JPH0892151A - Production of allylquinone - Google Patents

Production of allylquinone

Info

Publication number
JPH0892151A
JPH0892151A JP23477594A JP23477594A JPH0892151A JP H0892151 A JPH0892151 A JP H0892151A JP 23477594 A JP23477594 A JP 23477594A JP 23477594 A JP23477594 A JP 23477594A JP H0892151 A JPH0892151 A JP H0892151A
Authority
JP
Japan
Prior art keywords
benzoquinone
group
methyl
butenyl
quinone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23477594A
Other languages
Japanese (ja)
Inventor
Yasuo Hatanaka
康夫 畠中
Emiko Ejiri
恵美子 江尻
Tamejirou Hiyama
爲次郎 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP23477594A priority Critical patent/JPH0892151A/en
Publication of JPH0892151A publication Critical patent/JPH0892151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To regioselectively and efficiently obtain the compound, concerned in electron transport, etc., in living bodies, having diverse physiological activities and useful as medicines, etc., without requiring the protection of carbonyl group by reacting an allyltrifluorosilane with a quinone. CONSTITUTION: This method for producing an allylquinone of formula III (R<1> to R<5> are each H, an alkyl, an aryl, an alkenyl, an alkoxy, cyano or a halogen; R<1> and R<2> , R<3> and R<4> , R<2> and R<5> or R<1> and R<3> , together with C to which they are respectively bound, may form a ring; R<6> to R<8> are each H, an alkyl, an aryl, an alkenyl, an alkynyl, an alkoxy, OH or R<6> and R<7> , together with C to which they are respectively bound, may form a ring) [e.g. 2-(3-methyl-2- butenyl)-1,4-benzoquinone] is to react an allyltrifluorosilane of formula I [e.g. (E)-2-butenyltrifluorosilane] with a p-quinone of formula II (X is H or a halogen) (e.g. 1,4-benzoquinone), preferably in the coexistence of an oxidizing agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、下記一般式[III]FIELD OF THE INVENTION The present invention has the following general formula [III]

【化4】 (式中、R1、R2、R3、R4およびR5は各々、独立に
水素原子、アルキル基、アリール基、アルケニル基、ア
ルキニル基、アルコキシ基、シアノ基またはハロゲン原
子である。R1とR2、R3とR4、R2とR5またはR1
3は各々結合している炭素原子と一体となって環を形
成し得る。R6、R7およびR8は各々、独立に水素原
子、アルキル基、アリール基、アルケニル基、アルキニ
ル基、アルコキシ基、水酸基である。R6とR7は各々結
合している炭素原子と一体となって環を形成し得る。)
で表されるアリルキノンの製造方法に関する。
[Chemical 4] (In the formula, R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkenyl group, an alkynyl group, an alkoxy group, a cyano group or a halogen atom. 1 and R 2 , R 3 and R 4 , R 2 and R 5, or R 1 and R 3 may be combined with the carbon atom to which they are bonded to form a ring, and R 6 , R 7 and R 8 are Each of them is independently a hydrogen atom, an alkyl group, an aryl group, an alkenyl group, an alkynyl group, an alkoxy group or a hydroxyl group, and R 6 and R 7 can form a ring together with the carbon atom to which they are bonded. )
Relates to a method for producing allylquinone represented by:

【0002】[0002]

【従来の技術】上記アリルキノンは生体内における電子
伝達、酸化的リン酸化または植物体内の光合成に関わ
り、血液凝集作用など多様な生理活性を示すことが知ら
れている[”The Chemistry of Quinoid Compound
s” Part.2,p683,Wiley,NewYork (197
4)]。特に、ビタミンKや補酵素Qまたはプラストキ
ノンなどをはじめとする生理活性アリルキノンは医薬と
して有用である。
2. Description of the Related Art Allylquinones are known to be involved in electron transfer in vivo, oxidative phosphorylation or photosynthesis in plants, and exhibit various physiological activities such as blood coagulation ["The Chemistry of Quinoid Compound"
s ”Part.2, p683, Wiley, NewYork (197)
4)]. Particularly, physiologically active allylquinones such as vitamin K, coenzyme Q, and plastoquinone are useful as medicines.

【0003】前記一般式[III]で表されるアリルキ
ノンの従来の合成法としては、(1)トリフルオロボラ
ンジエチルエーテル錯体の共存下、アリルスズ化合物と
キノンを反応させる方法[J.Am.Chem.Soc.,10
2,3774(1980);J.Org.Chem.,45,
4097(1980)]、(2)ビスアリルニッケル錯
体とキノンを反応させる方法[J.Am.Chem.Soc.,1
00,3461(1978))]、(3)亜鉛末を用い
てハロゲン化アリルとキノンを反応させる方法[Chem.
Lett.,901(1977)]、(4)四塩化チタンの
共存下、アリルトリメチルシランとキノンを反応させる
方法[Tetrahedron Lett.,4041(197
7)]、(5)酸触媒存在下、アリルアルコールやハロ
ゲン化アリルをキノンと反応させる方法[J.Am.Che
m.Soc.,61,2559(1939);Ibid.,6
1,3467(1939);Ibid.,62,1982
(1940)]、(6)水酸基を保護したヒドロキノン
とアリルニッケル化合物を反応させた後、酸化する方法
[J.C.S.Perkin,2289(1973)]などがあ
る。
As a conventional synthetic method of the allylquinone represented by the general formula [III], (1) a method of reacting an allyltin compound with a quinone in the presence of a trifluoroborane diethyl ether complex [J. Am. Chem. Soc. , 10
2, 3774 (1980); Org. Chem. , 45,
4097 (1980)], (2) a method of reacting a bisallylnickel complex with quinone [J. Am. Chem. Soc. , 1
00,3461 (1978))], (3) a method of reacting an allyl halide with quinone using zinc dust [Chem.
Lett. , 901 (1977)], (4) a method of reacting allyltrimethylsilane with quinone in the presence of titanium tetrachloride [Tetrahedron Lett. , 4041 (197)
7)], (5) A method of reacting allyl alcohol or allyl halide with quinone in the presence of an acid catalyst [J. Am. Che
m. Soc. , 61, 2559 (1939); Ibid. , 6
1, 3467 (1939); Ibid. , 62, 1982
(1940)], (6) A method in which a hydroxyquinone-protected hydroquinone is reacted with an allyl nickel compound and then oxidized [J. C. S. Perkin, 2289 (1973)].

【0004】しかしながら、これらの方法はいずれも次
のような欠点を有している。すなわち、(1)の方法は
トリフルオロボランジエチルエーテル錯体の添加を必要
とするうえ、有毒なアリルスズ化合物を用いるので医薬
の合成法として適当ではない。(2)の方法は反応の選
択性が低いうえに、過剰量の重金属錯体を必要とすると
いう欠点がある。(3)の方法では反応の位置選択性が
低く、分離が困難な複数の生成物を与える。(4)の方
法は本発明と同じくアリルケイ素化合物を用いるもので
あるが、四塩化チタンを化学量論量以上用いる上に、使
用するアリルトリメチルシランの反応性が低く、生理活
性キノンの合成に必要な3−メチル−2−ブテニル基の
キノンへの導入を行なうことができない。(下記参考例
1参照)(5)の方法はアリルアルコールやハロゲン化
アリルが不安定であるため副反応が起こり、収率が低い
うえ多数の副生成物を与える。(6)の方法ではキノン
のカルボニル基を保護する目的で水酸基を保護したヒド
ロキノンを用いなければならず、合成工程が繁雑であ
る。
However, all of these methods have the following drawbacks. That is, the method (1) requires the addition of a trifluoroborane diethyl ether complex and uses a toxic allyltin compound, and thus is not suitable as a method for synthesizing a drug. The method (2) has a drawback that the selectivity of the reaction is low and that an excessive amount of heavy metal complex is required. The method (3) has a low regioselectivity of the reaction and gives a plurality of products which are difficult to separate. The method (4) uses an allylsilicon compound as in the present invention, but uses titanium tetrachloride in a stoichiometric amount or more and has low reactivity of allyltrimethylsilane to be used for the synthesis of physiologically active quinone. It is not possible to introduce the required 3-methyl-2-butenyl group into the quinone. (Refer to Reference Example 1 below) In the method (5), since allyl alcohol and allyl halide are unstable, a side reaction occurs, the yield is low, and a large number of by-products are provided. In the method (6), hydroquinone having a protected hydroxyl group must be used for the purpose of protecting the carbonyl group of quinone, and the synthesis process is complicated.

【0005】[0005]

【発明が解決しようとする課題】本発明はかかる欠点を
有しない、上記一般式[III]で表されるアリルキノ
ンの効率的な製造法を提供することを目的とする。
An object of the present invention is to provide an efficient process for producing allylquinone represented by the above general formula [III], which does not have such drawbacks.

【0006】[0006]

【課題を解決するための手段】本発明者らはアリルキノ
ンの製造方法につき検討を加えた結果、アリルトリフル
オロシランをキノンと反応させることにより、前記一般
式[III]で表されるアリルキノンが、カルボニル基
を保護する必要なく、かつ位置選択的に得られることを
見いだし本発明を完成した。
Means for Solving the Problems The present inventors have conducted investigations on a method for producing allylquinone, and as a result, by reacting allyltrifluorosilane with quinone, allylquinone represented by the general formula [III] is The present invention has been completed by finding that it can be obtained regioselectively without the need to protect the carbonyl group.

【0007】すなわち、本発明は下記一般式[I]That is, the present invention has the following general formula [I]

【0008】[0008]

【化5】 [Chemical 5]

【0009】(式中、R1、R2、R3、R4およびR5
各々、独立に水素原子、アルキル基、アリール基、アル
ケニル基、アルコキシ基、シアノ基またはハロゲン原子
である。R1とR2、R3とR4、R2とR5またはR1とR3
は各々結合している炭素原子と一体となって環を形成し
得る。)で表されるアリルトリフルオロシランを下記一
般式[II]
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkenyl group, an alkoxy group, a cyano group or a halogen atom. 1 and R 2 , R 3 and R 4 , R 2 and R 5 or R 1 and R 3
Each may form a ring together with the carbon atom to which it is attached. ) The allyltrifluorosilane represented by the following general formula [II]

【0010】[0010]

【化6】 [Chemical 6]

【0011】(式中、R6、R7およびR8は各々、独立
に水素原子、アルキル基、アリール基、アルケニル基、
アルキニル基、アルコキシ基、水酸基である。R6とR7
は各々結合している炭素原子と一体となって環を形成し
得る。Xは水素原子、ハロゲン原子を表す。)で表され
るp-キノンを反応させることからなる、前記一般式
[III]で表されるアリルキノンの製造方法に関す
る。
(Wherein R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group, an aryl group, an alkenyl group,
An alkynyl group, an alkoxy group, and a hydroxyl group. R 6 and R 7
Each may form a ring together with the carbon atom to which it is attached. X represents a hydrogen atom or a halogen atom. ), And a method for producing allylquinone represented by the above general formula [III], which comprises reacting p-quinone represented by

【0012】本発明に用いる前記一般式[I]で表され
るアリルトリフルオロシランは、トリクロロシランとハ
ロゲン化アリルの反応から得られるアリルトリクロロシ
ラン[J.Organomet.Chem.,96,C1(197
5)]を三フッ化アンチモンによりフッ素化することで
容易に得られる[Organometaliics,5,1490(1
986)]。
The allyltrifluorosilane represented by the above general formula [I] used in the present invention is an allyltrichlorosilane [J. Organomet. Chem. , 96, C1 (197
5)] is easily fluorinated with antimony trifluoride [Organometaliics, 5, 1490 (1
986)].

【0013】アリルトリフルオロシランとしてはたとえ
ば、(E)−2−ブテニルトリフルオロシラン、(Z)
−2−ブテニルトリフルオロシラン,(3−メチル−2
−ブテニル)トリフルオロシラン、[(E)−3−フェ
ニル−2−プロペニル]トリフルオロシラン、(2−メ
チル−2−プロペニル)トリフルオロシラン、(1−メ
チル−2−ブテニル)トリフルオロシラン、[(E)−
3−フルオロ−2−プロペニル]トリフルオロシラン、
[(E)−3−メトキシ−2−プロペニル]トリフルオ
ロシラン、[(E)−3−シアノ−2−プロペニル]ト
リフルオロシラン、(2−フェニル−2−ブテニル)ト
リフルオロシラン、[(E)−3−メトキシ−2−プロ
ペニル]トリフルオロシラン、[(E)−3−クロロ−
2−プロペニル]トリフルオロシラン、ゲラニルトリフ
ルオロシラン、ファルネシルトリフルオロシラン、フィ
チルトリフルオロシラン、2,4-ペンタジエニルトリフ
ルオロシラン、シクロヘキセン−2−イルメチルトリフ
ルオロシラン、2−(シクロペンチリデン)エチルトリ
フルオロシラン、1−メチルシクロヘキセン−3−イル
トリフルオロシランなどを用いることができる。
As allyltrifluorosilane, for example, (E) -2-butenyltrifluorosilane, (Z)
-2-butenyltrifluorosilane, (3-methyl-2
-Butenyl) trifluorosilane, [(E) -3-phenyl-2-propenyl] trifluorosilane, (2-methyl-2-propenyl) trifluorosilane, (1-methyl-2-butenyl) trifluorosilane, [(E)-
3-fluoro-2-propenyl] trifluorosilane,
[(E) -3-Methoxy-2-propenyl] trifluorosilane, [(E) -3-Cyano-2-propenyl] trifluorosilane, (2-phenyl-2-butenyl) trifluorosilane, [(E ) -3-Methoxy-2-propenyl] trifluorosilane, [(E) -3-chloro-
2-propenyl] trifluorosilane, geranyltrifluorosilane, farnesyltrifluorosilane, phytyltrifluorosilane, 2,4-pentadienyltrifluorosilane, cyclohexen-2-ylmethyltrifluorosilane, 2- (cyclopentyl Ridene) ethyltrifluorosilane, 1-methylcyclohexen-3-yltrifluorosilane and the like can be used.

【0014】他方の原料である前記一般式[II]で表
されるp-キノンは容易に合成できかつ工業的に入手容
易な化合物である。一般式[II]の式中R6、R7、R
8のとしては、水素原子、アルキル基、アルケニル基、
アルキニル基、アリール基、アルコキシ基、水酸基を用
いることができる。具体的には、たとえば1,4−ベン
ゾキノン、2,3−ジメチル−1,4−ベンゾキノン、
2,5−ジメチル−1,4−ベンゾキノン、2,3−ジエ
チル−1,4−ベンゾキノン、2−メチル−3−ヘキシ
ル−1,4−ベンゾキノン、2−メチル−1,4−ベンゾ
キノン、2−オクチル−1,4−ベンゾキノン、2,3,
6−トリメチル−1,4−ベンゾキノン、2−ヒドロキ
シ−6−メチル−1,4−ベンゾキノン、2−ヒドロキ
シ−5−メチル−1,4−ベンゾキノン、2−エトキシ
−1,4−ベンゾキノン、3−デカノキシ−1,4−ベン
ゾキノン、2,3−ジメトキシ−6−メチル−1,4−ベ
ンゾキノン、5−ブロモ−2,3−ジメトキシ−6−メ
チル−1,4−ベンゾキノン、2,3−ジメトキシ−1,
4−ベンゾキノン、2−ペンチルオキシ−6−メトキシ
−1,4−ベンゾキノン、2−フェニル−1,4−ベンゾ
キノン、2−(4−メチルフェニル)−1,4−ベンゾ
キノン、2−(3−クロロフェニル)−1,4−ベンゾ
キノン、2−エチニル−1,4−ベンゾキノン、2−フ
ィチル−1,4−ベンゾキノン、2−ゲラニル−1,4−
ベンゾキノン、1,4−ナフトキノン、2−メチル−1,
4−ナフトキノン、2−メチル−3−ブロモ−1,4−
ナフトキノン、2−ブロモ−1,4−ナフトキノン、2
−メチル−3−クロロ−1,4−ナフトキノン、2−メ
チル−3−ヨード−1,4−ナフトキノン、2−メトキ
シ−1,4−ナフトキノン、2−エテニル−1,4−ナフ
トキノン、2−フェニル−1,4−ナフトキノン、2−
ヒドロキシ−1,4−ナフトキノン、7,8,9,10
−テトラヒドロ−1,4−ナフトキノンなどを用いるこ
とができる。
The other raw material, p-quinone represented by the above general formula [II], is a compound that can be easily synthesized and is industrially easily available. In the formula of the general formula [II], R 6 , R 7 , and R
8 includes a hydrogen atom, an alkyl group, an alkenyl group,
An alkynyl group, an aryl group, an alkoxy group and a hydroxyl group can be used. Specifically, for example, 1,4-benzoquinone, 2,3-dimethyl-1,4-benzoquinone,
2,5-dimethyl-1,4-benzoquinone, 2,3-diethyl-1,4-benzoquinone, 2-methyl-3-hexyl-1,4-benzoquinone, 2-methyl-1,4-benzoquinone, 2- Octyl-1,4-benzoquinone, 2,3,
6-trimethyl-1,4-benzoquinone, 2-hydroxy-6-methyl-1,4-benzoquinone, 2-hydroxy-5-methyl-1,4-benzoquinone, 2-ethoxy-1,4-benzoquinone, 3- Decanoxy-1,4-benzoquinone, 2,3-dimethoxy-6-methyl-1,4-benzoquinone, 5-bromo-2,3-dimethoxy-6-methyl-1,4-benzoquinone, 2,3-dimethoxy- 1,
4-benzoquinone, 2-pentyloxy-6-methoxy-1,4-benzoquinone, 2-phenyl-1,4-benzoquinone, 2- (4-methylphenyl) -1,4-benzoquinone, 2- (3-chlorophenyl ) -1,4-Benzoquinone, 2-ethynyl-1,4-benzoquinone, 2-phytyl-1,4-benzoquinone, 2-geranyl-1,4-
Benzoquinone, 1,4-naphthoquinone, 2-methyl-1,
4-naphthoquinone, 2-methyl-3-bromo-1,4-
Naphthoquinone, 2-bromo-1,4-naphthoquinone, 2
-Methyl-3-chloro-1,4-naphthoquinone, 2-methyl-3-iodo-1,4-naphthoquinone, 2-methoxy-1,4-naphthoquinone, 2-ethenyl-1,4-naphthoquinone, 2-phenyl -1,4-naphthoquinone, 2-
Hydroxy-1,4-naphthoquinone, 7,8,9,10
-Tetrahydro-1,4-naphthoquinone and the like can be used.

【0015】また、Xで表されるハロゲン原子として、
塩素原子、臭素原子またはヨウ素原子を好適に用いるこ
とができる。
As the halogen atom represented by X,
Chlorine atom, bromine atom or iodine atom can be preferably used.

【0016】本発明の方法は溶媒中で行う事が反応効率
の点から望ましい。例えば、ホルムアミド、N,N−ジ
メチルホルムアミド、N,N−ジメチルアセトアミド、
N,N−ジメチルイミダゾリジノン、ヘキサメチルリン
酸トリアミド等のアミド系溶媒、ジメチルスルホキシ
ド、テトラヒドロフラン(THF)、ジオキサン、アセ
トニトリル、ジエチルエーテル等を単独あるいは混合し
て用いることができる。反応は0〜120℃の範囲でお
こなうことができるが、反応の効率の点から室温〜10
0℃の間でおこなうことが望ましい。
The method of the present invention is preferably carried out in a solvent from the viewpoint of reaction efficiency. For example, formamide, N, N-dimethylformamide, N, N-dimethylacetamide,
An amide solvent such as N, N-dimethylimidazolidinone and hexamethylphosphoric triamide, dimethyl sulfoxide, tetrahydrofuran (THF), dioxane, acetonitrile, diethyl ether and the like can be used alone or in combination. The reaction can be carried out in the range of 0 to 120 ° C., but from the viewpoint of reaction efficiency, it is room temperature to 10 ° C.
It is desirable to carry out at 0 ° C.

【0017】本発明において、Xが水素原子であって、
酸化剤が共存しない場合にはヒドロキノンが副成するた
めp-キノンをアリルトリフルオロシランに対して2倍
量用いることが望ましい。
In the present invention, X is a hydrogen atom,
Since hydroquinone is by-produced when an oxidizing agent does not coexist, it is preferable to use p-quinone in an amount twice that of allyltrifluorosilane.

【0018】とくに、Xが水素原子の場合、本発明の方
法を酸化剤の共存下で行なうと、副生成物であるヒドロ
キノンの生成がおさえられる結果、反応効率が向上する
とともに生成物であるアリルキノンの収率が著しく増加
する[実施例7、8参照]。用いることができる酸化剤
としてはヒドロキノンを酸化しうる酸化剤を用いること
ができ、例えば塩化第二鉄、酸化銀などを挙げることが
できる。酸化剤は、p-キノンに対して当モル以上用
い、2当量以上用いることが望ましい。
Particularly when X is a hydrogen atom, when the method of the present invention is carried out in the presence of an oxidant, the production of by-product hydroquinone is suppressed, resulting in an improvement in reaction efficiency and a product allylquinone. The yield of sucrose is significantly increased [see Examples 7 and 8]. As the oxidizing agent that can be used, an oxidizing agent that can oxidize hydroquinone can be used, and examples thereof include ferric chloride and silver oxide. The oxidizing agent is preferably used in an equimolar amount or more with respect to p-quinone and used in an amount of 2 equivalents or more.

【0019】[0019]

【実施例】以下、実施例および参考例により本発明をさ
らに詳しく説明する。ただし、本発明はそれらに限定さ
れるものではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Reference Examples. However, the present invention is not limited to them.

【0020】実施例1Example 1

【0021】[0021]

【化7】 [Chemical 7]

【0022】1,4−ベンゾキノン(32.7mg、
0.30mmol)および(3−メチル−2−ブテニ
ル)トリフルオロシラン(23.1mg、0.15mm
ol)のホルムアミド溶液(1.0ml、硫酸ナトリウ
ムより蒸留、以下同じ)をアルゴン雰囲気中、室温で、
68時間攪拌した。反応溶液に水を加えエーテルにより
抽出した。有機層を硫酸マグネシウムにより乾燥後、減
圧下、溶媒を留去して得られた粗生成物をカラムクロマ
トグラフィー(酢酸エチル:ヘキサン=1:2)で精製
したところ2−(3−メチル−2−ブテニル)−1,4
−ベンゾキノン14.3mgを得た(0.081mmo
l、収率54%、収率はシランの使用量による)。
1,4-benzoquinone (32.7 mg,
0.30 mmol) and (3-methyl-2-butenyl) trifluorosilane (23.1 mg, 0.15 mm
ol) in formamide solution (1.0 ml, distilled from sodium sulfate, the same applies below) at room temperature in an argon atmosphere.
It was stirred for 68 hours. Water was added to the reaction solution and extracted with ether. After the organic layer was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the crude product obtained was purified by column chromatography (ethyl acetate: hexane = 1: 2) to give 2- (3-methyl-2). -Butenyl) -1,4
-14.3 mg of benzoquinone was obtained (0.081 mmo
1, yield 54%, yield depending on the amount of silane used).

【0023】1H−NMR(CDCl3):δ1.64
(s,3H),1.77(s,3H),3.12(d,
J=7.1Hz,2H),5.15(t,J=7.1H
z,2H),6.54(q,J=2.0Hz,1H),
6.65−6.80(m,2H)IR(neat):1
655,1607,1300,900cm-1
1 H-NMR (CDCl 3 ): δ1.64
(S, 3H), 1.77 (s, 3H), 3.12 (d,
J = 7.1 Hz, 2H), 5.15 (t, J = 7.1H
z, 2H), 6.54 (q, J = 2.0Hz, 1H),
6.65-6.80 (m, 2H) IR (neat): 1
655, 1607, 1300, 900 cm -1

【0024】実施例2Example 2

【0025】[0025]

【化8】 Embedded image

【0026】1,4−ベンゾキノン(32.7mg、
0.30mmol)および[(E)−2−ブテニル)]
トリフルオロシラン(21mg、0.15mmol)の
ホルムアミド溶液(1.0ml)をアルゴン雰囲気中、
室温で、68時間攪拌した。反応溶液に水を加えエーテ
ルにより抽出した。有機層を硫酸マグネシウムにより乾
燥後、減圧下、溶媒留去して得られた粗生成物をカラム
クロマトグラフィー(酢酸エチル:ヘキサン=1:2)
で精製したところ2−[(E)−2−ブテニル)]−
1,4−ベンゾキノン10.3mgを得た(0.062
mmol、収率41%、収率はシランの使用量によ
る)。
1,4-benzoquinone (32.7 mg,
0.30 mmol) and [(E) -2-butenyl)]
Formamide solution (1.0 ml) of trifluorosilane (21 mg, 0.15 mmol) in an argon atmosphere,
Stir at room temperature for 68 hours. Water was added to the reaction solution and extracted with ether. The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product, which was subjected to column chromatography (ethyl acetate: hexane = 1: 2).
2-[(E) -2-butenyl)]-
10.4 mg of 1,4-benzoquinone was obtained (0.062
mmol, yield 41%, yield depends on the amount of silane used).

【0027】1H−NMR(CDCl3):δ1.71
(d,J=6.1Hz,3H),3.10(d,J=
6.4Hz,2H),5.47(dt,J=15.2,
6.4Hz,1H),5.56(dq,J=15.2,
6.1Hz,1H),6.57(q,J=2.1Hz,
1H),6.66−6.77(m,2H) IR(neat):cm-1
1 H-NMR (CDCl 3 ): δ1.71
(D, J = 6.1 Hz, 3H), 3.10 (d, J =
6.4 Hz, 2H, 5.47 (dt, J = 15.2,
6.4 Hz, 1 H), 5.56 (dq, J = 15.2,
6.1 Hz, 1 H), 6.57 (q, J = 2.1 Hz,
1H), 6.66-6.77 (m, 2H) IR (neat): cm -1

【0028】実施例3Example 3

【0029】[0029]

【化9】 [Chemical 9]

【0030】2,3−ジメトキシ−5−メチル−1,4−
ベンゾキノン(165mg、0.91mmol)および
(3−メチル−2−ブテニル)トリフルオロシラン(7
1mg、0.46mmol)のホルムアミド溶液(2.
0ml)をアルゴン雰囲気中、室温で、68時間攪拌し
た。反応溶液に水を加えエーテルにより抽出した。有機
層を硫酸マグネシウムにより乾燥後、減圧下、溶媒留去
して得られた粗生成物をカラムクロマトグラフィー(酢
酸エチル:ヘキサン=1:2)で精製したところ5−
(3−メチル−2−ブテニル)−2,3−ジメトキシ−
6−メチル−1,4−ベンゾキノン(補酵素Q)31.
6mgを得た(0.126mmol、収率28%、収率
はシランの使用量による)。
2,3-dimethoxy-5-methyl-1,4-
Benzoquinone (165 mg, 0.91 mmol) and (3-methyl-2-butenyl) trifluorosilane (7
1 mg, 0.46 mmol) formamide solution (2.
(0 ml) was stirred for 68 hours at room temperature in an argon atmosphere. Water was added to the reaction solution and extracted with ether. The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product, which was purified by column chromatography (ethyl acetate: hexane = 1: 2).
(3-Methyl-2-butenyl) -2,3-dimethoxy-
6-methyl-1,4-benzoquinone (coenzyme Q) 31.
6 mg was obtained (0.126 mmol, yield 28%, yield depends on the amount of silane used).

【0031】1H−NMR(CDCl3):δ1.68
(s,3H),1.74(s,3H),2.02(s,
2H),3.18(d,J=7.1Hz,2H),3.
98(s,3H),4.00(s,3H),4.94
(t,J=7.1Hz,1H) IR(neat):2950,1660,1650,1
615,1265cm-1
1 H-NMR (CDCl 3 ): δ1.68
(S, 3H), 1.74 (s, 3H), 2.02 (s,
2H), 3.18 (d, J = 7.1Hz, 2H), 3.
98 (s, 3H), 4.00 (s, 3H), 4.94
(T, J = 7.1 Hz, 1 H) IR (neat): 2950, 1660, 1650, 1
615,1265 cm -1

【0032】実施例4Example 4

【0033】[0033]

【化10】 [Chemical 10]

【0034】2,3−ジメチル−1,4−ベンゾキノン
(40.8mg、0.30mmol)および(3−メチ
ル−2−ブテニル)トリフルオロシラン(23.1m
g、0.15mmol)のホルムアミド溶液(1.0m
l)をアルゴン雰囲気中、室温で、68時間攪拌した。
反応溶液に水を加えエーテルにより抽出した。有機層を
硫酸マグネシウムにより乾燥後、減圧下、溶媒留去して
得られた粗生成物をカラムクロマトグラフィー(酢酸エ
チル:ヘキサン=1:10)で精製したところ5−(3
−メチル−2−ブテニル)−2,3−ジメチル−1,4−
ベンゾキノン(プラストキノン)16.3mgを得た
(0.080mmol、収率53%、収率はシランの使
用量による)。
2,3-Dimethyl-1,4-benzoquinone (40.8 mg, 0.30 mmol) and (3-methyl-2-butenyl) trifluorosilane (23.1 m)
g, 0.15 mmol) in formamide solution (1.0 m
l) was stirred at room temperature in an argon atmosphere for 68 hours.
Water was added to the reaction solution and extracted with ether. The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product, which was purified by column chromatography (ethyl acetate: hexane = 1: 10).
-Methyl-2-butenyl) -2,3-dimethyl-1,4-
16.3 mg of benzoquinone (plastoquinone) was obtained (0.080 mmol, yield 53%, yield depends on the amount of silane used).

【0035】1H−NMR(CDCl3):δ1.37
(s,3H),1.75(s,3H),2.01(s,
3H),2.03(s,3H),3.11(d,J=
7.3Hz,2H),5.15(t,J=7.3Hz,
1H),6.47(s,1H) IR(neat):2980,2940,2875,1
730,1650,1620,1450,1380,1
320,1300,1265,1240,1100cm
-1
1 H-NMR (CDCl 3 ): δ1.37
(S, 3H), 1.75 (s, 3H), 2.01 (s,
3H), 2.03 (s, 3H), 3.11 (d, J =
7.3 Hz, 2 H), 5.15 (t, J = 7.3 Hz,
1H), 6.47 (s, 1H) IR (neat): 2980, 2940, 2875, 1
730, 1650, 1620, 1450, 1380, 1
320, 1300, 1265, 1240, 1100cm
-1

【0036】実施例5Example 5

【0037】[0037]

【化11】 [Chemical 11]

【0038】2−ブロモ−3−メチル−1,4−ナフト
キノン(25.1mg、0.10mmol)および(3
−メチル−2−ブテニル)トリフルオロシラン(77m
g、0.50mmol)をホルムアミド(1.0ml)
/テトラヒドロフラン(0.2ml)の混合溶媒中、ア
ルゴン雰囲気下、80℃で、62時間攪拌した。反応溶
液に水を加えエーテルにより抽出した。有機層を硫酸マ
グネシウムにより乾燥後、減圧下、溶媒留去して得られ
た粗生成物をカラムクロマトグラフィー(酢酸エチル:
ヘキサン=1:4)で精製したところ3−メチル−2−
(3−メチル−2−ブテニル)−1,4−ナフトキノン
(ビタミンK1)13.0mgを得た(0.054mm
ol、収率54%、収率はナフトキノンの使用量によ
る)。
2-Bromo-3-methyl-1,4-naphthoquinone (25.1 mg, 0.10 mmol) and (3
-Methyl-2-butenyl) trifluorosilane (77m
g, 0.50 mmol) with formamide (1.0 ml)
In a mixed solvent of / tetrahydrofuran (0.2 ml), the mixture was stirred at 80 ° C under an argon atmosphere for 62 hours. Water was added to the reaction solution and extracted with ether. The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product, which was subjected to column chromatography (ethyl acetate:
When purified with hexane = 1: 4), 3-methyl-2-
13.0 mg of (3-methyl-2-butenyl) -1,4-naphthoquinone (vitamin K 1 ) was obtained (0.054 mm
ol, yield 54%, yield depending on the amount of naphthoquinone used).

【0039】1H−NMR(CDCl3):δ1.69
(s,3H),1.80(s,3H),2.20(s,
3H),3.36(d,J=7.0Hz,2H),5.
01(t,J=7.0Hz,1H),7.63−7.7
2(m,2H),8.02−8.13(m,2H) IR(neat):2975,2940,2875,1
730,1660,1600,1380,1300,1
290,720cm-1
1 H-NMR (CDCl 3 ): δ 1.69
(S, 3H), 1.80 (s, 3H), 2.20 (s,
3H), 3.36 (d, J = 7.0Hz, 2H), 5.
01 (t, J = 7.0 Hz, 1H), 7.63-7.7
2 (m, 2H), 8.02 to 8.13 (m, 2H) IR (neat): 2975, 2940, 2875, 1
730, 1660, 1600, 1380, 1300, 1
290,720 cm -1

【0040】実施例6Example 6

【0041】[0041]

【化12】 [Chemical 12]

【0042】1,4−ナフトキノン(47.8mg、
0.30mmol)および(3−メチル−2−ブテニ
ル)トリフルオロシラン(23mg、0.15mmo
l)をホルムアミド(1.0ml)溶媒中でアルゴン雰
囲気中、室温で、12時間攪拌した。反応溶液に水を加
えエーテルにより抽出した。有機層を硫酸マグネシウム
により乾燥後、減圧下、溶媒留去して得られた粗生成物
をカラムクロマトグラフィー(酢酸エチル:ヘキサン=
1:2)で精製したところ2−(3−メチル−2−ブテ
ニル)−1,4−ナフトキノン18.6mgを得た
(0.082mmol、収率55%、収率はシランの使
用量による)。
1,4-naphthoquinone (47.8 mg,
0.30 mmol) and (3-methyl-2-butenyl) trifluorosilane (23 mg, 0.15 mmo
l) was stirred in a formamide (1.0 ml) solvent under an argon atmosphere at room temperature for 12 hours. Water was added to the reaction solution and extracted with ether. The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product, which was subjected to column chromatography (ethyl acetate: hexane =
When purified by 1: 2), 18.6 mg of 2- (3-methyl-2-butenyl) -1,4-naphthoquinone was obtained (0.082 mmol, yield 55%, yield depends on the amount of silane used). .

【0043】1H−NMR(CDCl3):δ1.67
(s,3H),1.79(s,3H),3.28(d,
J=7.4Hz,2H),5.23(t,J=7.4H
z,1H),6.77(t,J=1.5Hz,1H),
7.72(d,J=5.8Hz,1H),7.73
(d,J=5.8Hz,1H),8.06(dd,J=
5.8,3.3Hz,1H),8.10(dd,J=
5.8,3.3Hz,1H) IR(neat):3080,2930,1730,1
670,1620,1600,1335,1305,1
670,1270,1250cm-1
1 H-NMR (CDCl 3 ): δ1.67
(S, 3H), 1.79 (s, 3H), 3.28 (d,
J = 7.4Hz, 2H), 5.23 (t, J = 7.4H
z, 1H), 6.77 (t, J = 1.5Hz, 1H),
7.72 (d, J = 5.8 Hz, 1H), 7.73
(D, J = 5.8 Hz, 1H), 8.06 (dd, J =
5.8, 3.3 Hz, 1H), 8.10 (dd, J =
5.8, 3.3 Hz, 1H) IR (neat): 3080, 2930, 1730, 1
670, 1620, 1600, 1335, 1305, 1
670, 1270, 1250 cm -1

【0044】実施例7Example 7

【0045】[0045]

【化13】 [Chemical 13]

【0046】1,4−ナフトキノン(46.3mg、
0.29mmol)および(3−メチル−2−ブテニ
ル)トリフルオロシラン(228mg、1.46mmo
l)および第二塩化鉄6水和物(791mg、2.93
mmol)をホルムアミド(1.5ml)溶媒中でアル
ゴン雰囲気中、室温で、63時間攪拌した。反応溶液に
水を加えエーテルにより抽出した。有機層を硫酸マグネ
シウムにより乾燥後、減圧下、溶媒留去して得られた粗
生成物をカラムクロマトグラフィー(酢酸エチル:ヘキ
サン=1:4)で精製したところ2−(3−メチル−2
−ブテニル)−1,4−ナフトキノン63.0mgを得
た(0.278mmol、収率96%、収率はナフトキ
ノンの使用量による)。生成物のスペクトルは実施例6
で得られたものと一致した。
1,4-naphthoquinone (46.3 mg,
0.29 mmol) and (3-methyl-2-butenyl) trifluorosilane (228 mg, 1.46 mmo
1) and ferric chloride hexahydrate (791 mg, 2.93)
(mmol) in a formamide (1.5 ml) solvent at room temperature under an argon atmosphere for 63 hours. Water was added to the reaction solution and extracted with ether. After the organic layer was dried over magnesium sulfate, the solvent was distilled off under reduced pressure, and the crude product obtained was purified by column chromatography (ethyl acetate: hexane = 1: 4) to give 2- (3-methyl-2).
63.0 mg of -butenyl) -1,4-naphthoquinone was obtained (0.278 mmol, yield 96%, yield depends on the amount of naphthoquinone used). The product spectrum is shown in Example 6.
In agreement with the one obtained in.

【0047】実施例8Example 8

【0048】[0048]

【化14】 Embedded image

【0049】2,3−ジメチル−1,4−ベンゾキノン
(40.8mg、0.30mmol)および(3−メチ
ル−2−ブテニル)トリフルオロシラン(114mg、
0.73mmol)のホルムアミド溶液(1.5ml)
および第二塩化鉄6水和物(161mg、0.60mm
ol)をアルゴン雰囲気中、室温で、12時間攪拌し
た。反応溶液に水を加えエーテルにより抽出した。有機
層を硫酸マグネシウムにより乾燥後、減圧下、溶媒留去
して得られた粗生成物をカラムクロマトグラフィー(酢
酸エチル:ヘキサン=1:10)で精製したところ5−
(3−メチル−2−ブテニル)−2,3−ジメチル−1,
4−ベンゾキノン(プラストキノン)56.8mgを得
た(0.279mmol、収率93%、収率はベンゾキ
ノンの使用量による)。生成物のスペクトルは実施例4
で得られたものと一致した。
2,3-Dimethyl-1,4-benzoquinone (40.8 mg, 0.30 mmol) and (3-methyl-2-butenyl) trifluorosilane (114 mg,
0.73 mmol) formamide solution (1.5 ml)
And ferric chloride hexahydrate (161 mg, 0.60 mm
ol) was stirred at room temperature for 12 hours in an argon atmosphere. Water was added to the reaction solution and extracted with ether. The organic layer was dried over magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain a crude product, which was purified by column chromatography (ethyl acetate: hexane = 1: 10).
(3-methyl-2-butenyl) -2,3-dimethyl-1,
56.8 mg of 4-benzoquinone (plastoquinone) was obtained (0.279 mmol, yield 93%, yield depends on the amount of benzoquinone used). The product spectrum is shown in Example 4.
In agreement with the one obtained in.

【0050】参考例1Reference Example 1

【0051】[0051]

【化15】 [Chemical 15]

【0052】文献[Tetrahedron Lett.,4041
(1980)]の反応条件では3−メチル−2−ブテニ
ル基のキノンへの導入が困難であることを示すため以下
の実験を行なった。すなわち、文献記載の方法に従い、
1,4−ナフトキノン(47.8mg、0.30mmo
l)および(3−メチル−2−ブテニル)トリメチルシ
ラン(23mg、0.15mmol)をジクロロメタン
溶媒中、四塩化チタン(57mg、0.30mmol)
の共存下、−78℃から室温で3時間、反応させたが生
成物は得られず原料キノンが回収された。
Reference [Tetrahedron Lett. , 4041
(1980)], it was difficult to introduce a 3-methyl-2-butenyl group into quinone, and the following experiment was conducted. That is, according to the method described in the literature,
1,4-naphthoquinone (47.8 mg, 0.30 mmo
l) and (3-methyl-2-butenyl) trimethylsilane (23 mg, 0.15 mmol) in dichloromethane solvent titanium tetrachloride (57 mg, 0.30 mmol).
The reaction was carried out in the coexistence with the above from −78 ° C. to room temperature for 3 hours, but no product was obtained and the raw material quinone was recovered.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年6月29日[Submission date] June 29, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】本発明に用いる前記一般式[I]で表され
るアリルトリフルオロシランは、トリクロロシランとハ
ロゲン化アリルの反応から得られるアリルトリクロロシ
ラン[J.Organomet.Chem.,96,C1(197
5)]を三フッ化アンチモンによりフッ素化することで
容易に得られる[Organometallics,5,1490(1
986)]。
The allyltrifluorosilane represented by the above general formula [I] used in the present invention is an allyltrichlorosilane [J. Organomet. Chem. , 96, C1 (197
5)] are readily obtained by fluorination by the antimony trifluoride [Organometal l ics, 5,1490 (1
986)].

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 253/30 255/40 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C07C 253/30 255/40

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式[I] 【化1】 (式中、R1、R2、R3、R4およびR5は各々、独立に
水素原子、アルキル基、アリール基、アルケニル基、ア
ルコキシ基、シアノ基またはハロゲン原子である。R1
とR2、R3とR4、R2とR5またはR1とR3は各々結合
している炭素原子と一体となって環を形成し得る。)で
表されるアリルトリフルオロシランと、下記一般式[I
I] 【化2】 (式中、R6、R7およびR8は各々、独立に水素原子、
アルキル基、アリール基、アルケニル基、アルキニル
基、アルコキシ基、水酸基である。R6とR7は各々結合
している炭素原子と一体となって環を形成し得る。Xは
水素原子、ハロゲン原子を表す。)で表されるp-キノ
ンを反応させることからなる、下記一般式[III] 【化3】 (式中、R1、R2、R3、R4、R5、R6、R7およびR8
は前記と同一の意味を表す)で表されるアリルキノンの
製造方法。
1. The following general formula [I]: (Wherein, R 1, R 2, R 3, R 4 and R 5 each are independently hydrogen atom, an alkyl group, an aryl group, an alkenyl group, an alkoxy group, .R 1 is a cyano group or a halogen atom
And R 2 , R 3 and R 4 , R 2 and R 5, or R 1 and R 3 may form a ring together with the carbon atom to which they are bonded. ) And allyltrifluorosilane represented by the following general formula [I
I] (In the formula, R 6 , R 7 and R 8 are each independently a hydrogen atom,
An alkyl group, an aryl group, an alkenyl group, an alkynyl group, an alkoxy group, and a hydroxyl group. R 6 and R 7 may together with the carbon atom to which they are bound form a ring. X represents a hydrogen atom or a halogen atom. ) Represented by the following general formula [III]: (In the formulae, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8
Represents the same meaning as above).
【請求項2】 酸化剤の共存下に反応させることからな
る、請求項1記載のアリルキノンの製造方法。
2. The method for producing allylquinone according to claim 1, which comprises reacting in the presence of an oxidizing agent.
JP23477594A 1994-09-29 1994-09-29 Production of allylquinone Pending JPH0892151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23477594A JPH0892151A (en) 1994-09-29 1994-09-29 Production of allylquinone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23477594A JPH0892151A (en) 1994-09-29 1994-09-29 Production of allylquinone

Publications (1)

Publication Number Publication Date
JPH0892151A true JPH0892151A (en) 1996-04-09

Family

ID=16976181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23477594A Pending JPH0892151A (en) 1994-09-29 1994-09-29 Production of allylquinone

Country Status (1)

Country Link
JP (1) JPH0892151A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7432305B2 (en) 2005-09-15 2008-10-07 Edison Pharmaceuticals, Inc. Tail variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
US9278085B2 (en) 2006-02-22 2016-03-08 Edison Pharmaceuticals, Inc. Side-chain variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
US9399612B2 (en) 2008-09-10 2016-07-26 Edison Pharmaceuticals, Inc. Treatment of pervasive developmental disorders with redox-active therapeutics
US9447006B2 (en) 2005-06-01 2016-09-20 Edison Pharmaceuticals, Inc. Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
US10703701B2 (en) 2015-12-17 2020-07-07 Ptc Therapeutics, Inc. Fluoroalkyl, fluoroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9447006B2 (en) 2005-06-01 2016-09-20 Edison Pharmaceuticals, Inc. Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
US11021424B2 (en) 2005-06-01 2021-06-01 Ptc Therapeutics, Inc. Redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
US7432305B2 (en) 2005-09-15 2008-10-07 Edison Pharmaceuticals, Inc. Tail variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
US9278085B2 (en) 2006-02-22 2016-03-08 Edison Pharmaceuticals, Inc. Side-chain variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
US9932286B2 (en) 2006-02-22 2018-04-03 Bioelectron Technology Corporation Side-chain variants of redox-active therapeutics for treatment of mitochondrial diseases and other conditions and modulation of energy biomarkers
US9399612B2 (en) 2008-09-10 2016-07-26 Edison Pharmaceuticals, Inc. Treatment of pervasive developmental disorders with redox-active therapeutics
US10105325B2 (en) 2008-09-10 2018-10-23 Bioelectron Technology Corporation Treatment of pervasive developmental disorders with redox-active therapeutics
US10736857B2 (en) 2008-09-10 2020-08-11 Ptc Therapeutics, Inc. Treatment of pervasive developmental disorders with redox-active therapeutics
US10703701B2 (en) 2015-12-17 2020-07-07 Ptc Therapeutics, Inc. Fluoroalkyl, fluoroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders
US10981855B2 (en) 2015-12-17 2021-04-20 Ptc Therapeutics, Inc. Fluoroalkyl, fluoroalkoxy, phenoxy, heteroaryloxy, alkoxy, and amine 1,4-benzoquinone derivatives for treatment of oxidative stress disorders

Similar Documents

Publication Publication Date Title
JP2020183395A (en) Process for the preparation of 1-(3,5-dichlorophenyl)-2,2,2-trifluoroethanone and derivatives thereof
JPH0892151A (en) Production of allylquinone
JP2000034239A (en) Production of trifluoromethylated aromatic compound
JPH0231076B2 (en)
WO2003035651A2 (en) Novel artemisinine derivatives, and uses thereof for treating malaria
JPH0643356B2 (en) Polyhalogenated carbinol
EP2789603B1 (en) Method for producing pentafluorosulfanyl benzoic acid
JP4066544B2 (en) Method for producing cyclopentenone
JP3873118B2 (en) Method for producing aryl sulfone
JP4869739B2 (en) Fluorine-containing dihydroquinoline compound and method for producing fluorine-containing quinoline compound
CN113861125A (en) Synthetic method of morpholinone compound
JP2706554B2 (en) 4-trifluoromethylaniline derivative and method for producing the same
JP2711754B2 (en) Method for producing optically active dihydropyran derivative
WO2016199789A1 (en) Method of manufacturing trifluoromethyl substituted semisquarate, method of manufacturing trifluoromethyl compound starting from trifluoromethyl substituted semisquarate, and trifluoromethyl group-containing compound
JP2006124347A (en) New method for producing phenyl 2-pyrimidinyl ketones and new intermediate therefor
JP2642680B2 (en) Reduction of β-ketoester
KR100208427B1 (en) A process for producing d, l, -3-methyl-cyclopentadecan-1-one
JP3953141B2 (en) Process for producing 5-methyl-1,4-benzodioxan-6-carboxylic acids and novel intermediates thereof
JP5649288B2 (en) Method for producing phthalic dichloride compound and catalyst used in the production method
JPS5976037A (en) Preparation of benzoquinone compound
JPH0455183B2 (en)
JPH03271244A (en) Production of trifluoromethoxyphenol derivative
JP2002226430A (en) Method for producing aromatic carboxylate having substituent
JPS62209046A (en) Aminoterpene alcohol derivative and production thereof
JPH06329658A (en) Chromene derivative and its production