JPH07280751A - Coal ash estimating method by fluorescent x-ray analysis - Google Patents

Coal ash estimating method by fluorescent x-ray analysis

Info

Publication number
JPH07280751A
JPH07280751A JP9049294A JP9049294A JPH07280751A JP H07280751 A JPH07280751 A JP H07280751A JP 9049294 A JP9049294 A JP 9049294A JP 9049294 A JP9049294 A JP 9049294A JP H07280751 A JPH07280751 A JP H07280751A
Authority
JP
Japan
Prior art keywords
ash
ray
coal
content
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9049294A
Other languages
Japanese (ja)
Inventor
Motokazu Miyawaki
元和 宮脇
Hiroshi Tani
博 谷
Takanobu Waki
尊信 脇
Masaji Takenaka
政次 竹中
Kiichiro Shimura
喜一郎 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9049294A priority Critical patent/JPH07280751A/en
Publication of JPH07280751A publication Critical patent/JPH07280751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To lower the error of coal ash estimation by fluorescent x-ray analysis by computing the coal ash quantity from content of each component obtained by fluorescent x-ray analysis based on a specified equation. CONSTITUTION:Coal is pulverized and a binder is added thereto and press- forming is carried out to give a briquette specimen. X-ray intensity for Si, AQ, P, Ti, Ca, Mg, Fe, Mn, and S is measured by carrying out fluorescent x-ray analysis for the specimen. Based on the working curve at zero intensity of fluorescent x-ray at the time when no element exists, said working curve is set previously based on the x-ray intensity for each element, the content of each component of SiO2, Al2O3, P2O5, TiO2, CaO, MgO, Fe2O3, MnO, and total S is obtained by conversion. The coal ash quantity is computed from the content of each component based on the equation wherein A4=1.116, B4=0.945, C3=1.819, D3= 0.791, E3=0.944, F1=0.546, J4=0.141. Consequently, the number of analysis processes is lessened and labour is saved as compared with chemical analysis by JIS method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、石炭中の灰分を短時
間で高精度で推定できる蛍光X線分析による石炭灰分推
定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for estimating coal ash content by fluorescent X-ray analysis capable of estimating ash content in coal in a short time and with high accuracy.

【0002】[0002]

【従来の技術】高炉用コークスは、通常水分8〜10%
の原料石炭を数種ないし十余種、所定比率、所定粒度に
配合・粉砕して装入炭を調製し、室炉式コークス炉の炭
化室に装入し、高温乾留して製造されている。高炉用コ
ークスは、高炉の安定操業、熱バランスの観点からコー
クス強度、コークス灰分を所定値に管理することが行わ
れている。上記コークス灰分の管理は、装入炭の調製段
階において各石炭銘柄別の灰分をJIS M 8812
に規定の石炭類およびコークス類の工業分析法による化
学分析により測定し、コークス灰分が所定値となるよう
原料石炭の配合が行われていた。
Blast furnace coke usually has a water content of 8 to 10%.
It is manufactured by blending and pulverizing several types of raw material coal of several types to more than 10 types in a predetermined ratio and with a predetermined particle size to prepare a charging coal, charging it into a carbonization chamber of a chamber furnace type coke oven, and performing high temperature carbonization. . The coke strength and coke ash content of the blast furnace coke are controlled to predetermined values from the viewpoint of stable operation of the blast furnace and heat balance. The management of the coke ash content is performed according to JIS M 8812 by comparing the ash content of each coal brand at the preparation stage of charging coal.
The raw material coal was blended so that the coke ash content would be a predetermined value, as measured by chemical analysis by the industrial analysis method of coals and cokes prescribed in 1.

【0003】上記JIS M 8812に規定の石炭類
およびコークス類の工業分析法による石炭中の灰分測定
は、石炭を空気中で815℃±10℃で加熱灰化(燃
焼)し、冷却させたのち直ちに質量をはかって灰量を求
め、灰分を所定の計算式により求めていた。しかしなが
ら、JIS M 8812に規定の方法では、測定に少
なくとも4〜5時間を費やし、非能率的であるばかりで
なく、装入炭を調製するには、数十種の銘柄別の各石炭
中の灰分を測定する必要があり、その測定工数は多大な
ものである。
The ash content in coal is measured by an industrial analysis method for coals and cokes specified in JIS M 8812 described above. After ashing (combusting) coal in air at 815 ° C ± 10 ° C, the coal is cooled and then cooled. Immediately, the mass was measured to obtain the ash amount, and the ash content was obtained by a predetermined calculation formula. However, according to the method specified in JIS M 8812, it takes at least 4 to 5 hours for measurement and is not only inefficient. In addition, in order to prepare charging coal, dozens of brands It is necessary to measure the ash content, and the measurement man-hour is enormous.

【0004】石炭中の灰分を短時間で推定する方法とし
ては、石炭を蛍光X線分析にかけて、その石炭中のS
i、Ca、Al、Fe、Mgを測定し、これによりSi
2、CaO、Al23、Fe23、MgOの各成分量
を検量し、それら各成分量の合計から石炭の灰分を推定
する方法(特開昭51−105888号公報)が提案さ
れている。
As a method of estimating the ash content in coal in a short time, the coal is subjected to fluorescent X-ray analysis to obtain S in the coal.
i, Ca, Al, Fe, Mg are measured, and
A method of calibrating the amount of each component of O 2 , CaO, Al 2 O 3 , Fe 2 O 3 , and MgO and estimating the ash content of coal from the total amount of each component (JP-A-51-105888) is proposed. Has been done.

【0005】[0005]

【発明が解決しようとする課題】上記特開昭51−10
5888号公報に開示の方法は、石炭を60メッシュ以
下に粉砕し、次いで粉砕した石炭を容器に入れ、その上
から圧力20〜35t/cm2、加圧時間5〜15秒程
度加圧してブリケット状の試料とし、蛍光X線分析計に
かけ、石炭中のSiO2、CaO、Al23、Fe
23、MgOの各成分量を、蛍光X線分析計に表示され
るSi、Ca、Al、Fe、MgのX線強度表示に基づ
いて予め設定された検量線から読み取り、それら各成分
量の合計を石炭の灰分の近似値として推定するものであ
る。しかしながら、特開昭51−105888号公報に
開示の方法は、試料をブリケット状に加圧成型する際に
表面に亀裂が発生し易く、図22(a)〜(b)に示す
とおり、各元素の含有量が零の場合でもX線強度が確認
されたり、図22(c)に示すとおり、逆に検量線にお
けるX線強度が零のとき、元素が検出されるという現象
が発生して分析精度が悪化し、灰分推定値とJIS M
8812に規定の工業分析法による灰分値との誤差が
大きく、実操業における生産管理に推定灰分値を採用す
ることはできないという欠点を有している。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 5888 discloses a method in which coal is crushed to 60 mesh or less, then the crushed coal is put in a container, and pressure is applied to the container from above for 20 to 35 t / cm 2 for about 5 to 15 seconds for briquette. and Jo samples subjected to the fluorescent X-ray analyzer, SiO 2 in coal, CaO, Al 2 O 3, Fe
The amount of each component of 2 O 3 and MgO is read from the calibration curve preset based on the X-ray intensity display of Si, Ca, Al, Fe and Mg displayed on the fluorescent X-ray analyzer, and the amount of each component is read. Is estimated as an approximate value of coal ash content. However, in the method disclosed in Japanese Patent Laid-Open No. 51-105888, cracks are likely to occur on the surface when the sample is pressure-molded into a briquette, and as shown in FIGS. X-ray intensity is confirmed even when the content of is zero, and as shown in FIG. 22 (c), when the X-ray intensity in the calibration curve is conversely zero, the phenomenon of element detection occurs and analysis is performed. Accuracy deteriorated, ash estimated value and JIS M
It has a drawback that the estimated ash value cannot be adopted for production control in actual operation because the error with the ash value by the industrial analysis method prescribed in 8812 is large.

【0006】この発明の目的は、前記特開昭51−10
5888号公報に開示の方法の欠点を解消し、JIS
M 8812に規定の工業分析法による灰分値との誤差
が極めて小さい蛍光X線分析による石炭灰分推定方法を
提供することにある。
The object of the present invention is to obtain the above-mentioned Japanese Patent Laid-Open No. 51-10.
The drawbacks of the method disclosed in Japanese Patent No.
An object of the present invention is to provide a method for estimating coal ash content by fluorescent X-ray analysis, which has an extremely small error from the ash content value according to the industrial analysis method specified in M 8812.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々試験検討を重ねた。その結果、試料を
ブリケット状に加圧成型する際にバインダーを添加する
ことによって、試料表面の亀裂発生を防止できること、
検量線を元素零のときX線強度零となるよう改善するこ
とによって、各成分量の検出精度が向上すること、検量
線から求めた各成分含有率から所定の推定式に基づいて
石炭灰分量を算出することによって、JIS M 88
12に規定の工業分析法による灰分値との誤差が±0.
2%以下と極めて小さくなることを究明し、この発明に
到達した。
Means for Solving the Problems The inventors of the present invention have conducted various tests and examinations in order to achieve the above object. As a result, by adding a binder when pressure-molding the sample into a briquette, it is possible to prevent crack generation on the sample surface,
By improving the calibration curve so that the X-ray intensity becomes zero when the element is zero, the detection accuracy of each component amount is improved, and the amount of coal ash based on the predetermined estimation formula from the content ratio of each component obtained from the calibration curve Is calculated according to JIS M 88
The error from the ash value by the industrial analysis method specified in 12 is ± 0.
The inventors have reached the present invention by investigating that it is extremely small at 2% or less.

【0008】すなわち本願の第1発明は、石炭中の灰分
を蛍光X線分析により推定する方法において、石炭を粉
砕して結合剤を添加混合し、加圧成型してブリケット状
の試料となし、蛍光X線分析計にかけてSi、Al、C
a、FeのX線強度を測定し、測定した各元素のX線強
度に基づいて予め設定された元素零のとき蛍光X線強度
零の検量線からSiO2、Al23、CaO、Fe23
の各成分含有率を換算し、該各成分含有率から下記灰分
推定式(1)に基づいて石炭灰分量を算出することを特
徴とする蛍光X線分析による石炭灰分推定方法である。 Ash(%)= (A1×SiO2+B1×Al23+C1×CaO +D1×Fe23)+J1…(1) ただし、 A1=1.117、B1=1.007、C1
2.094、D1=0.830、J1=0.447
That is, the first invention of the present application is a method for estimating ash content in coal by fluorescent X-ray analysis, in which coal is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, Fluorescent X-ray analyzer for Si, Al, C
a, X-ray intensities of Fe are measured, and when the element is preset to zero based on the measured X-ray intensities of the respective elements, SiO 2 , Al 2 O 3 , CaO, Fe are obtained from the calibration curve of zero fluorescent X-ray intensity. 2 O 3
The content of each component is converted, and the amount of coal ash is calculated from the content of each component based on the following ash estimation formula (1). Ash (%) = (A 1 × SiO 2 + B 1 × Al 2 O 3 + C 1 × CaO + D 1 × Fe 2 O 3) + J 1 ... (1) However, A 1 = 1.117, B 1 = 1. 007, C 1 =
2.094, D 1 = 0.830, J 1 = 0.447

【0009】本願の第2発明は、石炭中の灰分を蛍光X
線分析により推定する方法において、石炭を粉砕して結
合剤を添加混合し、加圧成型してブリケット状の試料と
なし、蛍光X線分析計にかけてSi、Al、P、Ti、
MgのX線強度を測定し、測定した各元素のX線強度に
基づいて予め設定された元素零のとき蛍光X線強度零の
検量線からSiO2、Al23、P25、TiO2、Mg
Oの各成分含有率を換算し、該各成分含有率から下記灰
分推定式(2)に基づいて石炭灰分量を算出することを
特徴とする蛍光X線分析による石炭灰分推定方法であ
る。 Ash(%)= (A2×SiO2+B2×Al23+P25 +E1×TiO2+MgO)+J2…(2) ただし、 A2=0.816、B2=1.029、E1
0.913、J2=2.396
The second invention of the present application is to detect the ash content in coal by fluorescent X
In the method of estimating by line analysis, coal is crushed and bonded.
Mix and mix the mixture, and press-mold it into a briquette-shaped sample.
None, Si, Al, P, Ti, X-ray fluorescence analyzer
The X-ray intensity of Mg was measured, and the measured X-ray intensity of each element
Based on the preset element zero, the fluorescent X-ray intensity is zero.
From the calibration curve SiO2, Al2O3, P2OFive, TiO2, Mg
Converting the content rate of each component of O, the following ash is calculated from the content rate of each component.
To calculate the amount of coal ash based on the minute estimation formula (2)
A method for estimating coal ash content by a characteristic X-ray fluorescence analysis.
It Ash (%) = (A2× SiO2+ B2× Al2O3+ P2OFive  + E1× TiO2+ MgO) + J2(2) However, A2= 0.816, B2= 1.029, E1=
0.913, J2= 2.396

【0010】本願の第3発明は、石炭中の灰分を蛍光X
線分析により推定する方法において、石炭を粉砕して結
合剤を添加混合し、加圧成型してブリケット状の試料と
なし、蛍光X線分析計にかけてSi、Al、Ca、F
e、P、Ti、MgのX線強度を測定し、測定した各元
素の蛍光X線強度に基づいて予め設定された元素零のと
き蛍光X線強度零の検量線からSiO2、Al23、C
aO、Fe23、P25、TiO2、MgOの各成分含
有率を換算し、該各成分含有率から下記灰分推定式
(3)に基づいて石炭灰分量を算出することを特徴とす
る蛍光X線分析による石炭灰分推定方法である。 Ash(%)= (A3×SiO2+B3×Al23+C2×CaO +D2×Fe23+P25+E2×TiO2+MgO) +J3…(3) ただし、 A3=1.127、B3=0.955、C2
1.775、D2=0.869、E2=0.777、J3
=0.345
The third invention of the present application is to detect the ash content in coal by fluorescent X
In the method of estimating by line analysis, coal is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, and Si, Al, Ca, F is subjected to a fluorescent X-ray analyzer.
The X-ray intensities of e, P, Ti and Mg were measured, and when the element was preset to zero based on the measured fluorescent X-ray intensities of the respective elements, SiO 2 and Al 2 O were obtained from the calibration curve of zero fluorescent X-ray intensity. 3 , C
It is characterized in that the content of each component of aO, Fe 2 O 3 , P 2 O 5 , TiO 2 , and MgO is converted, and the amount of coal ash is calculated from the content of each component based on the following ash content estimation formula (3). Is a method for estimating coal ash content by fluorescent X-ray analysis. Ash (%) = (A 3 × SiO 2 + B 3 × Al 2 O 3 + C 2 × CaO + D 2 × Fe 2 O 3 + P 2 O 5 + E 2 × TiO 2 + MgO) + J 3 ... (3) However, A 3 = 1.127, B 3 = 0.955, C 2 =
1.775, D 2 = 0.869, E 2 = 0.777, J 3
= 0.345

【0011】本願の第4発明は、石炭中の灰分を蛍光X
線分析により推定する方法において、石炭を粉砕して結
合剤を添加混合し、加圧成型してブリケット状の試料と
なし、蛍光X線分析計にかけてSi、Al、P、Ti、
Ca、Mg、Fe、Mn、SのX線強度を測定し、測定
した各元素のX線強度に基づいて予め設定された元素零
のとき蛍光X線強度零の検量線からSiO2、Al
23、P25、TiO2、CaO、MgO、Fe23
MnO、Total Sの各成分含有率を換算し、該各
成分含有率から下記灰分推定式(4)に基づいて石炭灰
分量を算出することを特徴とする蛍光X線分析による石
炭灰分推定方法である。 Ash(%)= (A4×SiO2+B4×Al23+C3×CaO +D3×Fe23+P25+E3×TiO2+MgO +MnO+F1×Total S)+J4…(4) ただし、 A4=1.116、B4=0.945、C3
1.819、D3=0.791、E3=0.944、F1
=0.546、J4=0.141
The fourth invention of the present application is to detect the ash content in coal by fluorescent X
In a method of estimating by line analysis, coal is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, and Si, Al, P, Ti,
The X-ray intensities of Ca, Mg, Fe, Mn, and S were measured, and when the element was preset to zero based on the measured X-ray intensities of the respective elements, SiO 2 , Al from the calibration curve of zero fluorescent X-ray intensity.
2 O 3 , P 2 O 5 , TiO 2 , CaO, MgO, Fe 2 O 3 ,
A method for estimating coal ash content by fluorescent X-ray analysis, characterized in that the content of each component of MnO and Total S is converted and the amount of coal ash is calculated from the content of each component based on the following ash content estimation formula (4). is there. Ash (%) = (A 4 × SiO 2 + B 4 × Al 2 O 3 + C 3 × CaO + D 3 × Fe 2 O 3 + P 2 O 5 + E 3 × TiO 2 + MgO + MnO + F 1 × Total S) + J 4 ... (4 ) However, A 4 = 1.116, B 4 = 0.945, C 3 =
1.819, D 3 = 0.791, E 3 = 0.944, F 1
= 0.546, J 4 = 0.141

【0012】[0012]

【作用】この発明においては、石炭を粉砕して結合剤を
添加混合し、加圧成型してブリケット状の試料とするこ
とによって、加圧成型時の表面の亀裂発生が防止され、
各元素の分析精度を向上することができる。本願の第1
発明においては、算出したSiO2、Al23、Ca
O、Fe23の各成分含有率から前記灰分推定式(1)
に基づいて石炭灰分量を算出することによって、灰分推
定値とJIS M 8812に規定の化学分析法による
灰分値との誤差を、実操業のコークス灰分管理に適用で
きる±0.2%以下とすることができ、実操業のコーク
ス灰分管理に用いる石炭中の灰分測定を、JIS M8
812に規定の化学分析法から蛍光X線分析法に置換可
能となった。この結果、灰分測定に要する工数は、1銘
柄約4時間から30分へと約1/8に大幅に短縮するこ
とができ、分析要員の省力化を図ることができる。
In the present invention, by crushing coal, adding and mixing the binder, and press-molding it into a briquette-like sample, the occurrence of surface cracks during press-molding is prevented,
The analysis accuracy of each element can be improved. First of this application
In the invention, calculated SiO 2 , Al 2 O 3 , Ca
The above ash content estimation formula (1) from the content ratios of O and Fe 2 O 3
By calculating the amount of coal ash based on the above, the error between the estimated ash content and the ash content value by the chemical analysis method specified in JIS M 8812 is set to ± 0.2% or less which can be applied to the coke ash management in actual operation. It is possible to measure the ash content in coal used in the actual operation of coke ash management according to JIS M8.
It became possible to replace the chemical analysis method prescribed in 812 with the fluorescent X-ray analysis method. As a result, the number of man-hours required for ash content measurement can be significantly reduced from about 4 hours for one brand to 30 minutes, about 1/8, and labor saving of analysis personnel can be achieved.

【0013】また、本願の第2発明においては、算出し
たSiO2、Al23、P25、TiO2、MgOの各成
分含有率から前記灰分推定式(2)に基づいて石炭灰分
量を算出することによって、灰分推定値とJIS M
8812に規定の化学分析法による灰分値との誤差を、
実操業のコークス灰分管理に適用できる±0.2%以下
とすることができ、実操業のコークス灰分管理に用いる
石炭中の灰分測定を、JIS M 8812に規定の化
学分析法から蛍光X線分析法に置換可能となった。この
結果、灰分測定に要する工数は、1銘柄約4時間から3
0分へと約1/8に大幅に短縮することができ、分析要
員の省力化を図ることができる。
In the second invention of the present application, coal ash is calculated from the calculated content ratios of SiO 2 , Al 2 O 3 , P 2 O 5 , TiO 2 and MgO based on the ash estimation formula (2). By calculating the quantity, the ash estimated value and JIS M
The error from the ash value by the chemical analysis method prescribed in 8812 is
It can be set to ± 0.2% or less which can be applied to the coke ash management of the actual operation, and the ash content in the coal used for the coke ash management of the actual operation can be measured by fluorescent X-ray analysis from the chemical analysis method prescribed in JIS M 8812. It became possible to replace it with the law. As a result, the number of man-hours required for ash measurement is from 3 hours per brand to 3 hours.
The time can be reduced to about 1/8, and the labor required for the analysis staff can be reduced.

【0014】さらに、本願の第3発明においては、算出
したSiO2、Al23、CaO、Fe23、P25
TiO2、MgOの各成分含有率から前記灰分推定式
(3)に基づいて石炭灰分量を算出することによって、
灰分推定値とJIS M 8812に規定の化学分析法
による灰分値との誤差を、実操業のコークス灰分管理に
適用できる±0.2%以下とすることができ、実操業の
コークス灰分管理に用いる石炭中の灰分測定を、JIS
M 8812に規定の化学分析法から蛍光X線分析法
に置換可能となった。この結果、灰分測定に要する工数
は、1銘柄約4時間から30分へと約1/8に大幅に短
縮することができ、分析要員の省力化を図ることができ
る。
Further, in the third invention of the present application, calculated SiO 2 , Al 2 O 3 , CaO, Fe 2 O 3 , P 2 O 5 ,
By calculating the amount of coal ash based on the ash content estimation formula (3) from the content of each component of TiO 2 and MgO,
The error between the estimated ash value and the ash value according to the chemical analysis method specified in JIS M 8812 can be set to ± 0.2% or less applicable to the coke ash management in the actual operation, and is used for the coke ash management in the actual operation. Measure ash content in coal according to JIS
It has become possible to replace the chemical analysis method specified in M 8812 with the fluorescent X-ray analysis method. As a result, the number of man-hours required for ash content measurement can be significantly reduced from about 4 hours for one brand to 30 minutes, about 1/8, and labor saving of analysis personnel can be achieved.

【0015】さらにまた、本願の第4発明においては、
算出したSiO2、Al23、P25、TiO2、Ca
O、MgO、Fe23、MnO、Total Sの各成
分含有率から前記灰分推定式(4)に基づいて石炭灰分
量を算出することによって、灰分推定値とJIS M
8812に規定の化学分析法による灰分値との誤差を、
実操業のコークス灰分管理に適用できる±0.2%以下
とすることができ、実操業のコークス灰分管理に用いる
石炭中の灰分測定を、JIS M 8812に規定の化
学分析法から蛍光X線分析法に置換可能となった。この
結果、灰分測定に要する工数は、1銘柄約4時間から3
0分へと約1/8に大幅に短縮することができ、分析要
員の省力化を図ることができる。
Furthermore, in the fourth invention of the present application,
SiO 2, Al 2 O 3 the calculated, P 2 O 5, TiO 2 , Ca
The ash content and JIS M are calculated by calculating the coal ash content based on the ash content estimation formula (4) from the content ratios of O, MgO, Fe 2 O 3 , MnO, and Total S.
The error from the ash value by the chemical analysis method prescribed in 8812 is
It can be set to ± 0.2% or less which can be applied to the coke ash management of the actual operation, and the ash content in the coal used for the coke ash management of the actual operation can be measured by fluorescent X-ray analysis from the chemical analysis method prescribed in JIS M 8812. It became possible to replace it with the law. As a result, the number of man-hours required for ash measurement is from 3 hours per brand to 3 hours.
The time can be reduced to about 1/8, and the labor required for the analysis staff can be reduced.

【0016】この発明において、加圧成型時に粉砕した
石炭に添加混合する結合剤としては、ポリスチレンマレ
ン酸ポリマー、澱粉等を使用することができる。ブリケ
ット状の試料に加圧成型する場合の圧力は、3t/cm
2以上、望ましくは20〜35t/cm2である。ブリケ
ット状の試料は、測定面が外径20mm以上必要である
ので、加圧成型時に外径25〜35mmのリング容器を
使用するのが望ましい。
In the present invention, polystyrene maleic acid polymer, starch or the like can be used as the binder to be added to and mixed with the crushed coal during pressure molding. The pressure when press-molding into a briquette sample is 3 t / cm
It is 2 or more, preferably 20 to 35 t / cm 2 . Since the briquette-like sample needs to have a measuring surface of 20 mm or more in outer diameter, it is desirable to use a ring container having an outer diameter of 25 to 35 mm during pressure molding.

【0017】本願の第1発明における蛍光X線分析計に
より測定したSi、Al、Ca、FeのX線強度に基づ
く各成分含有率の算出は、測定された各元素のX線強度
に基づいて予め設定された元素零のときX線強度零の検
量線から読み取ることもできるが、Si、Al、Ca、
Feの各元素の蛍光X線強度を下記式に代入し、SiO
2、Al23、CaO、Fe23の各成分含有率を算出
することもできる。 SiO2=0.144×Io−0.312 Al23=0.135×I1−0.061 CaO=0.023×I2−0.019 Fe23=0.004×I3+0.012 ただし、Io〜I3は各元素のX線強度
The calculation of the content rate of each component based on the X-ray intensity of Si, Al, Ca, Fe measured by the fluorescent X-ray analyzer in the first invention of the present application is based on the measured X-ray intensity of each element. It can be read from a calibration curve of zero X-ray intensity when the element is preset to zero, but Si, Al, Ca,
Substituting the fluorescent X-ray intensity of each element of Fe into the following formula, SiO
It is also possible to calculate the content of each component of 2 , Al 2 O 3 , CaO, and Fe 2 O 3 . SiO 2 = 0.144 × I o -0.312 Al 2 O 3 = 0.135 × I 1 -0.061 CaO = 0.023 × I 2 -0.019 Fe 2 O 3 = 0.004 × I 3 +0.012 where I o to I 3 are X-ray intensities of each element

【0018】また、本願の第2発明における蛍光X線分
析計により測定したSi、Al、P、Ti、MgのX線
強度に基づく各成分含有率の算出は、測定した各元素の
X線強度に基づいて予め設定された元素零のときX線強
度零の検量線から読み取ることもできるが、Si、A
l、P、Ti、MgのX線強度を下記式に代入し、Si
2、Al23、P25、TiO2、MgOの各成分含有
率を算出することもできる。 SiO2=0.144×Io−0.312 Al23=0.135×I1−0.061 P25=0.040×I4+0.001 TiO2=0.012×I5−0.019 MgO=1.185×I6−0.089 ただし、Io〜I1、4〜I6は各元素のX線強度
Further, the calculation of the content rate of each component based on the X-ray intensities of Si, Al, P, Ti and Mg measured by the fluorescent X-ray analyzer in the second invention of the present application is carried out by measuring the X-ray intensities of the respective elements. It is possible to read from a calibration curve of zero X-ray intensity when the element is zero, which is preset based on
Substituting the X-ray intensities of 1, P, Ti, and Mg into the following formula, Si
It is also possible to calculate the content of each component of O 2 , Al 2 O 3 , P 2 O 5 , TiO 2 , and MgO. SiO 2 = 0.144 × I o −0.312 Al 2 O 3 = 0.135 × I 1 −0.061 P 2 O 5 = 0.040 × I 4 +0.001 TiO 2 = 0.012 × I 5 -0.019 MgO = 1.185 × I 6 -0.089 However, I o ~I 1, I 4 ~I 6 is X-ray intensity of each element

【0019】さらに、本願の第3発明における蛍光X線
分析計により測定したSi、Al、Ca、Fe、P、T
i、MgのX線強度に基づく各成分含有率の算出は、測
定した各元素のX線強度に基づいて予め設定された元素
零のときX線強度零の検量線から読み取ることもできる
が、Si、Al、Ca、Fe、P、Ti、MgのX線強
度を下記式に代入し、SiO2、Al23、CaO、F
23、P25、TiO2、MgOの各成分含有率を算
出することもできる。 SiO2=0.144×Io−0.312 Al23=0.135×I1−0.061 CaO=0.023×I2−0.019 Fe23=0.004×I3+0.012 P25=0.040×I4+0.001 TiO2=0.012×I5−0.019 MgO=1.185×I6−0.089 ただし、Io〜I6は各元素のX線強度
Furthermore, Si, Al, Ca, Fe, P, T measured by the fluorescent X-ray analyzer in the third invention of the present application
The calculation of the content rate of each component based on the X-ray intensity of i and Mg can be read from the calibration curve of zero X-ray intensity when the element is preset to zero based on the measured X-ray intensity of each element. Substituting the X-ray intensities of Si, Al, Ca, Fe, P, Ti, and Mg into the following formula, SiO 2 , Al 2 O 3 , CaO, F
It is also possible to calculate the content of each component of e 2 O 3 , P 2 O 5 , TiO 2 , and MgO. SiO 2 = 0.144 × I o -0.312 Al 2 O 3 = 0.135 × I 1 -0.061 CaO = 0.023 × I 2 -0.019 Fe 2 O 3 = 0.004 × I 3 +0.012 P 2 O 5 = 0.040 × I 4 +0.001 TiO 2 = 0.012 × I 5 -0.019 MgO = 1.185 × I 6 -0.089 However, I o ~I 6 Is the X-ray intensity of each element

【0020】さらにまた、本願の第4発明における蛍光
X線分析計により測定したSi、Al、P、Ti、C
a、Mg、Fe、Mn、SのX線強度に基づく各成分含
有率の算出は、測定した各元素のX線強度に基づいて予
め設定された元素零のときX線強度零の検量線から読み
取ることもできるが、Si、Al、P、Ti、Ca、M
g、Fe、Mn、SのX線強度を下記式に代入し、Si
2、Al23、P25、TiO2、CaO、MgO、F
23、MnO、Total Sの各成分含有率を算出
することもできる。 SiO2=0.144×Io−0.312 Al23=0.135×I1−0.061 P25=0.040×I2+0.001 TiO2=0.012×I3−0.019 CaO=0.023×I4−0.019 MgO=1.185×I5−0.089 Fe23=0.004×I6+0.012 MnO=0.003×I7−0.004 Total S=0.008×I8−0.039 ただし、Io〜I8は各元素のX線強度
Furthermore, Si, Al, P, Ti, C measured by the fluorescent X-ray analyzer in the fourth invention of the present application
The content of each component based on the X-ray intensity of a, Mg, Fe, Mn, and S is calculated from the calibration curve of zero X-ray intensity when the element is zero, which is preset based on the measured X-ray intensity of each element. Can be read, but Si, Al, P, Ti, Ca, M
Substituting the X-ray intensities of g, Fe, Mn, and S into the following formula, Si
O 2 , Al 2 O 3 , P 2 O 5 , TiO 2 , CaO, MgO, F
It is also possible to calculate the content of each component of e 2 O 3 , MnO, and Total S. SiO 2 = 0.144 × I o −0.312 Al 2 O 3 = 0.135 × I 1 −0.061 P 2 O 5 = 0.040 × I 2 +0.001 TiO 2 = 0.012 × I 3 -0.019 CaO = 0.023 x I 4 -0.019 MgO = 1.185 x I 5 -0.089 Fe 2 O 3 = 0.004 x I 6 + 0.012 MnO = 0.003 x I 7 -0.004 Total S = 0.008 × I 8 -0.039 However, I o ~I 8 is X-ray intensity of each element

【0021】なお、この発明においては、蛍光X線分析
装置をコンピュータと連動させることによって、記憶さ
せた前記各成分の検量線式によって各成分含有率を演算
し、前記灰分推定式(1)〜(4)の何れかによって石
炭中の灰分値を演算させ、定量値としてプリントするこ
ともできる。
In the present invention, the X-ray fluorescence analyzer is linked to a computer to calculate the content rate of each component by the stored calibration curve formula of each component, and the ash content estimation formulas (1) to It is also possible to calculate the ash value in coal by any of (4) and print it as a quantitative value.

【0022】[0022]

【実施例】【Example】

実施例1 JIS M 8812に規定の化学分析法により測定し
た標準試料を使用し、ディスクミルにより3分間で全量
200メッシュ以下に粉砕した標準試料石炭6gとスチ
レンマレン酸ポリマー4gを、V型混合機を用いて5分
間混合し、内径35mmのFeリングを5mmに輪切り
にしたものに充填し、圧力30t/cm2、加圧時間1
5秒にて加圧成型して外径35mm、厚さ3mmのブリ
ケット状試料を作成した。得られた各ブリケット状試料
を多元素同時測定蛍光X線装置を用い、表1に示す測定
条件でSi、Al、P、Ti、Ca、Mg、Fe、M
n、SのX線強度を測定し、SiO2、Al23、P2
5、TiO2、CaO、MgO、Fe23、MnO、To
tal Sの各成分の元素零のときX線強度零の検量線
を求めた。その結果を図1〜図9に示す。また、元素零
のときX線強度零の検量線式を表2に示す。
Example 1 Using a standard sample measured by a chemical analysis method defined in JIS M 8812, a standard sample coal pulverized to a total amount of 200 mesh or less in 3 minutes by a disc mill, 6 g of coal and 4 g of styrene-malenic acid polymer were mixed with a V-type mixer. Was mixed for 5 minutes, and the Fe ring having an inner diameter of 35 mm was cut into 5 mm pieces and filled into a ring. The pressure was 30 t / cm 2 , and the pressurizing time was 1
A briquette-like sample having an outer diameter of 35 mm and a thickness of 3 mm was prepared by pressure molding for 5 seconds. The obtained briquette-like samples were measured for Si, Al, P, Ti, Ca, Mg, Fe, M under the measurement conditions shown in Table 1 by using a multi-element simultaneous measurement fluorescent X-ray apparatus.
X-ray intensities of n and S were measured, and SiO 2 , Al 2 O 3 and P 2 O were measured.
5 , TiO 2 , CaO, MgO, Fe 2 O 3 , MnO, To
A calibration curve with zero X-ray intensity was obtained when the element of each component of tal S was zero. The results are shown in FIGS. Further, Table 2 shows a calibration curve formula in which the X-ray intensity is zero when the element is zero.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】図1〜図9に示すとおり、検量線の改善に
よって各成分零のとき各元素のX線強度零となり、各成
分量の検出精度が向上し、正確に各成分量を検出できる
ことがわかる。
As shown in FIGS. 1 to 9, the X-ray intensity of each element becomes zero when each component is zero due to the improvement of the calibration curve, the detection accuracy of each component amount is improved, and each component amount can be accurately detected. Recognize.

【0026】実施例2 本発明法および比較例の蛍光X線分析による石炭中の灰
分推定値と、JISM 8812に規定の化学分析法に
より測定したJIS法の灰分値との比較を行った。本発
明法および比較例の蛍光X線分析による石炭中の灰分推
定は、JIS M8810に準じてサンプリングした8
0銘柄の石炭について、それぞれディスクミルを用いて
3分間で全量200メッシュ以下に粉砕し、各石炭6g
とスチレンマレン酸ポリマー4gを、V型混合機を用い
て5分間混合し、内径35mmのFeリングを5mmに
輪切りにした容器に充填し、圧力30t/cm2、加圧
時間15秒にて加圧成型して外径35mm、厚さ3mm
のブリケット状試料を作成した。
Example 2 The estimated ash content in coal by the fluorescent X-ray analysis of the method of the present invention and the comparative example was compared with the ash value of the JIS method measured by the chemical analysis method specified in JISM 8812. The estimation of the ash content in the coal by the fluorescent X-ray analysis of the method of the present invention and the comparative example was performed according to JIS M8810.
0 brand coal was crushed to a total amount of 200 mesh or less in 3 minutes using a disc mill, and 6 g of each coal
And 4 g of styrene-malenic acid polymer were mixed using a V-type mixer for 5 minutes, and a Fe ring having an inner diameter of 35 mm was cut into 5 mm pieces and filled in a container. The pressure was 30 t / cm 2 and the pressurizing time was 15 seconds. Outer diameter 35mm, thickness 3mm by pressure molding
The briquette-like sample of was prepared.

【0027】得られた各ブリケット状試料を多元素同時
測定蛍光X線装置を用い、表1に示す測定条件でSi、
Al、P、Ti、Ca、Mg、Fe、Mn、SのX線強
度を測定し、測定した各元素のX線強度に基づいて、予
め設定された元素零のとき蛍光X線強度零の前記図1〜
図9に示す検量線からSiO2、Al23、P25、T
iO2、CaO、MgO、Fe23、MnO、Tota
l Sの各成分含有率を換算し、該各成分含有率から表
3に示すとおり、非線形の最小二乗法により求めた本発
明の灰分推定式(1)〜(4)および比較例の灰分推定
式(5)〜(10)に基づいて石炭灰分量を算出した。
その結果を表4および図10〜図19に示す。なお、図
10〜図19中には、試料数(n)、JIS法(x)と
推定値(y)から求めた単相関回帰式と相関係数(γ)
を併せて記載した。
Each briquette sample thus obtained was analyzed by a multi-element simultaneous fluorescent X-ray apparatus under the measurement conditions shown in Table 1, Si,
The X-ray intensities of Al, P, Ti, Ca, Mg, Fe, Mn, and S were measured, and based on the measured X-ray intensities of the respective elements, when the preset element was zero, the fluorescent X-ray intensity was zero. Figure 1
From the calibration curve shown in FIG. 9, SiO 2 , Al 2 O 3 , P 2 O 5 , T
iO 2 , CaO, MgO, Fe 2 O 3 , MnO, Tota
The ash content estimation formulas (1) to (4) of the present invention and the ash content estimation of the comparative example, which are obtained by converting the content rate of each component of 1 S and determining the content rate of each component by the nonlinear least squares method as shown in Table 3. The amount of coal ash was calculated based on the equations (5) to (10).
The results are shown in Table 4 and FIGS. 10 to 19, the simple correlation regression equation and the correlation coefficient (γ) obtained from the number of samples (n), the JIS method (x) and the estimated value (y).
Is also described.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】表4および図10〜図19に示すとおり、
本発明の石炭中の灰分推定式(1)〜(4)で算出した
灰分推定値は、表4および図10、図11、図13、図
15に示すとおり、いずれも推定精度の最大誤差率が
0.20%以下であり、実操業におけるコークス灰分管
理のための石炭配合における石炭中の灰分値として使用
可能であった。
As shown in Table 4 and FIGS. 10 to 19,
As shown in Table 4 and FIG. 10, FIG. 11, FIG. 13, and FIG. 15, the ash estimation values calculated by the ash estimation formulas (1) to (4) in coal of the present invention are all maximum error rates of estimation accuracy. Was 0.20% or less, and it was possible to use as an ash value in coal in coal blending for coke ash management in actual operation.

【0031】比較例1 前記特開昭51−105888号に開示の方法による蛍
光X線分析による石炭中の灰分推定値と、JIS M
8812に規定の化学分析法により測定したJIS法の
灰分値との比較を行った。その結果を表3および図20
に示す。特開昭51−105888号による石炭中の灰
分推定は、JIS M 8810に準じてサンプリング
した表5に示す20銘柄の各石炭を、ディスクミルを用
いて全量60メッシュ以下に粉砕し、内径35mmのF
eリングを5mmに輪切りにしたものに充填し、圧力3
0t/cm2、加圧時間15秒にて加圧成型して外径3
5mm、厚さ3mmのブリケット状試料を作成した。得
られた各ブリケット状試料を多元素同時測定蛍光X線装
置を用い、前記表1に示す測定条件でSi、Ca、A
l、Fe、MgのX線強度を測定し、特開昭51−10
5888号に開示された検量線からSiO2、CaO、
Al2O3、Fe2O3、MgOの各成分量を読み取
り、それら各成分量の合計を石炭灰分の近似値として推
定した。その結果を表5に示す。
Comparative Example 1 Estimated value of ash content in coal by fluorescent X-ray analysis by the method disclosed in JP-A-51-105888 and JIS M
8812 was compared with the ash value of the JIS method measured by the chemical analysis method prescribed in 8812. The results are shown in Table 3 and FIG.
Shown in. To estimate the ash content in coal according to JP-A-51-105888, 20 brands of coal shown in Table 5 sampled according to JIS M 8810 were pulverized to a total amount of 60 mesh or less using a disc mill, and an inner diameter of 35 mm was determined. F
Fill the e-ring into 5 mm slices, and press the pressure 3
Outer diameter of 3 by press molding at 0 t / cm 2 for 15 seconds
A briquette-shaped sample having a thickness of 5 mm and a thickness of 3 mm was prepared. Each of the obtained briquette-like samples was measured for Si, Ca, A under the measurement conditions shown in Table 1 above using a multi-element simultaneous measurement fluorescent X-ray apparatus.
The X-ray intensities of 1, Fe, and Mg were measured, and the method disclosed in JP-A-51-10
From the calibration curve disclosed in No. 5888, SiO2, CaO,
The amount of each component of Al2O3, Fe2O3, and MgO was read, and the total amount of each component was estimated as an approximate value of the coal ash content. The results are shown in Table 5.

【0032】[0032]

【表5】 [Table 5]

【0033】表5および図20に示すとおり、JIS法
測定値と特開昭51−105888号による推定値とで
は、石炭中の灰分に0.6〜1.8%の差が生じてお
り、実操業に適用できるといわれている図20に一点鎖
線で示す±0.2%の範囲からいずれもはみ出してお
り、特開昭51−105888号による推定値は、実操
業における石炭配合における灰分値として適用すること
は不可能である。
As shown in Table 5 and FIG. 20, there is a difference of 0.6 to 1.8% in the ash content in the coal between the value measured by the JIS method and the value estimated by JP-A-51-105888. 20 is said to be applicable to the actual operation, and all of the values are out of the range of ± 0.2% shown by the one-dot chain line, and the estimated value according to JP-A-51-105888 is the ash value in coal blending in the actual operation. It is impossible to apply as.

【0034】実施例3 本発明法による蛍光X線分析による石炭中の灰分推定値
と、JIS M 8812に規定の化学分析法により測
定したJIS法の灰分値との比較を行った。その結果を
図21に示す。なお、比較のため、前記特開昭51−1
05888号に開示の方法による蛍光X線分析により石
炭中の灰分推定を実施し、その結果を図21に併記し
た。本発明による蛍光X線分析による石炭中の灰分推定
は、JIS M 8810に準じてサンプリングした1
8銘柄の石炭について、それぞれディスクミルを用いて
3分間で全量200メッシュ以下に粉砕し、各石炭6g
とスチレンマレン酸ポリマー4gを、V型混合機を用い
て5分間混合し、内径35mmのFeリングを5mmに
輪切りにした容器に充填し、圧力30t/cm2、加圧
時間15秒にて加圧成型して外径35mm、厚さ3mm
のブリケット状試料を作成した。
Example 3 The estimated ash content in coal by fluorescent X-ray analysis according to the method of the present invention was compared with the ash value of JIS method measured by the chemical analysis method specified in JIS M 8812. The result is shown in FIG. For comparison, the above-mentioned JP-A-51-1 is used.
The ash content in coal was estimated by fluorescent X-ray analysis by the method disclosed in No. 05888, and the results are also shown in FIG. The ash content in coal by fluorescent X-ray analysis according to the present invention was sampled according to JIS M 8810 1
Eight brands of coal were pulverized to a total amount of 200 mesh or less in 3 minutes using a disc mill, and 6 g of each coal
And 4 g of styrene-malenic acid polymer were mixed using a V-type mixer for 5 minutes, and a Fe ring having an inner diameter of 35 mm was cut into 5 mm pieces and filled in a container. The pressure was 30 t / cm 2 and the pressurizing time was 15 seconds. Outer diameter 35mm, thickness 3mm by pressure molding
The briquette-like sample of was prepared.

【0035】得られた各ブリケット状試料を多元素同時
測定蛍光X線装置を用い、表1に示す測定条件でSi、
Al、P、Ti、Ca、Mg、Fe、Mn、SのX線強
度を測定し、測定した各元素のX線強度に基づいて、予
め設定された元素零のとき蛍光X線強度零の前記図1〜
図9に示す検量線からSiO2、Al23、P25、T
iO2、CaO、MgO、Fe23、MnO、Tota
l Sの各成分含有率を算出し、該各成分含有率から前
記灰分推定式(4)に基づいて石炭灰分量を算出した。
また、特開昭51−105888号による石炭中の灰分
推定は、上記18銘柄の各石炭を、ディスクミルを用い
て全量60メッシュ以下に粉砕し、内径35mmのFe
リングを5mmに輪切りにした容器に充填し、圧力30
t/cm2、加圧時間15秒にて加圧成型して外径35
mm、厚さ3mmのブリケット状試料を作成した。得ら
れた各ブリケット状試料を多元素同時測定蛍光X線装置
を用い、表1に示す測定条件でSi、Ca、Al、F
e、MgのX線強度を測定し、特開昭51−10588
8号に開示された検量線からSiO2、CaO、Al2
O3、Fe2O3、MgOの各成分量を読み取り、それ
ら各成分量の合計を石炭灰分の近似値として推定した。
Each briquette-like sample thus obtained was analyzed by a multi-element simultaneous measurement fluorescent X-ray apparatus under the measurement conditions shown in Table 1, Si,
The X-ray intensities of Al, P, Ti, Ca, Mg, Fe, Mn, and S were measured, and based on the measured X-ray intensities of the respective elements, when the preset element was zero, the fluorescent X-ray intensity was zero. Figure 1
From the calibration curve shown in FIG. 9, SiO 2 , Al 2 O 3 , P 2 O 5 , T
iO 2 , CaO, MgO, Fe 2 O 3 , MnO, Tota
The content of each component of 1 S was calculated, and the amount of coal ash was calculated from the content of each component based on the ash estimation formula (4).
Further, the estimation of the ash content in coal according to JP-A-51-105888 is carried out by grinding each of the above 18 brands of coal into a total of 60 mesh or less by using a disc mill, and Fe having an inner diameter of 35 mm.
Fill the container with the ring sliced into 5 mm and apply pressure 30
t / cm 2 , pressure time 15 seconds, pressure molding, outer diameter 35
A briquette sample having a thickness of 3 mm and a thickness of 3 mm was prepared. Each of the obtained briquette-shaped samples was measured for Si, Ca, Al, F under the measurement conditions shown in Table 1 by using a multi-element simultaneous measurement fluorescent X-ray apparatus.
e, the X-ray intensity of Mg was measured,
From the calibration curve disclosed in No. 8, SiO2, CaO, Al2
The amount of each component of O3, Fe2O3, and MgO was read, and the total amount of each component was estimated as an approximate value of the coal ash content.

【0036】図21に示すとおり、本発明法による推定
灰分は、JIS法測定値とほぼ近似しており、実操業に
適用できるといわれている図21に一点鎖線で示す±
0.2%の範囲内に入っている。これに対し比較例の特
開昭51−105888号による推定灰分は、実操業に
適用できるといわれている図21に一点鎖線で示す±
0.2%の範囲からいずれの銘柄も大きく外れている。
これに対し、比較例の石炭中の灰分推定式(5)〜(1
0)で算出した灰分推定値は、表6および図12、図1
4、図16〜図19に示すとおり、いずれも推定精度の
最大誤差が0.20%を超えており、JIS法と推定値
の最大誤差も最小が0.18%で、最大1.49%もあ
り、実操業におけるコークス灰分管理のための石炭配合
における石炭中の灰分値として使用不可能であった。
As shown in FIG. 21, the estimated ash content according to the method of the present invention is approximately similar to the value measured by the JIS method, and it is said that it can be applied to actual operation.
It is within the range of 0.2%. On the other hand, the estimated ash content according to JP-A-51-105888 of the comparative example is shown by the one-dot chain line in FIG. 21, which is said to be applicable to the actual operation.
All brands are significantly out of the 0.2% range.
On the other hand, the ash content estimation formulas (5) to (1) in coal of Comparative Example
The ash estimated value calculated in 0) is shown in Table 6, FIG. 12, and FIG.
4. As shown in FIGS. 16 to 19, the maximum error of the estimation accuracy exceeds 0.20%, and the maximum error between the JIS method and the estimated value is 0.18% and 1.49% at the maximum. Therefore, it was not possible to use it as the ash value in coal in the coal blending for coke ash management in actual operation.

【0037】実施例4 JIS M 8810に準じてサンプリングした表6〜
表8に示す41銘柄77試料の石炭について、本発明法
による蛍光X線分析による石炭中の灰分推定値と、JI
S M 8812に規定の化学分析法により測定したJ
IS法の灰分値との比較を行った。その結果を表6〜表
8に示す。本発明による蛍光X線分析による各石炭中の
灰分推定は、それぞれディスクミルを用いて3分間で全
量200メッシュ以下に粉砕し、各石炭6gとスチレン
マレン酸ポリマー4gを、V型混合機を用いて5分間混
合し、内径35mmのFeリングを5mmに輪切りにし
た容器に充填し、圧力30t/cm2、加圧時間15秒
にて加圧成型して外径35mm、厚さ3mmのブリケッ
ト状試料を作成した。得られた各ブリケット状試料を多
元素同時測定蛍光X線装置を用い、前記表1に示す測定
条件でSi、Al、P、Ti、Ca、Mg、Fe、M
n、SのX線強度を測定し、測定した各元素のX線強度
に基づいて、予め設定された元素零のとき蛍光X線強度
零の前記図1〜図9に示す検量線からSiO2、Al2
3、P2 5、TiO2、CaO、MgO、Fe23、Mn
O、Total Sの各成分含有率を算出し、該各成分
含有率から前記灰分推定式(4)に基づいて石炭灰分量
を算出した。表6〜表8に各成分含有率(蛍光X線分析
値(%))、JIS法灰分(%)、推定灰分(%)、J
IS法−推定値(%)を示す。
Example 4 Tables 6 to 9 sampled according to JIS M 8810
The method of the present invention was applied to coal of 77 samples of 41 brands shown in Table 8.
Of ash content in coal by X-ray fluorescence analysis with JI,
J measured by the chemical analysis method specified in S M 8812
A comparison was made with the ash value of the IS method. The results are shown in Table 6 to Table
8 shows. In each coal by X-ray fluorescence analysis according to the present invention
The ash content is estimated in 3 minutes using a disc mill.
6g of each coal and styrene
Mix 4 g of maleic acid polymer for 5 minutes using a V-type mixer.
And cut the Fe ring with an inner diameter of 35mm into 5mm.
Filled in a container, pressure 30t / cm2, Pressurizing time 15 seconds
It is pressure-molded with a briquette with an outer diameter of 35 mm and a thickness of 3 mm.
A scaly sample was prepared. Each briquette sample obtained was
Simultaneous measurement of elements Using a fluorescent X-ray device, the measurement shown in Table 1 above
Si, Al, P, Ti, Ca, Mg, Fe, M under the conditions
The X-ray intensity of n and S was measured, and the X-ray intensity of each element measured
X-ray intensity when the element is preset to zero based on
From the calibration curve shown in FIGS.2, Al2O
3, P2O Five, TiO2, CaO, MgO, Fe2O3, Mn
The content rate of each component of O and Total S was calculated, and the content of each component was calculated.
Coal ash content based on the above ash content estimation formula (4) from the content rate
Was calculated. Table 6 to Table 8 show the content of each component (fluorescent X-ray analysis
Value (%)), JIS method ash content (%), estimated ash content (%), J
IS method-shows estimated value (%).

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】表6〜表8に示すとおり、本発明による蛍
光X線分析による41銘柄77試料の石炭の推定灰分値
は、全てがJIS M 8812に規定の化学分析法に
より測定したJIS法の灰分値との差が±0.2%以下
と、実操業でのコークス灰分管理のための石炭配合にお
ける石炭中の灰分値として使用できる精度を示してい
る。
As shown in Tables 6 to 8, the estimated ash values of coal of 77 brands of 41 brands by fluorescent X-ray analysis according to the present invention are all ash content of JIS method measured by the chemical analysis method specified in JIS M 8812. The difference from the value is ± 0.2% or less, which shows the accuracy that can be used as the ash value in coal in the coal blend for coke ash management in actual operation.

【0042】[0042]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、きわめて迅速に、かつ高精度で、蛍光X線分析によ
って実操業でのコークス灰分管理のための石炭配合にお
ける石炭中の灰分値として使用できる灰分値を推定でき
る。この結果、従来のJIS法による化学分析に比較
し、大幅に分析工数を削減でき、作業員の省力化を図る
ことができる。
As described above, according to the method of the present invention, as an ash value in coal in coal blending for coke ash management in actual operation by fluorescent X-ray analysis, very quickly and with high accuracy. The usable ash value can be estimated. As a result, compared with the conventional chemical analysis by the JIS method, the analysis man-hours can be significantly reduced, and the labor of the workers can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】SiO2の検量線を示すSiO2(%)とX線強
度(Si)との関係を示すグラフである。
1 is a graph showing the relationship between the SiO 2 (%) and X-ray intensity of the peak indicating SiO 2 of the calibration curve (Si).

【図2】Al23の検量線を示すAl23(%)とX線
強度(Al)との関係を示すグラフである。
2 is a graph showing the relationship between, Al 2 O 3, based on showing the calibration curve of Al 2 O 3 (%) and X-ray intensity (Al).

【図3】P25の検量線を示すP25(%)とX線強度
(P)との関係を示すグラフである。
3 is a graph showing the relationship between the P 2 O P 2 O 5 ( %) showing a calibration curve of 5 and X-ray intensity (P).

【図4】TiO2の検量線を示すTiO2(%)とX線強
度(Ti)との関係を示すグラフである。
4 is a graph showing the relationship between the TiO 2 illustrating the TiO 2 of the calibration curve (%) and X-ray intensity (Ti).

【図5】CaOの検量線を示すCaO(%)とX線強度
(Ca)との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between CaO (%) showing a calibration curve of CaO and X-ray intensity (Ca).

【図6】MgOの検量線を示すMgO(%)とX線強度
(Mg)との関係を示すグラフである。
FIG. 6 is a graph showing a relationship between MgO (%) showing a calibration curve of MgO and X-ray intensity (Mg).

【図7】Fe23の検量線を示すFe23(%)とX線
強度(Fe)との関係を示すグラフである。
7 is a graph showing the relationship between the Fe 2 Fe 2 O 3, which shows the calibration curve of the O 3 (%) and X-ray intensity (Fe).

【図8】MnOの検量線を示すMnO(%)とX線強度
(Mn)との関係を示すグラフである。
FIG. 8 is a graph showing a relationship between MnO (%) showing a calibration curve of MnO and X-ray intensity (Mn).

【図9】Total Sの検量線を示すTotal S
(%)とX線強度(S)との関係を示すグラフである。
FIG. 9: Total S showing a calibration curve of Total S
It is a graph which shows the relationship between (%) and X-ray intensity (S).

【図10】JIS法の灰分値とこの発明の灰分推定式
(1)による推定灰分値との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (1) of the present invention.

【図11】JIS法の灰分値とこの発明の灰分推定式
(2)による推定灰分値との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (2) of the present invention.

【図12】JIS法の灰分値と比較例の灰分推定式
(5)による推定灰分値との関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (5) of the comparative example.

【図13】JIS法の灰分値とこの発明の灰分推定式
(3)による推定灰分値との関係を示すグラフである。
FIG. 13 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (3) of the present invention.

【図14】JIS法の灰分値と比較例の灰分推定式
(6)による推定灰分値との関係を示すグラフである。
FIG. 14 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (6) of the comparative example.

【図15】JIS法の灰分値とこの発明の灰分推定式
(4)による推定灰分値との関係を示すグラフである。
FIG. 15 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (4) of the present invention.

【図16】JIS法の灰分値と比較例の灰分推定式
(7)による推定灰分値との関係を示すグラフである。
FIG. 16 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (7) of the comparative example.

【図17】JIS法の灰分値と比較例の灰分推定式
(8)による推定灰分値との関係を示すグラフである。
FIG. 17 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (8) of the comparative example.

【図18】JIS法の灰分値と比較例の灰分推定式
(9)による推定灰分値との関係を示すグラフである。
FIG. 18 is a graph showing the relationship between the ash value of the JIS method and the ash value estimated by the ash estimation formula (9) of the comparative example.

【図19】JIS法の灰分値と比較例の灰分推定式(1
0)による推定灰分値との関係を示すグラフである。
FIG. 19: Ash value of JIS method and ash estimation formula (1
It is a graph which shows the relationship with the estimated ash value by 0).

【図20】JIS法の灰分値と特開昭51−10588
8号に開示の方法による推定灰分値との関係を示すグラ
フである。
FIG. 20: JIS method ash value and JP-A-51-10588
8 is a graph showing the relationship with the estimated ash value by the method disclosed in No. 8.

【図21】JIS法の灰分値とこの発明の灰分推定式
(4)による推定灰分値、ならびに比較例の特開昭51
−105888号に開示の方法による推定灰分値との関
係を示すグラフである。
FIG. 21 is a ash value of JIS method and an ash value estimated by the ash estimation formula (4) of the present invention, and a comparative example of JP-A-51-51.
It is a graph which shows the relationship with the estimated ash value by the method disclosed in -1088888.

【図22】特開昭51−105888号に開示のSiO
2、CaO、Al23の検量線を示すもので、(a)図
はSiO2含有率とX線強度(Si)との関係を示すグ
ラフ、(b)図はCaO含有率とX線強度(Ca)との
関係を示すグラフ、(c)図はAl23含有率とX線強
度(Ca)との関係を示すグラフである。
FIG. 22: SiO disclosed in JP-A-51-105888
Fig. 2 shows calibration curves of 2 , CaO, and Al 2 O 3 , where (a) is a graph showing the relationship between SiO 2 content and X-ray intensity (Si), and (b) is a CaO content and X-ray. A graph showing the relationship with the intensity (Ca), and a diagram (c) is a graph showing the relationship between the Al 2 O 3 content and the X-ray intensity (Ca).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹中 政次 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鉄所内 (72)発明者 志村 喜一郎 茨城県鹿島郡鹿島町大字光3番地 住友金 属工業株式会社鹿島製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masatsugu Takenaka, 3 Oza, Oshima, Kashima-machi, Kashima-gun, Ibaraki Prefecture Sumitomo Metal Industries, Ltd. Kashima Steel Works (72) Kiichiro Shimura, Otsuka, Oshima, Kashima-machi, Kashima-gun, Ibaraki Prefecture Address Sumitomo Metal Industries Co., Ltd. Kashima Steel Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 石炭中の灰分を蛍光X線分析により推定
する方法において、石炭を粉砕して結合剤を添加混合
し、加圧成型してブリケット状の試料となし、蛍光X線
分析計にかけてSi、Al、Ca、FeのX線強度を測
定し、測定したSi、Al、Ca、FeのX線強度に基
づいて予め設定された元素零のときX線強度零の検量線
からSiO2、Al23、CaO、Fe23の各成分含
有率を換算し、該各成分含有率から下記灰分推定式
(1)に基づいて石炭灰分量を算出することを特徴とす
る蛍光X線分析による石炭灰分推定方法。 Ash(%)= (A1×SiO2+B1×Al23+C1×CaO +D1×Fe23)+J1…(1) ただし、 A1=1.117、B1=1.007、C1
2.094、D1=0.830、J1=0.447
1. A method for estimating the ash content in coal by fluorescent X-ray analysis, wherein coal is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, which is then subjected to a fluorescent X-ray spectrometer. The X-ray intensity of Si, Al, Ca, Fe was measured, and when the element preset based on the measured X-ray intensity of Si, Al, Ca, Fe was zero, from the calibration curve of zero X-ray intensity, SiO 2 , A fluorescent X-ray characterized by converting the content of each component of Al 2 O 3 , CaO and Fe 2 O 3 and calculating the amount of coal ash from the content of each component based on the following ash estimation formula (1). Method for estimating coal ash content by analysis. Ash (%) = (A 1 × SiO 2 + B 1 × Al 2 O 3 + C 1 × CaO + D 1 × Fe 2 O 3) + J 1 ... (1) However, A 1 = 1.117, B 1 = 1. 007, C 1 =
2.094, D 1 = 0.830, J 1 = 0.447
【請求項2】 石炭中の灰分を蛍光X線分析により推定
する方法において、石炭を粉砕して結合剤を添加混合
し、加圧成型してブリケット状の試料となし、蛍光X線
分析計にかけてSi、Al、P、Ti、MgのX線強度
を測定し、測定した各元素のX線強度に基づいて予め設
定された元素零のとき蛍光X線強度零の検量線からSi
2、Al23、P25、TiO2、MgOの各成分含有
率を換算し、該各成分含有率から下記灰分推定式(2)
に基づいて石炭灰分量を算出することを特徴とする蛍光
X線分析による石炭灰分推定方法。 Ash(%)= (A2×SiO2+B2×Al23+P25 +E1×TiO2+MgO)+J2…(2) ただし、 A2=0.816、B2=1.029、E1
0.913、J2=2.396
2. A method for estimating ash content in coal by fluorescent X-ray analysis, wherein coal is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, which is then subjected to a fluorescent X-ray analyzer. The X-ray intensities of Si, Al, P, Ti, and Mg were measured, and when the element was preset to zero based on the measured X-ray intensities of the respective elements, the fluorescence X-ray intensity was zero.
The content ratio of each component of O 2 , Al 2 O 3 , P 2 O 5 , TiO 2 , and MgO is converted, and the ash content estimation formula (2) below is calculated from the content ratio of each component.
A method for estimating coal ash content by fluorescent X-ray analysis, characterized in that the amount of coal ash content is calculated based on. Ash (%) = (A 2 × SiO 2 + B 2 × Al 2 O 3 + P 2 O 5 + E 1 × TiO 2 + MgO) + J 2 (2) where A 2 = 0.816, B 2 = 1.029 , E 1 =
0.913, J 2 = 2.396
【請求項3】 石炭中の灰分を蛍光X線分析により推定
する方法において、石炭を粉砕して結合剤を添加混合
し、加圧成型してブリケット状の試料となし、蛍光X線
分析計にかけてSi、Al、Ca、Fe、P、Ti、M
gのX線強度を測定し、測定したSi、Al、Ca、F
e、P、Ti、MgのX線強度に基づき、予め設定され
た元素零のときX線強度零の検量線からSiO2、Al2
3、CaO、Fe23、P25、TiO2、MgOの各
成分含有率を換算し、該各成分含有率から下記灰分推定
式(3)に基づいて石炭灰分量を算出することを特徴と
する蛍光X線分析による石炭灰分推定方法。 Ash(%)= (A3×SiO2+B3×Al23+C2×CaO +D2×Fe23+P25+E2×TiO2+MgO) +J3…(3) ただし、 A3=1.127、B3=0.955、C2
1.775、D2=0.869、E2=0.777、J3
=0.345
3. A method for estimating the ash content in coal by fluorescent X-ray analysis, wherein the coal is crushed, a binder is added and mixed, and pressure molding is performed to form a briquette-like sample, which is then subjected to a fluorescent X-ray spectrometer. Si, Al, Ca, Fe, P, Ti, M
X-ray intensity of g was measured and measured Si, Al, Ca, F
Based on the X-ray intensities of e, P, Ti, and Mg, when a preset element is zero, the calibration curve of zero X-ray intensity is used for SiO 2 , Al 2
The content of each component of O 3 , CaO, Fe 2 O 3 , P 2 O 5 , TiO 2 , and MgO is converted, and the amount of coal ash is calculated from the content of each component based on the following ash estimation formula (3). A method for estimating coal ash content by fluorescent X-ray analysis, which is characterized in that Ash (%) = (A 3 × SiO 2 + B 3 × Al 2 O 3 + C 2 × CaO + D 2 × Fe 2 O 3 + P 2 O 5 + E 2 × TiO 2 + MgO) + J 3 ... (3) However, A 3 = 1.127, B 3 = 0.955, C 2 =
1.775, D 2 = 0.869, E 2 = 0.777, J 3
= 0.345
【請求項4】 石炭中の灰分を蛍光X線分析により推定
する方法において、石炭を粉砕して結合剤を添加混合
し、加圧成型してブリケット状の試料となし、蛍光X線
分析計にかけてSi、Al、P、Ti、Ca、Mg、F
e、Mn、SのX線強度を測定し、測定したSi、A
l、P、Ti、Ca、Mg、Fe、Mn、SのX線強度
に基づき、予め設定された元素零のときX線強度零の検
量線からSiO2、Al23、P25、TiO2、Ca
O、MgO、Fe23、MnO、Total Sの各成
分含有率を換算し、該各成分含有率から下記灰分推定式
(4)に基づいて石炭灰分量を算出することを特徴とす
る蛍光X線分析による石炭灰分推定方法。 Ash(%)= (A4×SiO2+B4×Al23+C3
×CaO+D3×Fe23+P25+E3×TiO2+M
gO+MnO+F1×Total S)+J4…(4) ただし、 A4=1.116、B4=0.945、C3
1.819、D3=0.791、E3=0.944、F1
=0.546、J4=0.141
4. A method for estimating ash content in coal by fluorescent X-ray analysis, which comprises pulverizing coal, adding and mixing a binder, and press-molding to form a briquette-like sample, which is then subjected to a fluorescent X-ray analyzer. Si, Al, P, Ti, Ca, Mg, F
The X-ray intensity of e, Mn, and S was measured, and the measured Si and A were measured.
Based on the X-ray intensities of 1, P, Ti, Ca, Mg, Fe, Mn, and S, when a preset element is zero, SiO 2 , Al 2 O 3 , and P 2 O 5 are obtained from a calibration curve of zero X-ray intensity. , TiO 2 , Ca
Fluorescence characterized by converting the content of each component of O, MgO, Fe 2 O 3 , MnO, and Total S, and calculating the amount of coal ash from the content of each component based on the following ash estimation formula (4) A method for estimating coal ash content by X-ray analysis. Ash (%) = (A 4 × SiO 2 + B 4 × Al 2 O 3 + C 3
× CaO + D 3 × Fe 2 O 3 + P 2 O 5 + E 3 × TiO 2 + M
gO + MnO + F 1 × Total S) + J 4 (4) However, A 4 = 1.116, B 4 = 0.945, C 3 =
1.819, D 3 = 0.791, E 3 = 0.944, F 1
= 0.546, J 4 = 0.141
【請求項5】 蛍光X線分析計により測定したSi、A
l、P、Ti、Ca、Mg、Fe、Mn、Sのうちの所
定元素のX線強度を下記式に代入し、SiO2、Al2
3、P25、TiO2、CaO、MgO、Fe23、Mn
O、Total Sのうちの所定成分含有率を算出する
ことを特徴とする請求項1ないし4記載の蛍光X線分析
による石炭灰分推定方法。 SiO2=0.144×Io−0.312 Al23=0.135×I1−0.061 CaO=0.023×I2−0.019 Fe23=0.004×I3+0.012 P25=0.040×I4+0.001 TiO2=0.012×I5−0.019 MgO=1.185×I6−0.089 MnO=0.003×I7−0.004 Total S=0.008×I8−0.039 ただし、Io〜I8は各元素のX線強度
5. Si and A measured by a fluorescent X-ray analyzer
Substituting the X-ray intensity of a predetermined element among 1, P, Ti, Ca, Mg, Fe, Mn, and S into the following formula, SiO 2 , Al 2 O
3 , P 2 O 5 , TiO 2 , CaO, MgO, Fe 2 O 3 , Mn
The method for estimating coal ash by fluorescent X-ray analysis according to any one of claims 1 to 4, wherein the content ratio of a predetermined component of O and Total S is calculated. SiO 2 = 0.144 × I o -0.312 Al 2 O 3 = 0.135 × I 1 -0.061 CaO = 0.023 × I 2 -0.019 Fe 2 O 3 = 0.004 × I 3 +0.012 P 2 O 5 = 0.040 × I 4 +0.001 TiO 2 = 0.012 × I 5 −0.019 MgO = 1.185 × I 6 −0.089 MnO = 0.003 × I 7 -0.004 Total S = 0.008 × I 8 -0.039 However, I o ~I 8 is X-ray intensity of each element
JP9049294A 1994-04-04 1994-04-04 Coal ash estimating method by fluorescent x-ray analysis Pending JPH07280751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9049294A JPH07280751A (en) 1994-04-04 1994-04-04 Coal ash estimating method by fluorescent x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9049294A JPH07280751A (en) 1994-04-04 1994-04-04 Coal ash estimating method by fluorescent x-ray analysis

Publications (1)

Publication Number Publication Date
JPH07280751A true JPH07280751A (en) 1995-10-27

Family

ID=14000027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9049294A Pending JPH07280751A (en) 1994-04-04 1994-04-04 Coal ash estimating method by fluorescent x-ray analysis

Country Status (1)

Country Link
JP (1) JPH07280751A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089967A (en) * 2014-07-15 2014-10-08 南京市产品质量监督检验院 Quick measurement method for aluminum, calcium or silicon content of solid plane material product
CN104280367A (en) * 2013-10-31 2015-01-14 东旭集团有限公司 Method for efficiently and accurately detecting content of silicon dioxide in quartz sand
JP2017044541A (en) * 2015-08-25 2017-03-02 中国電力株式会社 Method for analyzing trace element in coal standard sample and coal
CN113960092A (en) * 2021-11-10 2022-01-21 天津海关化矿金属材料检测中心 Method for rapidly detecting ash content of coal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280367A (en) * 2013-10-31 2015-01-14 东旭集团有限公司 Method for efficiently and accurately detecting content of silicon dioxide in quartz sand
CN104089967A (en) * 2014-07-15 2014-10-08 南京市产品质量监督检验院 Quick measurement method for aluminum, calcium or silicon content of solid plane material product
JP2017044541A (en) * 2015-08-25 2017-03-02 中国電力株式会社 Method for analyzing trace element in coal standard sample and coal
CN113960092A (en) * 2021-11-10 2022-01-21 天津海关化矿金属材料检测中心 Method for rapidly detecting ash content of coal

Similar Documents

Publication Publication Date Title
EP3147341B1 (en) Process for producing coke and method for evaluating homogeneity of coal blend
O'Brien et al. Coal characterisation by automated coal petrography☆
EP3124574B1 (en) Method for producing coal mixture and method for producing coke
CN112415034A (en) XRF (X-ray fluorescence) measurement and analysis method of solid waste
JPH07280751A (en) Coal ash estimating method by fluorescent x-ray analysis
CN106990130B (en) The method of X-ray fluorescence method measurement pit ash
CN100494959C (en) Method for preparing X-ray austenite measuring and caliberating sample
CN103278362A (en) Set of alum clay standard samples and preparation method thereof
JPH0894554A (en) Method for estimating ash content of coke by fluorescent x-ray spectroscopy
KR101100537B1 (en) Method for predicting of drum index of cokes
CN113866203B (en) Method for detecting primary and secondary elements of coarse zinc powder of rotary hearth furnace
CN107557043B (en) Blending method of high-order weak caking coal
KR102299553B1 (en) Prediction method for cold strength of coke
EP3922701A1 (en) Method for evaluating coal, method for preparing blended coal, and method for producing coke
CN107688036A (en) The assay method of coal ash chemical composition
CN113466079A (en) Method for detecting component content of steel slag
CN113514487A (en) X-ray fluorescence analysis method for blast furnace slag, converter slag, electric furnace slag or open slag
Kuhnt et al. Influence of coke calcining level on anode real density, LC and other properties using a constant baking cycle
CN112903689A (en) Method for detecting quality of auxiliary material dolomite in steelmaking
Ramos et al. Quantitative analysis of chromite ores using glass discs in moderate dilutions of lithium tetraborate by x‐ray fluorescence spectrometry
CN113340930B (en) Method for identifying whether asphalt for large-surface feed of converter is adulterated or not by one-step method
CN108072554A (en) A set of vessel slag standard sample and preparation method thereof
EP4332199A1 (en) Method for generating post-reaction coke strength inference model, method for inferring post-reaction strength of coke, and method for producing coke
AU2021102203A4 (en) Method for quickly determining yttrium content in steel by using full spectrum spark direct reading spectrometry
CN114965533A (en) Analysis method and sample preparation method of copper anode furnace slag