JPH0892312A - Polymeric compound having quantitatively having vinylidene group at terminal, its production and resist material using the same polymeric compound - Google Patents

Polymeric compound having quantitatively having vinylidene group at terminal, its production and resist material using the same polymeric compound

Info

Publication number
JPH0892312A
JPH0892312A JP22803994A JP22803994A JPH0892312A JP H0892312 A JPH0892312 A JP H0892312A JP 22803994 A JP22803994 A JP 22803994A JP 22803994 A JP22803994 A JP 22803994A JP H0892312 A JPH0892312 A JP H0892312A
Authority
JP
Japan
Prior art keywords
group
polymeric compound
terminal
vinyl monomer
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22803994A
Other languages
Japanese (ja)
Other versions
JP3312349B2 (en
Inventor
Masao Kato
政雄 加藤
Yukio Nagasaki
幸夫 長崎
Noriyuki Yamazaki
範幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP22803994A priority Critical patent/JP3312349B2/en
Publication of JPH0892312A publication Critical patent/JPH0892312A/en
Application granted granted Critical
Publication of JP3312349B2 publication Critical patent/JP3312349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: To obtain a polymeric compound, capable of providing a resist of a high sensitivity and containing vinylidene quantitatively introduced into the terminal in high yield by carrying out the anionic polymerization of a vinyl monomer in the presence of an organometallic initiator, adding a vinyl monomer containing a halogen thereto and conducting the eliminating reaction. CONSTITUTION: This polymeric compound has quantitatively a vinylidene group structure at the terminal represented by the formula [R is an optional initiator fragment; R1 and R2 are each H, a 1-10C alkyl, an aryl or an aralkyl; R3 and R4 are each H, a 1-10C alkyl, an aryl, an aralkyl, F, Cl or Br; (n) is 5-10000]. This method for producing the polymeric compound comprises carrying out the anionic polymerization of a vinyl monomer in the presence of an organometallic initiator such as butyl-lithium or sodium naphthalene, then adding a vinyl monomer containing a halogen thereto and subsequently conduct the eliminating reaction. Furthermore, this resist material is obtained by depolymerizing the compound with visible light, electron rays, X-rays, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は末端に定量的にビニリデ
ン基を有する新規な高分子化合物、その製造方法及び該
高分子化合物を用いたレジスト材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel polymer compound having a quantitative vinylidene group at its terminal, a method for producing the same, and a resist material using the polymer compound.

【0002】[0002]

【従来の技術】従来より高分子化合物の末端に不飽和基
を導入する方法はマクロモノマ−合成法として広く試み
られてきた(山下雄也編著、マクロモノマ−の化学と工
業、アイピ−シ−出版部1989年)。しかしながらそ
れらの多くはブロックポリマ−やグラフトポリマ−の前
駆体として合成されて来ているのが現状である。したが
って、マクロモノマ−として得られているポリマ−の多
くは光や電子線などによて重合反応を示す。本発明者等
は光や電子線等の照射によって効率的に反応活性を示
し、生じた活性種が成長鎖と同様構造を有することによ
り解重合せしめ、高効率的に解重合をするポジ型レジス
トを目指し、検討を重ねた。一般にビニルモノマ−のカ
チオン重合反応では連鎖移動反応(プロトン移動)によ
り一部構造式(A)に示すポリマ−が生成しているもの
の、定量的にこれらの不飽和末端を導入した例はない。
2. Description of the Related Art Conventionally, a method of introducing an unsaturated group into a terminal of a polymer compound has been widely tried as a method for synthesizing a macromonomer (edited by Yuya Yamashita, Chemistry and Industry of Macromonomer, IP Publications 1989). Year). However, most of them are currently synthesized as precursors of block polymers and graft polymers. Therefore, most of the polymers obtained as macromonomers show a polymerization reaction by light or electron beam. The present inventors have shown that a positive resist which shows reactive activity efficiently by irradiation with light or electron beam and depolymerizes due to the generated active species having a structure similar to that of the growing chain, resulting in highly efficient depolymerization. Aimed at, repeated examination. Generally, in a cationic polymerization reaction of a vinyl monomer, a polymer represented by the structural formula (A) is partially produced by a chain transfer reaction (proton transfer), but there is no case where these unsaturated terminals are quantitatively introduced.

【0003】[0003]

【発明が解決しようとする課題】本発明者らは新規な合
成法によって高収率で定量的に不飽和基を末端構造とし
て導入した構造式(A)を有する高分子化合物を得るこ
とに成功し、本発明を完成したもので、本発明の目的
は、新規な構造法によって高収率で定量的に不飽和基で
あるビニリデン基を末端に導入した構造式(A)を有す
る高分子化合物及びその製造方法を提供することであ
る。
The present inventors succeeded in obtaining a polymer compound having a structural formula (A) in which an unsaturated group is quantitatively introduced as a terminal structure in a high yield by a novel synthetic method. The present invention has been completed, and an object of the present invention is to provide a polymer compound having a structural formula (A) in which a vinylidene group, which is an unsaturated group, is quantitatively introduced at a terminal in a high yield by a novel structural method. And a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明の要旨は、下記構
造式(A)で表わされる末端に定量的にビニリデン基構
造有する高分子化合物である。
The gist of the present invention is a polymer compound having a vinylidene group structure quantitatively at the terminal represented by the following structural formula (A).

【0005】[0005]

【化4】 [Chemical 4]

【0006】(式中、Rは任意の開始剤断片を示す。R
1、R2は水素または炭素数1から10のアルキル基、ア
リ−ル基、アラルキル基を表す。また、R3、R4、は水
素または炭素数1から10のアルキル基、アリ−ル基、
アラルキル基またはF、Cl、Brなどのハロゲンを表
す。nは5〜10、000の整数を表す。) 本発明の化合物(A)はブチルリチウムやナトリウムナ
フタレンのような有機金属を開始剤としたビニルモノマ
−のアニオン重合とそれに続くハロゲン含有ビニルモノ
マ−の付加、脱離反応の過程を経て合成される。この合
成過程を、例えば反応開始剤としてブチルリチウムを用
い、α−メチルスチレンの場合について化学式で示すと
次の通り一端にブチル基、他端にリチウムを有する重合
体(1)が得られる。
(In the formula, R represents an arbitrary initiator fragment. R
1 and R 2 represent hydrogen or an alkyl group having 1 to 10 carbon atoms, an aryl group or an aralkyl group. R 3 and R 4 are hydrogen or an alkyl group having 1 to 10 carbon atoms, an aryl group,
Represents an aralkyl group or halogen such as F, Cl, Br. n represents an integer of 5 to 10,000. The compound (A) of the present invention is synthesized through a process of anionic polymerization of a vinyl monomer using an organic metal such as butyllithium or sodium naphthalene as an initiator and subsequent addition and elimination reactions of a halogen-containing vinyl monomer. This synthetic process, for example, using butyllithium as the reaction initiator and showing the chemical formula in the case of α-methylstyrene, the polymer (1) having a butyl group at one end and lithium at the other end is obtained as follows.

【0007】[0007]

【化5】 [Chemical 5]

【0008】この重合体(1)に末端修飾剤を作用させ
ると次の化学式で示されるように脱リチウムを生じる。
When this polymer (1) is treated with an end modifier, lithium is removed as shown by the following chemical formula.

【0009】[0009]

【化6】 [Chemical 6]

【0010】また、末端修飾剤としてα−モノクロロメ
チルスチレンを用いた場合には次のようになる。
Further, when α-monochloromethylstyrene is used as the terminal modifying agent, it is as follows.

【0011】[0011]

【化7】 [Chemical 7]

【0012】これを一般式で書くと次のようになり、末
端に定量的ビニリデン基が結合した本発明にかかる化合
物(A)が得られる。
This can be expressed by the following general formula, and the compound (A) according to the present invention having a quantitative vinylidene group bonded to the terminal can be obtained.

【0013】[0013]

【化8】 Embedded image

【0014】この反応に使用されるモノマ−類はリビン
グ的にアニオン重合するモノマ−ならば何れも可能であ
るが、特にパラ位に置換基を有するα−メチルスチレン
誘導体が好ましい。なお、その他のモノマ−としてはス
チレン、α−メチルスチレン、イソプレン、ブタジエン
等の共役炭化水素モノマ−やエチレン、アクリル酸エス
テルやメタクリル酸エステル、ジアルキルアクリルアミ
ド、ビニルケトンなどの共役極性モノマ−類等を挙げる
ことができる。このビニルモノマ−のアニオン重合法は
従来のアニオン重合法と異ならない。即ち、有機金属開
始剤を使用し、後述する溶媒下、温度、時間の条件のも
とに重合させる。得られたポリマ−の重合度としては5
〜10,000である。
Any monomer can be used in this reaction as long as it is a monomer that anionically polymerizes in a living manner, but an α-methylstyrene derivative having a substituent at the para position is particularly preferable. Examples of other monomers include conjugated hydrocarbon monomers such as styrene, α-methylstyrene, isoprene and butadiene, and conjugated polar monomers such as ethylene, acrylic acid ester and methacrylic acid ester, dialkyl acrylamide and vinyl ketone. be able to. The anionic polymerization method of this vinyl monomer is not different from the conventional anionic polymerization method. That is, using an organometallic initiator, polymerization is performed under the conditions of temperature and time under a solvent described later. The degree of polymerization of the obtained polymer is 5
~ 10,000.

【0015】この反応に使用される有機金属系開始剤は
メチルリチウム、ブチルリチウムなどの有機リチウム、
ナトリウムナフタレン、カリウムナフタレン、クミルナ
フタレンミルカリウム等の有機ナトリウムや有機カリウ
ム、リチウムジイソプロピルアミドやカリウムジイソプ
ロピルアミド等の有機金属アミド類など用いられる。ま
た、この開始剤としてα−メチルスチレンリビングオリ
ゴマ−なども使用できる。これらの開始剤の使用量は、
モノマ−に対するモル比で0.00001ないし100
倍モルで使用可能であり、0.0001倍ないし1倍モ
ルがより好ましい。
The organometallic initiator used in this reaction is an organolithium such as methyllithium or butyllithium,
Organic sodium and organic potassium such as sodium naphthalene, potassium naphthalene and cumyl naphthalene mil potassium, and organic metal amides such as lithium diisopropylamide and potassium diisopropylamide are used. Further, α-methylstyrene living oligomer and the like can be used as the initiator. The amount of these initiators used is
The molar ratio to the monomer is 0.00001 to 100
It can be used in a double mole, and a 0.0001-fold to 1-fold mole is more preferable.

【0016】この反応で用いられる末端修飾剤はα−ト
リフルオロメチルスチレン、α−ジフルオロメチルスチ
レン、α−フルオロメチルスチレン、α−トリブロモメ
チルスチレン、α−ジブロモメチルスチレン、α−ブロ
モメチルスチレン、α−トリクロロメチルスチレン、α
−ジクロロメチルスチレン、α−クロロメチルスチレン
等α位にハロゲノメチル基を有するα−メチルスチレン
誘導体等を挙げることができる。さらにα位にアルコキ
シメチル基、シアノメチル基などの脱離基を有するスチ
レン誘導体なども使用可能である。これらの末端修飾剤
の生成ポリマ−に対するモル比は0.01ないし100
倍モルで使用可能であり、1倍モルないし10倍モルが
より好ましい。
The terminal modifier used in this reaction is α-trifluoromethylstyrene, α-difluoromethylstyrene, α-fluoromethylstyrene, α-tribromomethylstyrene, α-dibromomethylstyrene, α-bromomethylstyrene, α-trichloromethylstyrene, α
-Dichloromethylstyrene, α-chloromethylstyrene and the like, and α-methylstyrene derivatives having a halogenomethyl group at the α-position can be mentioned. Further, a styrene derivative having a leaving group such as an alkoxymethyl group or a cyanomethyl group at the α-position can be used. The molar ratio of these end modifiers to the polymer produced is 0.01 to 100.
It can be used in a double mole, and a 1-fold to 10-fold mole is more preferable.

【0017】本発明の反応は、不活性溶媒の存在下で行
うこともできる。溶媒としてはジエチルエ−テル、ジオ
キサン、テトラヒドロフラン、ジメトキシエタン、ジグ
ライム等のエ−テル類、ペンタン、ヘキサン、シクロヘ
キサン、オクタン等の脂肪属炭化水素、ベンゼン、トル
エン等の芳香属炭化水素ジメチルスルホキシド、N,N
−ジメチルホルムアミド、ヘキサメチルホスホリックト
リアミド等の非プロトン性極性溶媒等、反応条件下でア
ルカリ金属触媒と反応しない液体を用いることができ
る。この中でテトラヒドロフラン等のエ−テル類、ベン
ゼン等の芳香属炭化水素類及びヘキサン等の脂肪属炭化
水素類及びヘキサン等の脂肪属炭化水素類が好ましい。
The reaction of the present invention can also be carried out in the presence of an inert solvent. Examples of the solvent include ethers such as diethyl ether, dioxane, tetrahydrofuran, dimethoxyethane, and diglyme, aliphatic hydrocarbons such as pentane, hexane, cyclohexane, and octane, benzene, aromatic hydrocarbons such as toluene dimethyl sulfoxide, N, N
A liquid that does not react with the alkali metal catalyst under the reaction conditions, such as an aprotic polar solvent such as dimethylformamide or hexamethylphosphoric triamide, can be used. Of these, ethers such as tetrahydrofuran, aromatic hydrocarbons such as benzene, aliphatic hydrocarbons such as hexane, and aliphatic hydrocarbons such as hexane are preferable.

【0018】用いる溶媒の量は体積でモノマ−の0.1
ないし1000倍量が好ましく、より好ましくは0.5
ないし100倍量である。溶媒の相対量が多くなると反
応は一般に遅くなる。本発明において反応を行う温度に
ついては特に制限はないが、−150℃ないし150℃
が好ましくより好ましくは−100℃ないし0℃であ
る。また反応時間に制限はないが1分ないし1000時
間が好ましく、更に好ましくは10分ないし100時間
である。反応条件、目的物によって反応速度が異なるの
で、ガスクロマトグラフィ−や液体クロマトグラフィ−
等で原料や生成物の定量を行い反応終了時間を決定する
ことが望ましい。
The amount of solvent used is 0.1 of the volume of the monomer.
To 1000 times, preferably 0.5
To 100 times the amount. The reaction is generally slower with higher relative amounts of solvent. The temperature for carrying out the reaction in the present invention is not particularly limited, but is -150 ° C to 150 ° C.
Is more preferably -100 ° C to 0 ° C. The reaction time is not limited, but is preferably 1 minute to 1000 hours, more preferably 10 minutes to 100 hours. Since the reaction rate varies depending on the reaction conditions and the target product, gas chromatography or liquid chromatography-
It is desirable to determine the end time of the reaction by quantifying the raw materials and products by means such as.

【0019】本発明で得られた構造式(A)の高分子化
合物は末端に紫外光、電子線等に感受性の高い不飽和基
であるビニリデン基が定量的に導入されているので、紫
外光、電子線等により効率良く解重合する。従来、主鎖
に4級炭素数を有するビニル型ポリマ−は紫外線、電子
線等により主鎖切断が起こるものの、同時に側鎖基によ
る架橋反応も併発するため、いままで高性能のポジ型材
料がなかった。しかし、本発明にかかる構造式(A)の
高分子化合物は紫外光、電子線等により効率良く解重合
する。この過程を次に示す。
The polymer compound of the structural formula (A) obtained in the present invention has a vinylidene group, which is an unsaturated group highly sensitive to ultraviolet light and electron beam, introduced quantitatively at the terminal. , Efficiently depolymerize by electron beam. Conventionally, a vinyl-type polymer having a quaternary carbon number in the main chain causes the main chain to be cleaved by ultraviolet rays, electron beams, etc., but at the same time, a cross-linking reaction by a side chain group also occurs. There wasn't. However, the polymer compound of the structural formula (A) according to the present invention is efficiently depolymerized by ultraviolet light, electron beam or the like. This process is shown below.

【0020】[0020]

【化9】 [Chemical 9]

【0021】即ち、構造式(A)の高分子化合物は紫外
光、電子線等により照射部分は全てモノマ−に解重合し
て可溶性となるので新規な高性能ポジ型レジスト材料を
提供することができた。しかして、上記化合物(A)よ
りレジスト膜を形成するには、化合物(A)を溶媒に溶
解させ、スピンナ−等で薄膜形成させることによって得
られる。その際使用する溶媒としてはジエチルエ−テ
ル、ジオキサン、テトラヒドロフラン、ジメトキシエタ
ン、ジグライム等のエ−テル類、ペンタン、ヘキサン、
シクロヘキサン、オクタン等の脂肪属炭化水素、ベンゼ
ン、トルエン等の芳香族炭化水素ジメチルスルホキシ
ド、N、N−ジメチルホルムアミド、ヘキサメチルホス
ホリックトリアミド等の非プロトン性極性溶媒等を用い
ることができる。溶液の濃度は体積で化合物(A)の
0.1ないし1000倍量が好ましく、より好ましくは
1ないし20倍量である。溶媒の相対量が多くなると一
般に膜は薄くなる。
That is, the polymer compound represented by the structural formula (A) is entirely depolymerized into a monomer by UV light, electron beam, etc., and becomes soluble, so that a novel high-performance positive resist material can be provided. did it. In order to form a resist film from the compound (A), the compound (A) is dissolved in a solvent and a thin film is formed by a spinner or the like. As the solvent used at that time, ethers such as diethyl ether, dioxane, tetrahydrofuran, dimethoxyethane, diglyme, pentane, hexane,
Aliphatic hydrocarbons such as cyclohexane and octane, aromatic hydrocarbons such as benzene and toluene, dimethyl sulfoxide, aprotic polar solvents such as N, N-dimethylformamide and hexamethylphosphoric triamide can be used. The concentration of the solution is preferably 0.1 to 1000 times by volume, more preferably 1 to 20 times by volume of the compound (A). The higher the relative amount of solvent, the generally thinner the membrane.

【0022】得られた膜は可視光や、紫外線、電子線、
X線などの照射により容易に解重合し、パタ−ンを形成
する。現像に用いる溶媒は水、メタノ−ル、エタノ−
ル、プロパノ−ルなどのアルコ−ル類が適しており、電
子線、X線等真空照射の場合、現像剤を用いない場合で
もパタ−ンが得られる。
The obtained film was exposed to visible light, ultraviolet rays, electron beams,
It is easily depolymerized by irradiation with X-rays to form a pattern. The solvent used for development is water, methanol or ethanol.
Alcohols such as alcohol and propanol are suitable, and in the case of vacuum irradiation such as electron beam or X-ray, a pattern can be obtained even without using a developer.

【0023】[0023]

【実施例】以下、実施例により本発明を更に説明する
が、これらの実施例は本発明の範囲を何ら限定するもの
ではない。 実施例1 反応容器内をアルゴン置換し、−78℃下、テトラヒド
ロフラン28.9ml、4ビス[(トリメチルシリル)
メチル]イソプロペニルベンゼン15.3ml、sec-ブ
チルリチウムのヘキサン溶液6.7mlを加え、20分
反応させる。この溶液にα−トリフルオロメチルスチレ
ン2.4ml加え、さらに3分間反応させた。この溶液
を大過剰のメタノ−ルに添加し、ポリマ−を得た。得ら
れたポリマ−の収量は14.5gであった(97%:サ
ンプル1)。1HNMRから求めたサンプル1の数平均
分子量は2,800であった。また、シリカゲル固定相
による薄層クロマトグラフィ−でのRf値は0.65の
1スポットであった(移動相:ヘキサン)。13CNMR
スペクトルより不飽和基末端に由来するシグナルが現れ
ていることが確認された(図1)。熱重量分析による分
解開始温度は340℃であった。
EXAMPLES The present invention will be further described below with reference to examples, but these examples do not limit the scope of the present invention in any way. Example 1 The inside of the reaction vessel was replaced with argon, and 28.9 ml of tetrahydrofuran and 4bis [(trimethylsilyl) tetrahydrofuran were added at -78 ° C.
Methyl] isopropenylbenzene (15.3 ml) and sec-butyllithium hexane solution (6.7 ml) are added, and the mixture is reacted for 20 minutes. 2.4 ml of α-trifluoromethylstyrene was added to this solution, and the mixture was further reacted for 3 minutes. This solution was added to a large excess of methanol to obtain a polymer. The yield of the obtained polymer was 14.5 g (97%: sample 1). The number average molecular weight of Sample 1 determined from 1 HNMR was 2,800. The Rf value in thin layer chromatography using a silica gel stationary phase was 0.65, which was one spot (mobile phase: hexane). 13 C NMR
From the spectrum, it was confirmed that a signal derived from the terminal of the unsaturated group appeared (FIG. 1). The decomposition start temperature by thermogravimetric analysis was 340 ° C.

【0024】比較例1 反応容器内をアルゴン置換し、−78℃下、テトラヒド
ロフラン28.9ml、4ビス[(トリメチルシリル)
メチル]イソプロペニルベンゼン15.3ml、sec-ブ
チルリチウムのヘキサン溶液6.7mlを加え、20分
反応させる。この溶液にメタノ−ル1ml加え、さらに
3分間反応させた。この溶液を大過剰のメタノ−ルに添
加し、ポリマ−を得た。得られたポリマ−の収量は1
3.8gであった(98%:サンプル2)。1HNMR
から求めたサンプル2の数平均分子量は2.600であ
った。また、シリカゲル固定相による薄層クロマトグラ
フィ−でのRf値は0.85であった(移動相:ヘキサ
ン)。13CNMRスペクトルより不飽和基末端が存在し
ていないことが確認された(図2)。熱重量分析による
分解開始温度は350℃であった。
Comparative Example 1 The atmosphere in the reaction vessel was replaced with argon, and 28.9 ml of tetrahydrofuran was added at −78 ° C. to 4bis [(trimethylsilyl).
Methyl] isopropenylbenzene (15.3 ml) and sec-butyllithium hexane solution (6.7 ml) are added, and the mixture is reacted for 20 minutes. 1 ml of methanol was added to this solution, and the mixture was further reacted for 3 minutes. This solution was added to a large excess of methanol to obtain a polymer. The yield of the obtained polymer is 1
It was 3.8 g (98%: sample 2). 1 H NMR
The number average molecular weight of Sample 2 determined from the above was 2.600. The Rf value in thin layer chromatography using a silica gel stationary phase was 0.85 (mobile phase: hexane). It was confirmed from the 13 C NMR spectrum that no unsaturated group terminal was present (FIG. 2). The decomposition start temperature by thermogravimetric analysis was 350 ° C.

【0025】実施例2 反応容器内をアルゴン置換し、−78℃下、テトラヒド
ロフラン28.9ml、4ビス[(トリメチルシリル)
メチル]イソプロペニルベンゼン15.3ml、sec-ブ
チルリチウムのヘキサン溶液3.3mlを加え、20分
反応させる。この溶液にα−トリフルオロメチルスチレ
ン2.4ml加え、さらに3分間反応させた。この溶液
を大過剰のメタノ−ルに添加し、ポリマ−を得た。得ら
れたポリマ−の収量は13.8gであった(96%:サ
ンプル3)。1HNMRから求めたサンプル3の数平均
分子量は5,400であった。また、シリカゲル固定相
による薄層クロマトグラフィ−でのRf値は0.65の
1スポットであった(移動相:ヘキサン)。13CNMR
スペクトルより不飽和基末端に由来するシグナルが現れ
ていることが図1と同様に確認された。熱重量分析によ
る分解開始温度は340℃であった。
Example 2 The inside of the reaction vessel was replaced with argon, and 28.9 ml of tetrahydrofuran and 4bis [(trimethylsilyl) tetrahydrofuran were added at -78 ° C.
Methyl] isopropenylbenzene (15.3 ml) and sec-butyllithium solution (3.3 ml) in hexane are added, and the mixture is reacted for 20 minutes. 2.4 ml of α-trifluoromethylstyrene was added to this solution, and the mixture was further reacted for 3 minutes. This solution was added to a large excess of methanol to obtain a polymer. The yield of the obtained polymer was 13.8 g (96%: sample 3). The number average molecular weight of Sample 3 determined from 1 HNMR was 5,400. The Rf value in thin layer chromatography using a silica gel stationary phase was 0.65, which was one spot (mobile phase: hexane). 13 C NMR
It was confirmed from the spectrum that a signal derived from the terminal of the unsaturated group appeared, as in FIG. The decomposition start temperature by thermogravimetric analysis was 340 ° C.

【0026】実施例3 反応容器内をアルゴン置換し、−78℃下、テトラヒド
ロフラン28.9ml、4ビス[(トリメチルシリル)
メチル]イソプロペニルベンゼン15.3ml、sec-ブ
チルリチウムのヘキサン溶液6.7mlを加え、20分
反応させる。この溶液にα−クロロメチルスチレン3.
1ml加え、さらに3分間反応させた。この溶液を大過
剰のメタノ−ルに添加し、ポリマ−を得た。得られたポ
リマ−の収量は14.3gであった(93%)。1HN
MRから求めたサンプルの数平均分子量は2,800で
あった。また、シリカゲル固定相による薄層クロマトグ
ラフィ−でのRf値は0.70の1スポットであった
(移動相:ヘキサン)。13CNMRスペクトルより不飽
和基末端に由来するシグナルが現れていることが確認さ
れた。
Example 3 The atmosphere in the reaction vessel was replaced with argon, and 28.9 ml of tetrahydrofuran was added at −78 ° C. to 4bis [(trimethylsilyl).
Methyl] isopropenylbenzene (15.3 ml) and sec-butyllithium hexane solution (6.7 ml) are added, and the mixture is reacted for 20 minutes. Α-Chloromethylstyrene 3.
1 ml was added and further reacted for 3 minutes. This solution was added to a large excess of methanol to obtain a polymer. The yield of the obtained polymer was 14.3 g (93%). 1 HN
The number average molecular weight of the sample determined from MR was 2,800. Further, the Rf value in thin layer chromatography using a silica gel stationary phase was 0.70 per spot (mobile phase: hexane). From the 13 C NMR spectrum, it was confirmed that a signal derived from the terminal of the unsaturated group appeared.

【0027】実施例4 反応容器内をアルゴン置換し、−78℃下、テトラヒド
ロフラン28.9ml、α−メチルスチレン6.5m
l、sec-ブチルリチウムのヘキサン溶液6.7mlを加
え、20分反応させる。この溶液にα−トリフルオロメ
チルスチレン2.4ml加え、さらに3分間反応させ
た。この溶液を大過剰のメタノ−ルに添加し、ポリマ−
を得た。得られたポリマ−の収量は5.9gであった
(93%:サンプル4)。1HNMRから求めたサンプ
ルの数平均分子量は1,000であった。また、シリカ
ゲル固定相による薄層クロマトグラフィ−でのRf値は
0.70の1スポットであった(移動相:トルエン)。
13CNMRスペクトルより不飽和基末端に由来するシグ
ナルが現れていることが確認された(図3)。
Example 4 The inside of the reaction vessel was replaced with argon, and at −78 ° C., 28.9 ml of tetrahydrofuran and 6.5 m of α-methylstyrene.
l, sec-Butyllithium hexane solution (6.7 ml) was added and reacted for 20 minutes. 2.4 ml of α-trifluoromethylstyrene was added to this solution, and the mixture was further reacted for 3 minutes. This solution was added to a large excess of methanol and the polymer
Got The yield of the obtained polymer was 5.9 g (93%: sample 4). The number average molecular weight of the sample determined from 1 HNMR was 1,000. Further, the Rf value in thin layer chromatography using a silica gel stationary phase was 0.70 per spot (mobile phase: toluene).
From the 13 C NMR spectrum, it was confirmed that a signal derived from the terminal of the unsaturated group appeared (FIG. 3).

【0028】実施例5 実施例1で得られたサンプル1、100mg、ラジカル
発生剤のアゾビスイソブチロニトリル10mgおよびベ
ンゾフェノン10mgを10mlのテトラヒドロフラン
に溶解させ、500W水銀ランプで一時間光照射を行っ
た。ゲルパ−ミエ−ションクロマトグラフィ−で反応物
を追跡したところ、サンプル1はすべて消失し、モノマ
−に変換した。
Example 5 Sample 1, 100 mg obtained in Example 1, 10 mg of the radical generator azobisisobutyronitrile and 10 mg of benzophenone were dissolved in 10 ml of tetrahydrofuran and irradiated with a 500 W mercury lamp for 1 hour. It was When the reaction product was traced by gel permeation chromatography, Sample 1 disappeared and was converted into a monomer.

【0029】実施例6 実施例4で得られたサンプル4、100mg、ラジカル
発生剤のアゾビスイソブチロニトリル10mgおよびベ
ンゾフェノン10mgを10mlのテトラヒドロフラン
に溶解させ、500W水銀ランプで一時間光照射を行っ
た。ゲルパ−ミエ−ションクロマトグラフィ−で反応物
を追跡したところ、サンプル4はすべて消失し、モノマ
−に変換した。
Example 6 Sample 4, 100 mg obtained in Example 4, 10 mg of azobisisobutyronitrile as a radical generator and 10 mg of benzophenone were dissolved in 10 ml of tetrahydrofuran and irradiated with a 500 W mercury lamp for 1 hour. It was When the reaction product was traced by gel permeation chromatography, all sample 4 disappeared and was converted into a monomer.

【0030】比較例2 比較例1で得られたサンプル2、100mg、ラジカル
発生剤のアゾビスイソブチロニトリル10mgおよびベ
ンゾフェノン10mgを10mlのテトラヒドロフラン
に溶解させ、500W水銀ランプで一時間光照射を行っ
た。ゲルパ−ミエ−ションクロマトグラフィ−で反応物
を追跡したところ、サンプル2はまったく分解していな
かった。
Comparative Example 2 Sample 2, 100 mg obtained in Comparative Example 1, 10 mg of azobisisobutyronitrile as a radical generator and 10 mg of benzophenone were dissolved in 10 ml of tetrahydrofuran and irradiated with a 500 W mercury lamp for 1 hour. It was When the reaction product was traced by gel permeation chromatography, Sample 2 was not decomposed at all.

【0031】実施例7 実施例2で得られたサンプル3をメチルエチルケトン
(10vol%)に溶解させスピン−ンコ−トした膜
(0.5μm)に走査型電子顕微鏡にて電子線照射を行
った(20KeV)。5%メチルエチルケトン含有メタ
ノ−ルで現像したところ、電子線照射膜は完全に消失し
た。50%残存膜時における電子線照射強度は5μC/
cm2であった。(比較、PMMAでは50μC/c
2
Example 7 Sample 3 obtained in Example 2 was dissolved in methyl ethyl ketone (10 vol%) and spin-coated (0.5 μm), and the film (0.5 μm) was irradiated with an electron beam by a scanning electron microscope ( 20 KeV). When developed with methanol containing 5% methyl ethyl ketone, the electron beam irradiation film disappeared completely. The electron beam irradiation intensity at the time of 50% remaining film is 5 μC /
cm 2 . (Comparison, PMMA 50 μC / c
m 2 )

【0032】比較例3 比較例1で得られたサンプル2をメチルエチルケトン
(10vol%)に溶解させスピン−ンコ−トした膜
(0.5μm)に走査型電子顕微鏡にて電子線照射を行
った(20KeV)。5%メチルエチルケトン含有メタ
ノ−ルで現像したところ、電子線照射膜は架橋と分解が
併発し、良好なパタ−ンは得られなかった。
Comparative Example 3 Sample 2 obtained in Comparative Example 1 was dissolved in methyl ethyl ketone (10 vol%) and spin-coated (0.5 μm), and the film (0.5 μm) was irradiated with an electron beam with a scanning electron microscope ( 20 KeV). When developed with methanol containing 5% methyl ethyl ketone, the electron beam irradiation film was crosslinked and decomposed at the same time, and a good pattern could not be obtained.

【0033】[0033]

【発明の効果】主鎖に4級炭素を有するビニルポリマ−
は天井温度が低く、光や電子線に対して分解性を示すこ
とが知られているが、同時に架橋反応が併発し、必ずし
もポジ型レジストとして高い性能を示していない。ここ
で本発明のように定量的に不飽和基を末端に導入する方
法は、従来より低いエネルギ−照射量(すなわち高い感
度)で末端が反応し、その末端から定量的に分解が進行
する系が達成できる。従って本発明で創成されたレジス
トは高い感度を有するポジ型レジストとしてさらに微細
加工技術を必要とする半導体分野で有用な材料となりう
る。
The vinyl polymer having quaternary carbon in the main chain
Is known to have a low ceiling temperature and to be decomposed by light and electron beams, but at the same time, a crosslinking reaction occurs at the same time, so that it does not always show high performance as a positive resist. Here, the method of quantitatively introducing an unsaturated group to the terminal as in the present invention is a system in which the terminal reacts at a lower energy-irradiation dose (that is, higher sensitivity) than in the past and the decomposition proceeds quantitatively from the terminal. Can be achieved. Therefore, the resist created by the present invention can be a useful material in the semiconductor field which requires a fine processing technique as a positive resist having high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得られた重合体の13CNMRスペ
クトル
FIG. 1 13 C NMR spectrum of the polymer obtained in Example 1.

【図2】 比較例1で得られた重合体の13CNMRスペ
クトル
FIG. 2 13 C NMR spectrum of the polymer obtained in Comparative Example 1.

【図3】 実施例4で得られた重合体の13CNMRスペ
クトル
FIG. 3 13 C NMR spectrum of the polymer obtained in Example 4.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】下記構造式(A)で表わされる末端に定量
的にビニリデン基構造を有する高分子化合物。 【化1】 (式中、Rは任意の開始剤断片を示す。R1、R2は水素
または炭素数1から10のアルキル基、アリ−ル基、ア
ラルキル基を表す。また、R3、R4、は水素または炭素
数1から10のアルキル基、アリ−ル基、アラルキル基
またはF、Cl、Brなどのハロゲンを表す。nは5〜
10、000の整数を表す。)
1. A polymer compound quantitatively having a vinylidene group structure at the terminal represented by the following structural formula (A). [Chemical 1] (In the formula, R represents an arbitrary initiator fragment. R 1 and R 2 represent hydrogen or an alkyl group having 1 to 10 carbon atoms, an aryl group or an aralkyl group. R 3 and R 4 are Represents hydrogen or an alkyl group having 1 to 10 carbon atoms, an aryl group, an aralkyl group or halogen such as F, Cl, Br, etc. n is 5 to 5
Represents an integer of 10,000. )
【請求項2】ビニルモノマ−をブチルリチウムやナトリ
ウムナフタレンのような有機金属開始剤の存在下、アニ
オン重合した後、ハロゲン含有ビニルモノマ−を付加
し、しかる後、脱離反応を行うことを特徴とする下記構
造式(A)で表される高分子化合物の製造方法。 【化2】 (式中、Rは任意の開始剤断片を示す。R1、R2は水素
または炭素数1から10のアルキル基、アリ−ル基、ア
ラルキル基を表す。R3、R4、は水素または炭素数1か
ら10のアルキル基、アリ−ル基、アラルキル基または
F、Cl、Brなどのハロゲンを表す。nは5〜10、
000の整数を表す。)
2. An anionic polymerization of a vinyl monomer in the presence of an organometallic initiator such as butyllithium or sodium naphthalene, followed by addition of a halogen-containing vinyl monomer, followed by elimination reaction. A method for producing a polymer compound represented by the following structural formula (A). [Chemical 2] (In the formula, R represents any initiator fragment. R 1 and R 2 represent hydrogen or an alkyl group having 1 to 10 carbon atoms, an aryl group, or an aralkyl group. R 3 , R 4 are hydrogen or Represents an alkyl group having 1 to 10 carbon atoms, an aryl group, an aralkyl group or halogen such as F, Cl, Br, etc. n is 5 to 10,
Represents an integer of 000. )
【請求項3】下記構造式(A)で表される高分子化合物
の可視光、紫外線、電子線、X線などにより解重合せし
めることを特徴とするレジスト材料。 【化3】 (式中、Rは任意の開始剤断片を示す。R1、R2は水素
または炭素数1から10のアルキル基、アリ−ル基、ア
ラルキル基を表す。R3、R4、は水素または炭素数1か
ら10のアルキル基、アリ−ル基、アラルキル基または
F、Cl、Brなどのハロゲンを表す。nは5〜10、
000の整数を表す。)
3. A resist material which is characterized in that a polymer compound represented by the following structural formula (A) is depolymerized by visible light, ultraviolet rays, electron beams, X-rays and the like. [Chemical 3] (In the formula, R represents any initiator fragment. R 1 and R 2 represent hydrogen or an alkyl group having 1 to 10 carbon atoms, an aryl group, or an aralkyl group. R 3 , R 4 are hydrogen or Represents an alkyl group having 1 to 10 carbon atoms, an aryl group, an aralkyl group or halogen such as F, Cl, Br, etc. n is 5 to 10,
Represents an integer of 000. )
JP22803994A 1994-09-22 1994-09-22 Polymer compound having vinylidene group quantitatively at terminal, method for producing the same, and resist material using the polymer compound Expired - Fee Related JP3312349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22803994A JP3312349B2 (en) 1994-09-22 1994-09-22 Polymer compound having vinylidene group quantitatively at terminal, method for producing the same, and resist material using the polymer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22803994A JP3312349B2 (en) 1994-09-22 1994-09-22 Polymer compound having vinylidene group quantitatively at terminal, method for producing the same, and resist material using the polymer compound

Publications (2)

Publication Number Publication Date
JPH0892312A true JPH0892312A (en) 1996-04-09
JP3312349B2 JP3312349B2 (en) 2002-08-05

Family

ID=16870247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22803994A Expired - Fee Related JP3312349B2 (en) 1994-09-22 1994-09-22 Polymer compound having vinylidene group quantitatively at terminal, method for producing the same, and resist material using the polymer compound

Country Status (1)

Country Link
JP (1) JP3312349B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042340A1 (en) * 2000-11-24 2002-05-30 San-Ei Kougyou Corporation Functional substances derived from oligoolefins having functional groups at the ends
JP2002161111A (en) * 2000-11-24 2002-06-04 Takashi Sawaguchi Olefin oligomer containing terminal perfluoroalkyl group and its producing method
JP2002161141A (en) * 2000-11-24 2002-06-04 Takashi Sawaguchi Oligoolefin with end maleated and diaminopolydimethylsiloxane multi block copolymer and method of producing the same
JP2002265612A (en) * 2001-03-07 2002-09-18 Idemitsu Petrochem Co Ltd Styrene block copolymer and composition containing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002042340A1 (en) * 2000-11-24 2002-05-30 San-Ei Kougyou Corporation Functional substances derived from oligoolefins having functional groups at the ends
JP2002161111A (en) * 2000-11-24 2002-06-04 Takashi Sawaguchi Olefin oligomer containing terminal perfluoroalkyl group and its producing method
JP2002161141A (en) * 2000-11-24 2002-06-04 Takashi Sawaguchi Oligoolefin with end maleated and diaminopolydimethylsiloxane multi block copolymer and method of producing the same
US7125834B2 (en) * 2000-11-24 2006-10-24 San-Ei Kougyou Corporation Functional substances derived from oligoolefins having functional groups at the ends
US7229957B2 (en) * 2000-11-24 2007-06-12 San-El Kougyou Corporation Functional substances derived from oligoolefins having functional groups at the ends
JP4686022B2 (en) * 2000-11-24 2011-05-18 孝志 澤口 Terminally maleated oligoolefin / diaminopolydimethylsiloxane multiblock copolymer and process for producing the same
JP2002265612A (en) * 2001-03-07 2002-09-18 Idemitsu Petrochem Co Ltd Styrene block copolymer and composition containing the same

Also Published As

Publication number Publication date
JP3312349B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
JP3312349B2 (en) Polymer compound having vinylidene group quantitatively at terminal, method for producing the same, and resist material using the polymer compound
JPS62246905A (en) Styrene copolymer
JP3536194B2 (en) Polymer compound having a functional group having an unshared electron pair at its terminal, method for producing the same, and positive resist material using the polymer compound
JPS6336602B2 (en)
FR2567659A1 (en) IMAGING MATERIALS FOR SENSITIVE HIGH ENERGY BEAM, METHOD OF FORMATION, AND ELEMENT OBTAINED
US5523359A (en) Functionalized polymer and methods to obtain functionalized polymer
US6281318B1 (en) Poly{1-(1-alkoxyalkoxy)-4-(1-methylethenyl)benzene} having narrow molecular weight distribution, its preparation process, and preparation process of poly{4-methylethenyl)phenol} having narrow molecular weight distribution
JP3667074B2 (en) Narrowly dispersible poly {1- (1-alkoxyethoxy) -4- (1-methylethenyl) benzene} and process for producing the same
KR0124953B1 (en) Process for preparation of dispersed polymer with functional groups on surface
JPH0641221A (en) Poly@(3754/24)3-methyl-4-hydroxystyrene) and its production
Yevsyukov et al. Synthesis of carbyne on the basis of polyvinylidene halides
JP2862720B2 (en) Narrowly dispersible polyhydroxystyrene partially esterified with t-butoxycarbonyl group and method for producing the same
JPH0632819A (en) Production of poly@(3754/24)p-hydroxy-alpha-methylstyrene)
JPH0641222A (en) Poly@(3754/24)m-hydroxystyrene) and its production
EP0494792A1 (en) Tetrahydropyranyloxystyrene homopolymer and method of manufacturing the same
JP2575958B2 (en) Method for producing polyhydroxystyrene
JPH0528829B2 (en)
JP3816690B2 (en) Saturated hydrocarbon polymer having carboxylic acid group derivative at terminal and method for producing the same
JPH0632820A (en) Poly@(3754/24)p-hydroxy-alpha-methylstyrene) partially esterified with t-butoxycarbonyl group and its production
JPH051115A (en) Production of polyhydroxystyrene
JPS635337A (en) Photosensitive resin composition
JPH0649136A (en) Poly@(3754/24)3-hydroxystyrene) partially esterified with tert-butoxycarbonyl group and its production
JPH0632818A (en) Production of poly@(3754/24)p-hydroxystyrene)
JPH06329721A (en) Polyethylene with one modified molecular terminal and its production
JPH0649134A (en) M-hydroxystyrene/styrene or alpha-methylstyrene block copolymer partially esterified with tert-butoxycarbonyl group and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees