JPH0892407A - Crosslinked expanded polyethylene resin particle, expanded molding made therefrom, and bed core material made of the molding - Google Patents

Crosslinked expanded polyethylene resin particle, expanded molding made therefrom, and bed core material made of the molding

Info

Publication number
JPH0892407A
JPH0892407A JP25464494A JP25464494A JPH0892407A JP H0892407 A JPH0892407 A JP H0892407A JP 25464494 A JP25464494 A JP 25464494A JP 25464494 A JP25464494 A JP 25464494A JP H0892407 A JPH0892407 A JP H0892407A
Authority
JP
Japan
Prior art keywords
resin
density
foamed
expanded
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25464494A
Other languages
Japanese (ja)
Inventor
Toshio Tokoro
寿男 所
Kazuo Tsurugai
和男 鶴飼
Masaharu Oikawa
政春 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP25464494A priority Critical patent/JPH0892407A/en
Publication of JPH0892407A publication Critical patent/JPH0892407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: To obtain expanded particles which can give expanded moldings having small shrinkage and well-balanced compressive strength and recovery properties by mixing two specified polyethylene resins with each other under specified conditions and expanding and crosslinking the resultant mixture. CONSTITUTION: These particles are obtained by expanding and crosslinking a mixture prepared by mixing 50-90wt.% polyethylene resin (A) having a density 0.920-0.935g/cm<3> with 10-50wt.% another polyethylene resin (B) having a density of 0.940-0.970g/cm<3> under such conditions that the following relationship holds: 0.935<DA.CA+DB.CB<0.945(CA+CB=1) (wherein DA is the density (g/cm<3> ) of resin A; DB is the density (g/cm<3> ) of resin B; DA is the weight ratio of resin A; CB is the weight ratio of resin B; and DA.CA+DB.CB is the density of the resin mixture).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は架橋ポリエチレン系樹脂
発泡粒子及び該発泡粒子を用いた発泡成形体並びに該発
泡成形体からなるベッド用芯材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to expanded particles of a crosslinked polyethylene resin, an expanded molded article using the expanded particles, and a bed core material comprising the expanded molded article.

【0002】[0002]

【従来の技術】架橋低密度ポリエチレン樹脂粒子を密閉
容器内で分散させ、二酸化炭素等の無機ガス系発泡剤や
有機揮発性発泡剤をその蒸気圧以上の圧力で樹脂粒子の
軟化温度以上の温度で保持し、含有せしめた後、容器の
一端を開放し、上記樹脂粒子と分散媒とを容器内よりも
低圧の雰囲気下に放出することにより樹脂発泡粒子を得
る方法は知られている。
2. Description of the Related Art Crosslinked low-density polyethylene resin particles are dispersed in a closed container, and an inorganic gas type foaming agent such as carbon dioxide or an organic volatile foaming agent is heated to a temperature above the softening temperature of the resin particles at a pressure above its vapor pressure. It is known to obtain resin foamed particles by holding the same in the container and containing it, and then opening one end of the container and discharging the resin particles and the dispersion medium under an atmosphere at a pressure lower than that in the container.

【0003】そして、架橋低密度ポリエチレン樹脂発泡
粒子を用いて得られた発泡成形品は、発泡ポリスチレ
ン、発泡ポリプロピレン、無架橋直鎖状ポリエチレン樹
脂発泡成形品等に比べ、圧縮永久歪、繰り返し圧縮永久
歪等に優れており、それらの特徴を活かし、ベッド芯材
や梱包剤等の各種緩衝材料として利用されてきた。
Expanded molded articles obtained by using expanded particles of crosslinked low-density polyethylene resin have compression set, repeated compression set, and permanent compression set which are higher than those of expanded polystyrene, expanded polypropylene, non-crosslinked linear polyethylene resin expanded molded articles, and the like. It is excellent in distortion, etc. and has been utilized as various cushioning materials such as bed core materials and packing agents by taking advantage of these characteristics.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、基材樹
脂が低密度ポリエチレンである場合は圧縮強度が弱いと
いう欠点を有しており、また基材樹脂として密度の高い
低密度ポリエチレン樹脂や、中密度ポリエチレン樹脂を
単独で用いた場合も充分な強度を有する成形品は得られ
難く、また高密度ポリエチレン樹脂を単独で用いた場合
は強度は高くなるものの圧縮永久歪等の回復物性が低下
したものとなり、圧縮強度と回復物性との双方をバラン
ス良く有する発泡成形品は得られなかった。
However, when the base resin is low-density polyethylene, it has a drawback that the compressive strength is weak, and as the base resin, a low-density polyethylene resin having a high density or a medium-density polyethylene resin is used. Even when polyethylene resin is used alone, it is difficult to obtain a molded product having sufficient strength, and when high-density polyethylene resin is used alone, strength is increased but recovery physical properties such as compression set are deteriorated. However, a foam-molded article having a good balance between compression strength and recovery properties could not be obtained.

【0005】特に、無機ガスを発泡剤として用いた場
合、得られる発泡粒子を型内成形する際に二次発泡性、
粒子間融着性、養生回復性に優れる収縮率の小さい成形
品を得ることは極めて困難であった。
In particular, when an inorganic gas is used as a foaming agent, the secondary foamability during molding of the obtained expanded particles,
It was extremely difficult to obtain a molded product having excellent interparticle fusion and curability recovery and a small shrinkage ratio.

【0006】本発明は上記従来の欠点を解消すべくなさ
れたものであって、従来のポリエチレン樹脂発泡成形品
と比較して、成形品の収縮率が小さくしかも圧縮強度と
回復物性との双方をバランス良く有する発泡成形品を得
ることのできるポリエチレン系樹脂発泡粒子を提供する
ことを目的とする。
The present invention has been made to solve the above-mentioned conventional drawbacks, and has a smaller shrinkage rate of the molded product as compared with the conventional polyethylene resin foam-molded product and has both compression strength and recovery property. It is an object of the present invention to provide polyethylene resin foamed particles which can provide a foamed molded product having a good balance.

【0007】[0007]

【課題を解決するための手段】本発明は、密度0.92
0〜0.935g/cm3 のポリエチレン系樹脂(A)
を50〜90wt%と、密度0.940〜0.970g
/cm3 のポリエチレン系樹脂(B)を10〜50wt
%との混合樹脂を架橋して発泡させてなる発泡粒子であ
って、上記混合樹脂における樹脂(A)と樹脂(B)の
密度及び混合比の関係が下記式を満足するものであるこ
とを特徴とする架橋ポリエチレン系樹脂発泡粒子、 0.935<DA ・CA +DB ・CB <0.945
(CA +CB =1) DA :樹脂(A)の密度(g/cm3 ) DB :樹脂(B)の密度(g/cm3 ) CA :樹脂(A)の重量比 CB :樹脂(B)の重量比 DA ・CA +DB ・CB :混合樹脂の密度 (2)発泡粒子が無機ガス系発泡剤を使用して発泡され
てなるものである上記(1)記載の架橋ポリエチレン系
樹脂発泡粒子、(3)上記(1)又は(2)記載の架橋
ポリエチレン系樹脂発泡粒子を型内成形してなることを
特徴とする発泡成形体、(4)上記(3)記載の発泡成
形体が用いられてなることを特徴とするベッド用芯材を
要旨とする。
The present invention has a density of 0.92.
0 to 0.935 g / cm 3 polyethylene resin (A)
50 to 90 wt% and a density of 0.940 to 0.970 g
10 to 50 wt./cm 3 of polyethylene resin (B)
% Of the mixed resin and the expanded resin obtained by cross-linking and expanding the mixed resin, wherein the relationship between the density and the mixing ratio of the resin (A) and the resin (B) in the mixed resin satisfies the following formula. Characterized crosslinked polyethylene resin foamed particles, 0.935 <D A · C A + D B · C B <0.945
(C A + C B = 1) D A : Density of resin (A) (g / cm 3 ) D B : Density of resin (B) (g / cm 3 ) C A : Weight ratio of resin (A) C B : Weight ratio of resin (B) D A · C A + D B · C B : Density of mixed resin (2) The above-mentioned (1), wherein the foamed particles are foamed using an inorganic gas-based foaming agent (3) foamed molded article, characterized in that it is formed by in-mold molding of the crosslinked polyethylene-based resin foamed particles according to (1) or (2) above, (3) above (3) A gist of a core material for a bed, which is characterized in that the foamed molded article described above is used.

【0008】本発明において、密度0.920〜0.9
35g/cm3 の樹脂(A)としては例えば低密度ポリ
エチレンが挙げられ、更に具体的には分岐低密度ポリエ
チレン、直鎖状低密度ポリエチレン等が挙げられる。樹
脂(A)の融点は105〜125℃であることが好まし
い。
In the present invention, the density is 0.920 to 0.9.
Examples of the 35 g / cm 3 resin (A) include low density polyethylene, and more specifically, branched low density polyethylene, linear low density polyethylene and the like. The melting point of the resin (A) is preferably 105 to 125 ° C.

【0009】また、密度0.940〜0.970g/c
3 の樹脂(B)としては例えば高密度ポリエチレンが
挙げられる。樹脂(B)の融点は125〜140℃であ
ることが好ましい。
The density is 0.940 to 0.970 g / c.
Examples of the resin (B) of m 3 include high density polyethylene. The melting point of the resin (B) is preferably 125 to 140 ° C.

【0010】上記融点とは、樹脂約5mgを示差走査熱
量計によって10℃/分で200℃まで昇温した後、−
10℃/分で室温まで冷却し、再び10℃/分で200
℃まで昇温したときに得られるDSC曲線上の吸熱ピー
クの温度を意味する。尚、吸熱ピークが複数存在すると
きは最も高温側に位置するピークの温度とする。
The above melting point means that after about 5 mg of resin is heated to 200 ° C. at 10 ° C./minute by a differential scanning calorimeter,
Cool down to room temperature at 10 ° C / min and 200 again at 10 ° C / min
It means the temperature of the endothermic peak on the DSC curve obtained when the temperature is raised to ° C. When there are a plurality of endothermic peaks, the peak temperature is located on the highest temperature side.

【0011】上記した、DA ・CA +DB ・CB の値
〔樹脂(A)と樹脂(B)とを混合した混合樹脂の密
度〕が0.935g/cm3 以下であると、発泡成形し
たときの成形品はその収縮率が大きく、また充分な圧縮
強度を有しないものとなる。また0.945g/cm3
以上であると、発泡成形品を得るための成形温度を高く
しなければならずその結果得られた成形品は圧縮永久歪
などの回復物性が低下したものとなる。尚、本発明にお
いて混合樹脂とは、樹脂(A)と樹脂(B)とを均一に
溶融混練して得られたものを意味する。
When the value of D A · C A + D B · C B [the density of the mixed resin obtained by mixing the resin (A) and the resin (B)] is 0.935 g / cm 3 or less, foaming occurs. When molded, the molded product has a large shrinkage ratio and does not have sufficient compressive strength. Also 0.945 g / cm 3
When the above is the case, the molding temperature for obtaining the foamed molded product must be raised, and the resulting molded product has reduced recovery physical properties such as compression set. In the present invention, the mixed resin means a resin obtained by uniformly melting and kneading the resin (A) and the resin (B).

【0012】本発明において、混合樹脂に用いられる各
樹脂(A)、(B)のメルトインデックスは特に規定し
ないが、共に1〜20g/10分であることが好まし
い。また樹脂(A)と樹脂(B)の各メルトインデック
スの値は近似している方がよい。
In the present invention, the melt index of each of the resins (A) and (B) used in the mixed resin is not particularly specified, but it is preferable that both are 1 to 20 g / 10 minutes. The melt index values of the resin (A) and the resin (B) should be similar to each other.

【0013】本発明における発泡粒子は、例えば次に示
すような製造方法を用いて得ることができる。即ち、上
記各樹脂(A)、(B)を押出機に投入し、必要に応じ
てこれに各種添加剤を加え、これらを押出機内で加熱溶
融した後該溶融混合物を押出機よりストランド状に押し
出し、冷却後にペレタイザー等によってカットして粒状
とする。次いでこの粒状樹脂に電子線を照射するか、或
いは水等の分散媒に分散剤を加え、有機過酸化物と共に
密閉容器内に投入して攪拌しながら上記有機過酸化物の
分解温度以上に昇温した後冷却する等の方法により架橋
する。次いで別の密閉容器内に、得られた架橋混合樹脂
粒子、分散剤、水等の分散媒及び発泡剤を仕込み、密閉
容器内で攪拌しつつ所定の温度(発泡温度)まで昇温し
た後、密閉容器内から大気圧下に放出することにより発
泡粒子が得られる。尚、混合樹脂の架橋を行なうための
密閉容器と、発泡粒子を製造するための密閉容器とは同
じものであっても構わない。その場合、密閉容器内で混
合樹脂の架橋を実質的に終了させた後、容器内温度を発
泡温度に調整し、容器内に発泡剤を圧入し、容器内の圧
力が安定したところで容器内容物を大気圧下に放出する
ことで発泡粒子が得られる。
The expanded beads in the present invention can be obtained by using the following production method, for example. That is, each of the above resins (A) and (B) is charged into an extruder, various additives are added to the resin if necessary, and these are heated and melted in the extruder, and then the molten mixture is formed into a strand from the extruder. After extruding and cooling, cut into pellets with a pelletizer or the like. Then, the granular resin is irradiated with an electron beam, or a dispersant is added to a dispersion medium such as water, and the mixture is put into a closed container together with the organic peroxide and heated to a temperature not lower than the decomposition temperature of the organic peroxide while stirring. Crosslinking is performed by heating and then cooling. Then, in another closed container, the obtained crosslinked mixed resin particles, a dispersant, a dispersion medium such as water and a foaming agent are charged, and after heating in a closed container to a predetermined temperature (foaming temperature), Foamed particles can be obtained by discharging from a closed container under atmospheric pressure. The closed container for cross-linking the mixed resin and the closed container for producing the expanded beads may be the same. In that case, after the crosslinking of the mixed resin is substantially completed in the closed container, the temperature inside the container is adjusted to the foaming temperature, the foaming agent is pressed into the container, and the contents of the container are stabilized when the pressure inside the container is stable. Are released under atmospheric pressure to obtain expanded particles.

【0014】上記製造方法において、架橋された粒状樹
脂の架橋度としては、架橋後の粒状樹脂又は発泡粒子約
1gを100ccの沸騰キシレン中で8時間煮沸した
後、ステンレス製の200メッシュの金網でろ過し、不
溶分を80℃で12時間乾燥させた後の重量が、架橋前
の重量に対して20〜70%である架橋度が好ましい。
In the above-mentioned production method, the degree of crosslinking of the crosslinked granular resin is such that about 1 g of the crosslinked granular resin or expanded particles is boiled in 100 cc of boiling xylene for 8 hours, and then a stainless steel 200-mesh wire net is used. The degree of crosslinking is preferably such that the weight after filtering and drying the insoluble matter at 80 ° C. for 12 hours is 20 to 70% of the weight before crosslinking.

【0015】また上記方法において、架橋後の粒状樹脂
を発泡させる際に用いる発泡剤としては、窒素、酸素、
空気アルゴン等の無機ガス系のものを用いることが望ま
しいが、オゾン層破壊の虞れのないものであれば従来の
有機揮発性発泡剤を使用しても構わない。発泡剤の使用
量は得ようとする発泡粒子の密度や密閉容器の耐圧性に
応じて決められるが、通常は架橋後の粒状樹脂100重
量部あたり1〜50重量部である。
Further, in the above method, as the foaming agent used for foaming the crosslinked granular resin, nitrogen, oxygen,
It is desirable to use an inorganic gas type such as air argon, but a conventional organic volatile foaming agent may be used as long as there is no risk of ozone layer destruction. The amount of the foaming agent used is determined depending on the density of the foamed particles to be obtained and the pressure resistance of the closed container, but is usually 1 to 50 parts by weight per 100 parts by weight of the granular resin after crosslinking.

【0016】また上記方法において、架橋後の粒状樹脂
を発泡させる際の温度は、架橋前の粒状樹脂(混合樹
脂)の〔融点〕〜〔融点+80℃〕の範囲であるのが好
ましい。上記融点とは、混合樹脂約5mgを示差走査熱
量計によって10℃/分で200℃まで昇温した後、−
10℃/分で室温まで冷却し、再び10℃/分で200
℃まで昇温したときに得られるDSC曲線上の吸熱ピー
クの温度を意味する。尚、吸熱ピークが複数存在すると
きは最も高温側に位置するピークの温度とする。
In the above method, the temperature for foaming the granular resin after crosslinking is preferably in the range of [melting point] to [melting point + 80 ° C.] of the granular resin (mixed resin) before crosslinking. The above melting point means that after about 5 mg of the mixed resin is heated to 200 ° C. at 10 ° C./minute by a differential scanning calorimeter, −
Cool down to room temperature at 10 ° C / min and 200 again at 10 ° C / min
It means the temperature of the endothermic peak on the DSC curve obtained when the temperature is raised to ° C. When there are a plurality of endothermic peaks, the peak temperature is located on the highest temperature side.

【0017】本発明の発泡粒子は、更に次の効果を有す
る。即ち、発泡粒子を型内成形して発泡成形体を得る
際、本発明の発泡粒子は、従来の発泡粒子と比較して、
型内への発泡粒子の充填時間及び水蒸気加熱後の冷却時
間を共に短くできる(比較において金型形状は共に同じ
である)。この効果は、大きな体積(50000cm3
以上、好ましくは100000cm3 以上)を持つ型内
成形体を得ようとする場合に特に顕著に得られる。
The expanded beads of the present invention further have the following effects. That is, when the foamed particles are molded in-mold to obtain a foamed molded article, the foamed particles of the present invention are compared with conventional foamed particles,
Both the filling time of the expanded particles in the mold and the cooling time after heating with steam can be shortened (in comparison, the mold shapes are the same). This effect has a large volume (50,000 cm 3
The above is particularly remarkable when an in-mold molded product having 100,000 cm 3 or more) is to be obtained.

【0018】次に、本発明の発泡成形体について説明す
る。本発明の発泡成形体は、前記した架橋ポリエチレン
系樹脂発泡粒子を型内成形してなるものである。型内成
形の方法としては、発泡粒子を所定の形状を有する金型
内に充填した後、水蒸気で発泡粒子の軟化温度以上、
〔融点+30℃〕未満の範囲内の温度に加熱して発泡粒
子相互を金型内で融着一体化する等、従来公知の方法が
用いられる。
Next, the foamed molded article of the present invention will be described. The foamed molded product of the present invention is formed by in-mold molding of the above-mentioned crosslinked polyethylene resin foamed particles. As the method of in-mold molding, after filling the foamed particles into a mold having a predetermined shape, the temperature above the softening temperature of the foamed particles with steam,
A conventionally known method such as heating to a temperature within the range of [melting point + 30 ° C.] to fuse and integrate the expanded particles in the mold is used.

【0019】本発明の発泡成形体は以上のように構成さ
れているので、発泡粒子相互の融着性に優れており且つ
回復物性と圧縮強度の双方をバランス良く有しておりし
かも収縮率が小さく寸法精度に優れるという特徴を有し
ている。また、無機ガス系発泡剤を使用して得た従来の
架橋ポリエチレン系樹脂発泡粒子の場合、これを型内成
形すると、得られる発泡成形体の収縮率は大きくなる傾
向にあったが、本発明の特定の架橋混合樹脂粒子からな
る発泡粒子は、該発泡粒子が無機ガス系発泡剤を使用し
て得られたものであっても、これを型内成形して得られ
る発泡成形体の収縮率を低水準に維持することができ
る。そして以上のような性質を有する本発明の発泡成形
体は、例えばベッド用芯材として極めて好適に利用され
得る。
Since the foamed molded article of the present invention is constructed as described above, it has excellent fusion bonding properties between the foamed particles, has well-balanced recovery physical properties and compressive strength, and has a shrinkage ratio. It is small and has excellent dimensional accuracy. Further, in the case of the conventional crosslinked polyethylene resin foamed particles obtained by using the inorganic gas type foaming agent, when this is molded in the mold, the shrinkage ratio of the obtained foamed molded article tends to be large. The expanded particles composed of the specific cross-linked mixed resin particles described in 1., even if the expanded particles are obtained by using an inorganic gas type foaming agent, the shrinkage ratio of the foamed molded product obtained by in-molding this Can be maintained at a low level. The foamed molded product of the present invention having the above-mentioned properties can be very suitably used as, for example, a bed core material.

【0020】[0020]

【実施例】次に、具体的な実施例を挙げて本発明を更に
詳細に説明する。 実施例1〜3、比較例1〜9 まず、表1に示す中から選択した樹脂を表2に示す組み
合わせ及び混合比でブレンドし(比較例においては単独
で用いるものもある)、押出機にて混練溶融した後、ス
トランド状にして水中に押し出した後、ペレタイザーに
てカットして、長さ4mm、断面直径0.8mm、重量
7mgのミニペレット状に造粒した。次いで容量5リッ
トルのオートクレーブに、架橋剤としてジクミルパーオ
キサイドを所定量加え、分散剤としてカオリン5g、乳
化剤としてドデシルベンゼンスルホン酸ナトリウムを
0.25g、上記ペレット1kgを、発泡剤として85
gの二酸化炭素(ドライアイス)と共に水3000cc
に分散させ、攪拌しながら155℃まで加熱し、一定時
間保持して架橋、及び発泡剤の含浸を行なわせた後にそ
の時のオートクレーブ内の圧力に等しい圧力の二酸化炭
素ガスをオートクレーブ内に導入して、その圧力を保持
したままオートクレーブの一端を開放して上記ペレット
と水を同時に放出して上記ペレットを発泡せしめ、架橋
発泡粒子を得た。混合樹脂のDA ・CA +DB ・CB
値、得られた発泡粒子の発泡倍率を表2に併せて示す。
EXAMPLES Next, the present invention will be described in more detail with reference to specific examples. Examples 1 to 3 and Comparative Examples 1 to 9 First, the resins selected from those shown in Table 1 were blended in the combinations and the mixing ratios shown in Table 2 (there are some used alone in Comparative Examples), and the resulting mixture was mixed in an extruder. After kneading and melting, the mixture was extruded into water in the form of strands, cut with a pelletizer, and granulated into mini-pellets having a length of 4 mm, a cross-sectional diameter of 0.8 mm, and a weight of 7 mg. Next, a predetermined amount of dicumyl peroxide was added as a crosslinking agent to an autoclave having a capacity of 5 liters, 5 g of kaolin as a dispersant, 0.25 g of sodium dodecylbenzenesulfonate as an emulsifier, and 1 kg of the above pellets as a foaming agent of 85 g.
3000cc water with g carbon dioxide (dry ice)
Was dispersed in the autoclave, heated to 155 ° C. with stirring, held for a certain period of time to perform crosslinking and impregnation with a foaming agent, and then introduce carbon dioxide gas having a pressure equal to the pressure in the autoclave at that time into the autoclave. While maintaining the pressure, one end of the autoclave was opened to release the pellets and water at the same time to foam the pellets to obtain crosslinked expanded particles. The value of D A · C A + D B · C B of the mixed resin and the expansion ratio of the obtained expanded particles are also shown in Table 2.

【0021】上記各実施例、比較例で得られた発泡粒子
を金型(内寸法:厚さ50mm×300mm×300m
m)内に充填し、1.2〜3.0kg/cm2 Gの圧力
の水蒸気で加熱して成形体を得た。得られた成形体の融
着性、寸法精度、圧縮強度、回復物性について評価し
た。結果を表2に併せて示す。尚、上記各物性の測定方
法及び評価基準は以下の通りである。
The expanded particles obtained in each of the above Examples and Comparative Examples were molded into a mold (internal dimension: thickness 50 mm × 300 mm × 300 m).
m) was filled and heated with steam having a pressure of 1.2 to 3.0 kg / cm 2 G to obtain a molded body. The obtained molded product was evaluated for fusion property, dimensional accuracy, compressive strength, and recovered physical properties. The results are also shown in Table 2. The measuring methods and evaluation criteria of the above physical properties are as follows.

【0022】(1)融着性の測定方法及び評価基準 図1に示すように、厚さ10mm×幅50mm×長さ1
00mmとなるように発泡成形体を切断して得た試験体
1を上記長さ方向(図中a方向)に引っ張って破断させ
た。破断面Fを観察し、下記の評価基準に基づき評価し
た。 ○・・・破断面の材料破壊が60%以上 △・・・破断面の材料破壊が40%以上、60%未満 ×・・・破断面の材料破壊が40%未満
(1) Measuring method of fusion property and evaluation standard As shown in FIG. 1, thickness 10 mm × width 50 mm × length 1
The test body 1 obtained by cutting the foamed molded body to a length of 00 mm was pulled and broken in the length direction (direction a in the figure). The fracture surface F was observed and evaluated based on the following evaluation criteria. ○: Material fracture of fracture surface is 60% or more △: Material fracture of fracture surface is 40% or more and less than 60% × ・ ・ ・ Material fracture of fracture surface is less than 40%

【0023】(2)寸法精度の測定方法及び評価基準 成形直後の発泡成形体を60℃のオーブン中で24時間
養生した後、更に室温の下で24時間放置後、発泡成形
体の面方向の収縮率を測定した。収縮率は次式によって
求めた。 収縮率=〔(金型寸法−成形品寸法)/金型寸法〕×1
00(%) 測定によって得られた収縮率の値を下記の評価基準に基
づき評価した。 ○・・・面方向の300mm×300mmの両方向の収
縮率がそれぞれ3%未満 △・・・面方向の300mm×300mmの両方向の収
縮率がそれぞれ3%以上、4%未満 ×・・・面方向の300mm×300mmの両方向の収
縮率がそれぞれ4%以上
(2) Measuring Method of Dimensional Accuracy and Evaluation Criteria The foamed molded body immediately after molding was aged in an oven at 60 ° C. for 24 hours and then left at room temperature for 24 hours, and then the surface direction of the foamed molded body was measured. The shrinkage ratio was measured. The shrinkage rate was calculated by the following formula. Shrinkage rate = [(die size-molded product size) / die size] x 1
00 (%) The value of the shrinkage rate obtained by the measurement was evaluated based on the following evaluation criteria. ◯: Shrinkage in each direction of 300 mm × 300 mm in the surface direction is less than 3% Δ: Shrinkage in each direction of 300 mm × 300 mm in the surface direction is 3% or more and less than 4% ×: Surface direction Shrinkage in both directions of 300 mm x 300 mm is 4% or more

【0024】(3)圧縮強度の測定方法及び評価基準 発泡成形体の25%圧縮強度S2 (但し、厚さ25mm
×長さ50mm×幅50mmの試験体を10mm/mi
nで25%歪むまで圧縮したときの応力)を測定し、該
2 と、試験体の密度d(圧縮前)と同一密度の従来の
発泡成形体(樹脂1を基材とするもの)の圧縮強度S1
の比を求め、以下の評価基準に基づいて評価した。 ○・・・S2 ≧1.6S1 △・・・S1 <S2 <1.6S1 ×・・・S2 ≦S1 尚、S1 はdの式として表すことができ、S1 =209
2 +3.55d+0.266である。図2はS1 をグ
ラフ化し、更に該S1 に対し上記評価基準の範囲に相当
するS2 の範囲をグラフ中、領域として示した図であ
る。
(3) Method for measuring compressive strength and evaluation criteria 25% compressive strength S 2 of the foamed molded product (however, thickness 25 mm
X 50 mm long x 50 mm wide test piece 10 mm / mi
The stress at the time of compressing until it is distorted by 25% with n) is measured, and the S 2 and the conventional foamed molded product (having resin 1 as a base material) having the same density as the density d (before compression) of the test body Compressive strength S 1
Was calculated and evaluated based on the following evaluation criteria. ◯ ... S 2 ≧ 1.6S 1 Δ ... S 1 <S 2 <1.6S 1 × ... S 2 ≦ S 1 Note that S 1 can be expressed as the equation of d, and S 1 = 209
It is a d 2 + 3.55d + 0.266. Figure 2 is a diagram graphed S 1, further shows the S 1 to the graph the range of S 2 corresponding to the range of the criteria, as a region.

【0025】(4)回復物性の測定方法及び評価基準 厚さ25mm×長さ50mm×幅50mmの試験体2
を、図3(a)に示す如くして押圧板3に挟んで速度1
0mm/分で矢印bのように押圧板の間隔を狭めて元の
厚みの25%にまで圧縮(歪量が元の厚みの75%にな
るまで圧縮)した後、直ちに同速度で矢印cのように押
圧板の間隔を広げて歪を取り去っていった。歪を取り去
って圧縮応力が0となったときの押圧方向の残留歪の量
(%)を測定し、以下の評価基準に基づいて評価した。 ○・・・残留歪率が20%未満 ×・・・残留歪率が20%以上 図3(b)は上記の方法で試験体を歪ませた後その歪を
取り去っていったときの上記試験体の歪率の変化に対す
る内部応力の変化の例を表すグラフである。図中Lは応
力−歪曲線、Kは回復曲線、Sは残留歪量(%)を表
す。
(4) Method for measuring recovery properties and evaluation criteria Test piece 2 having a thickness of 25 mm × a length of 50 mm × a width of 50 mm
3 is sandwiched between the pressing plates 3 as shown in FIG.
After narrowing the gap between the pressing plates at 0 mm / min as shown by the arrow b and compressing it to 25% of the original thickness (compressing until the strain amount becomes 75% of the original thickness), immediately at the same speed as indicated by the arrow c. Thus, the gap between the pressing plates was widened to remove the distortion. The amount (%) of residual strain in the pressing direction when the strain was removed and the compressive stress became 0 was measured and evaluated based on the following evaluation criteria. ◯: Residual strain rate is less than 20% ×: Residual strain rate is 20% or more FIG. 3B shows the above test when the strain is removed after the test body is strained by the above method. It is a graph showing the example of the change of the internal stress with respect to the change of the strain rate of a body. In the figure, L represents a stress-strain curve, K represents a recovery curve, and S represents a residual strain amount (%).

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表1及び表2から判るように、本発明の架
橋ポリエチレン系樹脂発泡粒子を用いて型内成形してな
る発泡成形体は、従来のポリエチレン樹脂発泡粒子を用
いてなるものと比較して、発泡粒子相互の融着性に優れ
且つ回復物性と圧縮強度との双方をバランス良く有し、
しかも寸法精度においても優れている。
As can be seen from Tables 1 and 2, the foamed molded article obtained by in-mold molding using the cross-linked polyethylene resin foamed particles of the present invention is compared with the one using conventional polyethylene resin foamed particles. The foamed particles have excellent fusion bonding properties, and have well-balanced recovery physical properties and compressive strength.
Moreover, it has excellent dimensional accuracy.

【0029】次に、実施例1の発泡粒子と比較例1の発
泡粒子をそれぞれ使用して、縦横それぞれ120cm、
厚み20cm(厚み方向に肉逃げが複数形成されている
ため体積は約192000cm3 )のベッド用芯材を型
内成形し、その際の、発泡粒子の型内への充填時間、水
蒸気加熱時間、冷却時間をそれぞれ測定した。結果を表
3に示す。尚、充填及び冷却は双方同一条件、加熱条件
だけは、実施例1の発泡粒子使用の場合は圧力1.8k
g/cm2 Gの水蒸気を使用し、比較例1の発泡粒子使
用の場合は圧力1.2kg/cm2 Gの水蒸気を使用し
た。
Next, using the expanded particles of Example 1 and the expanded particles of Comparative Example 1, respectively, 120 cm in length and width,
A bed core material having a thickness of 20 cm (the volume is about 192000 cm 3 because a plurality of meat reliefs are formed in the thickness direction) is molded in a mold, and at that time, time for filling the foamed particles into the mold, steam heating time, Each cooling time was measured. The results are shown in Table 3. It should be noted that the filling and cooling conditions were the same, and only the heating conditions were such that the pressure was 1.8 k when the expanded beads of Example 1 were used.
Water vapor of g / cm 2 G was used, and when the expanded particles of Comparative Example 1 were used, water vapor of pressure 1.2 kg / cm 2 G was used.

【0030】[0030]

【表3】 [Table 3]

【0031】表3から判るように、本発明の架橋ポリエ
チレン系樹脂発泡粒子は、従来の発泡粒子と比較して、
型内成形する際、型内への発泡粒子の充填時間及び水蒸
気加熱後の冷却時間を短くできる。
As can be seen from Table 3, the expanded beads of the crosslinked polyethylene resin of the present invention are compared with the conventional expanded particles.
When molding in the mold, the time required for filling the foamed particles in the mold and the cooling time after heating with steam can be shortened.

【0032】[0032]

【発明の効果】以上説明したように、本発明の架橋ポリ
エチレン系樹脂発泡粒子は、密度0.920〜0.93
5g/cm3 のポリエチレン系樹脂(A)を50〜90
wt%と、密度0.940〜0.970g/cm3 のポ
リエチレン系樹脂(B)を10〜50wt%とを混合し
て密度が0.935g/cm3 超、0.945g/cm
3 未満となるようにした混合樹脂を架橋して発泡させて
なるものであるので、該発泡粒子を用いれば、発泡粒子
相互の融着性を良好に保ちながら、従来の発泡成形体と
比較した場合、低密度ポリエチレン樹脂単独の基材樹脂
からなる発泡粒子の成形体と比較して圧縮強度が高く、
また低密度ポリエチレンや中密度ポリエチレン樹脂単独
の基材樹脂からなる発泡粒子の成形体と比較して成形体
の収縮率が小さく寸法精度に優れ、また高密度ポリエチ
レン樹脂単独の基材樹脂からなる発泡粒子の成形体と比
較して回復物性に優れるという、良好な融着性を有しな
がら且つ回復物性と圧縮強度の双方をバランス良く有す
る発泡成形体を得ることができると共に、更に発泡剤と
して無機ガスを用いても収縮率が小さく寸法精度に優れ
る発泡成形体を得ることができるという効果を奏する。
As described above, the crosslinked polyethylene resin expanded particles of the present invention have a density of 0.920 to 0.93.
50 to 90 g of polyethylene resin (A) of 5 g / cm 3
wt% and a density 0.940 to 0.970 g / polyethylene of cm 3 Resin (B) the range of 10 to 50 wt% and the mixed density 0.935 g / cm 3 greater, 0.945 g / cm
Since it is formed by cross-linking and foaming the mixed resin so as to be less than 3, by using the expanded particles, while maintaining good fusion bond between the expanded particles, compared with the conventional foam molded article In this case, the compressive strength is higher than that of a molded product of expanded particles made of a low-density polyethylene resin alone as a base resin,
In addition, the shrinkage rate of the molded product is small and the dimensional accuracy is excellent compared to the molded product of expanded particles made of low-density polyethylene or medium-density polyethylene resin alone as the base resin. It is possible to obtain a foamed molded product having excellent recovery properties as compared with a molded product of particles, that is, having a good balance of both recovery physical properties and compression strength while having good fusion properties, and further, as a foaming agent, an inorganic material. Even if a gas is used, there is an effect that it is possible to obtain a foamed molded product having a small shrinkage rate and excellent dimensional accuracy.

【0033】また、本発明の発泡成形体は、上記架橋ポ
リエチレン系樹脂発泡粒子を型内成形して得られたもの
であるので、従来の型内発泡成形体と比較して、発泡粒
子相互の融着性が良好で且つ回復物性と圧縮強度の双方
をバランス良く有し、しかも収縮率が小さく優れた寸法
精度を有し、例えばベッド用芯材として極めて好適に利
用され得るという効果を有する。
Further, since the foamed molded article of the present invention is obtained by in-mold molding of the above-mentioned cross-linked polyethylene resin foamed particles, compared to the conventional in-mold foamed molded article, the foamed particles are not It has good fusion properties, good balance between recovery properties and compressive strength, small shrinkage rate and excellent dimensional accuracy, and has an effect that it can be used very suitably as a bed core material, for example.

【図面の簡単な説明】[Brief description of drawings]

【図1】発泡成形体の融着性の測定方法について説明す
るための図である。
FIG. 1 is a diagram for explaining a method for measuring the fusion bondability of a foam molded article.

【図2】発泡成形体の圧縮強度の測定方法について説明
するための図である。
FIG. 2 is a diagram for explaining a method for measuring the compressive strength of a foamed molded product.

【図3】(a)は発泡成形体の回復物性の測定方法につ
いて説明するための図、(b)は試験体の回復物性の測
定に際して記録される応力−歪曲線及び回復曲線の例で
ある。
FIG. 3 (a) is a diagram for explaining a method for measuring recovery physical properties of a foamed molded article, and FIG. 3 (b) is an example of a stress-strain curve and a recovery curve recorded when measuring recovery physical properties of a test body. .

【符号の説明】[Explanation of symbols]

1、2 発泡成形体から採取した試験体 3 押圧板 L 応力−歪曲線 K 回復曲線 S 残留歪量(%) 1, 2 Test body sampled from foamed body 3 Press plate L Stress-strain curve K Recovery curve S Residual strain amount (%)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 密度0.920〜0.935g/cm3
のポリエチレン系樹脂(A)を50〜90wt%と、密
度0.940〜0.970g/cm3 のポリエチレン系
樹脂(B)を10〜50wt%との混合樹脂を架橋して
発泡させてなる発泡粒子であって、上記混合樹脂におけ
る樹脂(A)と樹脂(B)の密度及び混合比の関係が下
記式を満足するものであることを特徴とする架橋ポリエ
チレン系樹脂発泡粒子。 0.935<DA ・CA +DB ・CB <0.945
(CA +CB =1) DA :樹脂(A)の密度(g/cm3 ) DB :樹脂(B)の密度(g/cm3 ) CA :樹脂(A)の重量比 CB :樹脂(B)の重量比 DA ・CA +DB ・CB :混合樹脂の密度
1. A density of 0.920 to 0.935 g / cm 3.
Of 50 to 90 wt% of the polyethylene resin (A) and 10 to 50 wt% of the polyethylene resin (B) having a density of 0.940 to 0.970 g / cm 3 are crosslinked and foamed. A crosslinked polyethylene resin foamed particle, which is a particle, wherein the relationship between the density and the mixing ratio of the resin (A) and the resin (B) in the above mixed resin satisfies the following formula. 0.935 <D A · C A + D B · C B <0.945
(C A + C B = 1) D A : Density of resin (A) (g / cm 3 ) D B : Density of resin (B) (g / cm 3 ) C A : Weight ratio of resin (A) C B : Resin (B) weight ratio D A · C A + D B · C B : Density of mixed resin
【請求項2】 発泡粒子が無機ガス系発泡剤を使用して
発泡されてなるものである請求項1記載の架橋ポリエチ
レン系樹脂発泡粒子。
2. The crosslinked polyethylene resin foamed particles according to claim 1, wherein the foamed particles are foamed using an inorganic gas type foaming agent.
【請求項3】 請求項1又は2記載の架橋ポリエチレン
系樹脂発泡粒子を型内成形してなることを特徴とする発
泡成形体。
3. A foamed molded article obtained by molding the crosslinked polyethylene resin foamed particles according to claim 1 or 2 in a mold.
【請求項4】 請求項3記載の発泡成形体によって構成
されていることを特徴とするベッド用芯材。
4. A bed core material comprising the foamed molded article according to claim 3.
JP25464494A 1994-09-22 1994-09-22 Crosslinked expanded polyethylene resin particle, expanded molding made therefrom, and bed core material made of the molding Pending JPH0892407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25464494A JPH0892407A (en) 1994-09-22 1994-09-22 Crosslinked expanded polyethylene resin particle, expanded molding made therefrom, and bed core material made of the molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25464494A JPH0892407A (en) 1994-09-22 1994-09-22 Crosslinked expanded polyethylene resin particle, expanded molding made therefrom, and bed core material made of the molding

Publications (1)

Publication Number Publication Date
JPH0892407A true JPH0892407A (en) 1996-04-09

Family

ID=17267888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25464494A Pending JPH0892407A (en) 1994-09-22 1994-09-22 Crosslinked expanded polyethylene resin particle, expanded molding made therefrom, and bed core material made of the molding

Country Status (1)

Country Link
JP (1) JPH0892407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084245A1 (en) * 2016-11-04 2018-05-11 株式会社ジェイエスピー Foam particles and foam particle molded body
DE112018001921T5 (en) 2017-04-05 2019-12-12 Advics Co., Ltd. Brake control device for a vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018084245A1 (en) * 2016-11-04 2018-05-11 株式会社ジェイエスピー Foam particles and foam particle molded body
US11174365B2 (en) 2016-11-04 2021-11-16 Jsp Corporation Foam particles and foam particle molded body
DE112018001921T5 (en) 2017-04-05 2019-12-12 Advics Co., Ltd. Brake control device for a vehicle

Similar Documents

Publication Publication Date Title
JP4859076B2 (en) Method for producing foamed molded product in polypropylene resin mold
JPH0313057B2 (en)
KR960013071B1 (en) Process for production of expansion - molded article in a mold of linear low density polyethylene resins
JPS63183832A (en) Manufacture of polypropylene resin in-mold foam molding
KR20180017125A (en) Thermoplastic resin expanded particles
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP3638960B2 (en) Polyolefin resin expanded particles and method for producing the same
JPH0559139B2 (en)
JP3858517B2 (en) Polypropylene resin pre-expanded particles, and method for producing the pre-expanded particles and in-mold foam molding
JP6961607B2 (en) Foamed particle molded product
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP2777429B2 (en) Pre-expanded polypropylene resin particles and method for producing the same
JPH0892407A (en) Crosslinked expanded polyethylene resin particle, expanded molding made therefrom, and bed core material made of the molding
JPS60166442A (en) Curing method of polyolefin expansion molded shape
JP4629313B2 (en) Method for producing polypropylene resin in-mold foam molded body and in-mold foam molded body
JP2841303B2 (en) Foaming resin composition and foamed molded article thereof
JPH0657435B2 (en) In-mold foam molding of polypropylene resin
JPH11172034A (en) Non-crosslinked, straight-chain, low-density polyethylene resin expanded particle and production thereof
JP5399126B2 (en) Method for producing polyolefin resin expanded particles and polyolefin resin expanded particles
JPS6244778B2 (en)
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
JP3020296B2 (en) Method for producing non-crosslinked linear low-density polyethylene resin expanded particles
JPH08113667A (en) Molded linear low-density polyethylene resin foam and its production
JP2023019516A (en) Polypropylene-based resin foam particle and method for producing the same
JPS6090228A (en) Production of preliminarily expanded particle of polypropylene based resin