JPH0892612A - Production of silver powder - Google Patents

Production of silver powder

Info

Publication number
JPH0892612A
JPH0892612A JP23316094A JP23316094A JPH0892612A JP H0892612 A JPH0892612 A JP H0892612A JP 23316094 A JP23316094 A JP 23316094A JP 23316094 A JP23316094 A JP 23316094A JP H0892612 A JPH0892612 A JP H0892612A
Authority
JP
Japan
Prior art keywords
mol
silver
silver powder
hydroquinone
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23316094A
Other languages
Japanese (ja)
Inventor
Noboru Konishi
昇 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23316094A priority Critical patent/JPH0892612A/en
Publication of JPH0892612A publication Critical patent/JPH0892612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE: To produce a monodisperse silver powder narrowed in particle size distribution and having a specified average particle diameter by adding a silver nitrate soln. to the mixed soln. of ammonium sulfite, aq. ammonia and hydroquinone to bring about a reaction at a specified temp. CONSTITUTION: The mixed soln. of ammonium sulfite, aq. ammonia and hydroquinone is used as a reducing agent soln., a silver nitrate soln. is used as a soln. contg. silver ion, and the soln. contg. silver ion is added to the reducing agent soln. so that the reaction temp. is controlled to <=50 deg.C. In thus case, 0.2-1mol of hydroquinone per mol of silver, 1-12mols of ammonium sulfite and 0.1-1 mol of aq. ammonia, expressed in terms of ammonia, are preferably used. Consequently, a monodisperse silver powder having 0.3-2μm average particle diameter and narrowed in particle size distribution is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チップコンデンサー、
チップインダクター、チップ抵抗器、セラミックコンデ
ンサー、セラミックサーミスタ、セラミックバリスタ
ー、圧電素子、誘電体フィルター、HIC等の電子部品
の電極形成に用いられる導体銀ペースト用の銀粉の製造
方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a chip capacitor,
The present invention relates to a method for producing a silver powder for a conductor silver paste used for forming electrodes of electronic parts such as a chip inductor, a chip resistor, a ceramic capacitor, a ceramic thermistor, a ceramic varistor, a piezoelectric element, a dielectric filter and a HIC.

【0002】[0002]

【従来の技術】厚膜電子部品、例えばチップ抵抗器は、
ガラス、ビヒクルと呼ばれる樹脂、銀粉末を3本ロール
ミルにて混練して作製した銀ペーストを、スクリーン印
刷法によりアルミナ基板上に電極パターンを印刷し、次
いで850℃で約10分間熱処理して銀電極を作成し、
次いで酸化ルテニウム、ガラス、ビヒクルを3本ロール
ミルにて混練して作製した抵抗インクを、スクリーン印
刷法により、前記銀電極間に印刷し、850℃で約10
分間再度熱処理を行つて作成している。
Thick film electronic components, such as chip resistors, are
A silver paste prepared by kneading glass, a resin called a vehicle, and silver powder with a three-roll mill is printed with an electrode pattern on an alumina substrate by a screen printing method, and then heat-treated at 850 ° C. for about 10 minutes to form a silver electrode. Create
Then, a resistance ink prepared by kneading ruthenium oxide, glass, and a vehicle with a three-roll mill was printed between the silver electrodes by a screen printing method, and the resistance ink was printed at 850 ° C. for about 10 minutes.
It is created by performing heat treatment again for a minute.

【0003】近年、電子部品の低コスト化が強く求めら
れ、上記製造方法も、銀ペーストを印刷した後、熱処理
をすることなく抵抗インクを印刷し、その後熱処理する
ことによりチップ抵抗器を作成する方法に変更されてき
ている。この方法に使用する銀ペーストには、従来の銀
ペーストに比べ、焼結時の収縮が小さく、同等の緻密な
焼成膜が得られ、かつ焼成時に抵抗インクと反応しない
という特性が必要とされている。そして、このような特
性を満たすため、サブミクロン以下の粒径の銀粉と1μ
m以上の粒径の銀粉とを混合し、銀ペーストを作成して
いる。
In recent years, there has been a strong demand for cost reduction of electronic parts, and in the above manufacturing method as well, after printing a silver paste, a resistance ink is printed without heat treatment and then heat treatment is performed to form a chip resistor. The method has been changed. The silver paste used in this method is required to have properties such that shrinkage during sintering is smaller than that of conventional silver paste, an equivalent dense fired film can be obtained, and it does not react with the resistance ink during firing. There is. In order to satisfy such characteristics, silver powder having a particle size of submicron or less and 1 μm
A silver paste having a particle diameter of m or more is mixed to form a silver paste.

【0004】ところで、従来より銀粉は硝酸銀水溶液、
銀アンモニウム錯体水溶液、あるいは酸化銀などをヒド
ラジン、ホルムアルデヒド、ナトリウムボロハイドライ
ド等の還元剤を用いて還元し、得ていた。そして、得る
銀粉の粒径は、反応時のpH値、添加剤の添加速度、反
応温度等を制御することによって調整していた。しかし
ながら、従来の方法では、このような条件を変化させて
も得られる銀粉の粒径をたかだか0.数μm程度しか変
化させることができず、より離れた粒径の銀粉を得るた
めには還元剤自体を変えて製造を行う必要がある。
By the way, conventionally, silver powder is an aqueous solution of silver nitrate,
The solution was obtained by reducing an aqueous solution of silver ammonium complex, silver oxide or the like with a reducing agent such as hydrazine, formaldehyde or sodium borohydride. Then, the particle size of the obtained silver powder was adjusted by controlling the pH value during the reaction, the addition rate of the additive, the reaction temperature, and the like. However, according to the conventional method, the particle size of the silver powder obtained by changing such conditions is at most 0. It is possible to change only about several μm, and it is necessary to change the reducing agent itself in order to obtain a silver powder having a particle diameter farther away.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の問題
を解決するためなされたものであり、単分散で粒度分布
の狭い銀粉を得るに際し、該銀粉の平均粒径をより広い
範囲で調整する方法の提供を課題とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and in obtaining a silver powder having a monodispersed and narrow particle size distribution, the average particle size of the silver powder is adjusted in a wider range. The challenge is to provide a method of doing so.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の方法は、還元剤溶液と銀イオンを含む溶液とを反応
させて銀粉を得る方法において、還元剤溶液として亜硫
酸アンモニウムとアンモニア水とヒドロキノンとの混合
溶液を用い、銀イオンを含む溶液として硝酸銀溶液を用
い、反応温度が50℃以下となるようにして還元剤溶液
に銀イオンを含む溶液を添加するものである。そして、
亜硫酸アンモニウムとアンモニア水とヒドロキノンとの
割合を調節することにより、平均粒径が0.3〜2μm
の範囲内にあり、単分散で、粒度分布の狭い銀粉を得る
ものである。
The method of the present invention for solving the above-mentioned problems is a method for obtaining a silver powder by reacting a reducing agent solution with a solution containing silver ions, wherein ammonium sulfite and aqueous ammonia are used as the reducing agent solution. A mixed solution with hydroquinone is used, a silver nitrate solution is used as a solution containing silver ions, and the solution containing silver ions is added to the reducing agent solution at a reaction temperature of 50 ° C. or lower. And
By adjusting the ratio of ammonium sulfite, ammonia water, and hydroquinone, the average particle size is 0.3 to 2 μm.
Within a range of 1, and is a monodisperse silver powder having a narrow particle size distribution.

【0007】本発明の方法で銀粉を製造する場合、1モ
ルの硝酸銀を還元するのに亜硫酸アンモニウム量を1〜
12モル、アンモニア水量をアンモニア換算で0.1〜
1モル、ヒドロキノン量を0.2〜1モルの範囲で選定
するとより好適である。
When silver powder is produced by the method of the present invention, 1 mol of silver nitrate is added to reduce the amount of ammonium sulfite to 1 to 1.
12 mol, the amount of ammonia water is 0.1 to 0.1 in terms of ammonia.
It is more preferable to select 1 mol and the amount of hydroquinone in the range of 0.2 to 1 mol.

【0008】[0008]

【作用】銀イオンとヒドロキノンとは式1に従い反応
し、銀とキノンとが生成される。
The silver ion reacts with hydroquinone according to the formula 1 to produce silver and quinone.

【0009】式1 2Ag+ + C64(OH)2 −−→ 2Ag0 + C6
4(=O)2 すなわち、2モルの銀イオンは1モルのヒドロキノンと
反応し、2molの銀と1モルのキノンが発生する。こ
の反応により生成したキノンは水に対する溶解度が小さ
い。従って、反応生成物は銀粉とキノンとの混合物とな
る。そしてこの混合物よりキノンを除去し、製品として
の銀粉を得るためには多量の洗浄水と多くの手間とが必
要となる。
Formula 1 2Ag + + C 6 H 4 (OH) 2 --- → 2Ag 0 + C 6
H 4 (═O) 2, that is, 2 mol of silver ion reacts with 1 mol of hydroquinone to generate 2 mol of silver and 1 mol of quinone. The quinone produced by this reaction has a low solubility in water. Therefore, the reaction product is a mixture of silver powder and quinone. Then, in order to remove quinone from this mixture and obtain silver powder as a product, a large amount of washing water and a lot of labor are required.

【0010】本発明の方法では、ヒドロキノンに亜硫酸
アンモニウムとアンモニウムイオンとを共存させるが、
これは以下の理由による。
In the method of the present invention, ammonium sulfite and ammonium ions are allowed to coexist in hydroquinone.
This is for the following reason.

【0011】まず、亜硫酸塩を共存させると、キノンが
亜硫酸イオンとが反応してキノンが水溶性化合物となり
銀粉との分離が容易になるからである。また、この場合
には共存する亜硫酸イオン自体も銀イオンの還元に寄与
し、必要とされる高価なヒドロキノンの消費量を低減す
ることが可能となる。また、亜硫酸イオンは、上記した
水溶性化合物の生成の他に銀イオンの還元反応が終了す
る時間を遅くする働きがある。
First, the coexistence of sulfite causes the quinone to react with the sulfite ion so that the quinone becomes a water-soluble compound and is easily separated from the silver powder. Further, in this case, the coexisting sulfite ion itself contributes to the reduction of silver ion, and it becomes possible to reduce the required consumption amount of expensive hydroquinone. Further, the sulfite ion has a function of delaying the time for completing the reduction reaction of silver ion in addition to the production of the water-soluble compound described above.

【0012】本発明の方法でアンモニウムイオンを共存
させるのは、アンモニア水が還元反応速度を速くする働
きがあるからである。すなわち、亜硫酸イオンとアンモ
ニウムイオンとの共存量を調整することにより還元反応
速度を制御できるからである。還元反応速度を制御でき
るということは、とりもなおさず単位時間内に生成する
成長核の生成数を制御でき、得られる銀粉の粒径を調整
できるということである。具体的には、亜硫酸イオンを
過剰に添加すれば反応速度が遅くなり、得られる銀粒子
の粒径は大きくなる。そして、アンモニウムイオンを過
剰に添加すれば反応速度は速くなり、得られる銀粒子の
粒径は小さくなる。
The reason why ammonium ions are allowed to coexist in the method of the present invention is that ammonia water has a function of increasing the reduction reaction rate. That is, the reduction reaction rate can be controlled by adjusting the coexisting amount of sulfite ion and ammonium ion. The fact that the reduction reaction rate can be controlled means that the number of growth nuclei generated within a unit time can be controlled and the grain size of the obtained silver powder can be adjusted. Specifically, if sulfite ion is excessively added, the reaction rate becomes slow and the particle size of the obtained silver particles becomes large. Then, if ammonium ions are added excessively, the reaction rate becomes faster, and the particle size of the obtained silver particles becomes smaller.

【0013】上記効果は銀イオンが、例えばアンモニウ
ムイオンのような錯イオンとなっていると弱められ、粒
径の調整が十分に出来なくなる。このため、銀イオンを
含む溶液としては硝酸銀溶液が最も好ましい。
The above effects are weakened when silver ions are complex ions such as ammonium ions, and the grain size cannot be adjusted sufficiently. Therefore, the silver nitrate solution is most preferable as the solution containing silver ions.

【0014】また、反応時のpHにより反応速度が影響
されるのは周知のことである。本発明の方法においても
同様であり、pHが8未満では反応速度が著しく低下
し、反応開始後数時間たっても還元反応が終了せず生産
性が悪い。そして、pHが10以上になると反応速度が
著しく増加し、前記したアンモニウムイオンの共存量の
調整による反応速度の制御が困難となる。このように本
発明の方法では、pHは単に還元反応が起きる値であれ
ば良いということではなく、pH8〜10としなければ
ならない。本発明で亜硫酸塩として亜硫酸アンモニウム
を用いるのは、そうすることによりpHを8〜10の領
域に維持できるからである。例えば、亜硫酸ナトリウム
や亜硫酸カリウムを用いると、pHは上昇し、アンモニ
ウムイオンを用いた粒径の制御は困難となる。
It is well known that the reaction rate is affected by the pH during the reaction. The same applies to the method of the present invention, and if the pH is less than 8, the reaction rate is remarkably reduced, and the reduction reaction does not end even after several hours from the start of the reaction, resulting in poor productivity. When the pH is 10 or more, the reaction rate remarkably increases, and it becomes difficult to control the reaction rate by adjusting the coexisting amount of ammonium ions. As described above, in the method of the present invention, the pH does not have to be a value at which the reduction reaction takes place, but must be pH 8 to 10. The reason why ammonium sulfite is used as the sulfite in the present invention is that the pH can be maintained in the range of 8 to 10 by doing so. For example, if sodium sulfite or potassium sulfite is used, the pH will rise and it will be difficult to control the particle size using ammonium ions.

【0015】また、最終的に得られる粒子を単分散の物
とするためには反応温度も重要となる。温度が高すぎる
と精製した銀粒子が凝集してしまうからである。この点
より、本発明の方法では反応温度を50℃以下とする。
The reaction temperature is also important for making the finally obtained particles monodisperse. If the temperature is too high, the purified silver particles will agglomerate. From this point, in the method of the present invention, the reaction temperature is set to 50 ° C. or lower.

【0016】なお、本発明の方法において、反応液中に
ゼラチンなどの水溶性の高分子化合物やその分解物を添
加すれば生成した銀粒子の凝集が防止し易く、有効であ
ることは言うまでもないことである。
In the method of the present invention, it is needless to say that addition of a water-soluble polymer compound such as gelatin or a decomposition product thereof to the reaction solution is effective because it is easy to prevent aggregation of the silver particles produced. That is.

【0017】[0017]

【実施例】次に本発明の実施例と比較例について述べ
る。
EXAMPLES Next, examples of the present invention and comparative examples will be described.

【0018】(実施例1〜4、比較例1)関東化学株式
会社製の純度99%のヒドロキノン0.25モルを純水
3000ミリリットルに溶解し、これに純度90%の亜
硫酸アンモニウムを各々1モル(実施例1)、2モル
(実施例2)、3モル(実施例3)、4モル(実施例
4)添加し、さらにこれらに濃度29%アンモニア水を
アンモニア換算で0.283モルを添加した後、水を加
えてそれぞれの容量を4000ミリリットルに調整し
た。このようにして亜硫酸イオン濃度の異なる5種類の
還元剤溶液を作成した。
(Examples 1 to 4 and Comparative Example 1) 0.25 mol of 99% pure hydroquinone manufactured by Kanto Kagaku Co., Ltd. was dissolved in 3000 ml of pure water, and 1 mol of ammonium sulfite having 90% purity was dissolved therein. (Example 1) 2 mol (Example 2), 3 mol (Example 3), 4 mol (Example 4) were added, and further, a concentration of 29% ammonia water was added in an amount of 0.283 mol in terms of ammonia. After that, water was added to adjust the volume of each to 4000 ml. Thus, 5 types of reducing agent solutions having different sulfite ion concentrations were prepared.

【0019】次いで、硝酸銀5モルを純水3リットルに
溶解して得た硝酸銀溶液を作成し、これを前記の5種類
の還元剤溶液それぞれに各々600ミリリットルづつ、
反応温度10℃で添加・撹拌した。表1に還元反応終了
までに必要とされた時間と、得られた銀粉の平均粒径を
示す。
Next, a silver nitrate solution obtained by dissolving 5 mol of silver nitrate in 3 liters of pure water was prepared, and 600 ml of each was added to each of the above-mentioned 5 kinds of reducing agent solutions.
The mixture was added and stirred at a reaction temperature of 10 ° C. Table 1 shows the time required until the completion of the reduction reaction and the average particle size of the obtained silver powder.

【0020】 表1より亜硫酸イオン濃度を増加させることにより粒径
を調整することが可能であることが解る。
[0020] From Table 1, it is understood that the particle size can be adjusted by increasing the sulfite ion concentration.

【0021】(実施例5〜8、比較例1)ヒドロキノン
0.25モルを純水3000ミリリットルに溶解し、こ
れに亜硫酸アンモニウムを3モル添加し、溶解し、次い
でアンモニア水を0.142モル(比較例1)、0.2
12モル(実施例5)、0.283モル(実施例6)、
0.425モル(実施例7)、0.921モル(実施例
8)となるように加えた後、水を加えてそれぞれの全容
量が4000ミリリットルになるように調整し、5種類
の還元剤水溶液を作成した。
(Examples 5-8, Comparative Example 1) 0.25 mol of hydroquinone was dissolved in 3000 ml of pure water, 3 mol of ammonium sulfite was added and dissolved therein, and then 0.142 mol of aqueous ammonia was added ( Comparative example 1), 0.2
12 mol (Example 5), 0.283 mol (Example 6),
After adding 0.425 mol (Example 7) and 0.921 mol (Example 8) so as to adjust the total volume of each to 4000 ml, 5 kinds of reducing agents were added. An aqueous solution was created.

【0022】次いで、硝酸銀5モルを純水3リットルに
溶解して得た硝酸銀溶液を作成し、これを前記の5種類
の還元剤溶液それぞれに各々600ミリリットルづつ、
反応温度10℃で添加・撹拌した。表2に還元反応終了
までに必要とされた時間と、得られた銀粉の平均粒径を
示す。
Next, a silver nitrate solution obtained by dissolving 5 mol of silver nitrate in 3 liters of pure water was prepared, and 600 ml of each was added to each of the above-mentioned 5 kinds of reducing agent solutions.
The mixture was added and stirred at a reaction temperature of 10 ° C. Table 2 shows the time required to complete the reduction reaction and the average particle size of the obtained silver powder.

【0023】 表2から解るように、アンモニア水を0.142モル加
えたものでは反応が終結するのに4時間以上が必要とさ
れ、かつ得られる銀粉は凝集したものとなっていた。し
かし、0.212モル以上加えたものでは、アンモニウ
ムイオン量の増加にともない銀粉の粒径は小さくなるこ
とが解る。
[0023] As can be seen from Table 2, in the case of adding 0.142 mol of aqueous ammonia, it took 4 hours or more to complete the reaction, and the obtained silver powder was aggregated. However, it is understood that when 0.212 mol or more is added, the particle size of silver powder becomes smaller as the amount of ammonium ions increases.

【0024】(比較例2)ヒドロキノン0.25モルを
純水3000ミリリットルに溶解し、水を加えて400
0ミリリットルになるように調整した還元剤溶液を用意
した。これに、硝酸銀1モルを純水600ミリリットル
に溶解したものを10℃で添加・撹拌を行った。144
0分反応させたが、還元反応は終了しなかった。還元反
応時、キノンが発生し、生成した銀粉末は粗大粒子を含
む樹枝状のものであった。
Comparative Example 2 0.25 mol of hydroquinone was dissolved in 3000 ml of pure water, and water was added to 400
A reducing agent solution adjusted to 0 ml was prepared. A solution prepared by dissolving 1 mol of silver nitrate in 600 ml of pure water was added and stirred at 10 ° C. 144
The reaction was allowed to proceed for 0 minutes, but the reduction reaction did not end. Quinone was generated during the reduction reaction, and the produced silver powder was a dendritic one containing coarse particles.

【0025】(比較例3〜5)ヒドロキノン0.25モ
ルを純水3000ミリリットルに溶解し、これにそれぞ
れ亜硫酸アンモニウム(比較例3)、亜硫酸カリウム
(比較例4)、亜硫酸ナトリウム(比較例5)を3モル
溶解し、水を加えて4000ミリリットルになるように
調整した3種類の還元剤水溶液を用意した。これらのそ
れぞれに、硝酸銀1モルを純水600ミリリットルに溶
解したものを10℃で添加・撹拌を行った。240分反
応させたが還元反応は終了しなかった。なお、硝酸銀水
溶液投入後数分間は無色透明でほとんど反応せず、しだ
いに黄土色の不透明な溶液に変化していくのが観察され
た。また、還元反応によるキノンの生成はみられなかっ
た。生成銀粉末のSEM観察を試みたが、数万倍程度で
は観察不能であった。
(Comparative Examples 3 to 5) 0.25 mol of hydroquinone was dissolved in 3000 ml of pure water, and ammonium sulphite (Comparative Example 3), potassium sulfite (Comparative Example 4) and sodium sulfite (Comparative Example 5) were dissolved therein. Was dissolved in 3 mol, and water was added to prepare 3 types of reducing agent aqueous solutions adjusted to 4000 ml. To each of these, 1 mol of silver nitrate dissolved in 600 ml of pure water was added and stirred at 10 ° C. The reaction was continued for 240 minutes, but the reduction reaction was not completed. It was observed that for several minutes after the aqueous solution of silver nitrate was added, the solution was colorless and transparent, hardly reacted, and gradually changed to an ocher-colored opaque solution. In addition, no quinone was produced by the reduction reaction. An attempt was made to observe the produced silver powder by SEM, but it could not be observed under the order of tens of thousands of times.

【0026】(比較例6〜9)ヒドロキノン0.25モ
ルを純水3000ミリリットルに溶解し、これに亜硫酸
カリウムを3モル添加し溶解し、次いでアンモニア水を
それぞれ0.073モル(比較例6)、0.147モル
(比較例7)、0.220モル(比較例8)、0.29
3モル(比較例9)加えた後、水を加えてそれぞれの全
容量を4000ミリリットルになるように調整し、4種
類の還元剤水溶液を作成した。
(Comparative Examples 6 to 9) 0.25 mol of hydroquinone was dissolved in 3000 ml of pure water, 3 mol of potassium sulfite was added and dissolved therein, and then 0.073 mol of aqueous ammonia was prepared (Comparative Example 6). , 0.147 mol (Comparative Example 7), 0.220 mol (Comparative Example 8), 0.29
After adding 3 mol (Comparative Example 9), water was added to adjust the total volume of each to 4000 ml to prepare four types of reducing agent aqueous solutions.

【0027】次いで、硝酸銀5モルを純水3リットルに
溶解して得た硝酸銀溶液を作成し、これを前記の4種類
の還元剤溶液それぞれに各々600ミリリットルづつ、
反応温度10℃で添加・撹拌した。表3に還元反応終了
までに必要とされた時間と、得られた銀粉の平均粒径を
示す。
Next, a silver nitrate solution obtained by dissolving 5 mol of silver nitrate in 3 liters of pure water was prepared, and 600 ml of each was added to each of the above four kinds of reducing agent solutions.
The mixture was added and stirred at a reaction temperature of 10 ° C. Table 3 shows the time required until the end of the reduction reaction and the average particle size of the obtained silver powder.

【0028】 表3よりアンモニア水の添加量を変えることにより反応
終了時間は調整できるものの、粒径の調整は困難である
ことが解る。なお、亜硫酸アンモニウムを用いた時に比
べ、僅かのアンモニア水の投入量の違いで反応終了時間
が大きく変化している。
[0028] It can be seen from Table 3 that the reaction end time can be adjusted by changing the amount of ammonia water added, but it is difficult to adjust the particle size. It should be noted that, compared with the case where ammonium sulfite was used, the reaction completion time greatly changed with a slight difference in the amount of ammonia water added.

【0029】(比較例10〜13)ヒドロキノン0.2
5モルを純水3000ミリリットルに溶解し、これに亜
硫酸ナトリウムを3モル添加し、溶解し、次いでアンモ
ニア水をそれぞれ0.073モル(比較例10)、0.
147モル(比較例11)、0.220モル(比較例1
2)、0.293モル(比較例13)を加えた後、それ
ぞれの全容量を水を加えて4000ccになるように調
整した。
Comparative Examples 10 to 13 Hydroquinone 0.2
5 mol was dissolved in 3000 ml of pure water, 3 mol of sodium sulfite was added to and dissolved therein, and then ammonia water was added to 0.073 mol (Comparative Example 10), respectively.
147 mol (Comparative Example 11), 0.220 mol (Comparative Example 1)
2) and 0.293 mol (Comparative Example 13) were added, and then the total volume of each was adjusted to 4000 cc by adding water.

【0030】次いで、硝酸銀5モルを純水3リットルに
溶解して得た硝酸銀溶液を作成し、これを前記の4種類
の還元剤溶液それぞれに各々600ミリリットルづつ、
反応温度10℃で添加・撹拌した。表4に還元反応終了
までに必要とされた時間と、得られた銀粉の平均粒径を
示す。
Then, a silver nitrate solution obtained by dissolving 5 mol of silver nitrate in 3 liters of pure water was prepared, and 600 ml of each of the above four kinds of reducing agent solutions was prepared.
The mixture was added and stirred at a reaction temperature of 10 ° C. Table 4 shows the time required until the completion of the reduction reaction and the average particle size of the obtained silver powder.

【0031】 表4よりアンモニア水の添加量を変えることにより反応
終了時間は変化するものの、変化量が大きすぎ実質的に
調整できないこと、また粒径の調整も困難であることが
解る。
[0031] It can be seen from Table 4 that the reaction end time varies depending on the amount of ammonia water added, but the amount of change is too large to be adjusted substantially, and that the particle size is also difficult to adjust.

【0032】(比較例14〜16)水2000ミリリッ
トルにヒドロキノン0.25モルを溶解し、亜硫酸アン
モニウムを0.5モル(比較例14)、3(比較例1
5)をそれぞれ添加し、溶解した還元剤水溶液と、亜硫
酸アンモニウム0.5モル、アンモニア水0.954モ
ルを溶解した還元剤溶液(比較例16)を作成した。
Comparative Examples 14 to 16 0.25 mol of hydroquinone was dissolved in 2000 ml of water and 0.5 mol of ammonium sulfite (Comparative Example 14) and 3 (Comparative Example 1).
5) was added to each to prepare a dissolved reducing agent aqueous solution and a reducing agent solution (Comparative Example 16) in which 0.5 mol of ammonium sulfite and 0.954 mol of aqueous ammonia were dissolved.

【0033】次いで、硝酸銀3モルを水900ミリリッ
トルに溶解し、これにアンモニア水2モルを加えて銀ア
ンモニウム錯体溶液を得た。この液を前記の3種類の還
元溶液にそれぞれ300ミリリットルづつ10℃で添加
・撹拌を行った。反応終了時間、得られた銀粒子の粒子
径を表5に示す。
Next, 3 mol of silver nitrate was dissolved in 900 ml of water, and 2 mol of aqueous ammonia was added thereto to obtain a silver ammonium complex solution. This liquid was added to each of the above three types of reducing solutions at 300C and stirred at 10 ° C. Table 5 shows the reaction completion time and the particle size of the obtained silver particles.

【0034】 表5よりこれらの方法では反応終了時間の調整も粒径の
調整も困難であることが解る。
[0034] Table 5 shows that it is difficult to adjust the reaction end time and the particle size by these methods.

【0035】[0035]

【発明の効果】上記の説明で明かなように、還元剤中の
亜硫酸イオンとアンモニウムイオンの共存量を制御する
本発明の方法によれば、従来法では達成できない、銀粉
末の粒径を、0.3〜2.0μmであるような、広い範
囲に渡って制御することが可能となる。従って、本発明
の方法は、要求される粒径毎に、製造設備、試薬等を一
切変更する必要が無く、安価で極めて有益な銀粉を製造
することのできる方法であり、従来技術に無く、画期的
なものと言える。
As is apparent from the above description, according to the method of the present invention for controlling the coexisting amount of sulfite ion and ammonium ion in the reducing agent, the grain size of silver powder which cannot be achieved by the conventional method, It is possible to control over a wide range such as 0.3 to 2.0 μm. Therefore, the method of the present invention is a method capable of producing an extremely useful silver powder at a low cost without the need to change the production equipment, reagents, etc. for each required particle size, and there is no prior art, It's a breakthrough.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 還元剤溶液と銀イオンを含む溶液とを
反応させて平均粒径が0.3〜2μmの範囲内にあり、
単分散で、粒度分布幅の狭い銀粉を得る方法において、
還元剤溶液として亜硫酸アンモニウムとアンモニア水と
ヒドロキノンとの混合溶液を用い、銀イオンを含む溶液
として硝酸銀溶液を用い、反応温度が50℃以下となる
ようにして還元剤溶液に銀イオンを含む溶液を添加する
ことを特徴とする銀粉の製造方法。
1. A reducing agent solution and a solution containing silver ions are reacted to have an average particle size in the range of 0.3 to 2 μm,
In the method of obtaining a silver powder having a narrow particle size distribution width by monodispersion,
As a reducing agent solution, a mixed solution of ammonium sulfite, ammonia water and hydroquinone is used, and as a solution containing silver ions, a silver nitrate solution is used, and a solution containing silver ions is added to the reducing agent solution at a reaction temperature of 50 ° C. or lower. A method for producing silver powder, which comprises adding.
【請求項2】 還元剤溶液中の亜硫酸アンモニウムと
アンモニア水とヒドロキノンとの割合を調節することを
特徴とする請求項1記載の銀粉の製造方法。
2. The method for producing silver powder according to claim 1, wherein the ratio of ammonium sulfite, aqueous ammonia and hydroquinone in the reducing agent solution is adjusted.
【請求項3】 1モルの硝酸銀に対して0.2〜1モ
ルのヒドロキノン、1〜12モルの亜硫酸アンモニウ
ム、アンモニア換算で0.1〜1モルのアンモニア水を
用いることを特徴とする請求項1〜2記載の銀粉の製造
方法。
3. Use of 0.2 to 1 mol of hydroquinone, 1 to 12 mol of ammonium sulfite, and 0.1 to 1 mol of ammonia water in terms of ammonia with respect to 1 mol of silver nitrate. The method for producing silver powder according to 1 or 2.
JP23316094A 1994-09-28 1994-09-28 Production of silver powder Pending JPH0892612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23316094A JPH0892612A (en) 1994-09-28 1994-09-28 Production of silver powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23316094A JPH0892612A (en) 1994-09-28 1994-09-28 Production of silver powder

Publications (1)

Publication Number Publication Date
JPH0892612A true JPH0892612A (en) 1996-04-09

Family

ID=16950666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23316094A Pending JPH0892612A (en) 1994-09-28 1994-09-28 Production of silver powder

Country Status (1)

Country Link
JP (1) JPH0892612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027353A (en) * 2005-07-15 2007-02-01 Toko Inc Method of manufacturing laminated electronic component
JP2009242875A (en) * 2008-03-31 2009-10-22 Mitsubishi Paper Mills Ltd Method for producing silver hyperfine particle
CN102513543A (en) * 2011-12-06 2012-06-27 上海工程技术大学 Microwave heating reduction technology for preparing superfine silver powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027353A (en) * 2005-07-15 2007-02-01 Toko Inc Method of manufacturing laminated electronic component
JP2009242875A (en) * 2008-03-31 2009-10-22 Mitsubishi Paper Mills Ltd Method for producing silver hyperfine particle
CN102513543A (en) * 2011-12-06 2012-06-27 上海工程技术大学 Microwave heating reduction technology for preparing superfine silver powder

Similar Documents

Publication Publication Date Title
EP0363552B1 (en) Process for preparing metal particles
KR101193762B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
EP1721690A1 (en) Highly crystalline silver powder and method for production thereof
JP2001107101A (en) High dispersibility spherical silver powder and its producing method
JP2000087121A (en) Metal powder, its production and electrically conductive paste
JP4277803B2 (en) Method for producing metal fine powder
JP3429985B2 (en) Method for producing silver powder composed of hexagonal plate-like crystal silver particles
EP0249366B1 (en) Process for the production of silver-palladium alloy fine powder
JP4100244B2 (en) Nickel powder and method for producing the same
JPH07118868A (en) Production of palladium-coated spherical silver powder
JPH0557324B2 (en)
JPH0892612A (en) Production of silver powder
JPH10265812A (en) Production of superfine silver particle
US5514202A (en) Method for producing fine silver-palladium alloy powder
JPH01139710A (en) Manufacture of fine granular alloy powder
KR20060018496A (en) Composite metal powder manufaturing method of silver and copper
JPH07278619A (en) Production of nickel powder
US3771996A (en) Process for manufacturing gold powder
US3717481A (en) Gold metallizing compositions
JPH11189812A (en) Manufacture of granular silver powder
JPH0892611A (en) Production of silver powder
JPH04235205A (en) Production of copper powder
JP3344508B2 (en) Method for producing Ag-Pd powder
JP2004225087A (en) Method for manufacturing copper powder
KR102122317B1 (en) Method for manufacturing silver powder and conducitve paste including silver powder