ca, Ti, P, and Mg into the following formula, SiO 2 , Al 2 O 3 , CaO, TiO 2 , P 2 O 5 , and M
It is also possible to calculate the content rate of each component of gO. SiO 2 = 0.158 × I o +0.212 Al 2 O 3 = 0.179 × I 1 +0.497 CaO = 0.024 × I 2 +0.045 TiO 2 = 0.137 × I 4 -0.040 P 2 O 5 = 0.049 × I 5 +0.006 MgO = 0.954 × I 6 +0.062 However, X-rays intensity of I o ~I 2, I 4 ~I 6 each element

【0024】本願の第5発明における蛍光X線分析計に
より測定したSi、Al、Ca、Fe、Ti、P、M
g、Mn、SのX線強度に基づく各成分含有率の算出
は、測定した各元素のX線強度に基づいて予め設定され
た元素零のときX線強度零の検量線から読み取ることも
できるが、Si、Al、Ca、Fe、Ti、P、Mg、
Mn、SのX線強度を下記式に代入し、SiO2、Al2
3、CaO、Fe23、TiO2、P25、MgO、M
nO、Total Sの各成分含有率を算出することも
できる。 SiO2=0.158×Io+0.212 Al23=0.179×I1+0.497 CaO=0.024×I2+0.045 Fe23=0.005×I3+0.033 TiO2=0.137×I4−0.040 P25=0.049×I5+0.006 MgO=0.954×I6+0.062 MnO=0.007×I7−0.011 Total S=0.008×I8−0.104 ただし、Io〜I8は各元素のX線強度
Si, Al, Ca, Fe, Ti, P, M measured by the fluorescent X-ray analyzer in the fifth invention of the present application
The calculation of the content rate of each component based on the X-ray intensity of g, Mn, and S can be read from the calibration curve of zero X-ray intensity when the element is zero, which is preset based on the measured X-ray intensity of each element. , Si, Al, Ca, Fe, Ti, P, Mg,
Substituting the X-ray intensity of Mn and S into the following formula, SiO 2 and Al 2
O 3 , CaO, Fe 2 O 3 , TiO 2 , P 2 O 5 , MgO, M
It is also possible to calculate the content of each component of nO and Total S. SiO 2 = 0.158 × I o +0.212 Al 2 O 3 = 0.179 × I 1 +0.497 CaO = 0.024 × I 2 +0.045 Fe 2 O 3 = 0.005 × I 3 +0. 033 TiO 2 = 0.137 × I 4 −0.040 P 2 O 5 = 0.049 × I 5 +0.006 MgO = 0.954 × I 6 +0.062 MnO = 0.007 × I 7 −0. 011 Total S = 0.008 × I 8 −0.104 where I o to I 8 are X-ray intensities of the respective elements.

【0025】なお、この発明においては、蛍光X線分析
装置をコンピュータと連動させることによって、記憶さ
せた前記各成分の検量線式によって各成分含有率を演算
し、前記灰分推定式(1)〜(5)の何れかによってコ
ークス中の灰分値を演算させ、定量値としてプリントす
ることもできる。
In the present invention, the X-ray fluorescence analyzer is linked to a computer to calculate the content rate of each component by the stored calibration curve formula of each component, and the ash content estimation formulas (1) to It is also possible to calculate the ash value in the coke by any of (5) and print it as a quantitative value.

【0026】[0026]

【実施例】【Example】

実施例1 JIS M8812に規定の化学分析法により測定し
た標準試料コークスを使用し、ディスクミルにより3分
間で全量200メッシュ以下に粉砕した標準試料コーク
ス6gとポリスチレンマレイン酸ポリマー4gを、V型
混合機を用いて5分間混合し、内径35mmのFeリン
グを5mmに輪切りにしたものに充填し、圧力30t/
cm2、加圧時間15秒にて加圧成型して外径35m
m、厚さ3mmのブリケット状試料を作成した。得られ
た各ブリケット状試料を多元素同時測定蛍光X線装置を
用い、表1に示す測定条件でSi、Al、Ca、Fe、
P、Ti、Mg、Mn、SのX線強度を測定し、SiO
2、Al23、CaO、Fe23、TiO2、P25、M
gO、MnO、Total Sの各成分の元素零のとき
X線強度零の検量線を求めた。その結果を図1〜図9に
示す。また、元素零のときX線強度零の検量線式を表2
に示す。
Example 1 Using a standard sample coke measured by a chemical analysis method specified in JIS M8812, 6 g of a standard sample coke pulverized to a total amount of 200 mesh or less in 3 minutes by a disc mill and 4 g of polystyrene maleic acid polymer were mixed with a V-type mixer. Was mixed for 5 minutes, and an Fe ring having an inner diameter of 35 mm was sliced into 5 mm and filled, and the pressure was 30 t /
cm 2 and pressurizing time 15 seconds, press molding and outer diameter 35m
A briquette-shaped sample having a thickness of m and a thickness of 3 mm was prepared. Each of the obtained briquette-like samples was measured for Si, Al, Ca, Fe, using the multi-element simultaneous measurement fluorescent X-ray apparatus under the measurement conditions shown in Table 1.
X-ray intensity of P, Ti, Mg, Mn, S is measured, and SiO
2 , Al 2 O 3 , CaO, Fe 2 O 3 , TiO 2 , P 2 O 5 , M
A calibration curve with zero X-ray intensity was obtained when the element of each of gO, MnO, and Total S was zero. The results are shown in FIGS. Table 2 shows the calibration curve formula for zero X-ray intensity when the element is zero.
Shown in.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】図1〜図9に示すとおり、検量線の改善に
よって各成分零のとき各元素のX線強度零となり、各成
分量の検出精度が向上し、正確に各成分量を検出でき
る。
As shown in FIGS. 1 to 9, when the calibration curve is improved, the X-ray intensity of each element becomes zero when each component is zero, the detection accuracy of each component amount is improved, and each component amount can be accurately detected.

【0030】実施例2 本発明法および比較例の蛍光X線分析によるコークス中
の灰分推定値と、JIS M8812に規定の化学分
析法により測定したJIS法の灰分値との比較を行っ
た。本発明法および比較例の蛍光X線分析によるコーク
ス中の灰分推定は、JISM8810に準じてサンプリ
ングした74種類のコークスについて、それぞれディス
クミルを用いて3分間で全量200メッシュ以下に粉砕
し、各コークス6gとポリスチレンマレイン酸ポリマー
4gを、V型混合機を用いて5分間混合し、内径35m
mのFeリングを5mmに輪切りにした容器に充填し、
圧力30t/cm2、加圧時間15秒にて加圧成型して
外径35mm、厚さ3mmのブリケット状試料を作成し
た。
Example 2 The estimated ash content in coke by the fluorescent X-ray analysis of the method of the present invention and the comparative example was compared with the ash value of the JIS method measured by the chemical analysis method specified in JIS M8812. Ash estimation in coke by fluorescent X-ray analysis of the method of the present invention and comparative examples was carried out by grinding each of the 74 types of coke sampled according to JIS M8810 into a total amount of 200 mesh or less in 3 minutes using a disc mill. 6 g and 4 g of polystyrene maleic acid polymer were mixed for 5 minutes using a V-type mixer, and the inner diameter was 35 m.
Fill the Fe ring of m into a 5 mm sliced container,
A briquette-like sample having an outer diameter of 35 mm and a thickness of 3 mm was prepared by pressure molding at a pressure of 30 t / cm 2 and a pressing time of 15 seconds.

【0031】得られた各ブリケット状試料を多元素同時
測定蛍光X線装置を用い、表1に示す測定条件でSi、
Al、P、Ti、Ca、Mg、Fe、Mn、SのX線強
度を測定し、測定した各元素のX線強度に基づいて、予
め設定された元素零のとき蛍光X線強度零の前記図1〜
図9に示す検量線からSiO2、Al23、P25、T
iO2、CaO、MgO、Fe23、MnO、Tota
l Sの各成分含有率を換算し、該各成分含有率から表
3に示すとおり、非線形の最小二乗法により求めた本発
明の灰分推定式(1)〜(5)および比較例の灰分推定
式(6)〜(10)に基づいてコークス灰分量を算出し
た。その結果を表4および図10〜図19に示す。な
お、図10〜図19中には、試料数n、JIS法(x)
と推定値(y)から求めた単相関回帰式と相関係数
(γ)を併せて記載した。また、本発明の灰分推定式
(5)の推定精度確認のため、JIS法の灰分測定値
8.3〜14.7%のものについて、各ブリケット状試
料を多元素同時測定蛍光X線装置を用い、表1に示す測
定条件でSi、Al、P、Ti、Ca、Mg、Fe、M
n、SのX線強度を測定し、測定した各元素のX線強度
に基づいて、予め設定された元素零のとき蛍光X線強度
零の前記図1〜図9に示す検量線からSiO2、Al2
3、P25、TiO2、CaO、MgO、Fe23、Mn
O、Total Sの各成分含有率を換算し、該各成分
含有率から本発明の灰分推定式(5)に基づいてコーク
ス灰分量を算出した。その結果を図20に示す。
Each briquette-like sample thus obtained was analyzed by a multi-element simultaneous measurement fluorescent X-ray apparatus under the measurement conditions shown in Table 1, Si,
The X-ray intensities of Al, P, Ti, Ca, Mg, Fe, Mn, and S were measured, and based on the measured X-ray intensities of the respective elements, when the preset element was zero, the fluorescent X-ray intensity was zero. Figure 1
From the calibration curve shown in FIG. 9, SiO 2 , Al 2 O 3 , P 2 O 5 , T
iO 2 , CaO, MgO, Fe 2 O 3 , MnO, Tota
The ash content estimation formulas (1) to (5) of the present invention and the ash content estimation of the comparative example obtained by converting the content rate of each component of 1 S and calculating the content rate of each component by the nonlinear least squares method as shown in Table 3 The coke ash content was calculated based on the equations (6) to (10). The results are shown in Table 4 and FIGS. 10 to 19, the sample number n, JIS method (x)
And the single correlation regression equation obtained from the estimated value (y) and the correlation coefficient (γ) are also described. Further, in order to confirm the estimation accuracy of the ash content estimation formula (5) of the present invention, each briquette-like sample was measured by a multi-element simultaneous fluorescent X-ray device for the ash content value of JIS method of 8.3 to 14.7%. Used under the measurement conditions shown in Table 1, Si, Al, P, Ti, Ca, Mg, Fe, M
n, measured X-ray intensity of the S, based on the X-ray intensity of each element measured, SiO 2 from the calibration curve shown in FIG. 1 to FIG. 9 of the fluorescent X-ray intensity zero when the preset element zero , Al 2 O
3 , P 2 O 5 , TiO 2 , CaO, MgO, Fe 2 O 3 , Mn
The content of each component of O and Total S was converted, and the amount of coke ash was calculated from the content of each component based on the ash estimation formula (5) of the present invention. The result is shown in FIG.

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表4および図10〜図19に示すとおり、
本発明のコークス中の灰分推定式(1)〜(5)で算出
した灰分推定値は、表4および図10〜図14に示すと
おり、いずれも推定精度の最大誤差率が0.22%以下
であり、実操業におけるコークス灰分管理の灰分値とし
て使用可能であった。これに対し比較例の推定式(6)
〜(10)で算出した灰分推定値は、表4および図15
〜図19に示すとおり、いずれも推定精度の最大誤差率
が0.39%以上であり、実操業におけるコークス灰分
管理の灰分値として使用不可能であった。また、図20
に示すとおり、本発明のコークス中の灰分推定式(5)
で算出した灰分推定値は、JIS法のn=2の許容差
0.3%の判定において合格率100%の結果であり、
実操業におけるコークス灰分管理の灰分値として使用可
能である。
As shown in Table 4 and FIGS. 10 to 19,
As shown in Table 4 and FIGS. 10 to 14, the ash estimation values calculated by the ash estimation formulas (1) to (5) in the coke of the present invention have a maximum error rate of 0.22% or less in all estimation accuracy. It was possible to use as an ash value for coke ash management in actual operation. On the other hand, the estimation formula (6) of the comparative example
The ash estimated values calculated in (10) are shown in Table 4 and FIG.
As shown in FIG. 19, the maximum error rate of the estimation accuracy was 0.39% or more, and they were not usable as ash values for coke ash management in actual operation. Also, FIG.
As shown in, the ash content estimation formula (5) in the coke of the present invention
The ash estimated value calculated in step 1 is the result of passing rate of 100% in the judgment of JIS method n = 2, tolerance of 0.3%,
It can be used as an ash value for coke ash management in actual operation.

【0035】比較例1 前記特開昭51−106490号に開示の蛍光X線分析
によるコークス中の灰分推定値と、JIS M881
2に規定の化学分析法により測定したJIS法の灰分値
との比較を行った。その結果を表5に示す。特開昭51
−106490号によるコークス中の灰分推定は、JI
S M8810に準じてサンプリングした表5に示す
20種類の各コークスを、トップグラインダーを用いて
全量60メッシュ以下に粉砕し、各コークス2gと重炭
酸ソーダ8gを混合し、内径35mmのFeリングを5
mmに輪切りにした容器に充填し、圧力30t/c
2、加圧時間15秒にて加圧成型して外径35mm、
厚さ3mmのブリケット状試料を作成した。得られた各
ブリケット状試料を多元素同時測定蛍光X線装置を用
い、前記表1に示す測定条件でSi、Al、Ca、F
e、MgのX線強度を測定し、特開昭51−10649
0号に開示された検量線からSiO2、CaO、Al2
3、Fe23、MgOの各成分量を読み取り、Ash=
(SiO2+CaO+Al23+Fe23+MgO)×
1/0.93によりコークス灰分を推定した。その結果
を表5に示す。
Comparative Example 1 Estimated ash content in coke by fluorescent X-ray analysis disclosed in JP-A-51-106490 and JIS M881.
The ash content of JIS method measured by the chemical analysis method specified in 2 was compared. The results are shown in Table 5. JP-A-51
-106490 ash content in coke is estimated by JI
20 kinds of each coke shown in Table 5 sampled according to SM8810 were crushed to a total amount of 60 mesh or less by using a top grinder, 2 g of each coke and 8 g of sodium bicarbonate were mixed, and an Fe ring having an inner diameter of 35 mm was mixed with 5
Filled in a container cut into mm, pressure 30t / c
m 2, pressure molded at pressurizing time 15 seconds and outer diameter 35 mm,
A briquette-like sample having a thickness of 3 mm was prepared. Each of the obtained briquette-shaped samples was measured for Si, Al, Ca, F under the measurement conditions shown in Table 1 using a multi-element simultaneous measurement fluorescent X-ray apparatus.
e, Mg X-ray intensity was measured, and
From the calibration curve disclosed in No. 0, SiO 2 , CaO, Al 2 O
Read the amount of each component of 3 , Fe 2 O 3 , and MgO, and Ash =
(SiO 2 + CaO + Al 2 O 3 + Fe 2 O 3 + MgO) ×
Coke ash was estimated by 1 / 0.93. The results are shown in Table 5.

【0036】[0036]

【表5】 [Table 5]

【0037】表5に示すとおり、特開昭51−1064
90号による灰分推定値は、JIS法による灰分測定値
に比較して低くでており、JIS法の試料数n=2の許
容差判定における灰分10%以上は±0.3%以内の判
定基準では、不合格率は35%であり、実操業における
コークス灰分管理には適用することは不可能である。
As shown in Table 5, JP-A-51-1064
The ash content estimated by No. 90 is lower than the ash content measured by the JIS method, and the ash content of 10% or more in the tolerance judgment of JIS sample number n = 2 is within ± 0.3%. Then, the rejection rate is 35%, and it cannot be applied to the coke ash management in the actual operation.

【0038】実施例3 本発明法による蛍光X線分析によるコークス中の灰分推
定値と、JIS M8812に規定の化学分析法によ
り測定したJIS法の灰分値との比較を行った。その結
果を図20に示す。なお、比較のため、従来法として前
記特開昭51−106490号に開示の方法による蛍光
X線分析によりコークス中の灰分推定を実施し、その結
果を図20に、また、JIS法灰分測定値との比較解析
結果を表6に併記した。本発明法による蛍光X線分析に
よるコークス中の灰分推定は、JIS M8810に
準じてサンプリングした74種類のコークスについて、
それぞれディスクミルを用いて3分間で全量200メッ
シュ以下に粉砕し、各コークス6gとポリスチレンマレ
イン酸ポリマー4gを、V型混合機を用いて5分間混合
し、内径35mmのFeリングを5mmに輪切りにした
容器に充填し、圧力30t/cm2、加圧時間15秒に
て加圧成型して外径35mm、厚さ3mmのブリケット
状試料を作成した。
Example 3 The estimated ash content in coke by fluorescent X-ray analysis according to the method of the present invention was compared with the ash value of JIS method measured by the chemical analysis method specified in JIS M8812. The result is shown in FIG. For comparison, as a conventional method, ash content in coke was estimated by fluorescent X-ray analysis according to the method disclosed in JP-A-51-106490, and the results are shown in FIG. 20 and JIS method ash measurement values. The results of comparative analysis with are also shown in Table 6. The ash content in the coke by the fluorescent X-ray analysis according to the method of the present invention was estimated using 74 types of coke sampled according to JIS M8810.
Using a disk mill, the total amount was reduced to 200 mesh or less in 3 minutes, 6 g of each coke and 4 g of polystyrene maleic acid polymer were mixed for 5 minutes using a V-type mixer, and an Fe ring with an inner diameter of 35 mm was cut into 5 mm pieces. The obtained container was filled and pressure-molded at a pressure of 30 t / cm 2 and a pressing time of 15 seconds to prepare a briquette-shaped sample having an outer diameter of 35 mm and a thickness of 3 mm.

【0039】得られた各ブリケット状試料を多元素同時
測定蛍光X線装置を用い、表1に示す測定条件でSi、
Al、Ca、Fe、Ti、P、Mg、Mn、SのX線強
度を測定し、測定した各元素のX線強度に基づいて、予
め設定された元素零のとき蛍光X線強度零の前記図1〜
図9に示す検量線からSiO2、Al23、CaO、F
23、TiO2、P25、MgO、MnO、Tota
l Sの各成分含有率を算出し、該各成分含有率から前
記灰分推定式(5)に基づいてコークス灰分量を算出し
た。また、特開昭51−106490号によるコークス
中の灰分推定は、JISM8810に準じてサンプリン
グした50種類のコークスについて、それぞれトップグ
ラインダーを用いて全量60メッシュ以下に粉砕し、各
コークス2gと重炭酸ソーダ8gを混合し、内径35m
mのFeリングを5mmに輪切りにした容器に充填し、
圧力30t/cm2、加圧時間15秒にて加圧成型して
外径35mm、厚さ3mmのブリケット状試料を作成し
た。得られた各ブリケット状試料を多元素同時測定蛍光
X線装置を用い、表1に示す測定条件でSi、Ca、A
l、Fe、MgのX線強度を測定し、特開昭51−10
6940号に開示された検量線からSiO2、CaO、
Al23、Fe23、MgOの各成分量を検量し、前記
比較例1に記載の推定式に基づいてコークス灰分量を算
出した。
Each briquette-like sample thus obtained was subjected to multi-element simultaneous measurement fluorescent X-ray apparatus under the measurement conditions shown in Table 1, Si,
The X-ray intensities of Al, Ca, Fe, Ti, P, Mg, Mn, and S are measured, and based on the measured X-ray intensities of the respective elements, when the preset element is zero, the fluorescent X-ray intensity is zero. Figure 1
From the calibration curve shown in FIG. 9, SiO 2 , Al 2 O 3 , CaO, F
e 2 O 3 , TiO 2 , P 2 O 5 , MgO, MnO, Tota
The content of each component of 1 S was calculated, and the amount of coke ash was calculated from the content of each component based on the ash content estimation formula (5). In addition, the ash content in coke according to JP-A-51-106490 is estimated by crushing 50 kinds of coke sampled according to JIS M8810 into a total amount of 60 mesh or less using a top grinder, and 2 g of each coke and 8 g of sodium bicarbonate. Mixed, inner diameter 35m
Fill the Fe ring of m into a 5 mm sliced container,
A briquette-like sample having an outer diameter of 35 mm and a thickness of 3 mm was prepared by pressure molding at a pressure of 30 t / cm 2 and a pressing time of 15 seconds. Each of the obtained briquette-like samples was measured for Si, Ca, and A under the measurement conditions shown in Table 1 using a multi-element simultaneous measurement fluorescent X-ray apparatus.
The X-ray intensities of 1, Fe, and Mg were measured, and the method disclosed in JP-A-51-10
From the calibration curve disclosed in No. 6940, SiO 2 , CaO,
The amount of each component of Al 2 O 3 , Fe 2 O 3 , and MgO was calibrated, and the amount of coke ash was calculated based on the estimation formula described in Comparative Example 1.

【0040】[0040]

【表6】 [Table 6]

【0041】図20に示すとおり、本発明法による推定
灰分値は、JIS法測定灰分値とほぼ近似しており、実
操業に適用できるといわれている図20に一点鎖線で示
す±0.3%の範囲内に入っている。これに対し従来法
の特開昭51−106490号による推定灰分は、実操
業に適用できるといわれている図20に一点鎖線で示す
±0.3%の範囲から殆ど外れており、実操業における
コークス灰分管理のための灰分値として使用不可能であ
った。また、表6に示すとおり、JIS法測定灰分値と
の比較解析の結果は、本発明法は、t検定においてt0
=0.4512で有意差なし、単相関回帰ではr=0.
985の高相関の係数が得られたが、従来法は、t検定
においてt0=12.536で有意差有り、単相関回帰
ではr=0.677と高相関の係数が得られなかった。
As shown in FIG. 20, the ash value estimated by the method of the present invention is approximately similar to the ash value measured by the JIS method, and it is said that the ash value can be applied to actual operation is ± 0.3 indicated by the alternate long and short dash line in FIG. It is within the range of%. On the other hand, the estimated ash content according to JP-A-51-106490 of the conventional method is almost outside the range of ± 0.3% shown by the one-dot chain line in FIG. It could not be used as an ash value for coke ash management. Further, as shown in Table 6, the results of the comparative analysis with the ash value measured by the JIS method show that the method of the present invention is t 0 in the t test.
= 0.4512, no significant difference, r = 0.
A coefficient of high correlation of 985 was obtained, but in the conventional method, there was a significant difference at t 0 = 12.536 in the t-test, and a coefficient of high correlation of r = 0.677 was not obtained in single correlation regression.

【0042】実施例4 JIS M8810に準じてサンプリングした表7に
示す20種類のコークスについて、本発明法による蛍光
X線分析によるコークス中の灰分推定値と、JIS
M8812に規定の化学分析法により測定したJIS法
の灰分値との比較を行った。その結果を表8に示す。本
発明による蛍光X線分析による各コークス中の灰分推定
は、それぞれディスクミルを用いて3分間で全量200
メッシュ以下に粉砕し、各コークス6gとポリスチレン
マレイン酸ポリマー4gを、V型混合機を用いて5分間
混合し、内径35mmのFeリングを5mmに輪切りに
した容器に充填し、圧力30t/cm2、加圧時間15
秒にて加圧成型して外径35mm、厚さ3mmのブリケ
ット状試料を作成した。得られた各ブリケット状試料を
多元素同時測定蛍光X線装置を用い、前記表1に示す測
定条件でSi、Al、P、Ti、Ca、Mg、Fe、M
n、SのX線強度を測定し、測定した各元素のX線強度
に基づいて、予め設定された元素零のとき蛍光X線強度
零の前記図1〜図9に示す検量線からSiO2、Al2
3、CaO、Fe23、TiO2、P25、MgO、Mn
O、Total Sの各成分含有率を算出し、該各成分
含有率から前記灰分推定式(1)〜(5)に基づいてコ
ークス灰分量を算出した。表7に各成分含有率(蛍光X
線分析値(%))を、表8にJIS法灰分(%)、前記
灰分推定式(1)〜(5)による推定灰分(%)、JI
S法−各灰分推定式による推定値(%)を示す。
Example 4 For 20 kinds of coke shown in Table 7 sampled according to JIS M8810, estimated ash content in coke by fluorescent X-ray analysis according to the method of the present invention, and JIS
The ash value of JIS method measured by the chemical analysis method prescribed in M8812 was compared. The results are shown in Table 8. The estimation of the ash content in each coke by the fluorescent X-ray analysis according to the present invention was carried out by using a disc mill for a total amount of 200 in 3 minutes.
Crushed into a mesh or smaller, 6 g of each coke and 4 g of polystyrene maleic acid polymer were mixed for 5 minutes using a V-type mixer, and the mixture was filled into a container in which an Fe ring having an inner diameter of 35 mm was cut into 5 mm, and the pressure was 30 t / cm 2. , Pressurization time 15
It was pressed and molded for 2 seconds to prepare a briquette sample having an outer diameter of 35 mm and a thickness of 3 mm. Each of the obtained briquette-shaped samples was measured for Si, Al, P, Ti, Ca, Mg, Fe, M under the measurement conditions shown in Table 1 above using a multi-element simultaneous measurement fluorescent X-ray apparatus.
n, measured X-ray intensity of the S, based on the X-ray intensity of each element measured, SiO 2 from the calibration curve shown in FIG. 1 to FIG. 9 of the fluorescent X-ray intensity zero when the preset element zero , Al 2 O
3 , CaO, Fe 2 O 3 , TiO 2 , P 2 O 5 , MgO, Mn
The content of each component of O and Total S was calculated, and the amount of coke ash was calculated from the content of each component based on the ash estimation formulas (1) to (5). Table 7 shows the content of each component (fluorescent X
The line analysis value (%) is shown in Table 8 according to JIS method ash content (%), estimated ash content (%) according to the ash content estimation formulas (1) to (5), and JI.
S method-The estimated value (%) by each ash estimation formula is shown.

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【表8】 [Table 8]

【0045】表7、表8に示すとおり、本発明による蛍
光X線分析による20種類のコークスの推定灰分値は、
殆ど全てがJIS M8812に規定の化学分析法によ
り測定したJIS法の灰分値との差が±0.2%以下
と、実操業でのコークス灰分管理のための灰分値として
使用できる精度を示している。
As shown in Tables 7 and 8, the estimated ash value of 20 kinds of coke by fluorescent X-ray analysis according to the present invention is
Almost all have a difference of ± 0.2% or less from the ash value of the JIS method measured by the chemical analysis method specified in JIS M8812, showing the accuracy that can be used as the ash value for coke ash management in actual operation. There is.

【0046】[0046]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、きわめて迅速に、かつ高精度で、蛍光X線分析によ
って実操業でのコークス灰分管理のための灰分値を推定
できる。この結果、従来のJIS法による化学分析に比
較し、大幅に分析工数を削減でき、作業員の省力化を図
ることができる。
As described above, according to the method of the present invention, the ash value for the coke ash control in the actual operation can be estimated very quickly and highly accurately by the fluorescent X-ray analysis. As a result, compared with the conventional chemical analysis by the JIS method, the analysis man-hours can be significantly reduced, and the labor of the workers can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】SiO2の検量線を示すSiO2標準値(%)と
X線強度(Si)との関係を示すグラフである。
1 is a graph showing the relationship between the SiO 2 standard value indicating the SiO 2 of the calibration curve (%) and X-ray intensity (Si).

【図2】Al23の検量線を示すAl23標準値(%)
とX線強度(Al)との関係を示すグラフである。
2 shows a calibration curve of Al 2 O 3 Al 2 O 3 standard value (%)
3 is a graph showing the relationship between the X-ray intensity and the X-ray intensity (Al).

【図3】CaOの検量線を示すCaO標準値(%)とX
線強度(Ca)との関係を示すグラフである。
[Fig. 3] CaO standard value (%) and X showing a calibration curve of CaO.
It is a graph which shows the relationship with line intensity (Ca).

【図4】Fe23の検量線を示すFe23標準値(%)
とX線強度(Fe)との関係を示すグラフである。
4 shows a calibration curve of Fe 2 O 3 Fe 2 O 3 standard value (%)
2 is a graph showing the relationship between X-ray intensity (Fe) and.

【図5】TiO2の検量線を示すTiO2標準値(%)と
X線強度(Ti)との関係を示すグラフである。
5 is a graph showing the relationship between the TiO 2 standard value indicating the TiO 2 of the calibration curve (%) and X-ray intensity (Ti).

【図6】P25の検量線を示すP25標準値(%)とX
線強度(P)との関係を示すグラフである。
[6] P 2 O P 2 O 5 standard value indicating a calibration curve of 5 and (%) X
It is a graph which shows the relationship with line intensity (P).

【図7】MgOの検量線を示すMgO標準値(%)とX
線強度(Mg)との関係を示すグラフである。
FIG. 7: MgO standard value (%) and X showing a calibration curve of MgO
It is a graph which shows the relationship with line strength (Mg).

【図8】MnOの検量線を示すMnO標準値(%)とX
線強度(Mn)との関係を示すグラフである。
FIG. 8: MnO standard value (%) and X showing a calibration curve of MnO
It is a graph which shows the relationship with line strength (Mn).

【図9】Total Sの検量線を示すTotal S
標準値(%)とX線強度(S)との関係を示すグラフで
ある。
FIG. 9: Total S showing a calibration curve of Total S
It is a graph which shows the relationship between standard value (%) and X-ray intensity (S).

【図10】JIS法の灰分値とこの発明の灰分推定式
(1)による推定灰分値との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (1) of the present invention.

【図11】JIS法の灰分値とこの発明の灰分推定式
(2)による推定灰分値との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (2) of the present invention.

【図12】JIS法の灰分値と比較例の灰分推定式
(3)による推定灰分値との関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (3) of the comparative example.

【図13】JIS法の灰分値とこの発明の灰分推定式
(4)による推定灰分値との関係を示すグラフである。
FIG. 13 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (4) of the present invention.

【図14】JIS法の灰分値とこの発明の灰分推定式
(5)による推定灰分値との関係を示すグラフである。
FIG. 14 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (5) of the present invention.

【図15】JIS法の灰分値と比較例の灰分推定式
(6)による推定灰分値との関係を示すグラフである。
FIG. 15 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (6) of the comparative example.

【図16】JIS法の灰分値と比較例の灰分推定式
(7)による推定灰分値との関係を示すグラフである。
FIG. 16 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (7) of the comparative example.

【図17】JIS法の灰分値と比較例の灰分推定式
(8)による推定灰分値との関係を示すグラフである。
FIG. 17 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (8) of the comparative example.

【図18】JIS法の灰分値と比較例の灰分推定式
(9)による推定灰分値との関係を示すグラフである。
FIG. 18 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (9) of the comparative example.

【図19】JIS法の灰分値と比較例の灰分推定式(1
0)による推定灰分値との関係を示すグラフである。
FIG. 19: Ash value of JIS method and ash estimation formula (1
It is a graph which shows the relationship with the estimated ash value by 0).

【図20】JIS法の灰分値と本発明法の灰分推定式
(5)による推定灰分値との関係を示すグラフである。
FIG. 20 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (5) of the method of the present invention.

【図21】JIS法の灰分値とこの発明の灰分推定式
(5)による推定灰分値、ならびに従来法の特開昭51
−106490号に開示の方法による推定灰分値との関
係を示すグラフである。
FIG. 21 is an ash value according to the JIS method and an ash value estimated by the ash content estimation formula (5) according to the present invention, and the conventional method as disclosed in JP-A-51-51.
It is a graph which shows the relationship with the estimated ash value by the method disclosed in No. 106490.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 義昭 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鉄所内 (72)発明者 中澤 稔 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiaki Hayashi, No.3, Kitsushima, Kashima-machi, Kashima-gun, Ibaraki Sumitomo Metal Industries, Ltd., Kashima Steel Works (72) Minoru Nakazawa, No.3, Kitsushima, Kashima-machi, Kashima-gun, Ibaraki Prefecture Sumitomo Metal Industries, Ltd. Kashima Steel Works

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 コークス中の灰分を蛍光X線分析により
推定する方法において、コークスを粉砕して結合剤を添
加混合し、加圧成型してブリケット状の試料となし、蛍
光X線分析計にかけてSi、Al、Ca、FeのX線強
度を測定し、測定したSi、Al、Ca、FeのX線強
度に基づいて予め設定された元素零のときX線強度零の
検量線からSiO2、Al23、CaO、Fe23の各
成分含有率を換算し、該各成分含有率から下記灰分推定
式(1)に基づいてコークス灰分量を算出することを特
徴とする蛍光X線分析によるコークス灰分推定方法。 Ash(%)=(A1×SiO2+B1×Al23+C1×
CaO+D1×Fe23)−K1…(1) ただし、A1=1.039、B1=1.240、C1
1.865、D1=1.188、K1=0.311
1. A method for estimating ash content in coke by fluorescent X-ray analysis, wherein coke is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, which is then subjected to a fluorescent X-ray analyzer. The X-ray intensity of Si, Al, Ca, Fe was measured, and when the element preset based on the measured X-ray intensity of Si, Al, Ca, Fe was zero, from the calibration curve of zero X-ray intensity, SiO 2 , Fluorescent X-rays characterized by converting the content of each component of Al 2 O 3 , CaO, Fe 2 O 3 and calculating the amount of coke ash from the content of each component based on the following ash content estimation formula (1). Method for estimating coke ash content by analysis. Ash (%) = (A 1 × SiO 2 + B 1 × Al 2 O 3 + C 1 ×
CaO + D 1 × Fe 2 O 3) -K 1 ... (1) However, A 1 = 1.039, B 1 = 1.240, C 1 =
1.865, D 1 = 1.188, K 1 = 0.311
【請求項2】 コークス中の灰分を蛍光X線分析により
推定する方法において、コークスを粉砕して結合剤を添
加混合し、加圧成型してブリケット状の試料となし、蛍
光X線分析計にかけてSi、Al、Ca、TiのX線強
度を測定し、測定した各元素のX線強度に基づいて予め
設定された元素零のとき蛍光X線強度零の検量線からS
iO2、Al23、CaO、TiO2の各成分含有率を換
算し、該各成分含有率から下記灰分推定式(2)に基づ
いてコークス灰分量を算出することを特徴とする蛍光X
線分析によるコークス灰分推定方法。 Ash(%)=(A2×SiO2+B2×Al23+C2×
CaO+E1×TiO2)−K2…(2) ただし、A2=1.020、B2=1.396、C2
2.300、E1=1.297、K2=0.320
2. A method for estimating the ash content in coke by fluorescent X-ray analysis, wherein the coke is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, which is then subjected to a fluorescent X-ray analyzer. The X-ray intensities of Si, Al, Ca, and Ti were measured, and when the element was preset to zero based on the measured X-ray intensities of the respective elements, S from the calibration curve of zero fluorescent X-ray intensity
Fluorescent X characterized in that the content of each component of iO 2 , Al 2 O 3 , CaO, and TiO 2 is converted, and the amount of coke ash is calculated from the content of each component based on the following ash estimation formula (2).
Method for estimating coke ash content by line analysis. Ash (%) = (A 2 × SiO 2 + B 2 × Al 2 O 3 + C 2 ×
CaO + E 1 × TiO 2) -K 2 ... (2) However, A 2 = 1.020, B 2 = 1.396, C 2 =
2.300, E 1 = 1.297, K 2 = 0.320
【請求項3】 コークス中の灰分を蛍光X線分析により
推定する方法において、コークスを粉砕して結合剤を添
加混合し、加圧成型してブリケット状の試料となし、蛍
光X線分析計にかけてSi、Al、Ca、Fe、Tiの
X線強度を測定し、測定した各元素のX線強度に基づい
て予め設定された元素零のとき蛍光X線強度零の検量線
からSiO2、Al23、CaO、Fe23、TiO2
各成分含有率を換算し、該各成分含有率から下記灰分推
定式(3)に基づいてコークス灰分量を算出することを
特徴とする蛍光X線分析によるコークス灰分推定方法。 Ash(%)=(A3×SiO2+B3×Al23+C3×
CaO+D2×Fe23+E2×TiO2)−K3…(3) ただし、A3=1.037、B3=1.127、C3
1.725、D2=1.371、E2=1.282、K3
=0.204
3. A method for estimating ash content in coke by fluorescent X-ray analysis, wherein coke is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, which is then subjected to a fluorescent X-ray analyzer. The X-ray intensities of Si, Al, Ca, Fe, and Ti were measured, and when the element was preset to zero based on the measured X-ray intensities of the respective elements, SiO 2 and Al 2 were obtained from the calibration curve of zero fluorescent X-ray intensity. Fluorescent X characterized by converting the content of each component of O 3 , CaO, Fe 2 O 3 , and TiO 2 and calculating the amount of coke ash from the content of each component based on the following ash content estimation formula (3). Method for estimating coke ash content by line analysis. Ash (%) = (A 3 × SiO 2 + B 3 × Al 2 O 3 + C 3 ×
CaO + D 2 × Fe 2 O 3 + E 2 × TiO 2) -K 3 ... (3) However, A 3 = 1.037, B 3 = 1.127, C 3 =
1.725, D2 = 1.371, E 2 = 1.282, K 3
= 0.204
【請求項4】 コークス中の灰分を蛍光X線分析により
推定する方法において、コークスを粉砕して結合剤を添
加混合し、加圧成型してブリケット状の試料となし、蛍
光X線分析計にかけてSi、Al、Ca、Ti、P、M
gのX線強度を測定し、測定した各元素のX線強度に基
づいて予め設定された元素零のとき蛍光X線強度零の検
量線からSiO2、Al23、CaO、TiO2、P
25、MgOの各成分含有率を換算し、該各成分含有率
から下記灰分推定式(4)に基づいてコークス灰分量を
算出することを特徴とする蛍光X線分析によるコークス
灰分推定方法。 Ash(%)=(A4×SiO2+B4×Al23+C4×
CaO+E3×TiO2+F1×P25+G1×MgO)−
4…(4) ただし、A4=0.982、B4=1.356、C4
1.921、E3=1.197、F1=0.835、G1
=1.176、K4=0.082
4. A method for estimating the ash content in coke by fluorescent X-ray analysis, wherein the coke is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, which is then subjected to a fluorescent X-ray analyzer. Si, Al, Ca, Ti, P, M
The X-ray intensity of g is measured, and when the element is preset to zero based on the measured X-ray intensity of each element, from the calibration curve of zero fluorescent X-ray intensity, SiO 2 , Al 2 O 3 , CaO, TiO 2 , P
A method for estimating coke ash content by fluorescent X-ray analysis, which comprises converting the content ratio of each component of 2 O 5 and MgO and calculating the amount of coke ash content from the content ratio of each component based on the following ash content estimation formula (4). . Ash (%) = (A 4 × SiO 2 + B 4 × Al 2 O 3 + C 4 ×
CaO + E 3 × TiO 2 + F 1 × P 2 O 5 + G 1 × MgO) -
K 4 (4) where A 4 = 0.982, B 4 = 1.356, C 4 =
1.921, E 3 = 1.197, F 1 = 0.835, G 1
= 1.176, K 4 = 0.082
【請求項5】 コークス中の灰分を蛍光X線分析により
推定する方法において、コークスを粉砕して結合剤を添
加混合し、加圧成型してブリケット状の試料となし、蛍
光X線分析計にかけてSi、Al、Ca、Ti、P、M
g、Mn、SのX線強度を測定し、測定した各元素のX
線強度に基づいて予め設定された元素零のとき蛍光X線
強度零の検量線からSiO2、Al23、CaO、Ti
2、P25、MgO、MnO、Total Sの各成
分含有率を換算し、該各成分含有率から下記灰分推定式
(5)に基づいてコークス灰分量を算出することを特徴
とする蛍光X線分析によるコークス灰分推定方法。 Ash(%)=(A5×SiO2+B5×Al23+C5×
CaO+D3×Fe23+E4×TiO2+P25+Mg
O+MnO+H1×Total S)−K5…(5) ただし、A5=1.057、B5=0.994、C5
0.983、D3=0.951、E4=1.106、H1
=1.033、K5=0.173
5. A method for estimating ash content in coke by fluorescent X-ray analysis, wherein coke is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, which is then subjected to a fluorescent X-ray analyzer. Si, Al, Ca, Ti, P, M
The X-ray intensities of g, Mn, and S were measured, and the measured X of each element
When the element preset based on the line intensity is zero, the fluorescent X-ray intensity is zero. From the calibration curve, SiO 2 , Al 2 O 3 , CaO, Ti
It is characterized in that the content of each component of O 2 , P 2 O 5 , MgO, MnO, and Total S is converted, and the coke ash content is calculated from the content of each component based on the following ash content estimation formula (5). A method for estimating coke ash content by fluorescent X-ray analysis. Ash (%) = (A 5 × SiO 2 + B 5 × Al 2 O 3 + C 5 ×
CaO + D 3 × Fe 2 O 3 + E 4 × TiO 2 + P 2 O 5 + Mg
O + MnO + H 1 × Total S) -K 5 ... (5) provided that, A 5 = 1.057, B 5 = 0.994, C 5 =
0.983, D 3 = 0.951, E 4 = 1.106, H 1
= 1.033, K 5 = 0.173
【請求項6】 蛍光X線分析計により測定したSi、A
l、Ca、Fe、Ti、P、Mg、Mn、Sのうちの所
定元素のX線強度を下記式に代入し、SiO2、Al2
3、CaO、Fe23、TiO2、P25、MgO、Mn
O、Total Sのうちの所定成分含有率を算出する
ことを特徴とする請求項1ないし5記載の蛍光X線分析
によるコークス灰分推定方法。 SiO2=0.158×Io+0.212 Al23=0.179×I1+0.497 CaO=0.024×I2+0.045 Fe23=0.005×I3+0.033 TiO2=0.137×I4−0.040 P25=0.049×I5+0.006 MgO=0.954×I6+0.062 MnO=0.007×I7−0.011 Total S=0.008×I8−0.104 ただし、Io〜I8は各元素のX線強度
6. Si and A measured by a fluorescent X-ray analyzer
Substituting the X-ray intensity of a predetermined element among 1, Ca, Fe, Ti, P, Mg, Mn, and S into the following formula, SiO 2 , Al 2 O
3 , CaO, Fe 2 O 3 , TiO 2 , P 2 O 5 , MgO, Mn
The method for estimating coke ash content by fluorescent X-ray analysis according to claim 1, wherein the content ratio of a predetermined component of O and Total S is calculated. SiO 2 = 0.158 × I o +0.212 Al 2 O 3 = 0.179 × I 1 +0.497 CaO = 0.024 × I 2 +0.045 Fe 2 O 3 = 0.005 × I 3 +0. 033 TiO 2 = 0.137 × I 4 −0.040 P 2 O 5 = 0.049 × I 5 +0.006 MgO = 0.954 × I 6 +0.062 MnO = 0.007 × I 7 −0. 011 Total S = 0.008 × I 8 −0.104 where I o to I 8 are X-ray intensities of the respective elements.
【請求項7】 コークスを200メッシュ以下に粉砕
し、バインダーとしてポリスチレンマレイン酸ポリマー
を用い、粉砕コークスと該ポリスチレンマレイン酸ポリ
マーとの混合比を1:0.5〜0.7で混合し、加圧成
型したブリケット状の試料を用いることを特徴とする請
求項1ないし5記載の蛍光X線分析によるコークス灰分
推定方法。
7. Coke is crushed to 200 mesh or less, polystyrene maleic acid polymer is used as a binder, and the crushed coke and the polystyrene maleic acid polymer are mixed at a mixing ratio of 1: 0.5 to 0.7, and added. The coke ash estimation method by fluorescent X-ray analysis according to claim 1, wherein a pressure-molded briquette-like sample is used.
JP25744894A 1994-09-26 1994-09-26 Method for estimating ash content of coke by fluorescent x-ray spectroscopy Pending JPH0894554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25744894A JPH0894554A (en) 1994-09-26 1994-09-26 Method for estimating ash content of coke by fluorescent x-ray spectroscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25744894A JPH0894554A (en) 1994-09-26 1994-09-26 Method for estimating ash content of coke by fluorescent x-ray spectroscopy

Publications (1)

Publication Number Publication Date
JPH0894554A true JPH0894554A (en) 1996-04-12

Family

ID=17306491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25744894A Pending JPH0894554A (en) 1994-09-26 1994-09-26 Method for estimating ash content of coke by fluorescent x-ray spectroscopy

Country Status (1)

Country Link
JP (1) JPH0894554A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847912B2 (en) 2009-09-09 2014-09-30 Hewlett-Packard Development Company, L.P. Gyroscopic input systems and methods
KR20190074415A (en) * 2017-12-20 2019-06-28 주식회사 포스코 Quantitative State Analysis Method of Organic or Inorganic Phosphorus Compounds in Coal and Cokes
CN113237907A (en) * 2021-04-08 2021-08-10 中国铝业股份有限公司 Method for measuring fluorine content in fluorine-carrying alumina by X-ray fluorescence spectrometry
CN113960092A (en) * 2021-11-10 2022-01-21 天津海关化矿金属材料检测中心 Method for rapidly detecting ash content of coal
KR20230011127A (en) * 2021-07-13 2023-01-20 삼성물산 주식회사 Method for real-time selecting fly ash

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847912B2 (en) 2009-09-09 2014-09-30 Hewlett-Packard Development Company, L.P. Gyroscopic input systems and methods
KR20190074415A (en) * 2017-12-20 2019-06-28 주식회사 포스코 Quantitative State Analysis Method of Organic or Inorganic Phosphorus Compounds in Coal and Cokes
CN113237907A (en) * 2021-04-08 2021-08-10 中国铝业股份有限公司 Method for measuring fluorine content in fluorine-carrying alumina by X-ray fluorescence spectrometry
KR20230011127A (en) * 2021-07-13 2023-01-20 삼성물산 주식회사 Method for real-time selecting fly ash
CN113960092A (en) * 2021-11-10 2022-01-21 天津海关化矿金属材料检测中心 Method for rapidly detecting ash content of coal

Similar Documents

Publication Publication Date Title
CN102156142A (en) Method for analyzing ferrosilicon alloy components for X-ray fluorescence spectrum analysis
Kondrasheva et al. Determination of sulfur and trace elements in petroleum coke by X-ray fluorescent spectrometry
JPH0894554A (en) Method for estimating ash content of coke by fluorescent x-ray spectroscopy
Johnson et al. Direct reading emission spectroscopic analysis of plant tissue using a briquetting technique
CN103364423A (en) Method for utilizing X-ray fluorescence spectrophotometer to determine components of dust pellet
KR20130047789A (en) Method of coke quality prediction
CN112415034A (en) XRF (X-ray fluorescence) measurement and analysis method of solid waste
JPH07280751A (en) Coal ash estimating method by fluorescent x-ray analysis
KR101100537B1 (en) Method for predicting of drum index of cokes
Gebhardt Rapid methods for chemical analysis of hydraulic cement
CN113514486A (en) Method for measuring silicon content in silicon-carbon spheres
Faye et al. Determination of major and trace elements in rocks employing optical emission spectroscopy and X-ray fluorescence
CN114371186B (en) Method for overcoming particle size effect of alloy element measured by XRF powder tabletting method
Sanchez-Ramos et al. Validation of a method for the determination of boron in ceramic materials by X-ray fluorescence spectrometry
Wood et al. A rapid system of cane leaf analysis using X-ray spectrometry and infra-red reflectance
KR100928539B1 (en) Method for Measuring Compressive Strength of Coal for Coking
West et al. Analysis and characterization of water treatment plant sludges by X-ray fluorescence spectrometry
JPH0545272A (en) Anatliytical method for impurity in antimony oxide using fluorescent x-ray
Abasova et al. Determination of the content of ash-forming elements in coals by the X-ray fluorescence method
CN113866203B (en) Method for detecting primary and secondary elements of coarse zinc powder of rotary hearth furnace
MacPherson et al. SIMS relative sensitivity factors for Al/Mg in synthetic and Madagascar hibonite
Sommer et al. Rapid determination of small oxygen contents and aluminium-bound oxygen in steels
Gillette et al. Spectrochemical Determination of Metallic Elements in Nonmetallic Samples
McElroy et al. Precious metal assay analysis of fresh reforming catalyst by X-ray fluorescence spectrometry
JPH0545271A (en) Analitytical method for impurity in bi oxide using fluorescent x-ray