JPH0894363A - Vibrator and yaw rate sensor using it - Google Patents

Vibrator and yaw rate sensor using it

Info

Publication number
JPH0894363A
JPH0894363A JP6254371A JP25437194A JPH0894363A JP H0894363 A JPH0894363 A JP H0894363A JP 6254371 A JP6254371 A JP 6254371A JP 25437194 A JP25437194 A JP 25437194A JP H0894363 A JPH0894363 A JP H0894363A
Authority
JP
Japan
Prior art keywords
vibration
vibrator
vibrating
yaw rate
vibrating piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6254371A
Other languages
Japanese (ja)
Other versions
JP3225756B2 (en
Inventor
Kenji Harada
健司 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP25437194A priority Critical patent/JP3225756B2/en
Publication of JPH0894363A publication Critical patent/JPH0894363A/en
Application granted granted Critical
Publication of JP3225756B2 publication Critical patent/JP3225756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE: To simplify the adjustment of resonance frequencies of the excitation vibration and detecting vibration of a vibrator. CONSTITUTION: A yaw rate sensor 10 is provided with a vibrator 12 fixed to and supported by a fixed body 14. The vibrator 12 is provided with a vibrating piece 18 positioned at the center of the vibrator 12, exciters 20 and 22 respectively stuck to both end faces of the piece 18 at both ends, and detectors 24 and 26 respectively stuck to the exciters 20 and 22. The exciters 20 and 22 set the left-side vibrating piece section 18a and right-side vibrating piece section 18b of the piece 18 to steady vibrating states in the longitudinal direction along x-axis. When a rotational angular velocity acts on the vibrator 12 around z-axis, a Coriolis force is generated along y-axis. By using the Coriolis force, therefore, the sections 18a and 18b are caused to generate slipping vibrations, namely, transversal vibrations which are different from the longitudinal vibrations along y-axis and the detectors 24 and 26 detect the shear vibrations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、縦振動を起こし得る振
動片を有する振動子とこれを用いたヨーレイトセンサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibrator having a resonator element capable of causing longitudinal vibration and a yaw rate sensor using the vibrator.

【0002】[0002]

【従来の技術】振動状態にある振動片がその振動の方向
と直交する軸の回りに回転すると、その回転角速度によ
り振動片にはコリオリの力が作用する。このコリオリの
力は角速度に依存して定まることから、コリオリの力を
振動片の撓み変位量等として間接的に、或いは圧電素子
の圧電効果により直接的に測定して、振動片の角速度を
求めることができる。このため、振動する振動片を車両
等に搭載して、車両旋回時に発生するヨーレイトを検出
したり車両の走行軌跡を記録することが行なわれてい
る。
2. Description of the Related Art When a vibrating reed that is in a vibrating state rotates about an axis orthogonal to the direction of vibration, Coriolis force acts on the vibrating reed due to the angular velocity of rotation. Since the Coriolis force is determined depending on the angular velocity, the Coriolis force is indirectly measured as the bending displacement amount of the vibrating element or directly measured by the piezoelectric effect of the piezoelectric element to obtain the angular velocity of the vibrating element. be able to. For this reason, a vibrating reed is mounted on a vehicle or the like to detect a yaw rate generated when the vehicle turns and to record a traveling locus of the vehicle.

【0003】このような振動子の一例として、特公表平
4−504617には対となる振動片を音叉型に構成し
た振動子が、実開平1−81514にはH字型の振動子
が提案されている。そして、これらの各振動子では、振
動片は所定の軸、例えばx軸方向の横振動の励振状態に
おかれており、当該横振動が起きているx−y平面と直
交するz軸がヨーレイト軸とされている。従って、振動
子の振動片がこのヨーレイト軸回りに回転すると、コリ
オリの力により振動片にはy軸方向の横振動が引き起こ
され、この横振動の振動状態からヨーレイトの検出が行
なわれている。
As an example of such a vibrator, in Japanese Patent Publication No. 4-504617, a vibrator in which a pair of vibrating reeds is arranged in a tuning fork type is proposed, and in Kaikaihei 1-81514, an H-shaped vibrator is proposed. Has been done. Then, in each of these vibrators, the vibrating piece is placed in an excited state of lateral vibration in a predetermined axis, for example, the x-axis direction, and the z-axis orthogonal to the xy plane in which the lateral vibration occurs has a yaw rate. It is used as an axis. Therefore, when the vibrating piece of the vibrator rotates about the yaw rate axis, the Coriolis force causes lateral vibration in the y-axis direction on the vibrating piece, and the yaw rate is detected from the vibrating state of the lateral vibration.

【0004】これら公報に提案された振動子では、コリ
オリの力の検出感度を向上させるために、次のように技
術が提案されている。例えば、特公表平4−50461
7では、励振対象となる振動片についてのx軸方向の横
振動の共振周波数と、検出対象となる振動片についての
y軸方向の横振動の共振周波数とが一致するよう質量調
整することが提案されている。そして、この質量調整の
一手法として、実開平1−81514には、各振動片に
調整用ウェイトをくびれ部を介して一体に設け、各振動
片の共振周波数を測定しつつ各調整用ウェイトを溶融除
去する技術が提案されている。なお、励振対象となる振
動片と検出対象となる振動片との間で各方向の共振周波
数を一致させることが必要なのは、次のような理由によ
る。
In the vibrators proposed in these publications, the following techniques have been proposed in order to improve the detection sensitivity of the Coriolis force. For example, Japanese Patent Publication No. 4-50461
In 7, it is proposed to perform mass adjustment so that the resonance frequency of lateral vibration in the x-axis direction of the vibrating piece to be excited and the resonance frequency of lateral vibration in the y-axis direction of the vibrating piece to be detected match. Has been done. Then, as a method of adjusting the mass, in the actual Kaihei 1-81514, each vibration piece is integrally provided with an adjustment weight through a constricted portion, and each adjustment weight is measured while measuring the resonance frequency of each vibration piece. Techniques for melting and removing have been proposed. The reason why it is necessary to match the resonance frequencies in the respective directions between the vibrating element to be excited and the vibrating element to be detected is as follows.

【0005】x軸方向に横振動するよう励振されている
振動片に角速度に起因するコリオリの力がy軸方向に加
わると、この振動片の運動は単一方向(x軸方向)の横
振動から回転運動に変化する。この際、振動片はその自
由端が撓んだ状態で回転運動を起こす。この回転運動を
x軸とこれに直交するy軸のベクトルに分解すると、当
該回転運動はx軸方向の横振動である励振振動とy軸方
向の横振動である検出振動に分けられる。そして、コリ
オリの力の検出感度を上げるためには、検出振動として
の横振動の振幅を極力大きくして振動片の撓み変位量を
大きくすることが効果的である。このため、コリオリの
力による検出振動の振幅を最大の振幅とすべく、検出振
動としての横振動の共振周波数を励振振動としての横振
動の共振周波数に一致させればよいのである。
When a Coriolis force due to an angular velocity is applied in the y-axis direction to a resonator element that is excited to laterally vibrate in the x-axis direction, the motion of the resonator element causes lateral vibration in a single direction (x-axis direction). To change to rotary motion. At this time, the vibrating piece causes a rotational movement with its free end bent. When this rotational motion is decomposed into a vector of the x-axis and a vector of the y-axis orthogonal thereto, the rotational motion is divided into excitation vibration which is lateral vibration in the x-axis direction and detection vibration which is lateral vibration in the y-axis direction. In order to increase the detection sensitivity of the Coriolis force, it is effective to increase the amplitude of the lateral vibration as the detected vibration as much as possible to increase the bending displacement amount of the vibrating piece. Therefore, the resonance frequency of the lateral vibration as the detected vibration may be matched with the resonance frequency of the lateral vibration as the excited vibration so that the amplitude of the detected vibration due to the Coriolis force becomes the maximum amplitude.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
たように質量調整する方法では、共振周波数の測定と特
定箇所の溶融除去処理とを平行して行なわなければなら
ない。また、溶融除去した質量を測定することができな
い。このため、その調整作業は煩雑であった。
However, in the method of adjusting the mass as described above, the measurement of the resonance frequency and the melting and removing process of the specific portion must be performed in parallel. In addition, the mass removed by melting cannot be measured. Therefore, the adjustment work is complicated.

【0007】しかも、振動片を2個以上としたとき、一
般に各振動片にはx軸方向の共振周波数fxi(添え字
iは振動片を意味する)とy軸方向の共振周波数fyi
が存在し、これらの4個以上の共振周波数が互いに関係
し合う。このため、従来の技術では共振周波数の調整を
行うと励振振動の共振周波数と検出振動の共振周波数と
を独立に調整することが必要となり困難である。即ち、
各振動片のx軸方向の共振周波数fxiとy軸方向の共
振周波数fyi、これらの4個以上の共振周波数が互い
に複雑に変化するため、共振周波数の調整は容易ではな
く高度の熟練を要するという問題があった。
Moreover, when there are two or more vibrating pieces, generally, each vibrating piece has a resonance frequency fxi in the x-axis direction (subscript i means the vibrating piece) and a resonance frequency fyi in the y-axis direction.
And these four or more resonant frequencies are related to each other. Therefore, in the conventional technique, it is difficult to adjust the resonance frequency, because it is necessary to independently adjust the resonance frequency of the excitation vibration and the resonance frequency of the detection vibration. That is,
The resonance frequency fxi in the x-axis direction and the resonance frequency fyi in the y-axis direction of each vibrating piece, and four or more of these resonance frequencies change intricately with each other, so adjustment of the resonance frequency is not easy and requires a high degree of skill. There was a problem.

【0008】本発明は、上記問題点を解決するためにな
され、振動子における励振振動の共振周波数と検出振動
における共振周波数の調整作業の簡略化を図ることをそ
の目的とする。また、周波数の調整を経た振動子を用い
たヨーレイトセンサの検出感度の向上を図ることをも目
的とする。
The present invention has been made to solve the above problems, and an object thereof is to simplify the work of adjusting the resonance frequency of excitation vibration and the resonance frequency of detection vibration in a vibrator. Another object is to improve the detection sensitivity of a yaw rate sensor using a vibrator whose frequency has been adjusted.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めになされた請求項1記載の振動子の採用した手段は、
一方向に縦振動が可能で、且つ該一方向と直交する他方
向に横振動可能な振動片と、前記縦振動と横振動のうち
いずれか一方向の振動を励起振動として前記振動片に励
起させる励振手段と、前記振動片における前記縦振動と
前記横振動のうち前記励起振動とは異なる振動の振動状
態を検出する検出手段とを備えたことをその要旨とす
る。
[Means for Solving the Problems] The means adopted by the vibrator according to claim 1 for achieving the above object is as follows.
A vibrating element capable of longitudinal vibration in one direction and laterally vibrating in the other direction orthogonal to the one direction, and excitation in the vibrating element as vibration in one of the longitudinal vibration and the lateral vibration as excitation vibration. The gist of the present invention is to include excitation means for causing the vibration piece and detection means for detecting a vibration state of a vibration different from the excitation vibration among the longitudinal vibration and the lateral vibration in the vibrating piece.

【0010】また、請求項2記載のヨーレイトセンサの
採用した手段は、前記一方向と前記他方向の両方向とも
ヨーレイト軸に直交するよう請求項1記載の振動子を配
置して備え、前記振動片に前記縦振動を励起振動として
励起させる励起手段と、前記振動片における前記横振動
の振動状態を検出する検出手段と、該検出手段によって
検出された振動状態に基づいて、ヨーレイトを演算する
演算手段とを備えたことをその要旨とする。
Further, the means adopted by the yaw rate sensor according to claim 2 is provided with the vibrator according to claim 1 arranged such that both the one direction and the other direction are orthogonal to the yaw rate axis. Excitation means for exciting the longitudinal vibration as excitation vibration, detecting means for detecting the vibration state of the lateral vibration in the vibrating piece, and calculating means for calculating the yaw rate based on the vibration state detected by the detecting means. The point is to have and.

【0011】[0011]

【作用】上記構成を有する請求項1記載の振動子では、
振動片の縦振動の共振周波数は、その振動が縦振動であ
るがために、この縦振動方向に沿った振動子全体として
の長さに依存して定まる。そして、振動片の縦振動は、
横振動とは異質の振動なので、この振動片が横振動する
際の振動状態になんら影響を与えない。つまり、振動片
の横振動は、この振動片の縦振動の影響を受けることが
ない。そして、振動片の横振動の共振周波数は、この横
振動方向に沿った振動子全体としての幅に依存して定ま
る。
The vibrator according to claim 1 having the above structure,
The resonance frequency of the longitudinal vibration of the vibrating element is determined depending on the length of the vibrator as a whole in the longitudinal vibration direction because the vibration is the longitudinal vibration. And the vertical vibration of the vibrating piece is
Since lateral vibration is a different kind of vibration, it has no effect on the vibration state when the vibrating piece vibrates laterally. That is, the lateral vibration of the resonator element is not affected by the longitudinal vibration of the resonator element. Then, the resonance frequency of the lateral vibration of the resonator element is determined depending on the width of the entire vibrator along the lateral vibration direction.

【0012】従って、振動片についての縦振動の共振周
波数と横振動の共振周波数とを一致或いは近似させる作
業は、振動子全体としての縦振動方向に沿った長さと横
振動方向に沿った幅の調整で済む。
Accordingly, the work of matching or approximating the resonance frequency of the longitudinal vibration and the resonance frequency of the transverse vibration of the vibrating piece is performed by the length of the vibrator as a whole in the longitudinal vibration direction and the width in the transverse vibration direction. Adjustment is enough.

【0013】この請求項1記載の振動子にあっては、振
動片に縦振動又は横振動のいずれかの振動を励起振動と
して励起する。そして、この振動片を定常的な縦振動又
は横振動の状態におくので、振動子の回転に伴うコリオ
リの力の発生を可能とする。このため、このコリオリの
力により、振動片に上記した励起振動に直交する方向の
横振動又は縦振動を引き起こすことができる。
In the vibrator according to the present invention, either the longitudinal vibration or the transverse vibration is excited as the excitation vibration in the vibrating piece. Then, since the vibrating piece is placed in the state of steady longitudinal vibration or lateral vibration, it is possible to generate Coriolis force due to the rotation of the vibrator. Therefore, the Coriolis force can cause lateral vibration or longitudinal vibration in the vibrating piece in a direction orthogonal to the above-described excited vibration.

【0014】ここで、共振周波数の調整作業の様子につ
いて、理想モデルを用いて説明する。振動片の縦振動
は、まっすぐな一様断面(縦×横=a×b)の棒の縦振
動に近似できる。そして、この棒の縦振動の共振周波数
fxは、下記の式で表わされる。
Here, how the resonance frequency is adjusted will be described using an ideal model. The vertical vibration of the vibrating element can be approximated to the vertical vibration of a straight rod having a uniform cross section (length × width = a × b). The resonance frequency fx of the vertical vibration of the rod is expressed by the following formula.

【0015】fx=(λ/2π・l)√(E/ρ) …Fx = (λ / 2π · l) √ (E / ρ) ...

【0016】ここで、λは境界条件と振動モードによっ
て定まる無次元の係数,Eは縦弾性係数,ρは密度,l
は棒の長さである。この縦弾性係数Eおよび密度ρは振
動片の材料を規定すれば自ずから定まる値であるので、
式における変数は、lのみとなる。
Here, λ is a dimensionless coefficient determined by boundary conditions and vibration modes, E is a longitudinal elastic coefficient, ρ is density, and l is
Is the length of the bar. Since the longitudinal elastic modulus E and the density ρ are values that are naturally determined by specifying the material of the resonator element,
The only variable in the formula is l.

【0017】一方、振動片の横振動は、まっすぐな一様
断面(縦×横=a×b)の梁の横振動に近似できる。そ
して、この梁の横振動の共振周波数fyは、下記の式
で表わされる。
On the other hand, the lateral vibration of the vibrating element can be approximated to that of a beam having a straight uniform cross section (length × width = a × b). Then, the resonance frequency fy of the lateral vibration of this beam is expressed by the following formula.

【0018】 fy=(λ2 /2π・l2 )√(E・I/A・ρ) …Fy = (λ 2 / 2π · l 2 ) √ (E · I / A · ρ) ...

【0019】ここで、λは境界条件と振動モードによっ
て定まる無次元の係数,Eは縦弾性係数,Iは断面二次
モーメント,Aは断面積,ρは密度,lは梁の長さであ
る。ここで、この横振動を起こす加振力が梁の横から加
わったとすると、断面二次モーメントIは、a・b3
12となり、断面積Aはa・bであることから式は式
に変形できる。
Where λ is a dimensionless coefficient determined by boundary conditions and vibration modes, E is the longitudinal elastic modulus, I is the second moment of area, A is the cross-sectional area, ρ is the density, and l is the beam length. . If the exciting force that causes this lateral vibration is applied from the side of the beam, the second moment of area I is a · b 3 /
Since the cross-sectional area A is 12, the equation can be transformed into an equation.

【0020】 fy=(λ2 /2π・l2 )√(E・(a・b3 /12)/(a・b)・ρ) =(λ2 /2π・l2 )√(E・b2 /12・ρ) =(λ2 ・b/2π・l2 )√(E/12・ρ) …[0020] fy = (λ 2 / 2π · l 2) √ (E · (a · b 3/12) / (a · b) · ρ) = (λ 2 / 2π · l 2) √ (E · b 2/12 · ρ) = ( λ 2 · b / 2π · l 2) √ (E / 12 · ρ) ...

【0021】この式にあっても、縦弾性係数Eおよび密
度ρは振動片の材料を規定すれば自ずから定まる値であ
るので、式における変数は、bとlである。
Even in this equation, since the longitudinal elastic modulus E and the density ρ are values that are naturally determined by specifying the material of the resonator element, the variables in the equation are b and l.

【0022】従って、まずlを定めて、式から振動片
の縦振動の共振周波数fxを規定し、その後、振動片の
横方向の幅bを調整すれば横振動の共振周波数fyのみ
を独立に変化させ、fx=fyとすることができる。よ
って、コリオリの力が作用して振動片に横振動又は縦振
動のいずれかの振動が引き起こされると、振動片はコリ
オリの力による振動と共振して大きな振幅で横振動又は
縦振動まを起こす。このため、横振動又は縦振動による
振動片の撓み変位量を大きくすることができる。そし
て、この引き起こされた横振動又は縦振動の振動状態を
検出子で検出することで、コリオリの力の検出感度を上
げることが可能となる。
Therefore, first, by defining l, the resonance frequency fx of the longitudinal vibration of the resonator element is defined from the equation, and then the lateral width b of the resonator element is adjusted, so that only the resonance frequency fy of the lateral vibration is independently determined. It can be changed so that fx = fy. Therefore, when the Coriolis force acts on the vibrating piece to cause either lateral vibration or vertical vibration, the vibrating piece resonates with the vibration due to the Coriolis force and causes lateral vibration or longitudinal vibration with a large amplitude. . Therefore, it is possible to increase the amount of bending displacement of the vibrating element due to lateral vibration or vertical vibration. Then, by detecting the induced vibration state of the lateral vibration or the longitudinal vibration with the detector, it becomes possible to increase the detection sensitivity of the Coriolis force.

【0023】この場合、振動片の横方向の幅bの調整
は、切削,研磨等の適宜な機械加工を行なったり、蒸
着,スパッタリング,CVD等の薄膜形成処理を施すこ
とで行なうことができる。そして、調整の良・不良は、
振動片の横方向の幅を測定することで確認できる。
In this case, the lateral width b of the vibrating element can be adjusted by performing appropriate machining such as cutting and polishing, or by performing thin film forming processing such as vapor deposition, sputtering and CVD. And good and bad adjustment is
This can be confirmed by measuring the lateral width of the vibrating piece.

【0024】なお、振動子を構成する振動片について
は、縦振動を起こし得るものであれば材質的な制約を特
に受けない。例えば、ステンレス,鉄ニッケル系の合
金,恒弾性体合金などの種々の金属のほか、水晶,PZ
Tなどの誘電体やシリコンなどの半導体、および粉末燒
結体,結晶体,セラミックス等を用いて、振動片を形成
することができる。
The vibrating element constituting the vibrator is not particularly limited in terms of material as long as it can cause longitudinal vibration. For example, in addition to various metals such as stainless steel, iron-nickel alloys and constant elastic alloys, quartz, PZ
The resonator element can be formed using a dielectric such as T, a semiconductor such as silicon, a powder sintered body, a crystal body, or a ceramic.

【0025】また、振動片を振動(縦振動又は横振動の
いずれかの振動)させる励振手段については、振動片の
材質等を考慮して適宜な構成を選択すればよい。例え
ば、振動片が金属、水晶,半導体等の結晶体、ガラスや
セラミック等を用いて形成されていれば、ピエゾ素子
(PZT)等の圧電素子を用い、当該素子の逆圧電効果
により振動片を振動させればよい。また、振動片が水
晶,半導体等の結晶体やセラミック等の圧電効果を有す
る材料を用いて形成されていれば、電極を用いて当該振
動片自体の逆圧電効果により振動片を振動させればよ
い。一方、振動片に引き起こされた振動の振動状態を検
出する検出手段については、ピエゾ素子(PZT)等の
圧電素子や電極を介した圧電効果や、誘導磁力や容量電
荷の変化により検出する構成を採ることができる。
As for the excitation means for vibrating the vibrating element (either longitudinal vibration or transverse vibration), an appropriate structure may be selected in consideration of the material of the vibrating element. For example, if the resonator element is formed of a crystal such as metal, crystal, or semiconductor, glass, ceramic, or the like, a piezoelectric element such as a piezo element (PZT) is used, and the resonator element is formed by the inverse piezoelectric effect of the element. Just vibrate. Further, if the vibrating piece is formed by using a material having a piezoelectric effect such as a crystal body such as a crystal or a semiconductor or a ceramic, it is possible to vibrate the vibrating piece by an inverse piezoelectric effect of the vibrating piece itself by using an electrode. Good. On the other hand, as for the detection means for detecting the vibration state of the vibration caused in the vibrating element, the detection is performed by the piezoelectric effect such as a piezoelectric element such as a piezo element (PZT) or the piezoelectric effect through an electrode, or the change of the induced magnetic force or the capacitance charge. Can be taken.

【0026】請求項2記載のヨーレイトセンサでは、請
求項1記載の振動子を配置するに当たり、振動片の縦振
動の振動方向および横振動の振動方向とヨーレイト軸と
が直交するようにした。そして、励振手段により振動片
を定常的な縦振動の状態におく。このため、この振動片
がヨーレイト軸回りに回転すると、コリオリの力が発生
するので、振動片にはこのコリオリの力により横振動が
引き起こされる。この引き起こされた横振動の振動状態
は振動子の検出手段で検出され、その検出信号に基づい
て、請求項2記載のヨーレイトセンサは、演算手段によ
りヨーレイトを演算する。ところで、振動片の横振動の
共振周波数fyは縦振動の共振周波数fxと一致してい
ることから、コリオリの力により引き起こされた横振動
を振動片が起こす際には、振動片は共振により大きな振
幅で横振動してその撓み変位量は大きくなる。よって、
コリオリの力、延いてはヨーレイトを感度良く検出でき
る。
In the yaw rate sensor according to a second aspect of the present invention, when the vibrator according to the first aspect is arranged, the vibrating direction of the longitudinal vibration and the vibrating direction of the lateral vibration of the vibrating element are orthogonal to the yaw rate axis. Then, the vibrating element is placed in a state of constant longitudinal vibration by the excitation means. For this reason, when the vibrating piece rotates around the yaw rate axis, Coriolis force is generated, so that the Coriolis force causes lateral vibration in the vibrating piece. The vibration state of the induced lateral vibration is detected by the detecting means of the vibrator, and based on the detection signal, the yaw rate sensor according to claim 2 calculates the yaw rate by the calculating means. By the way, since the resonance frequency fy of the lateral vibration of the vibrating piece matches the resonance frequency fx of the longitudinal vibration, when the vibrating piece causes the lateral vibration caused by the Coriolis force, the vibrating piece becomes larger due to resonance. Lateral vibration occurs at the amplitude, and the amount of flexural displacement increases. Therefore,
The Coriolis force and eventually the yaw rate can be detected with high sensitivity.

【0027】[0027]

【実施例】次に、本発明に係るヨーレイトセンサの好適
な実施例について、図面に基づき説明する。図1は、実
施例のヨーレイトセンサ10の概略斜視図である。図示
するように、ヨーレイトセンサ10は、振動子12を一
対の固定体14に固定・支持して備える。振動子12
は、その中央に位置し固定体14に支持体16で支持さ
れた振動片18と、振動片18両端の各端面に接着され
た励振子20,22と、この励振子に接着された検出子
24,26とを備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments of the yaw rate sensor according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic perspective view of a yaw rate sensor 10 of the embodiment. As shown, the yaw rate sensor 10 includes a vibrator 12 fixed to and supported by a pair of fixed bodies 14. Oscillator 12
Is a vibrating piece 18 located at the center of the vibrating piece 18, which is supported by the support body 16 on the fixed body 14, exciters 20 and 22 adhered to the end faces of both ends of the vibrating piece 18, and a detector adhered to the exciter. 24 and 26 are provided.

【0028】振動片18は、鉄−ニッケル−クロム合金
であるいわゆるエランバー材の板材から形成されてお
り、恒弾性を有する。そして、この振動片18を支持体
16と溶接することで、或いは固定体14,支持体16
および振動片18を一体に形成することで、振動子12
は、固定体14に支持体16により固定・支持される。
The vibrating reed 18 is made of a so-called Elanbar material plate which is an iron-nickel-chromium alloy and has a constant elasticity. Then, the vibrating piece 18 is welded to the support body 16, or the fixed body 14 and the support body 16 are welded.
The vibrator 12 is formed by integrally forming the vibrating piece 18 and the vibrating piece 18.
Are fixed and supported by the support body 16 on the fixed body 14.

【0029】励振子20,22は、圧電素子であるピエ
ゾ素子であり、交流電圧の印加を後述の励振回路30か
ら受けて伸縮し、図示する3次元の直交座標軸における
x軸方向に沿った縦振動を起こす。そして、励振子2
0,22は、図中の白抜き矢印で示すように、振動片1
8をこの縦振動で励振する。なお、励振子20,22に
よる振動片18の励振の様子については、後述する。
The exciters 20 and 22 are piezo elements which are piezoelectric elements, and receive application of an AC voltage from an excitation circuit 30 which will be described later to expand and contract, and extend vertically along the x-axis in the illustrated three-dimensional orthogonal coordinate axes. Cause vibration. And exciter 2
0 and 22 are the vibrating bars 1 as shown by the white arrows in the figure.
8 is excited by this longitudinal vibration. The way in which the resonator element 18 is excited by the exciters 20 and 22 will be described later.

【0030】検出子24,26は、同じく圧電素子であ
るピエゾ素子であり、その伸縮に応じた交流電圧の電気
信号を生じる。即ち、振動子12の平面図である図2に
示すように、検出子24,26は、振動片18をy軸に
沿って分割した際の左方振動片部18a,右方振動片部
18bがy軸方向に沿って横振動すると、その振動に伴
って伸縮する。そして、この検出子24,26は、各検
出子の伸縮の程度である左方振動片部18a,右方振動
片部18bのy軸方向の横振動の振幅に応じた交流電圧
の電気信号を、圧電効果により生じる。検出子24,2
6から得られる交流電圧の電気信号は、それぞれ後述の
検出バランス調整回路38に出力される。
The detectors 24 and 26 are piezoelectric elements, which are also piezoelectric elements, and generate an electric signal of an AC voltage according to expansion and contraction of the piezoelectric elements. That is, as shown in FIG. 2, which is a plan view of the vibrator 12, the detectors 24 and 26 have the left vibrating piece portion 18a and the right vibrating piece portion 18b when the vibrating piece 18 is divided along the y axis. When is horizontally vibrated along the y-axis direction, it expands and contracts with the vibration. Then, the detectors 24 and 26 generate an AC voltage electric signal corresponding to the amplitude of lateral vibration in the y-axis direction of the left vibration piece 18a and the right vibration piece 18b, which is the degree of expansion and contraction of each detection element. , Caused by the piezoelectric effect. Detector 24,2
The electric signals of the AC voltage obtained from 6 are output to the detection balance adjusting circuit 38, which will be described later.

【0031】次に、このヨーレイトセンサ10の回路構
成について説明する。振動子12における励振子20,
22のそれぞれは励振回路30に、検出子24,26の
それぞれは検出側回路37に接続されている。
Next, the circuit configuration of the yaw rate sensor 10 will be described. Exciter 20 in oscillator 12,
Each of 22 is connected to the excitation circuit 30, and each of the detectors 24 and 26 is connected to the detection side circuit 37.

【0032】検出側回路37は、振動子12の検出子2
4,26からその圧電効果により生じる電気信号(交流
電圧)の位相の調整を行なう検出バランス調整回路38
と、検出バランス調整回路38により調整された電気信
号の出力レベルを増幅する増幅回路40と、交流電圧で
ある電気信号の負の部分を反転して正電圧とし、整流作
用をはたす同期検波回路42と、正電圧化された電気信
号を整流電圧の電気信号とする積分回路44と、整流電
圧の電気信号の出力レベルを増幅する増幅出力回路46
とから構成される。
The detection side circuit 37 is the detector 2 of the vibrator 12.
A detection balance adjusting circuit 38 for adjusting the phase of the electric signal (AC voltage) generated by the piezoelectric effect from 4, 26.
An amplification circuit 40 for amplifying the output level of the electric signal adjusted by the detection balance adjustment circuit 38, and a synchronous detection circuit 42 for rectifying the negative portion of the electric signal which is an AC voltage to invert it to a positive voltage. An integrating circuit 44 for converting the positive voltage electric signal into a rectified voltage electric signal, and an amplification output circuit 46 for amplifying the output level of the rectified voltage electric signal.
Composed of and.

【0033】励振回路30からは、励振子20と励振子
22とに、左方振動片部18a,右方振動片部18bの
x軸方向の縦振動の共振周波数fxと一致する周波数の
交流電圧が180度位相をずらして印加される。よっ
て、励振子20と励振子22とは、励振子20が−x方
向に伸びるときには励振子22は+x方向に伸びるよ
う、また、励振子20が+x方向に縮むときには励振子
22は−x方向に縮むよう、x軸方向に沿って逆圧電効
果により電圧に応じた伸縮を逆向きに起こす。この結
果、振動片18の左方振動片部18a,右方振動片部1
8bは、共振周波数fxの周波数でx軸方向に縦振動
し、両振動片部の縦振動の向きは逆となる。
From the excitation circuit 30, the exciter 20 and the exciter 22 receive an AC voltage having a frequency matching the resonance frequency fx of the longitudinal vibration of the left vibrating bar portion 18a and the right vibrating bar portion 18b in the x-axis direction. Are applied 180 degrees out of phase. Therefore, the exciter 20 and the exciter 22 are such that the exciter 22 extends in the + x direction when the exciter 20 extends in the −x direction, and the exciter 22 moves in the −x direction when the exciter 20 contracts in the + x direction. So that it contracts in the opposite direction along the x-axis direction due to the inverse piezoelectric effect. As a result, the left side vibrating piece portion 18a of the vibrating piece 18 and the right vibrating piece portion 1
8b longitudinally vibrates in the x-axis direction at the frequency of the resonance frequency fx, and the longitudinal vibration directions of both vibrating bar portions are opposite.

【0034】この縦振動は、振動子12が振動片18の
中央で固定体14に固定支持されていることから断面一
様の棒の縦振動に近似できる。つまり、左方振動片部1
8a,右方振動片部18bは、振動片18の中央を振動
の節とし、且つ振動子12全体としてのx軸方向長さl
x(図2参照)を1/2波長とする縦振動を起こす。そ
して、この際の共振周波数fxは、弾性係数等の定数を
除くと、振動子12全体としてのx軸方向長さlx(図
2参照)で規定される。
The longitudinal vibration can be approximated to that of a rod having a uniform cross section because the vibrator 12 is fixedly supported by the fixed body 14 at the center of the vibrating piece 18. That is, the left vibrating piece 1
8a, the right-side vibrating bar portion 18b has a vibration node at the center of the vibrating bar 18, and the length l of the vibrator 12 as a whole in the x-axis direction.
Longitudinal vibration that causes x (see FIG. 2) to be a half wavelength is generated. Then, the resonance frequency fx at this time is defined by the length lx (see FIG. 2) in the x-axis direction of the entire vibrator 12, excluding constants such as the elastic coefficient.

【0035】このように、振動片18の左方振動片部1
8a,右方振動片部18bがx軸方向の縦振動を継続し
ているときに、ヨーレイトセンサ10にx−y平面に直
交するz軸の回りに回転角速度ωが作用すると、左方振
動片部18a,右方振動片部18bは以下の数式で表わ
されるコリオリの力Fをy軸に沿って受ける。つまり、
このヨーレイトセンサ10では、図1に示したz軸がヨ
ーレイト軸とされている。
Thus, the left vibrating bar portion 1 of the vibrating bar 18 is
When the rotational angular velocity ω acts on the yaw rate sensor 10 around the z axis orthogonal to the xy plane while the vertical vibration piece 8a and the right vibration piece portion 18b continue vertical vibration in the x axis direction, the left vibration piece The portion 18a and the right-side vibrating piece portion 18b receive the Coriolis force F represented by the following mathematical formula along the y-axis. That is,
In this yaw rate sensor 10, the z axis shown in FIG. 1 is the yaw rate axis.

【0036】F=2mV・ωF = 2 mV · ω

【0037】ここで、mは左方振動片部18a,右方振
動片部18bの質量、Vはそれぞれの振動片部の回転速
度である。
Here, m is the mass of the left vibrating bar portion 18a and the right vibrating bar portion 18b, and V is the rotational speed of each vibrating bar portion.

【0038】このため、左方振動片部18a,右方振動
片部18bは、図2中に二点鎖線で示すように、このコ
リオリの力Fによりy軸に沿った横振動たるすべり振動
を起こす。しかも、左右の振動片部では縦振動の振動の
向きが逆であることから、すべり振動の振動の向きも逆
となる。
Therefore, as shown by the chain double-dashed line in FIG. 2, the left vibrating bar portion 18a and the right vibrating bar portion 18b generate lateral vibration and sliding vibration along the y axis by the Coriolis force F. Wake up. Moreover, since the vibration directions of the longitudinal vibration are opposite in the left and right vibrating bars, the vibration directions of the sliding vibration are also opposite.

【0039】このすべり振動は、振動子12が振動片1
8の中央で固定体14に固定支持されていることから断
面一様の梁の縦振動に近似できる。つまり、左方振動片
部18a,右方振動片部18bは、振動子12全体とし
てのy軸方向幅wy(図2参照)と振動子12の厚みt
(図1参照)と弾性係数等の定数とで規定される共振周
波数fyで逆向きにすべり振動する。なお、この厚みt
を所定の値に定めらば、このすべり振動の共振周波数f
yは、振動子12全体としてのy軸方向幅wyで規定さ
れる。
In this sliding vibration, the vibrator 12 is the vibrating piece 1.
Since it is fixedly supported by the fixed body 14 at the center of 8, the longitudinal vibration of the beam having a uniform cross section can be approximated. That is, the left vibrating bar portion 18a and the right vibrating bar portion 18b have the width twy of the vibrator 12 (see FIG. 2) and the thickness t of the vibrator 12 as a whole.
(Refer to FIG. 1) and a resonance frequency fy defined by a constant such as an elastic coefficient, the slip vibration occurs in the opposite direction. Note that this thickness t
Is set to a predetermined value, the resonance frequency f of this sliding vibration is
y is defined by the width wy of the vibrator 12 in the y-axis direction.

【0040】このように左方振動片部18a,右方振動
片部18bがコリオリの力Fを受けてy軸に沿ってすべ
り振動(横振動)すると、検出子24,26は、この振
動に伴って伸縮し、各素子の圧電効果により各素子の伸
縮に応じた電圧の電気信号を生じる。この電気信号は、
各素子の伸縮を反映したものであるので、交流の電気信
号であるとともに、伸縮が大きくなれば大きな出力レベ
ルの電気信号となる。この際、検出子24,26はその
伸び或いは縮みの向きが互いに逆となるよう伸縮する。
このため、検出子24,26の生じる電気信号は、図3
に示すように、位相が180度異なる交流電圧となる。
When the left vibrating bar portion 18a and the right vibrating bar portion 18b receive the Coriolis force F and undergo a sliding vibration (lateral vibration) along the y-axis in this way, the detectors 24 and 26 are affected by this vibration. Along with the expansion and contraction, the piezoelectric effect of each element produces an electric signal of a voltage corresponding to the expansion and contraction of each element. This electrical signal is
Since the expansion and contraction of each element are reflected, the electric signal is an alternating current signal, and when the expansion and contraction is large, the electric signal has a large output level. At this time, the detectors 24 and 26 expand and contract so that the directions of expansion and contraction thereof are opposite to each other.
Therefore, the electric signals generated by the detectors 24 and 26 are as shown in FIG.
As shown in, the AC voltages are 180 degrees out of phase with each other.

【0041】左右の振動片部の検出子24,26から得
られた電気信号は、検出バランス調整回路38に入力さ
れ、この検出バランス調整回路38では、各検出子から
の電気信号の位相が揃えられる。増幅回路40では、電
気信号の出力レベルが増幅される。同期検波回路42で
は、交流電圧である電気信号が励振回路30の参照信号
と同期して検波され正電圧の電気信号とされる。積分回
路44では、正電圧化された電気信号は整流電圧の電気
信号となる。整流電圧の電気信号は、増幅出力回路46
により増幅されて出力される。つまり、コリオリの力F
による振動片18のy軸に沿ったすべり振動の振動状態
を反映した電気信号が、検出側回路37の検出バランス
調整回路38等を経てリニアな出力信号として得られ
る。この出力信号は、ヨーレイトセンサ10がz軸回り
に回転した際の回転角速度ωの方向とその大きさを表わ
すヨーレイト信号となる。このため、ヨーレイトセンサ
10を車両に搭載すれば、車両の旋回方向とその単位時
間当たりの大きさを検出することができる。
The electric signals obtained from the detectors 24 and 26 of the left and right vibrating bars are input to the detection balance adjusting circuit 38. In this detection balance adjusting circuit 38, the phases of the electric signals from the respective detectors are made uniform. To be The amplifier circuit 40 amplifies the output level of the electric signal. In the synchronous detection circuit 42, the electric signal, which is an AC voltage, is detected in synchronization with the reference signal of the excitation circuit 30 to be a positive voltage electric signal. In the integrating circuit 44, the electric signal converted into a positive voltage becomes an electric signal of a rectified voltage. The electrical signal of the rectified voltage is amplified and output circuit 46.
Is amplified and output. In other words, Coriolis force F
An electric signal that reflects the vibration state of the sliding vibration of the vibrating reed 18 along the y-axis is obtained as a linear output signal via the detection balance adjustment circuit 38 of the detection side circuit 37 and the like. This output signal becomes a yaw rate signal that represents the direction and the magnitude of the rotational angular velocity ω when the yaw rate sensor 10 rotates about the z axis. Therefore, if the yaw rate sensor 10 is mounted on a vehicle, the turning direction of the vehicle and its size per unit time can be detected.

【0042】ところで、本実施例のヨーレイトセンサ1
0では、振動子12の形成に当たり、次のようにした。
つまり、まず、振動片18に用いたエランバー材や励振
子20,検出子24等の弾性係数等の定数と、振動子1
2全体としてのx軸方向長さlxとに基づいて、左方振
動片部18a,右方振動片部18bが縦振動する際の共
振周波数fxを求めた。続いて、振動子12全体として
のy軸方向幅wyを切削等の方法により調整してすべり
振動(横振動)の共振周波数fyのみを独立に変化さ
せ、fx=fyとした。このようにすべり振動の共振周
波数fyのみを独立に変化できるのは、左方振動片部1
8a,右方振動片部18bの振動が縦振動と横振動の異
質の振動であることによる。
By the way, the yaw rate sensor 1 of this embodiment
In No. 0, the oscillator 12 was formed as follows.
That is, first, the constants such as the elastic coefficient of the elanbar material used for the resonator element 18, the exciter 20, the detector 24, and the like, and the vibrator 1 are used.
2 Based on the overall length 1x in the x-axis direction, the resonance frequency fx when the left vibration piece 18a and the right vibration piece 18b vertically vibrates was determined. Subsequently, the width wy in the y-axis direction of the vibrator 12 as a whole was adjusted by a method such as cutting to independently change only the resonance frequency fy of the sliding vibration (lateral vibration), and fx = fy was set. In this way, only the resonance frequency fy of the sliding vibration can be independently changed because the left vibration piece 1
This is because the vibrations of the vibration piece 8a on the right side and the vibration piece on the right side 18b are different kinds of vibrations such as longitudinal vibration and lateral vibration.

【0043】以上説明したように、本実施例のヨーレイ
トセンサ10では、左方振動片部18a,右方振動片部
18bに振動を励起してこれら振動片部を定常的な振動
状態に置く際の励起振動を縦振動とし、コリオリの力が
作用して引き起こされる検出振動を、この縦振動とは異
質な振動であるすべり振動(横振動)とした。しかも、
本実施例のヨーレイトセンサ10では、エランバー材か
らなる振動片18や圧電素子である励振子20,検出子
24等を有する振動子12について、その全体としての
x軸方向長さlxやy軸方向幅wyの寸法をその設計段
階で規定して振動子12を形成し、その後y軸方向幅w
yを調整するだけで、この縦振動の共振周波数fxと横
振動の共振周波数fyを一致させることができる。この
場合、蒸着,スパッタリング,CVD等の薄膜形成処理
を施すことにより、y軸方向幅wyや厚みtを容易に調
整することもできる。
As described above, in the yaw rate sensor 10 of this embodiment, when the left vibrating bar portion 18a and the right vibrating bar portion 18b are excited to vibrate them, the vibrating bar portions are placed in a steady vibration state. The excited vibration of was defined as the longitudinal vibration, and the detected vibration caused by the Coriolis force was defined as the sliding vibration (transverse vibration), which is a vibration different from the longitudinal vibration. Moreover,
In the yaw rate sensor 10 of this embodiment, the vibrator 12 including the vibrating piece 18 made of an elanbar material, the exciter 20 which is a piezoelectric element, the detector 24, etc., has an overall x-axis direction length lx and a y-axis direction. The size of the width wy is specified at the design stage to form the vibrator 12, and then the width w in the y-axis direction is set.
The resonance frequency fx of the longitudinal vibration and the resonance frequency fy of the lateral vibration can be made to coincide with each other only by adjusting y. In this case, the y-axis direction width wy and the thickness t can be easily adjusted by performing a thin film forming process such as vapor deposition, sputtering, and CVD.

【0044】よって、本実施例のヨーレイトセンサ10
によれば、振動子12における励起振動たる振動片18
の縦振動の共振周波数fxと検出振動たるすべり振動
(横振動)の共振周波数fyの調整するに当たり、測定
が容易なy軸方向幅wyの調整を必要とするに過ぎな
い。この結果、本実施例のヨーレイトセンサ10によれ
ば、励起振動の共振周波数と検出振動の共振周波数の調
整作業を簡略化することができる。
Therefore, the yaw rate sensor 10 of this embodiment is
According to the above, the vibrating piece 18 that is an excited vibration in the vibrator 12
In adjusting the resonance frequency fx of the vertical vibration and the resonance frequency fy of the detected vibration that is the slipping vibration (transverse vibration), adjustment of the y-axis direction width wy that is easy to measure is only necessary. As a result, according to the yaw rate sensor 10 of the present embodiment, it is possible to simplify the work of adjusting the resonance frequency of the excitation vibration and the resonance frequency of the detection vibration.

【0045】この場合、設計段階で定めたx軸方向長さ
lxやy軸方向幅wy通りに振動子12の形成しただけ
でも、縦振動の共振周波数fxとすべり振動(横振動)
の共振周波数fyとは、ある程度一致している。よっ
て、y軸方向幅wyを僅かに調整するだけでよく、場合
によっては、その調整をも必要としない。
In this case, the resonance frequency fx of the longitudinal vibration and the sliding vibration (transverse vibration) are obtained even if the vibrator 12 is formed according to the length lx in the x-axis direction and the width wy in the y-axis direction determined at the design stage.
The resonance frequency fy of 1 has a certain degree of agreement. Therefore, it is sufficient to slightly adjust the width wy in the y-axis direction, and in some cases, the adjustment is not necessary.

【0046】また、本実施例のヨーレイトセンサ10で
は、振動子12における励起振動たる振動片18の縦振
動の共振周波数fxと検出振動たるすべり振動(横振
動)の共振周波数fyとを一致させた。このため、振動
片18がすべり振動を起こす際に振動の共振現象をもた
らして、すべり振動の振幅を大きくし振動片の撓み変位
量を大きくすることができる。よって、本実施例のヨー
レイトセンサ10によれば、ヨーレイトの検出感度を向
上することができる。
Further, in the yaw rate sensor 10 of the present embodiment, the resonance frequency fx of the longitudinal vibration of the vibrating reed 18, which is the excitation vibration in the vibrator 12, and the resonance frequency fy of the sliding vibration (transverse vibration), which is the detected vibration, are matched. . For this reason, when the vibrating piece 18 causes a sliding vibration, a resonance phenomenon of vibration is brought about, the amplitude of the sliding vibration can be increased, and the bending displacement amount of the vibrating piece can be increased. Therefore, according to the yaw rate sensor 10 of the present embodiment, the yaw rate detection sensitivity can be improved.

【0047】また、本実施例のヨーレイトセンサ10で
は、振動片18の左方振動片部18a,右方振動片部1
8bにおける縦振動の振動の向きを逆にして、コリオリ
の力によりこの左右の振動片部に引き起こされるすべり
振動の振動の向きも逆とした。このため、ヨーレイトセ
ンサ10では、z軸回りの回転に基づかない外乱、例え
ばこのヨーレイトセンサ10を搭載した車両に路面勾配
等により作用する横加速度等の外乱を、図3中に点線で
示すように、左方振動片部18aと右方振動片部18b
とで検出子24,26の電気信号に逆向きに重畳させ
る。よって、本実施例のヨーレイトセンサ10によれ
ば、これら外乱を相殺して、ヨーレイトの検出感度をよ
り向上させることができる。
Further, in the yaw rate sensor 10 of this embodiment, the left vibrating piece portion 18a of the vibrating piece 18 and the right vibrating piece portion 1 are provided.
The direction of longitudinal vibration in 8b was reversed, and the direction of sliding vibration caused in the left and right vibrating bars by the Coriolis force was also reversed. Therefore, in the yaw rate sensor 10, a disturbance that is not based on rotation around the z-axis, such as a lateral acceleration that acts on a vehicle equipped with the yaw rate sensor 10 due to a road surface gradient or the like, is indicated by a dotted line in FIG. , The left vibration piece 18a and the right vibration piece 18b
And are superimposed on the electric signals of the detectors 24 and 26 in opposite directions. Therefore, according to the yaw rate sensor 10 of the present embodiment, it is possible to cancel these disturbances and further improve the yaw rate detection sensitivity.

【0048】次に、本発明にかかる他の実施例(第2実
施例)について説明する。この第2実施例では、上記し
たヨーレイトセンサ10と振動子の支持の様子と、検出
振動の検出子の設置位置が異なる。なお、以下の説明に
当たっては、ヨーレイトセンサ10と同一の構成部材に
ついては同一の符号を用いてその説明を省略することと
する。
Next, another embodiment (second embodiment) according to the present invention will be described. In the second embodiment, the manner of supporting the yaw rate sensor 10 and the vibrator described above and the installation position of the detector for detecting vibration are different. In the following description, the same components as those of the yaw rate sensor 10 will be designated by the same reference numerals and the description thereof will be omitted.

【0049】第2実施例のヨーレイトセンサ50は、そ
の概略斜視図である図4に示すように、振動子52をそ
の上下で一対の固定体54に固定・支持して備える。こ
の振動子52は、その中央に位置し固定体54に支持体
56で支持された振動片58と、振動片58両端の各端
面に接着された励振子20,22と、振動片58の上下
面にそれぞれ接着された検出子54a,54bおよび検
出子57a,57bとを備える。そして、このヨーレイ
トセンサ50では、励振子20,22により振動片58
をx軸方向の縦振動で励振し、振動片58の上下面と平
行でx軸と直交するz軸をヨーレイト軸とする。
As shown in FIG. 4, which is a schematic perspective view, the yaw rate sensor 50 of the second embodiment has a vibrator 52 fixed and supported by a pair of fixed bodies 54 above and below the vibrator 52. The vibrator 52 includes a vibrating piece 58 located in the center of the vibrating piece 58, which is supported by a supporting body 56 on a fixed body 54, exciters 20 and 22 adhered to the end faces of both ends of the vibrating piece 58, and the vibrating piece 58. The detectors 54a and 54b and the detectors 57a and 57b bonded to the lower surface are provided. Then, in the yaw rate sensor 50, the vibrating piece 58 is formed by the exciters 20 and 22.
Is excited by longitudinal vibration in the x-axis direction, and the z-axis that is parallel to the upper and lower surfaces of the vibrating piece 58 and is orthogonal to the x-axis is the yaw rate axis.

【0050】なお、励振子20,22による振動片58
の励振の様子は、ヨーレイトセンサ10と同一である。
また、検出子54a,54bおよび検出子57a,57
bは、圧電素子であるピエゾ素子であり、その伸縮に応
じた交流電圧の電気信号を生じる点でヨーレイトセンサ
10と変わることはない。
The vibrating piece 58 formed by the exciters 20 and 22.
The state of excitation is the same as that of the yaw rate sensor 10.
Further, the detectors 54a and 54b and the detectors 57a and 57
Reference numeral b denotes a piezo element which is a piezoelectric element, and is the same as the yaw rate sensor 10 in that it produces an electric signal of an AC voltage according to expansion and contraction of the piezoelectric element.

【0051】従って、第2実施例のヨーレイトセンサ5
0では、支持体56を挟んだ左右の左方振動片部58
a,右方振動片部58bをx軸方向の縦振動の振動状態
におき、z軸の回りに回転角速度ωが作用すると、左方
振動片部58a,右方振動片部58bに、側面図である
図5に示すように、y軸方向に沿った横振動を引き起こ
す。そして、この横振動を検出子54a,54bおよび
検出子57a,57bにより検出し、ヨーレイトを求め
る。
Therefore, the yaw rate sensor 5 of the second embodiment is
At 0, the left and right vibrating bars 58 that sandwich the support 56
a, the right-side vibrating piece 58b is placed in a longitudinal vibration state in the x-axis direction, and when the rotational angular velocity ω acts around the z-axis, the left-side vibrating piece 58a and the right-side vibrating piece 58b are side views. As shown in FIG. 5, lateral vibration is caused along the y-axis direction. Then, the lateral vibration is detected by the detectors 54a and 54b and the detectors 57a and 57b to obtain the yaw rate.

【0052】その一方で、この第2実施例のヨーレイト
センサ50にあっても、振動片58が縦振動する際の共
振周波数fxと横振動の共振周波数fyとは、振動子5
2全体としてのx軸方向長さlxと振動子52のy軸方
向厚みtyとによりを調整されている。なお、図におけ
る振動子12のx軸方向長さlxやy軸方向厚みtyは
誇張されており、これらの比は実際の寸法比を反映した
ものではない。
On the other hand, even in the yaw rate sensor 50 of the second embodiment, the resonance frequency fx when the vibrating piece 58 vertically vibrates and the resonance frequency fy of lateral vibration are the vibrator 5
2 The total length 1x in the x-axis direction and the thickness ty in the y-axis direction of the vibrator 52 are adjusted. The x-axis direction length lx and the y-axis direction thickness ty of the vibrator 12 in the figure are exaggerated, and the ratios thereof do not reflect the actual dimensional ratio.

【0053】つまり、第2実施例のヨーレイトセンサ5
0では、振動子52全体としてのx軸方向長さlxと振
動子52のy軸方向厚みtyの寸法をその設計段階で規
定して振動子52を形成し、縦振動の共振周波数fxを
規定する。その後、振動子52のy軸方向厚みtyを調
整すれば横振動の共振周波数fyを独立に変更できるの
で、縦振動の共振周波数fxと横振動の共振周波数fy
を一致させることができる。
That is, the yaw rate sensor 5 of the second embodiment.
In the case of 0, the length 52 of the vibrator 52 as a whole in the x-axis direction and the thickness ty of the vibrator 52 in the y-axis direction are specified at the design stage to form the vibrator 52, and the resonance frequency fx of the longitudinal vibration is specified. To do. After that, the resonance frequency fy of the lateral vibration can be changed independently by adjusting the thickness ty of the vibrator 52 in the y-axis direction. Therefore, the resonance frequency fx of the longitudinal vibration and the resonance frequency fy of the lateral vibration can be changed.
Can be matched.

【0054】よって、本実施例のヨーレイトセンサ50
によれば、振動子52における励起振動たる振動片58
の縦振動の共振周波数fxと検出振動たる横振動の共振
周波数fyを調整するに当たり、測定が容易なy軸方向
厚みtyの調整を必要とするに過ぎない。この結果、本
実施例のヨーレイトセンサ50によっても、励起振動の
共振周波数と検出振動の共振周波数の調整作業を簡略化
することができる。
Therefore, the yaw rate sensor 50 of the present embodiment.
According to the above, according to
In adjusting the resonance frequency fx of the longitudinal vibration and the resonance frequency fy of the lateral vibration that is the detected vibration, it is only necessary to adjust the y-axis direction thickness ty, which is easy to measure. As a result, the yaw rate sensor 50 of the present embodiment can also simplify the work of adjusting the resonance frequency of the excitation vibration and the resonance frequency of the detection vibration.

【0055】また、本実施例のヨーレイトセンサ50に
あっても、共振周波数の一致化を通して振動片58が横
振動を起こす際に振動の共振現象をもたらし、ヨーレイ
トの検出感度を向上することができる。
Further, even in the yaw rate sensor 50 of this embodiment, a resonance phenomenon of vibration is brought about when the vibrating bar 58 causes lateral vibration by matching the resonance frequencies, and the yaw rate detection sensitivity can be improved. .

【0056】以上本発明の一実施例について説明した
が、本発明はこの様な実施例になんら限定されるもので
はなく、本発明の要旨を逸脱しない範囲において種々な
る態様で実施し得ることは勿論である。
Although one embodiment of the present invention has been described above, the present invention is not limited to such an embodiment and can be implemented in various modes without departing from the scope of the present invention. Of course.

【0057】例えば、本実施例では、振動片に縦振動を
励起させ横振動を検出するようにしたが、これに限るわ
けではない。つまり、振動片に横振動(すべり振動)を
励起させ縦振動を検出するよう構成することもできる。
For example, in the present embodiment, the longitudinal vibration is excited in the vibrating piece to detect the lateral vibration, but the invention is not limited to this. That is, it is also possible to configure the vibrating element to excite lateral vibration (slip vibration) and detect longitudinal vibration.

【0058】また、本実施例では、ヨーレイトセンサ1
0をエランバー材なる軽合金を用いたが、これに限るわ
けではない。つまり、ヨーレイトセンサ10の振動子1
2における振動片18を単結晶体である水晶の板材(水
晶基板)をエッチングして形成することもできる。この
場合には、水晶自体が圧電効果を有するので、x軸方向
に定常的に縦振動させる電極と、横振動を検出するため
の電極とを、適宜なパターンで形成すればよい。
Further, in this embodiment, the yaw rate sensor 1
Although a light alloy having 0 as an elanbar material was used, the present invention is not limited to this. That is, the vibrator 1 of the yaw rate sensor 10
The vibrating element 18 in 2 can be formed by etching a plate material (quartz substrate) of quartz which is a single crystal body. In this case, since the quartz crystal itself has a piezoelectric effect, the electrodes that constantly vibrate vertically in the x-axis direction and the electrodes for detecting lateral vibration may be formed in appropriate patterns.

【0059】また、第1実施例のヨーレイトセンサ10
において、振動片18に引き起こされた横振動を検出す
る検出子を、図1に示すように、振動片18の側面19
a,19bに設けることもできる。更に、ヨーレイトセ
ンサ10,ヨーレイトセンサ50において、振動片18
又は振動片58を左右の振動片部を有するものとした
が、一方の振動片部からなるよう振動片を構成すること
もできる。
Further, the yaw rate sensor 10 of the first embodiment.
In FIG. 1, the detector for detecting the lateral vibration caused in the vibrating piece 18 is attached to the side surface 19 of the vibrating piece 18 as shown in FIG.
It can also be provided in a and 19b. Further, in the yaw rate sensor 10 and the yaw rate sensor 50, the vibrating piece 18
Alternatively, the vibrating piece 58 has the left and right vibrating piece portions, but the vibrating piece may be configured to have one vibrating piece portion.

【0060】[0060]

【発明の効果】以上詳述したように請求項1記載の振動
子では、振動子の振動片を励振手段により定常的な縦振
動の状態におき、この縦振動とは異質な振動である横振
動を検出信号して検出手段により検出する。或いは、振
動片を定常的な横振動の状態におき、この横振動とは異
質な振動である縦振動を検出振動して検出することとし
た。そして、縦振動方向に沿った振動子全体としての長
さに依存する縦振動の共振周波数と、横振動方向に沿っ
た振動子全体としての幅に依存して定まる横振動の共振
周波数とを、振動子全体としての長さと振動子全体とし
ての幅とを調整することで一致させることができる。こ
の結果、請求項1記載の振動子によれば、溶融除去等に
よる煩雑な質量調整を要しないので、励起振動の共振周
波数と検出振動の共振周波数の調整作業を簡略化するこ
とができる。
As described in detail above, in the vibrator according to the first aspect of the invention, the vibrating piece of the vibrator is placed in a state of constant longitudinal vibration by the exciting means, and the longitudinal vibration is a lateral vibration which is a heterogeneous vibration. Vibration is detected and detected by the detecting means. Alternatively, the vibrating element is placed in a state of constant lateral vibration, and the longitudinal vibration, which is a vibration different from the lateral vibration, is detected and detected. Then, the resonance frequency of the longitudinal vibration that depends on the length of the entire vibrator along the longitudinal vibration direction, and the resonance frequency of the lateral vibration that depends on the width of the entire vibrator along the lateral vibration direction, It is possible to make them match by adjusting the length of the whole vibrator and the width of the whole vibrator. As a result, the vibrator according to the first aspect does not require complicated mass adjustment such as melting removal, so that the adjustment work of the resonance frequency of the excitation vibration and the resonance frequency of the detection vibration can be simplified.

【0061】請求項2記載のヨーレイトセンサでは、振
動片の縦振動の振動方向および横振動の振動方向とヨー
レイト軸とが直交するようにして、振動子の回転に伴う
コリオリの力の発生を可能とする。そして、このコリオ
リの力により、振動片に横振動を引き起こすことができ
る。このため、請求項1記載の振動子が励起振動たる縦
振動の共振周波数と検出振動たる横振動の共振周波数の
調整済みであることから、請求項2記載のヨーレイトセ
ンサでは、振動片に横振動が引き起こされた際に縦振動
との共振を可能として大きな振幅で横振動させることが
できる。この結果、請求項2記載のヨーレイトセンサに
よれば、横振動による振動片の撓み変位量の増大を通し
てヨーレイトの検出感度の向上を図ることができる。
In the yaw rate sensor according to the second aspect, it is possible to generate the Coriolis force due to the rotation of the vibrator by making the yaw rate axis orthogonal to the vibration directions of the longitudinal vibration and the lateral vibration of the vibrating element. And Then, the Coriolis force can cause lateral vibration in the resonator element. Therefore, since the resonator according to claim 1 has already adjusted the resonance frequency of the longitudinal vibration that is the excited vibration and the resonance frequency of the lateral vibration that is the detected vibration, the yaw rate sensor according to the claim 2 is characterized in that When it is caused, it is possible to resonate with the longitudinal vibration and to laterally vibrate with a large amplitude. As a result, according to the yaw rate sensor of the second aspect, it is possible to improve the yaw rate detection sensitivity by increasing the flexural displacement amount of the vibrating element due to the lateral vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる第1実施例のヨーレイトセンサ
10の概略構成図。
FIG. 1 is a schematic configuration diagram of a yaw rate sensor 10 according to a first embodiment of the invention.

【図2】ヨーレイトセンサ10における振動子12の平
面図。
FIG. 2 is a plan view of a vibrator 12 in the yaw rate sensor 10.

【図3】ヨーレイトセンサ10から得られる出力の様子
を説明する説明図。
FIG. 3 is an explanatory diagram illustrating a state of an output obtained from the yaw rate sensor 10.

【図4】第2実施例のヨーレイトセンサ50の要部の概
略構成図。
FIG. 4 is a schematic configuration diagram of a main part of a yaw rate sensor 50 according to a second embodiment.

【図5】ヨーレイトセンサ50における振動子52の側
面図。
5 is a side view of a vibrator 52 in the yaw rate sensor 50. FIG.

【符号の説明】[Explanation of symbols]

10…ヨーレイトセンサ 12…振動子 14…固定体 18…振動片 18a…左方振動片部 18b…右方振動片部 20,22…励振子 24,26…検出子 30…励振回路 37…検出側回路 38…検出バランス調整回路 40…増幅回路 42…同期検波回路 44…積分回路 46…増幅出力回路 50…ヨーレイトセンサ 52…振動子 54…固定体 54a,54b…励振子 57a,57b…検出子 58…振動片 58a…左方振動片部 88b…右方振動片部 10 ... Yaw rate sensor 12 ... Oscillator 14 ... Fixed body 18 ... Vibrating piece 18a ... Left vibrating piece part 18b ... Right vibrating piece part 20, 22 ... Exciter 24, 26 ... Detector 30 ... Excitation circuit 37 ... Detection side Circuit 38 ... Detection balance adjusting circuit 40 ... Amplification circuit 42 ... Synchronous detection circuit 44 ... Integrating circuit 46 ... Amplification output circuit 50 ... Yaw rate sensor 52 ... Vibrator 54 ... Fixed body 54a, 54b ... Exciter 57a, 57b ... Detector 58 Vibrating piece 58a ... Left vibrating piece 88b ... Right vibrating piece

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一方向に縦振動が可能で、且つ該一方向
と直交する他方向に横振動可能な振動片と、 前記縦振動と横振動のうちいずれか一方向の振動を励起
振動として前記振動片に励起させる励振手段と、 前記振動片における前記縦振動と前記横振動のうち前記
励起振動とは異なる振動の振動状態を検出する検出手段
とを備えたことを特徴とする振動子。
1. A vibrating element capable of longitudinal vibration in one direction and laterally vibrating in the other direction orthogonal to the one direction; and vibration in any one of the longitudinal vibration and the lateral vibration as excitation vibration. A vibrator, comprising: an exciting unit that excites the vibrating piece; and a detecting unit that detects a vibration state of a vibration different from the excited vibration among the longitudinal vibration and the lateral vibration in the vibrating piece.
【請求項2】 請求項1記載の振動子を用いたヨーレイ
トセンサであって、 前記一方向と前記他方向の両方向ともヨーレイト軸に直
交するよう請求項1記載の振動子を配置して備え、 前記振動片に前記縦振動を励起振動として励起させる励
起手段と、 前記振動片における前記横振動の振動状態を検出する検
出手段と、 該検出手段によって検出された振動状態に基づいて、ヨ
ーレイトを演算する演算手段とを備えたことを特徴とす
るヨーレイトセンサ。
2. A yaw rate sensor using the vibrator according to claim 1, wherein the vibrator according to claim 1 is arranged such that both the one direction and the other direction are orthogonal to a yaw rate axis, Excitation means for exciting the longitudinal vibration as excitation vibration in the vibrating piece, detection means for detecting a vibration state of the lateral vibration in the vibrating piece, and yaw rate calculation based on the vibration state detected by the detecting means. A yaw rate sensor, comprising:
JP25437194A 1994-09-21 1994-09-21 Oscillator and yaw rate sensor using it Expired - Fee Related JP3225756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25437194A JP3225756B2 (en) 1994-09-21 1994-09-21 Oscillator and yaw rate sensor using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25437194A JP3225756B2 (en) 1994-09-21 1994-09-21 Oscillator and yaw rate sensor using it

Publications (2)

Publication Number Publication Date
JPH0894363A true JPH0894363A (en) 1996-04-12
JP3225756B2 JP3225756B2 (en) 2001-11-05

Family

ID=17264065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25437194A Expired - Fee Related JP3225756B2 (en) 1994-09-21 1994-09-21 Oscillator and yaw rate sensor using it

Country Status (1)

Country Link
JP (1) JP3225756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019134A1 (en) * 1996-10-29 1998-05-07 Mitsui Chemicals, Inc. Vibration gyroscope
US9217642B2 (en) 2010-12-15 2015-12-22 Murata Manufacturing Co., Ltd. Vibrating gyroscope that prevents changes in sensitivity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998019134A1 (en) * 1996-10-29 1998-05-07 Mitsui Chemicals, Inc. Vibration gyroscope
US6209393B1 (en) 1996-10-29 2001-04-03 Mitsui Chemicals Inc. Vibration gyroscope
US9217642B2 (en) 2010-12-15 2015-12-22 Murata Manufacturing Co., Ltd. Vibrating gyroscope that prevents changes in sensitivity

Also Published As

Publication number Publication date
JP3225756B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
EP0649002B1 (en) Vibration-sensing gyro
JP2501096Y2 (en) A force transducer for a compound vibration beam that is electrostatically excited.
EP0764828A1 (en) Angular velocity sensor
JP3973742B2 (en) Vibrating gyroscope
JP3029001B2 (en) Vibrator
EP1018635B1 (en) Angular velocity sensor
EP1020704B1 (en) Angular velocity detector
JPWO2006075764A1 (en) Vibrating gyroscope
JPH10170275A (en) Vibratory angular velocity sensor
US6747393B2 (en) Vibrator, vibratory gyroscope, and vibration adjusting method
US6858972B2 (en) Vibrator, vibratory gyroscope, and vibration adjusting method
US20010043026A1 (en) Vibrator, vibratory gyroscope, and vibration adjusting method
JP3225756B2 (en) Oscillator and yaw rate sensor using it
JP3368723B2 (en) Vibrating gyro
JP3257203B2 (en) Frequency adjustment method of angular velocity detecting element and angular velocity detecting element
JP2001208545A (en) Piezoelectric vibration gyroscope
JP2004245605A (en) Vibrator and signal generation element for measuring physical quantity
JP3355998B2 (en) Vibrating gyro
JPH09329444A (en) Angular velocity sensor
JP3028999B2 (en) Vibrating gyro
JP2004361320A (en) Method of exciting oscillator, method of measuring physical quantity, and instrument for measuring physical quantity
JPH10153432A (en) Oscillation type gyroscope
JPH10160477A (en) Vibrator, its adjusting method, and vibrational gyroscope using it
JPS62250309A (en) Manufacture of angular velocity sensor
JPH09159463A (en) Angular velocity sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees