JPH089424A - Stereoscopic image pickup controller - Google Patents

Stereoscopic image pickup controller

Info

Publication number
JPH089424A
JPH089424A JP6137477A JP13747794A JPH089424A JP H089424 A JPH089424 A JP H089424A JP 6137477 A JP6137477 A JP 6137477A JP 13747794 A JP13747794 A JP 13747794A JP H089424 A JPH089424 A JP H089424A
Authority
JP
Japan
Prior art keywords
parallax amount
focus
iris
left
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6137477A
Other languages
Japanese (ja)
Inventor
Toshiya Iinuma
Haruhiko Murata
Toshiyuki Okino
治彦 村田
俊行 沖野
俊哉 飯沼
Original Assignee
Sanyo Electric Co Ltd
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, 三洋電機株式会社 filed Critical Sanyo Electric Co Ltd
Priority to JP6137477A priority Critical patent/JPH089424A/en
Publication of JPH089424A publication Critical patent/JPH089424A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE:To optimize control parameters such as focus, iris and convergence angle of an image pickup device based on parallax information obtained from left and right images by providing a means for calculating a parallax amount for each correspondent area of both left and right images and a means for controlling the control parameter of an image pickup means based on this parallax amount. CONSTITUTION:The outputs of video camera 1 and 2 for left and right images are transmitted to a parallax amount calculating circuit 5, and the parallax amount of each correspondent area of both left and right pictures is calculated. The focus and iris information outputted from signal processing circuits 3 and 4 and the parallax amount for each divided area outputted from the parallax amount calculating circuit 5 are transmitted to a CPU 6. The CPU 6 calculates an object distance for each area based on the interval of video cameras 1 and 2, present convergence angle theta, present zoom magnification and parallax amount of each area. Then, the focus and iris of the respective video cameras 1 and 2 are controlled for the object distance in a picture based on the distribution and the focus and iris information and the convergence angle theta is controlled.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は、立体画像のための左右画像を撮像する撮像手段を制御するための立体画像撮像制御装置に関する。 BACKGROUND OF THE INVENTION This invention relates to stereoscopic imaging control device for controlling the imaging means for capturing left and right images for the stereoscopic images.

【0002】 [0002]

【従来の技術】撮像手段を用いて左右画像を撮像し、撮像した左右両画像を表示装置に表示して、立体画像を再現する立体映像装置が知られている。 Capturing left and right images using the Related Art imaging means, and display device to display left and right image captured stereoscopic video apparatus is known for reproducing a stereoscopic image. このような立体映像装置において、撮像手段のフォーカスおよびアイリスの制御は、通常のビデオカメラで良く知られているオートフォーカス機能、オートアイリス機能により行われている。 In such a stereoscopic imaging device, focus and iris control of the imaging means, autofocus functions that are well known in normal video cameras, have been made by the auto iris function.

【0003】すなわち、フォーカスは、赤外線を照射してこの反射項の反射位置により距離を測定するいわゆるアクティブ方式、CCD等の撮像デバイスからの映像信号の高周波成分を検出するいわゆるパッシブ方式等によって制御されている。 [0003] That is, the focus is controlled by by irradiating infrared rays so-called active method of measuring the distance by a reflection position of the reflected section, a so-called passive system for detecting a high frequency component of the video signal from the imaging device such as a CCD ing.

【0004】また、アイリスは、全画面の信号振幅の平均値で制御する方式、画面の数箇所に分割して、各部の輝度を比較して制御する方式等によって制御されている。 Further, iris, method of controlling the average value of the signal amplitude of the entire screen is divided into several points of the screen is controlled by a method for controlling by comparing the brightness of each part.

【0005】 [0005]

【発明が解決しようとする課題】この発明は、左右画像から得られる視差情報に基づいて、撮像手段のフォーカス、アイリス、輻輳角等の制御パラメータを最適化できる立体画像撮像制御装置を提供することを目的とする。 [Problems that the Invention is to Solve The invention is to provide on the basis of the disparity information obtained from the left and right images, the focus of the imaging means, the iris, the stereoscopic image pickup controller to optimize the control parameters, such as the convergence angle With the goal.

【0006】 [0006]

【課題を解決するための手段】この発明による立体画像撮像制御装置は、撮像手段によって撮像された左右両画像の対応する各領域ごとの視差量を算出する視差量算出手段、および算出された視差量に基づいて、撮像手段の制御パラメータを制御する制御手段を備えていることを特徴とする。 SUMMARY OF THE INVENTION The three-dimensional image pickup control apparatus according to the present invention, the parallax amount calculation unit calculates the parallax amount of each of the areas corresponding to the captured left and right images by the imaging means, and the calculated parallax based on the amount, characterized in that it comprises a control means for controlling a control parameter of the imaging means. 撮像手段の制御パラメータには、フォーカス、アイリス、輻輳角等がある。 The control parameters of the imaging means, focus, iris, there is convergence angle and the like.

【0007】 [0007]

【作用】撮像手段によって撮像された左右両画像の対応する各領域ごとの視差量が算出される。 Parallax amount of each of the areas corresponding to the right and left images taken by the [action] imaging means is calculated. そして、算出された視差量に基づいて、撮像手段の制御パラメータが制御される。 Then, based on the calculated amount of parallax, the control parameters of the image pickup means is controlled.

【0008】 [0008]

【実施例】図1は、立体画像撮像システムの構成を示している。 DETAILED DESCRIPTION FIG. 1 shows a configuration of a stereoscopic imaging system.

【0009】この撮像システムは、左画像を撮像するための左画像用ビデオカメラ1と、右画像を撮像するための右画像用ビデオカメラ2を備えている。 [0009] The imaging system includes a left image for the video camera 1 for imaging the left image, right image for the video camera 2 for capturing the right image. 各ビデオカメラ1、2は、レンズおよびCCDの他、フォーカス調整機構、アイリス調整機構および輻輳角調整機構を備えている。 Each video camera 1 includes a lens and CCD other, focus adjustment mechanism includes an iris adjusting mechanism, and a convergence angle adjustment mechanism.

【0010】ここでフォーカスとは焦点位置である。 [0010] is the focal position is the focus here. アイリスとは絞りであり、焦点深度(焦点が合う距離の幅)と関係している。 And a diaphragm and iris are associated with focal depth (width in focus distance). アイリスが大きくなると焦点深度が浅くなり、アイリスが小さくなると焦点深度が深くなる。 Iris becomes the focal depth becomes shallow large depth of focus when the iris is reduced. 輻輳角とは、2台のビデオカメラ1、2の光軸のなす角度θである。 And convergence angle is an angle formed by the optical axis of the two video cameras 1, 2 theta.

【0011】各ビデオカメラ1、2の出力は、それぞれ信号処理回路3、4に送られる。 [0011] The output of the video cameras 1 and 2 are sent to the respective signal processing circuits 3 and 4. 各信号処理回路3、4 Each signal processing circuit 3 and 4
は、入力信号から所定の映像信号を生成して出力するとともに、入力信号に基づいて従来のオートフォーカスおよびオートアイリスの手法でフォーカス情報およびアイリス情報を生成する。 , Together with the outputs from the input signal to generate a predetermined image signal, and generates the focus information and the iris information with conventional autofocus and auto iris approaches based on the input signal.

【0012】各ビデオカメラ1、2の出力は、視差量算出回路5にも送られる。 [0012] The output of the video cameras 1 and 2 are also sent to the parallax amount calculation circuit 5. 視差量算出回路5は、左右両画面の対応する領域ごとの視差量を算出する。 Parallax amount calculation circuit 5 calculates the amount of parallax corresponding each area of ​​the left and right screens. たとえば、 For example,
左右の各画面を64の領域に分割し、対応する各領域ごとに視差量が算出される。 Each screen of the left and right divided into 64 regions of the parallax amount for each of the areas corresponding is calculated.

【0013】各信号処理回路3、4から出力されるフォーカス情報およびアイリス情報ならびに視差量算出回路5から出力される分割領域ごとの視差量は、CPU6に送られる。 [0013] parallax amount of each divided region output from the focus information and the iris information and parallax detection circuit 5 is outputted from the signal processing circuit 3, 4 is sent to the CPU 6. また、CPU6には、各ビデオカメラ1、2 In addition, the CPU6, each video camera 1, 2
から現在の輻輳角θに関する情報、現在のズーム情報等が送られている。 Information about the current convergence angle θ from which such current zoom information is sent. また、CPU6は、図示しない記憶手段を備えており、この記憶手段には2台のビデオカメラ1、2の間隔(眼間距離に相当する)等の情報が記憶されている。 Also, CPU 6 includes a storage means (not shown), information such as the distance between the two video cameras 1 and 2 (corresponding to the interocular distance) is stored in the storage means.

【0014】CPU6は、両ビデオカメラ1、2の間隔、現在の輻輳角、現在のズーム倍率および各領域の視差量に基づいて、各領域ごとの被写体距離を算出する。 [0014] CPU6 is distance between the video cameras 1 and 2, the current convergence angle, based on the parallax amount of the current zoom factor and each region, and calculates the object distance for each region.
そして、画面内の被写体距離の分布、フォーカス情報およびアイリス情報に基づいて、各ビデオカメラ1、2のフォーカスおよびアイリスを制御するとともに、輻輳角を制御する。 The distribution of the subject distance in the screen, based on the focus information and the iris information, controls the focus and iris of the video cameras 1 and 2, to control the convergence angle. つまり、画面内の被写体距離の分布、フォーカス情報およびアイリス情報に基づいて、両ビデオカメラ1、2のフォーカス調整機構、アイリス調整機構および輻輳角調整機構を制御する。 That is, the distribution of the object distance in the screen, based on the focus information and the iris information, focusing adjustment mechanism of the two video cameras 1 and 2, to control the iris adjusting mechanism, and a convergence angle adjustment mechanism.

【0015】たとえば、被写体距離分布において度数の高い距離に、焦点位置が接近するようにフォーカスが制御される。 [0015] For example, the high range of frequencies in the object distance distribution, the focus is controlled so that the focal position is approached. また、被写体距離分布が遠距離側に偏っていれば、輻輳角θは小さくなるように制御され、被写体距離分布が近距離側に偏っていれば、輻輳角θは大きくなるように制御される。 Further, if the subject distance distribution is biased toward the far side, the convergence angle θ is controlled to be small, if the object distance distribution is biased toward the near side, it is controlled to increase the angle of convergence θ .

【0016】また、被写体距離分布がなだらかで一様であれば、焦点深度が深くなるようにアイリスが小さくされ、被写体距離分布が集中している場合には、その集中している距離範囲をカバーできる焦点深度となるように、アイリスが制御される。 [0016] In addition, if even and smooth the subject distance distribution, the smaller the iris so that the depth of focus, when the subject distance distribution are concentrated, covering a distance range in which the concentrated as a possible depth of focus, an iris is controlled. なお、画面の所定範囲内に対する画像の被写体距離幅に焦点深度が比例するように、アイリスを制御するようにしてもよい。 In addition, as the focal depth proportional to the object distance width of an image for a predetermined range of the screen may be controlled iris.

【0017】上記実施例では、2台のビデオカメラ1、 [0017] In the above embodiment, two video cameras 1,
2により、左右画像が撮像されているが、左右画像を撮像する撮像手段としては、1つの撮像デバイスに左画像と右画像とを時分割して交互に結像させるもの、1つの撮像デバイスの受光面を2分割して、一方に左画像を結像させ、他方に右画像を結像させるもの等を用いることができる。 The 2, but the right and left images are captured, as the imaging means for capturing left and right images, which is imaged alternately by time division and left and right images into a single image pickup device, a single imaging device the light receiving surface is divided into two, one is imaged left image, or the like can be used to image the right image to the other.

【0018】また、輻輳角θを調整する方法としては、 [0018] In addition, as a method for adjusting the convergence angle θ is,
撮像手段の光学系を回転させる方法の他、撮像手段の出力に対して画像処理を施す方法があるが、この発明はいずれの場合にも適用することができる。 Another method of rotating the optical system of the imaging means, there is a method for performing image processing on the output of the imaging means, the present invention can be applied in any case.

【0019】 [0019]

【発明の効果】この発明によれば、左右画像から得られる視差情報に基づいて、撮像手段のフォーカス、アイリス、輻輳角等の制御パラメータを最適化することができる。 Effects of the Invention According to the present invention, can be based on the disparity information obtained from the left and right images, to optimize focus, iris, the control parameters such as the convergence angle of the imaging means.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】立体画像用の撮像システムの構成を示すブロック図である。 1 is a block diagram showing a configuration of an imaging system for three-dimensional image.

【符号の説明】 DESCRIPTION OF SYMBOLS

1、2 ビデオカメラ 3、4 信号処理回路 5 視差量算出回路 6 CPU 1,2 camcorder 3,4 signal processing circuit 5 parallax amount calculation circuit 6 CPU

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 撮像手段によって撮像された左右両画像の対応する各領域ごとの視差量を算出する視差量算出手段、および算出された視差量に基づいて、撮像手段の制御パラメータを制御する制御手段を備えている立体画像撮像制御装置。 1. A based on the corresponding parallax amount calculation means for calculating a parallax amount for each region, and the calculated parallax amount of the captured left and right images by the imaging means, control for controlling the control parameter of the image pickup means stereoscopic imaging control apparatus comprising a means.
  2. 【請求項2】 撮像手段の制御パラメータがフォーカスである請求項1記載の立体画像撮像制御装置。 2. A stereoscopic image pickup control apparatus according to claim 1, wherein the control parameter is the focus of the imaging means.
  3. 【請求項3】 撮像手段の制御パラメータがアイリスである請求項1記載の立体画像撮像制御装置。 3. A control of the imaging unit parameters stereoscopic image pickup control apparatus according to claim 1 wherein the iris.
  4. 【請求項4】 撮像手段の制御パラメータが輻輳角である請求項1記載の立体画像撮像制御装置。 4. A stereoscopic image pickup control apparatus according to claim 1, wherein the control parameter of the imaging means is a convergence angle.
JP6137477A 1994-06-20 1994-06-20 Stereoscopic image pickup controller Pending JPH089424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6137477A JPH089424A (en) 1994-06-20 1994-06-20 Stereoscopic image pickup controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6137477A JPH089424A (en) 1994-06-20 1994-06-20 Stereoscopic image pickup controller

Publications (1)

Publication Number Publication Date
JPH089424A true JPH089424A (en) 1996-01-12

Family

ID=15199543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6137477A Pending JPH089424A (en) 1994-06-20 1994-06-20 Stereoscopic image pickup controller

Country Status (1)

Country Link
JP (1) JPH089424A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539273A (en) * 2010-08-09 2013-10-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Autofocus for stereoscopic cameras
CN103873849A (en) * 2012-12-10 2014-06-18 联发科技股份有限公司 Method and apparatus for multi-camera photoing apparatus
US9294672B2 (en) 2014-06-20 2016-03-22 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US9374516B2 (en) 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
US9438889B2 (en) 2011-09-21 2016-09-06 Qualcomm Incorporated System and method for improving methods of manufacturing stereoscopic image sensors
US9541740B2 (en) 2014-06-20 2017-01-10 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9549107B2 (en) 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
US9819863B2 (en) 2014-06-20 2017-11-14 Qualcomm Incorporated Wide field of view array camera for hemispheric and spherical imaging
US9832381B2 (en) 2014-10-31 2017-11-28 Qualcomm Incorporated Optical image stabilization for thin cameras
US10013764B2 (en) 2014-06-19 2018-07-03 Qualcomm Incorporated Local adaptive histogram equalization
US10178373B2 (en) 2013-08-16 2019-01-08 Qualcomm Incorporated Stereo yaw correction using autofocus feedback

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539273A (en) * 2010-08-09 2013-10-17 クゥアルコム・インコーポレイテッドQualcomm Incorporated Autofocus for stereoscopic cameras
US9485495B2 (en) 2010-08-09 2016-11-01 Qualcomm Incorporated Autofocus for stereo images
US9438889B2 (en) 2011-09-21 2016-09-06 Qualcomm Incorporated System and method for improving methods of manufacturing stereoscopic image sensors
US10165183B2 (en) 2012-10-19 2018-12-25 Qualcomm Incorporated Multi-camera system using folded optics
US9838601B2 (en) 2012-10-19 2017-12-05 Qualcomm Incorporated Multi-camera system using folded optics
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
CN103873849A (en) * 2012-12-10 2014-06-18 联发科技股份有限公司 Method and apparatus for multi-camera photoing apparatus
CN103873849B (en) * 2012-12-10 2017-10-24 联发科技股份有限公司 Many camera lenses take the control method and control device of phase device
US10178373B2 (en) 2013-08-16 2019-01-08 Qualcomm Incorporated Stereo yaw correction using autofocus feedback
US9374516B2 (en) 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9973680B2 (en) 2014-04-04 2018-05-15 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9860434B2 (en) 2014-04-04 2018-01-02 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US10013764B2 (en) 2014-06-19 2018-07-03 Qualcomm Incorporated Local adaptive histogram equalization
US9843723B2 (en) 2014-06-20 2017-12-12 Qualcomm Incorporated Parallax free multi-camera system capable of capturing full spherical images
US9294672B2 (en) 2014-06-20 2016-03-22 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US9819863B2 (en) 2014-06-20 2017-11-14 Qualcomm Incorporated Wide field of view array camera for hemispheric and spherical imaging
US9854182B2 (en) 2014-06-20 2017-12-26 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9733458B2 (en) 2014-06-20 2017-08-15 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9549107B2 (en) 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
US9541740B2 (en) 2014-06-20 2017-01-10 Qualcomm Incorporated Folded optic array camera using refractive prisms
US10084958B2 (en) 2014-06-20 2018-09-25 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9832381B2 (en) 2014-10-31 2017-11-28 Qualcomm Incorporated Optical image stabilization for thin cameras

Similar Documents

Publication Publication Date Title
US7548269B2 (en) System for autofocusing a moving object
US6734902B1 (en) Vibration correcting device
CN102227746B (en) Stereoscopic image processing device, method, recording medium and stereoscopic imaging apparatus
KR20020023227A (en) Three-dimensional image producing method and apparatus therefor
US8773509B2 (en) Imaging device, imaging method and recording medium for adjusting imaging conditions of optical systems based on viewpoint images
US7190389B1 (en) Stereo camera
US5699108A (en) Multi-eye image pickup apparatus with multi-function finder screen and display
US8384767B2 (en) Stereoscopic image pickup apparatus and method of adjusting optical axis
US7030927B2 (en) Apparatus for detecting focusing status of taking lens
JP2888713B2 (en) Compound-eye imaging apparatus
JP3975395B2 (en) Camera system
US8199147B2 (en) Three-dimensional display apparatus, method, and program
US6864910B1 (en) Optical apparatus
EP2328354B1 (en) Three-dimensional imaging device, method, and program
US7061532B2 (en) Single sensor chip digital stereo camera
US8135270B2 (en) Imaging device and imaging method
CN1332263C (en) Camera
KR950003569B1 (en) Photographic apparatus and automatic focusing control device using the same
US6278842B1 (en) Image shake correcting device
JP3035434B2 (en) Compound-eye imaging apparatus
CN100350793C (en) Imaging apparatus
US6977674B2 (en) Stereo-image capturing device
JP2522260B2 (en) The camera control unit
US4978983A (en) Composite camera with automatic parallax correction
US6396540B1 (en) Video camera system with interchangeable lens assembly