JPH0890169A - Fluidization controller for molten metal - Google Patents

Fluidization controller for molten metal

Info

Publication number
JPH0890169A
JPH0890169A JP23001194A JP23001194A JPH0890169A JP H0890169 A JPH0890169 A JP H0890169A JP 23001194 A JP23001194 A JP 23001194A JP 23001194 A JP23001194 A JP 23001194A JP H0890169 A JPH0890169 A JP H0890169A
Authority
JP
Japan
Prior art keywords
iron core
molten metal
width
slot
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23001194A
Other languages
Japanese (ja)
Other versions
JP3273105B2 (en
Inventor
Keisuke Fujisaki
崎 敬 介 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23001194A priority Critical patent/JP3273105B2/en
Publication of JPH0890169A publication Critical patent/JPH0890169A/en
Application granted granted Critical
Publication of JP3273105B2 publication Critical patent/JP3273105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Linear Motors (AREA)

Abstract

PURPOSE: To efficiently raise the magnetic fields acting on molten metal and to suppress an increase in the outside diameter of a device by respectively specifying the widths in the y direction of the first iron core and second iron core of iron cores. CONSTITUTION: Since the width y1 in the y direction of the first iron core is Ys <Y1 <Yc , respective electric coils CL can be inserted into one of slits by moving these coils in the x direction in the form of passing the iron core L1 into their inside spaces and moving the coils in the x direction. The gap ya above the slit depth ys , then, exists between the rear surface of the iron core L1 opposite to its slotted surface and the side of the electric coils CL opposite to the side to be inserted into the slots. The second iron core L6 of which the width y6 in the y direction is yc -y1 <y6 <yc -(y1 -ys ) is inserted into the gap ya after the electric coils are mounted to the iron core L1 in such a manner, by which the gap in the remaining y direction is made into ya -y6 and the gap is decreased by as much as y6 . The sectional area of the iron core enclosed by the electric coils is correspondingly increased, by which the saturation magnetic flux quantity is increased and the powerful magnetic fields are applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属を流動駆動お
よび又は制動するために、溶融金属に交流磁界および又
は直流磁界を加える流動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow control device for applying an alternating magnetic field and / or a direct magnetic field to a molten metal in order to drive and / or brake the molten metal.

【0002】[0002]

【従来の技術】例えば上述の流動制御装置は、溶融金属
の上面に対向して、又は溶融金属を取り囲む鋳型辺に沿
って、x方向に延びかつ、x方向と直交するy方向に凹
の、x方向に所定ピッチで分布する複数個のスロットを
有する鉄芯と、該鉄芯が貫通する複数個の、各スロット
に一辺がはめ込まれた電気コイルを有する(例えば特開
平1−228645号公報,特開平3−258442号
公報)。
2. Description of the Related Art For example, the above-mentioned flow control device has a groove extending in the x direction and facing the upper surface of the molten metal or along a mold side surrounding the molten metal, and is concave in the y direction orthogonal to the x direction. It has an iron core having a plurality of slots distributed at a predetermined pitch in the x direction, and a plurality of electric coils through which the iron core penetrates, one side of which is fitted in each slot (for example, JP-A 1-228645, JP-A-3-258442).

【0003】電気コイルのそれぞれに、位相がずれた電
圧、例えば多相交流の各相電圧、を印加することによ
り、スロットを刻んだ面(鋳型対向面)にx方向の移動
磁界が発生し、これが溶融金属に作用すると、溶融金属
には磁界の移動方向と同方向に駆動力が作用する。移動
磁界の方向が溶融金属の流動方向と同方向であれば、流
動制御装置は溶融金属の流動を加速する。移動磁界の方
向が溶融金属の流動方向と逆方向であれば溶融金属の流
動を制動する。電気コイルに直流電圧を印加して溶融金
属に静止磁界を加えると、溶融金属には、その移動方向
を抑止しようとする制動力が加わる。
By applying a voltage having a phase shift, for example, each phase voltage of a polyphase alternating current, to each of the electric coils, a moving magnetic field in the x direction is generated on the surface in which the slots are carved (the surface facing the mold), When this acts on the molten metal, a driving force acts on the molten metal in the same direction as the moving direction of the magnetic field. If the direction of the moving magnetic field is the same as the flowing direction of the molten metal, the flow control device accelerates the flowing of the molten metal. If the direction of the moving magnetic field is opposite to the flow direction of the molten metal, the flow of the molten metal is damped. When a DC voltage is applied to the electric coil and a static magnetic field is applied to the molten metal, a braking force for restraining the moving direction is applied to the molten metal.

【0004】[0004]

【発明が解決しようとする課題】この種の流動制御装置
は比較的に大きな電磁力を必要とするので、鉄芯および
その各スロットに装着した各電気コイルの形状が比較的
に大きく、したがって、各電気コイルは予め方形に整形
されたものであり、各電気コイルは、その内空間(空芯
部分)に、一端面に複数のスロットを切った略直方体の
鉄芯を通す形でx方向に動かし、そしてy方向に動かし
てスロットの1つに挿入する。従って、鉄芯の外径は、
大きくとも、装着する電気コイルの空芯部分(内空間)
の大きさに限定される。
Since this type of flow control device requires a relatively large electromagnetic force, the shape of the iron core and each electric coil mounted in each slot thereof is relatively large, and therefore, Each electric coil is shaped in advance in a rectangular shape, and each electric coil is inserted in its inner space (air core portion) in the x direction by passing a substantially rectangular parallelepiped iron core with a plurality of slots cut in one end surface. Move and then move in the y direction to insert into one of the slots. Therefore, the outer diameter of the iron core is
Air core part (internal space) of the electric coil to be installed, even if large
Limited in size.

【0005】このため、鉄芯のy方向の幅を、スロット
のy方向の深さをys、電気コイルの、鉄芯が貫通する
内空間のy方向の幅をycとすると、y1<ycであ
り、電気コイルを鉄芯のスロットに挿入した後は、鉄芯
のスロットを切った面に対向する背面と、電気コイルの
スロットに入った辺と対向する辺との間には、スロット
深さys以上の空隙がある。また、装着する電気コイル
は方形(ロ型)とするが、角部分は、直角とすることは
できず、湾曲した曲線を描く。すなわちコ−ナはかなり
大きなア−ルを有することになり、そこでは電気コイル
の内空間のy方向幅がycよりも短いので、電気コイル
の角部にも当るように鉄芯の高さ(z方向の長さ)を長
くすると、鉄芯のy方向の幅y1を更に短くしなければ
ならず、これは前記空隙を更に大きく(y方向に更に広
く)してしまうことになる。
Therefore, assuming that the width of the iron core in the y direction is the depth of the slot in the y direction and the width of the inner space of the electric coil through which the iron core penetrates in the y direction, y1 <yc. Yes, after inserting the electric coil into the slot of the iron core, the slot depth should be between the back surface facing the slotted surface of the iron core and the side facing the slot of the electric coil. There is a void of ys or more. Also, the electric coil to be mounted is rectangular (b-shaped), but the corners cannot be right angles and draw a curved curve. That is, the corner has a considerably large arm, where the width of the inner space of the electric coil in the y direction is shorter than yc, so that the height of the iron core ( When the length (in the z direction) is increased, the width y1 in the y direction of the iron core must be further shortened, which causes the void to be further increased (wider in the y direction).

【0006】溶融金属に作用する磁界を効率よく高くす
る為には、1.コアのスロット深さysを大きくする、
2.コイルに大電流を流す、などが挙げられる。しか
し、鉄芯のスロット深さをysを大きくすれば、前述の
理由により前記空隙が大きくなり、すなわち、鉄芯の、
電気コイルが周回する断面(実効断面)が小さくなり、
磁気飽和を起こし易すくなるので、コイルに流す電流を
小さくしなければならない。また、作業スペースの限ら
れた場所においては、鉄芯のスロット深さを深くする程
に装置外径が大きくなり、鉄芯のスロットの深さには自
ずと限界がある。本発明は、溶融金属に作用する磁界を
効率よく高くすることを第1の目的とし、装置外径の増
大を抑止しかつ溶融金属に作用する磁界を高くすること
を第2の目的とする。
In order to efficiently increase the magnetic field acting on the molten metal, 1. Increase core slot depth ys,
2. A large current is passed through the coil. However, if the slot depth of the iron core is increased by ys, the gap becomes large for the above-mentioned reason, that is,
The cross section (effective cross section) that the electric coil goes around becomes small,
Since it is easy for magnetic saturation to occur, the current flowing in the coil must be reduced. Further, in a place where the work space is limited, the outer diameter of the apparatus becomes larger as the depth of the iron core slot becomes deeper, which naturally limits the depth of the iron core slot. The first object of the present invention is to efficiently increase the magnetic field acting on the molten metal, and the second object is to suppress the increase of the outer diameter of the apparatus and increase the magnetic field acting on the molten metal.

【0007】[0007]

【課題を解決するための手段】本願の第1番の発明は、
溶融金属に沿ってx方向に延びかつ、x方向と直交する
y方向に凹の、x方向に所定ピッチで分布する複数個の
スロットを有する鉄芯と、該鉄芯が貫通する複数個の、
各スロットに一辺がはめ込まれた電気コイルを有する溶
融金属の流動制御装置おいて、前記スロットのy方向の
深さをysとし、前記電気コイルの、前記鉄芯が貫通す
る内空間のy方向の幅をycとすると、前記鉄芯は、前
記スロットを有しy方向の幅y1がys<y1<ycな
る第1鉄芯(L1)と、この第1鉄芯(L1)のスロットを刻ん
だ面に対向する背面に当接してx方向に延びy方向の幅
y6がyc−y1<y6<yc−(y1−ys)なる第
2鉄芯(L6)を有することを特徴とする。
The first invention of the present application is as follows:
An iron core having a plurality of slots extending along the molten metal in the x direction and concave in the y direction orthogonal to the x direction and distributed at a predetermined pitch in the x direction; and a plurality of iron cores through which the iron core penetrates,
In a molten metal flow control device having an electric coil with one side fitted in each slot, the depth of the slot in the y direction is defined as ys, and the depth of the electric coil in the y direction of an inner space of the iron core that penetrates Assuming that the width is yc, the iron core has the slot, and a first iron core (L1) in which the width y1 in the y direction is ys <y1 <yc and a slot of the first iron core (L1) are carved. It has a second iron core (L6) which is in contact with the back surface facing the surface and extends in the x direction and has a width y6 in the y direction of yc-y1 <y6 <yc- (y1-ys).

【0008】本願の第2番の発明は、溶融金属に沿って
x方向に延びかつ、x方向と直交するy方向に凹の、x
方向に所定ピッチで分布する複数個のスロットを有する
鉄芯と、該鉄芯が貫通する複数個の、各スロットに一辺
がはめ込まれた電気コイルを有する溶融金属の流動制御
装置おいて、前記スロットのy方向の深さをysとし、
前記電気コイルの内空間のy方向の幅,z方向の高さお
よび対角方向の幅をそれぞれyc,zcおよびyzcと
すると、前記鉄芯は、前記スロットを有しy方向の幅y
1がys<y1<yc、z方向の高さz1がz1<zc
なる第1鉄芯(L1)と、この第1鉄芯(L1)のスロットを刻
んだ面に対向する背面に当接してx方向に延びy方向の
幅y6がyc−y1<y6<yc−(y1−ys)、z
方向の高さがz1なる第2鉄芯(L6)と、z方向で第1鉄
芯(L1)の上面又は下面に当接しz1+z2+z3<zc
なる高さz2+z3を有し第1鉄芯(L1)のスロットと整
合し前記電気コイルがはめ込まれたスロットを有しy方
向の幅(y1+y6)がycより大きくyzcより小さい第3
鉄芯(L2,L3)と、を有することを特徴とする。
The second invention of the present application is that the x extending along the molten metal in the x direction and concave in the y direction orthogonal to the x direction is used.
In a molten metal flow control device having an iron core having a plurality of slots distributed in a predetermined pitch in a direction and a plurality of electric coils through which the iron core penetrates, one side being fitted in each slot. Let y be the depth in the y direction,
When the width in the y direction, the height in the z direction, and the width in the diagonal direction of the inner space of the electric coil are yc, zc, and yzc, respectively, the iron core has the slot and the width y in the y direction.
1 is ys <y1 <yc, and the height z1 in the z direction is z1 <zc
The first iron core (L1) and the rear surface facing the slotted surface of the first iron core (L1) are extended in the x direction and have a width y6 in the y direction of yc-y1 <y6 <yc- (Y1-ys), z
The second iron core (L6) whose height in the direction is z1 is brought into contact with the upper surface or the lower surface of the first iron core (L1) in the z direction and z1 + z2 + z3 <zc
A third slot having a height z2 + z3 which is aligned with the slot of the first iron core (L1) and in which the electric coil is fitted, and whose width (y1 + y6) in the y direction is larger than yc and smaller than yzc
And an iron core (L2, L3).

【0009】上記第2番の発明の好ましい実施例では、
第3鉄芯(L2,L3)は、z方向で第1鉄芯(L1)の上面に接
合した高さz2の鉄芯(L2)と、z方向で第1鉄芯(L1)の
下面に接合した高さz3の鉄芯(L3)でなる。
In the second preferred embodiment of the invention,
The third iron core (L2, L3) is joined to the upper surface of the first iron core (L1) in the z direction, and the lower iron core (L2) of height z2 is joined to the lower surface of the first iron core (L1) in the z direction. It consists of a joined iron core (L3) of height z3.

【0010】上記第1番および第2番の発明の好ましい
実施例は、前記鉄芯の上面および下面に当接し、先端面
が鉄芯のスロットを刻んだ面と実質上同一面をなし、そ
れぞれがx方向で隣り合う電気コイルのスロットにはめ
込まれた辺と直交する辺の間に介挿された複数個の第4
鉄芯(L4,L5)を更に備える。
The preferred embodiments of the first and second inventions are in contact with the upper surface and the lower surface of the iron core, and the front end surface is substantially the same as the slotted surface of the iron core. A plurality of fourth coils inserted between the sides orthogonal to the sides fitted in the slots of the electric coils adjacent to each other in the x direction.
An iron core (L4, L5) is further provided.

【0011】なお、カッコ内には、理解を容易にするた
めに、図面を参照して後述する実施例の対応要素又は対
応事項の記号を、参考までに付記した。
In order to facilitate understanding, the corresponding elements or corresponding symbols of the embodiments to be described later with reference to the drawings are added in parentheses for reference.

【0012】[0012]

【作用】第1番の発明によれば、第1の前記鉄芯(L1)
は、y方向の幅y1がys<y1<ycであるので、従
来の鉄芯と同様に、各電気コイルを、その内空間に鉄芯
(L1)を通す形でx方向に動かし、そしてy方向に動かし
てスロットの1つに挿入することができる。従って、電
気コイルを鉄芯(L1)のスロットに挿入した後は、鉄芯(L
1)のスロットを切った面に対向する背面と、電気コイル
のスロットに入った辺と対向する辺との間には、スロッ
ト深さys以上の空隙(ya)がある。このように鉄芯(L1)
に電気コイルを装着した後に、該空隙(ya)に、y方向の
幅y6がyc−y1<y6<yc−(y1−ys)なる
第2鉄芯(L6)を挿入することにより、残りのy方向の空
隙は、ya−y6となり、y6分空隙が減少し、その分
電気コイルが周回する鉄芯断面積(実効断面積)が増大
し、そこの飽和磁束量が増大し、電気コイルに従来より
も高レベルの電流を流しても磁気飽和せず、より強力な
磁界を溶融金属に与えることができる。第2鉄芯(L6)は
電気コイルの内空間を通るので、装置外径は増大しな
い。
According to the first invention, the first iron core (L1)
Since the width y1 in the y direction is ys <y1 <yc, each electric coil has an iron core in its inner space as in the conventional iron core.
It can be moved through the (L1) in the x direction and then in the y direction to be inserted into one of the slots. Therefore, after inserting the electric coil into the slot of the iron core (L1),
There is a gap (ya) having a slot depth ys or more between the back surface facing the slotted surface of 1) and the side facing the slotted side of the electric coil. Like this iron core (L1)
After the electric coil is attached to the second coil, the second iron core (L6) having a width y6 in the y direction of yc-y1 <y6 <yc- (y1-ys) is inserted into the gap (ya), and the remaining The air gap in the y direction becomes ya-y6, and the air gap decreases by y6, the iron core cross-sectional area (effective cross-sectional area) around which the electric coil circulates increases, and the saturation magnetic flux amount there increases. Even if a higher level current is applied than before, magnetic saturation does not occur and a stronger magnetic field can be applied to the molten metal. The outer diameter of the device does not increase because the second iron core (L6) passes through the inner space of the electric coil.

【0013】第2番の発明は、上記第2鉄芯(L6)に加え
て、z方向で第1鉄芯(L1)の上面又は下面に当接しz1
+z2+z3<zcなる高さz2+z3を有し第1鉄芯
(L1)のスロットと整合し前記電気コイルがはめ込まれた
スロットを有しy方向の幅(y1+y6)がycより大きくy
zcより小さい第3鉄芯(L2,L3)と、を有する。電気コ
イルのコ−ナ部のy方向空隙長はycより短いので、第
1鉄芯(L1)を電気コイルに挿入した後に第1鉄芯(L1)の
y方向長さ以上の長さの第3鉄芯(L2,L3)を電気コイル
の内空間に挿入することはできない。そこで、この場合
には、第3鉄芯(L2,L3)をまず最初に、電気コイルの対
角コ−ナに両端部(前面および背面)が対向するように
斜めにして電気コイルに挿入する。第3鉄芯(L2,L3)の
y方向の幅(y1+y6)が電気コイルの内空間の対角長yz
c未満である限り、このような挿入が可能である。そし
て電気コイルの一辺を第3鉄芯(L2,L3)のスロットに挿
入し、この一辺に直交する他辺に第3鉄芯(L2,L3)を押
し当て、空いた空間に、上述と同様に第1鉄芯(L1)を挿
入してそのスロットに電気コイルの一辺を挿入し、そし
て上述と同様に更に第2鉄芯(L6)を装着すればよい。
A second aspect of the invention is that in addition to the second iron core (L6), the first iron core (L1) is brought into contact with the upper surface or the lower surface in the z direction of z1.
Iron core having a height z2 + z3 such that + z2 + z3 <zc
It has a slot which is aligned with the slot (L1) and in which the electric coil is fitted, and the width (y1 + y6) in the y direction is larger than yc
and a third iron core (L2, L3) smaller than zc. Since the y-direction air gap length of the corner portion of the electric coil is shorter than yc, after inserting the first iron core (L1) into the electric coil, the length of the first iron core (L1) is longer than the y-direction length. 3 Iron core (L2, L3) cannot be inserted into the inner space of the electric coil. Therefore, in this case, the third iron core (L2, L3) is first inserted into the electric coil at an angle so that both ends (front and back) face the diagonal corners of the electric coil. . The width (y1 + y6) of the third iron core (L2, L3) in the y direction is the diagonal length yz of the inner space of the electric coil.
Such insertion is possible as long as it is less than c. Then, insert one side of the electric coil into the slot of the third iron core (L2, L3), press the third iron core (L2, L3) to the other side orthogonal to this one side, and in the empty space, as described above. The first iron core (L1) may be inserted into the slot, one side of the electric coil may be inserted into the slot, and the second iron core (L6) may be further attached as described above.

【0014】この第2番の発明によれば、電気コイルの
空隙(ya,z2,z3)を第2鉄芯(L6)および第3鉄
芯(L2,L3)が埋めるので、その分電気コイルが周回する
鉄芯断面積(実効断面積)が増大し、そこの飽和磁束量
が増大し、電気コイルに従来よりも高レベルの電流を流
しても磁気飽和せず、より強力な磁界を溶融金属に与え
ることができる。第2鉄芯(L6)は電気コイルの内空間を
通るので、装置外径は増大しない。
According to the second aspect of the invention, since the voids (ya, z2, z3) of the electric coil are filled with the second iron core (L6) and the third iron core (L2, L3), the electric coil is correspondingly filled. The iron core cross-sectional area (effective cross-sectional area) that circulates increases, the saturation magnetic flux amount increases, and even if a higher level current is applied to the electric coil, magnetic saturation does not occur and a stronger magnetic field is melted. Can be given to metal. The outer diameter of the device does not increase because the second iron core (L6) passes through the inner space of the electric coil.

【0015】第2番の発明の好ましい実施例では、第3
鉄芯(L2,L3)は、z方向で第1鉄芯(L1)の上面に接合し
た高さz2の鉄芯(L2)と、z方向で第1鉄芯(L1)の下面
に接合した高さz3の鉄芯(L3)でなり、それぞれがz方
向で第1鉄芯(L1)の上側の空隙と下側の空隙を埋めるの
で、鉄芯全体の、電気コイルが周回する実効断面積が大
きく、より強力な磁界を溶融金属に与えることができ
る。仮に第1鉄芯(L1)の下側(又は上側)のみに第3鉄
芯を配置すると、上側(下側)に空隙が残る。
In the preferred embodiment of the second aspect of the invention, the third aspect
The iron cores (L2, L3) are joined to the upper surface of the first iron core (L1) in the z direction and the iron core (L2) of height z2, and to the lower surface of the first iron core (L1) in the z direction. It consists of an iron core (L3) with a height of z3, and each of them fills the upper void and the lower void of the first iron core (L1) in the z direction, so the effective cross-sectional area of the entire electric core that the electric coil circulates. And a stronger magnetic field can be applied to the molten metal. If the third iron core is arranged only on the lower side (or the upper side) of the first iron core (L1), a void remains on the upper side (lower side).

【0016】上記第1番および第2番の発明の好ましい
実施例では、隣り合う電気コイルの、スロットにはまっ
た辺に連続し直交する辺の間に、第4鉄芯(L4,L5)を挿
入している。この第4鉄芯(L4,L5)は、鉄芯全体として
の、z方向の高さを、電気コイルのz方向の外幅まで広
げることになる。すなわち磁極のz方向の高さがコイル
高さと同等となり、これにより漏洩磁束(溶融金属に向
かわない磁束)が低減し、より強力な磁界を溶融金属に
与えることができる。第1〜3鉄芯(L1,L2,L3,L6)は電
気コイルの内空間を通るので、また第4(L4,L5)は隣り
合うコイル辺間にあるので、装置外径は実質上増大しな
い。
In the preferred embodiments of the first and second inventions, the fourth iron cores (L4, L5) are provided between the sides of the adjacent electric coils which are continuous and orthogonal to the sides fitted in the slots. Inserting. The fourth iron core (L4, L5) expands the height of the entire iron core in the z direction to the outer width of the electric coil in the z direction. That is, the height of the magnetic poles in the z direction becomes equal to the height of the coil, whereby leakage magnetic flux (magnetic flux that does not face the molten metal) is reduced, and a stronger magnetic field can be applied to the molten metal. Since the 1st to 3rd iron cores (L1, L2, L3, L6) pass through the inner space of the electric coil, and the 4th (L4, L5) is between adjacent coil sides, the outer diameter of the device increases substantially. do not do.

【0017】本願の各発明の他の目的および特徴は、図
面を参照した以下の実施例の説明より明らかになろう。
Other objects and features of each invention of the present application will be apparent from the following description of embodiments with reference to the drawings.

【0018】[0018]

【実施例】図1に、本願の各発明に共通の一実施例の外
観を示す。連続鋳造鋳型の内壁1で囲まれる空間には、
溶鋼MMが、図示しない注湯ノズルを通して注入され、
溶鋼MMのメニスカス(表面)はパウダPWで覆われ
る。鋳型は水箱2に流れる冷却水で冷却され、溶鋼MM
は鋳型に接する表面から次第に内部に固まって行き鋳片
SBが連続的に引き抜かれるが、鋳型内に溶鋼が注がれ
るので、鋳型内には常時溶鋼MMがある。溶鋼MMのメ
ニスカスレベル(高さ方向z)の位置に本発明の一実施
例である2個のリニアモ−タ3Fおよび3Lが設けられ
ており、これらが溶鋼MMのメニスカス直下の部分(表
層域)に電磁力を与える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the appearance of an embodiment common to each invention of the present application. In the space surrounded by the inner wall 1 of the continuous casting mold,
Molten steel MM is injected through a pouring nozzle (not shown),
The meniscus (surface) of the molten steel MM is covered with the powder PW. The mold is cooled by the cooling water flowing in the water box 2, and molten steel MM
Is gradually solidified from the surface in contact with the mold and the slab SB is continuously drawn out. However, since molten steel is poured into the mold, there is always molten steel MM in the mold. Two linear motors 3F and 3L, which are one embodiment of the present invention, are provided at the position of the meniscus level (height direction z) of the molten steel MM, and these are portions immediately below the meniscus of the molten steel MM (surface layer area). Give electromagnetic force to.

【0019】図2に、図1に示す内壁1を、リニアモ−
タ3F,3Lの鉄芯4F,4L部で水平に破断した断面
(2a−2a線拡大断面)を示し、図3には、図2の3
a−3a線拡大断面を示す。また、図4に、図3に示す
リニアモータ3Lを各部の寸法(mm単位)を記入して
示し、図5には、図4に示すリニアモータ3Lの一点破
線5a−5aにおける断面を寸法(mm単位)を記入し
て示す。
In FIG. 2, the inner wall 1 shown in FIG.
The cross section (enlarged cross section along line 2a-2a) horizontally broken at the iron cores 4F and 4L of the rotor 3F and 3L is shown in FIG.
The a-3a line enlarged cross section is shown. Further, FIG. 4 shows the linear motor 3L shown in FIG. 3 in which the dimensions (in mm) of each part are entered, and in FIG. 5, the cross section taken along the dashed line 5a-5a of the linear motor 3L shown in FIG. (Unit: mm).

【0020】図1および図2を参照すると、鋳型の内壁
1は、相対向する長辺5F,5Lおよび相対向する短辺
6R,6Lで構成されており、各辺は銅板7F,7L,
8R,8Lに、非磁性ステンレス板9F,9L,10
R,10Lを裏当てしたものである。この実施例では、
リニアモ−タ3F,3Lの鉄芯4F,4Lは、鋳型長辺
5F,5Lの実効長(溶鋼MMが接するx方向長さ)よ
りやや長く、それらの全長に深さ(y方向長さ)の同じ
スロットが所定ピッチでそれぞれ36個切られている。
リニアモ−タ3Fの鉄芯4Fの各スロットには、電気コ
イルCF1〜CF36が装着されている。同様に、リニ
アモ−タ3Lの鉄芯4Lの各スロットには、電気コイル
CL1〜CL36が装着されており、リニアモ−タ3
F,3Lは、溶鋼MMが接する長辺5F,5Lに沿って
x方向の推力を溶鋼MMに与えようとするものである。
Referring to FIGS. 1 and 2, the inner wall 1 of the mold is composed of opposing long sides 5F and 5L and opposing short sides 6R and 6L, and each side is a copper plate 7F, 7L.
8R, 8L, non-magnetic stainless steel plate 9F, 9L, 10
It is a backing of R and 10L. In this example,
The iron cores 4F, 4L of the linear motors 3F, 3L are slightly longer than the effective lengths of the mold long sides 5F, 5L (the lengths in the x direction in contact with the molten steel MM), and the depths (the lengths in the y direction) are added to their entire lengths. 36 of the same slot are cut at a predetermined pitch.
Electric coils CF1 to CF36 are attached to the respective slots of the iron core 4F of the linear motor 3F. Similarly, electric coils CL1 to CL36 are attached to the respective slots of the iron core 4L of the linear motor 3L.
F and 3L are intended to give thrust in the x direction to the molten steel MM along the long sides 5F and 5L with which the molten steel MM contacts.

【0021】図6に、リニアモ−タ3の分解斜視図を示
す。図4および図6を参照すると、36個のスロットを
切られた第1鉄芯L1および第3鉄芯L2,L3は略直
方体の積層鉄芯であり、第2鉄芯L6はスロットの無い
直方体の積層鉄芯である。図6に示す要素を図4に示す
形に組立てる過程を説明する。まず、y方向の幅がy1
+y6、y1+y6<yzcで、z方向の高さがz2お
よびz3の第3鉄芯L2,L3を、36個の電気コイル
(CL30)に通す。このとき、電気コイルの一辺が水
平であると、第3鉄芯L2,L3は45°傾け、電気コ
イルの対角線に平行とする。そして各電気コイルを各ス
ロットに挿入し、そして第3鉄芯L2,L3を水平にす
る(実際には、第3鉄芯L2,L3を水平に置いて固定
し、電気コイルを1つづつ動かして、第3鉄芯L2,L
3に装着する)。次に、上方の第3鉄芯L2を下方のL
3から上方に離して両者間にz方向にz1よりわずかに
大きい空隙を開けて固定支持し、該空隙に、y方向の幅
がy1、ys<y1<yc、z方向の高さがz1なる第
1鉄芯L1を通し(x方向)、そしてy方向に駆動して
第1鉄芯L1のスロットに電気コイルの一辺(垂直辺)
をはめ込む。次に、第1鉄芯L1の背面(スロットがあ
る前面に対向する面)と電気コイルの後辺(垂直辺)の
間の空隙に、y方向の幅がy6、yc−y1<y6<y
c−(y1−ys)なる第2鉄芯L6を通す(x方
向)。そして、図示しない固着具で、第1鉄芯L1,第
2鉄芯L6および第3鉄芯L2,L3を一体にする(図
4)。そしてこれらの鉄芯と電気コイルの間の空隙に介
挿材を圧入して、電気コイルそれぞれを、鉄芯に対して
正確に位置決めし固定する。
FIG. 6 shows an exploded perspective view of the linear motor 3. Referring to FIG. 4 and FIG. 6, 36 slotted first iron cores L1 and third iron cores L2, L3 are substantially rectangular parallelepiped laminated iron cores, and second iron core L6 is a slotless rectangular parallelepiped. It is a laminated iron core. A process of assembling the elements shown in FIG. 6 into the shape shown in FIG. 4 will be described. First, the width in the y direction is y1
+ Y6, y1 + y6 <yzc, and the third iron cores L2 and L3 whose heights in the z direction are z2 and z3 are passed through 36 electric coils (CL30). At this time, if one side of the electric coil is horizontal, the third iron cores L2 and L3 are inclined by 45 ° and are parallel to the diagonal line of the electric coil. Then, each electric coil is inserted into each slot, and the third iron cores L2, L3 are made horizontal (actually, the third iron cores L2, L3 are placed horizontally and fixed, and the electric coils are moved one by one. The third iron core L2, L
3). Next, the upper third iron core L2 is connected to the lower L
3 is upwardly spaced from each other, and a space slightly larger than z1 is opened in the z direction between the two and fixedly supported, and in the space, the width in the y direction is y1, ys <y1 <yc, and the height in the z direction is z1. One side of the electric coil (vertical side) is inserted into the slot of the first iron core L1 by driving through the first iron core L1 (x direction) and in the y direction.
Inset. Next, in the gap between the back surface of the first iron core L1 (the surface facing the front surface having the slot) and the rear side (vertical side) of the electric coil, the widths in the y direction are y6, yc-y1 <y6 <y.
The second iron core L6 of c- (y1-ys) is passed through (x direction). Then, the first iron core L1, the second iron core L6, and the third iron cores L2, L3 are integrated with each other by a fastener (not shown) (FIG. 4). Then, the interposing material is press-fitted into the space between the iron core and the electric coil to accurately position and fix each electric coil with respect to the iron core.

【0022】次に、x方向の幅がスロット間の磁極端幅
(x方向)と等しく、y方向の幅がy1+y6、z方向
の高さが、第3鉄芯L2,L3の上,下面からz方向の
コイル突出高さに等しい、フェライト製直方体の第4鉄
芯L41〜38及びL51〜38のそれぞれを、隣り合うコイ
ル間に挿入し、先端面を第2鉄芯L6および第3鉄芯L
2,L3のスロット側先端面に合せて、第3鉄芯L2,
L3に接合する。以上により、図1〜図5に示すリニア
モ−タ3Lが組上がる。リニアモ−タ3Rも同様であ
る。
Next, the width in the x direction is equal to the magnetic pole end width between the slots (x direction), the width in the y direction is y1 + y6, and the height in the z direction is from the upper and lower surfaces of the third iron cores L2, L3. Ferrite rectangular parallelepiped fourth iron cores L4 1 to 38 and L5 1 to 38 , each having a coil protrusion height in the z direction, are inserted between adjacent coils, and a tip end surface thereof is formed of a second iron core L6 and a third iron core L3. Iron core L
In accordance with the slot side tip surfaces of L2 and L3, the third iron core L2,
Join to L3. As described above, the linear motor 3L shown in FIGS. 1 to 5 is assembled. The same applies to the linear motor 3R.

【0023】第1鉄芯L1の上面に鉄芯L2が固着さ
れ、下面に鉄芯L3が固着され、背面に第2鉄芯L2が
固着されている。鉄芯L2及びL3のz方向の高さz2
及びz3を加えた長さは、第1鉄芯L1に装着するコイ
ルCL1〜CL36のz方向の内径よりも小さい。とこ
ろで、鉄芯L2及びL3のy方向先端面(左端面)に
は、第1鉄芯L1と同じく36個のスロットが切られて
いる。鉄芯L2及びL3に切られた各スロットのスロッ
トピッチつまりx方向におけるスロット同士の間隔及び
スロットのx方向の幅は、第1鉄芯L1と同じである。
しかし、鉄芯L2及びL3に切られた各スロットの深
さ、つまり、y方向の長さは、第1鉄芯L1に固着され
た際に第1鉄芯L1の近くでは第1鉄芯L1のものと同
じくしているものの、第1鉄芯L1から離れるに従って
長く(深く)している。つまり、鉄芯L2及びL3に切
られた各スロットの底面は、電気コイルCL1〜CL3
6の角(コ−ナ)のア−ルに合せた深さとなっている。
第3鉄芯L2,L3は、従来はコイルの角部分のア−ル
により不可能であったコイル角付近にまで鉄芯積み厚を
増やしたものであり、コイル内空間を有効に利用するも
のである。
An iron core L2 is fixed to the upper surface of the first iron core L1, an iron core L3 is fixed to the lower surface, and a second iron core L2 is fixed to the rear surface. Height z2 of the iron cores L2 and L3 in the z direction
, And z3 are smaller than the inner diameters in the z direction of the coils CL1 to CL36 mounted on the first iron core L1. By the way, 36 slots are cut in the y-direction tip surfaces (left end surfaces) of the iron cores L2 and L3, like the first iron core L1. The slot pitch of each slot cut into the iron cores L2 and L3, that is, the interval between the slots in the x direction and the width of the slot in the x direction are the same as those of the first iron core L1.
However, the depth of each slot cut in the iron cores L2 and L3, that is, the length in the y direction, is close to the first iron core L1 when the first iron core L1 is fixed to the first iron core L1. Although it is the same as that of No. 1, it becomes longer (deeper) as it moves away from the first iron core L1. That is, the bottom surface of each slot cut into the iron cores L2 and L3 has electric coils CL1 to CL3.
The depth corresponds to the corner of 6 corners.
The third iron cores L2 and L3 are those in which the iron core stacking thickness is increased to the vicinity of the coil angle, which has been impossible in the past due to the corners of the coil corners, and the coil internal space is effectively used. Is.

【0024】第1鉄芯L1の、背面すなわち右端面に
は、直方体の鉄芯L6が、前後方向x及び上下方向zを
鉄芯1Lと同寸法にして、固着している。鉄芯L6は、
第1鉄芯L1及び鉄芯L2,L3と同じく積層鉄芯であ
り、前後方向x及び上下方向zの長さは第1鉄芯L1と
同一であるが、左右方向yの長さは第1鉄芯L1に装着
されるコイルのy方向内空間幅ycに対応して定められ
ている。今ここで、鉄芯L6の左右方向yの長さをy
6,第1鉄芯L1の左右方向yの長さをy1,第1鉄芯
L1に切られたスロットの左右方向yの長さ(深さ)を
ys、また、第1鉄芯L1に装着するコイルCL1〜C
L36の左右方向yの内空間幅をycとする。各コイル
の内空間幅ycより第1鉄芯L1の左右方向yの長さy
1を引いて残った長さをyaとすれば(ya=yc−y
1)、鉄芯L6の左右方向yの長さy6は、yaにスロ
ット深さysを加えたものより小さい(ya>y6)。
これは、リニアモータ3F,3Lが、方形であるコイル
CL1〜CL36を第1鉄芯L1に装着する際、一旦、
第1鉄芯L1をコイルCL1〜CL36の空心部分に通
してから、各スロットに挿入する方法を取ることに起因
しており、コイルCL1〜CL36の空心部分の内径
は、第1鉄芯L1をその内空間に通す時点においては、
最小でも第1鉄芯L1の上下方向z−z及び左右方向y
−yの直径よりも大きくなければならず、このことが、
コイルを第1鉄芯L1の各スロットに挿入し終った後
に、図6において第1鉄芯L1の右方向yと各コイルの
左方向yの内側辺との間に最小でも第1鉄芯L1のスロ
ット深さ分の無駄な空心部分を残すことにつながり、鉄
芯L6が、その無駄な空間を導体で埋めて有効に利用す
る目的で使用されることによるものである。つまり、第
1鉄芯L1の各スロットに、各コイルCL1〜CL36
を装着した後に、コイルCL1〜CL36と第1鉄芯L
1の間の空間に鉄芯L6を挿入し、第1鉄芯L1のスロ
ットの切られていない右方向y側面に固着することによ
って磁束の通過する導体の断面積が増加し、より多くの
電流を流すことが可能となる。すなわち、従来と外形寸
方は同程度である鉄芯を使用しつつ、従来よりも高出力
のリニアモータを得ることが出来る。
On the back surface, that is, the right end surface of the first iron core L1, a rectangular parallelepiped iron core L6 is fixed so that the front-rear direction x and the vertical direction z have the same dimensions as the iron core 1L. The iron core L6 is
The first iron core L1 and the iron cores L2 and L3 are laminated iron cores, and the lengths in the front-rear direction x and the vertical direction z are the same as the first iron core L1, but the lengths in the left-right direction y are the first. It is determined in correspondence with the y-direction inner space width yc of the coil mounted on the iron core L1. Here, the length of the iron core L6 in the left-right direction is y
6, the length of the first iron core L1 in the left-right direction y is y1, the length (depth) of the slot cut in the first iron core L1 in the left-right direction y is ys, and is attached to the first iron core L1 Coils CL1 to C
The width of the inner space of L36 in the left-right direction y is yc. From the inner space width yc of each coil, the length y of the first iron core L1 in the left-right direction y
Subtract 1 and let the remaining length be ya (ya = yc-y
1), the length y6 of the iron core L6 in the left-right direction y is smaller than the sum of ya plus the slot depth ys (ya> y6).
This is because when the linear motors 3F and 3L mount the rectangular coils CL1 to CL36 on the first iron core L1,
This is because the first iron core L1 is passed through the air-core portions of the coils CL1 to CL36 and then inserted into each slot, and the inner diameter of the air-core portions of the coils CL1 to CL36 is equal to that of the first iron core L1. At the time of passing through the inner space,
At least the vertical direction z-z and the horizontal direction y of the first iron core L1
Must be larger than the diameter of -y, which
After the coil is completely inserted into each slot of the first iron core L1, in FIG. 6, at least the first iron core L1 is located between the right direction y of the first iron core L1 and the inner side of the left direction y of each coil. This is because the useless air-core part corresponding to the slot depth is left, and the iron core L6 is used for the purpose of effectively filling the useless space with the conductor. That is, the coils CL1 to CL36 are provided in the slots of the first iron core L1.
After mounting the coils, the coils CL1 to CL36 and the first iron core L
By inserting the iron core L6 into the space between the first and the second iron core L1 and fixing the iron core L1 to the uncut right y-side surface of the first iron core L1, the cross-sectional area of the conductor through which the magnetic flux passes increases, and more current flows. It becomes possible to flow. That is, it is possible to obtain a linear motor having a higher output than the conventional one while using an iron core whose outer dimensions are similar to those of the conventional one.

【0025】前述の鉄芯L2及びL3の左右方向yの長
さは、第1鉄芯L1の左右方向yの長さy1に鉄芯L6
の左右方向yの長さy6を加えたものとなる。もし、鉄
芯L6を第1鉄芯L1に固着しない場合は、鉄芯L2及
びL3の左右方向yの長さは、第1鉄芯L1と同じ長さ
となる。
The length of the above-mentioned iron cores L2 and L3 in the left-right direction is the same as the length y1 of the first iron core L1 in the left-right direction and the iron core L6.
The length y6 in the left-right direction y is added. If the iron core L6 is not fixed to the first iron core L1, the lengths of the iron cores L2 and L3 in the left-right direction y are the same as the first iron core L1.

【0026】更に、既にコイルCL1〜CL36が装着
され第1鉄芯L1,鉄芯L2,L3および鉄芯L6が一
体に固着された後、鉄芯L2の上面及び鉄芯L3の下面
には、フェライトよりなる直方体の鉄芯L41〜38及び
L51〜38が、それぞれ、固着されている。鉄芯L4
1〜38及びL51〜38は、同寸法であり、左右方向yの長
さは鉄芯L2及びL3と同一で、前後方向xの長さは、
L2及びL3に切られたスロット間の磁極幅(x方向)
と同じであり、上下方向zの長さにおいては本実施例で
は80mmである。鉄芯L41〜38及びL51〜38は、それ
ぞれ、隣り合う電気コイルの間に位置し、L2,L3の
上,下面からz方向に突出するコイルCL1〜CL36
の周囲に発生する磁束を、スロット側端面に案内する。
これにより、鉄芯4Lが溶融金属に与える磁界が強くな
る。
Further, after the coils CL1 to CL36 are already mounted and the first iron core L1, the iron cores L2 and L3 and the iron core L6 are integrally fixed, the upper surface of the iron core L2 and the lower surface of the iron core L3 are The rectangular parallelepiped iron cores L4 1 to 38 and L5 1 to 38 made of ferrite are fixed to each other. Iron core L4
1 to 38 and L5 1 to 38 have the same dimensions, the length in the left-right direction y is the same as the iron cores L2 and L3, and the length in the front-rear direction x is
Magnetic pole width between slots cut in L2 and L3 (x direction)
In the present embodiment, the length in the vertical direction z is 80 mm. The iron cores L4 1 to 38 and L5 1 to 38 are located between the adjacent electric coils, and the coils CL1 to CL36 project from the upper and lower surfaces of L2 and L3 in the z direction.
The magnetic flux generated around the is guided to the end face on the slot side.
As a result, the magnetic field applied to the molten metal by the iron core 4L becomes strong.

【0027】図7に、図2に示す電気コイルの相区分を
示し、図8には、図2に示す全電気コイルの結線を示
す。この結線は2極(N=2)のものであり、電気コイ
ルに3相交流(M=3)を通電する。例えば、リニアモ
−タ3Fの電気コイルCF1〜CF36は、図8ではこ
の順に、w,w,w,w,w,w,V,V,V,V,
V,V,u,u,u,u,u,u,W,W,W,W,
W,W,v,v,v,v,v,v,U,U,U,U,
U,Uと表わしている。そして「U」は3相交流のU相
の正相通電(そのままの通電)を、「u」はU相の逆相
通電(U相より180度の位相ずれ通電)を表わし、電
気コイル「U」にはその巻始め端にU相が印加されるの
に対し、電気コイル「u」にはその巻終り端にU相が印
加されることを意味する。同様に、「V」は3相交流の
V相の正相通電を、「v」はV相の逆相通電を、「W」
は3相交流のW相の正相通電を、「w」はW相の逆相通
電を表わす。図8に示す端子U1,V1およびW1は、
リニアモ−タ3Fの各電気コイルCF1〜CF36の電
源接続端子であり、端子U2,V2およびW2は、リニ
アモ−タ3Lの各電気コイルCL1〜CL36の電源接
続端子である。
FIG. 7 shows the phase division of the electric coil shown in FIG. 2, and FIG. 8 shows the connection of all the electric coils shown in FIG. This connection has two poles (N = 2), and three-phase alternating current (M = 3) is applied to the electric coil. For example, the electric coils CF1 to CF36 of the linear motor 3F are w, w, w, w, w, w, V, V, V, V, V, V in this order in FIG.
V, V, u, u, u, u, u, u, W, W, W, W,
W, W, v, v, v, v, v, v, U, U, U, U,
It is represented by U and U. "U" represents the U-phase positive phase energization of the three-phase alternating current (the energization as it is), and "u" represents the U-phase reverse phase energization (the phase shift energization of 180 degrees from the U phase). Means that the U-phase is applied to the winding start end of the winding, whereas the U-phase is applied to the winding end of the electric coil "u". Similarly, "V" is the positive phase energization of the V phase of the three-phase AC, "v" is the negative phase energization of the V phase, and "W".
Represents the positive phase energization of the W phase of three-phase alternating current, and "w" represents the reverse phase energization of the W phase. The terminals U1, V1 and W1 shown in FIG.
Power supply connection terminals for the electric coils CF1 to CF36 of the linear motor 3F, and terminals U2, V2 and W2 are power supply connection terminals for the electric coils CL1 to CL36 of the linear motor 3L.

【0028】図9に、リニアモ−タ3Fの各電気コイル
CF16〜CF36ならびにリニアモ−タ3Lの各電気
コイルCL16〜CL36に3相交流を流す電源回路V
Cを示す。3相交流電源(3相電力線)11には直流整
流用のサイリスタブリッジ12が接続されており、その
出力(脈流)はインダクタ13およびコンデンサ14で
平滑化される。平滑化された直流電圧は3相交流形成用
のパワ−トランジスタブリッジ15に印加され、これが
出力する3相交流のU相が図8に示す電源接続端子U1
1およびU12に、V相が電源接続端子V11およびV
12に、またW相が電源接続端子W11およびW12に
印加される。
FIG. 9 shows a power supply circuit V for supplying a three-phase alternating current to the electric coils CF16 to CF36 of the linear motor 3F and the electric coils CL16 to CL36 of the linear motor 3L.
C is shown. A thyristor bridge 12 for DC rectification is connected to the three-phase AC power supply (three-phase power line) 11, and its output (pulsating current) is smoothed by an inductor 13 and a capacitor 14. The smoothed DC voltage is applied to the power transistor bridge 15 for forming the three-phase AC, and the U-phase of the three-phase AC output from the power-transistor bridge 15 is the power supply connection terminal U1 shown in FIG.
1 and U12 have V-phase power supply connection terminals V11 and V
12, and the W phase is applied to the power supply connection terminals W11 and W12.

【0029】リニアモ−タ3Fの各電気コイルCF16
〜CF36ならびにリニアモ−タ3Lの各電気コイルC
L16〜CL36に与えられる所定のコイル電圧指令値
Vcが位相角α算出器16に与えられ、位相角α算出器
16が、指令値Vcに対応する導通位相角α(サイリス
タトリガ−位相角)を算出し、これを表わす信号をゲ−
トドライバ17に与える。ゲ−トドライバ17は、各相
のサイリスタを、各相のゼロクロス点から位相カウント
を開始して位相角αで導通トリガ−する。これにより、
トランジスタブリッジ15には、指令値Vcが示す直流
電圧が印加される。
Each electric coil CF16 of the linear motor 3F
~ CF36 and each electric coil C of linear motor 3L
A predetermined coil voltage command value Vc given to L16 to CL36 is given to the phase angle α calculator 16, and the phase angle α calculator 16 calculates the conduction phase angle α (thyristor trigger-phase angle) corresponding to the command value Vc. Calculate and get the signal that represents this
To the driver 17. The gate driver 17 starts phase counting of the thyristor of each phase from the zero-cross point of each phase, and triggers conduction at the phase angle α. This allows
A direct current voltage indicated by the command value Vc is applied to the transistor bridge 15.

【0030】一方、3相信号発生器18は、周波数指令
値fcで指定された周波数(本実施例では1.8Hz)
の、定電圧3相交流信号を発生して比較器19に与え
る。比較器19にはまた、三角波発生器21が、周波数
3kHzの定電圧三角波を与える。比較器19は、U相
信号のレベルが正のときには、それが三角波発生器18
が与える三角波のレベル以上のとき高レベルH(トラン
ジスタオン)で、三角波のレベル未満のとき低レベルL
(トランジスタオフ)の信号を、U相の正区間(0〜1
80度)宛て(U相正電圧出力用トランジスタ宛て)に
ゲ−トドライバ20に出力し、U相信号のレベルが負の
ときには、それが三角波発生器21が与える三角波のレ
ベル以下のとき高レベルHで、三角波のレベルを越える
とき低レベルLの信号を、U相の負区間(180〜36
0度)宛て(U相負電圧出力用トランジスタ宛て)にゲ
−トドライバ20に出力する。V相信号およびW相信号
に関しても同様である。ゲ−トドライバ20は、これら
各相,正,負区間宛ての信号に対応してトランジスタブ
リッジ15の各トランジスタをオン,オフ付勢する。
On the other hand, the three-phase signal generator 18 uses the frequency designated by the frequency command value fc (1.8 Hz in this embodiment).
, A constant voltage three-phase AC signal is generated and supplied to the comparator 19. The triangular wave generator 21 also supplies a constant voltage triangular wave having a frequency of 3 kHz to the comparator 19. When the level of the U-phase signal is positive, the comparator 19 outputs the triangular wave generator 18
High level H (transistor on) when the level is higher than the triangular wave level given by, and low level L when the level is lower than the triangular wave level.
The signal of (transistor off) is sent to the positive section of the U phase (0 to 1
80 degrees) (to the U-phase positive voltage output transistor) is output to the gate driver 20, and when the level of the U-phase signal is negative, it is high level when it is below the level of the triangular wave given by the triangular wave generator 21. At H, when the level of the triangular wave is exceeded, the signal of low level L is changed to the negative section of the U phase (180 to 36
The signal is output to the gate driver 20 (to the 0 degree) (to the U-phase negative voltage output transistor). The same applies to the V-phase signal and the W-phase signal. The gate driver 20 turns on and off each transistor of the transistor bridge 15 in response to the signals addressed to these phases, positive and negative sections.

【0031】これにより、電源接続端子U1には3相交
流のU相電圧が出力され、電源接続端子V1に3相交流
のV相電圧が出力され、また電源接続端子W1に3相交
流のW相電圧が出力され、これらの電圧のレベルはコイ
ル電圧指令値Vcで定まり、この3相電圧の周波数はこ
の実施例では周波数指令値fcにより1.8Hzであ
る。すなわち、コイル電圧指令値Vcで指定された電圧
値の、1.8Hzの3相交流電圧が、図2および図8に
示すリニアモ−タ3Fおよび3Lの各電気コイルCF1
6〜CF36およびCL16〜CL36に印加される。
As a result, the U-phase voltage of three-phase AC is output to the power supply connection terminal U1, the V-phase voltage of three-phase AC is output to the power supply connection terminal V1, and the W-phase of three-phase AC is output to the power supply connection terminal W1. Phase voltages are output, the levels of these voltages are determined by the coil voltage command value Vc, and the frequency of the three-phase voltage is 1.8 Hz according to the frequency command value fc in this embodiment. That is, the 1.8 Hz three-phase AC voltage having the voltage value designated by the coil voltage command value Vc is applied to the electric coils CF1 of the linear motors 3F and 3L shown in FIGS.
6 to CF36 and CL16 to CL36.

【0032】以上により、この実施例では、2極構成の
リニアモ−タ3F,3Lに20Hzの3相交流が印加さ
れ、これらのリニアモ−タ3F,3Lにより、鋳型内壁
1内の溶鋼MMには、鋳型内壁1に沿う方向の推力が加
わる。
As described above, in this embodiment, a three-phase alternating current of 20 Hz is applied to the linear motors 3F and 3L having a two-pole structure, and the linear motors 3F and 3L cause the molten steel MM in the inner wall 1 of the mold to be melted. , Thrust in the direction along the inner wall 1 of the mold is applied.

【0033】なお、上述の実施例は、リニアモ−タであ
り、その推力を溶融金属自身の流動方向に合せることに
より、溶融金属が加速され、推力を溶融金属自身の流動
方向と逆にすることにより、溶融金属が減速又は逆方向
駆動される。単に制動力を加える場合には、電気コイル
に直流電圧を印加すればよく、x方向で36個の電気コ
イルの1つ以上に選択的に直流電圧を印加することによ
り、あるいは各コイルの直流電流レベルを調整すること
により、所要の制動力分布(x方向)を得ることができ
る。
The above-described embodiment is a linear motor, and by adjusting its thrust force to the flow direction of the molten metal itself, the molten metal is accelerated and the thrust force is made opposite to the flow direction of the molten metal itself. The molten metal is decelerated or driven in the reverse direction. When simply applying the braking force, it is sufficient to apply a DC voltage to the electric coils, by selectively applying a DC voltage to one or more of the 36 electric coils in the x direction, or by applying a DC current to each coil. By adjusting the level, a required braking force distribution (x direction) can be obtained.

【0034】[0034]

【発明の効果】本発明の流動制御装置によれば、鉄芯の
実効断面積が増加するので、鉄芯の飽和磁束量が増加
し、より多くの電流を電気コイルに流すことが可能とな
る。装置外形は実質上変わらないので、従来装置と同程
度の外形でありながら、強い磁界を溶融金属に加えるこ
とができる。
According to the flow control device of the present invention, since the effective cross-sectional area of the iron core is increased, the saturation magnetic flux amount of the iron core is increased, and a larger amount of current can be passed through the electric coil. . Since the outer shape of the device is substantially the same, a strong magnetic field can be applied to the molten metal while maintaining the same outer shape as the conventional device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の外観と、中央縦断面を示
す斜視図である。
FIG. 1 is a perspective view showing an external appearance of one embodiment of the present invention and a central longitudinal section.

【図2】 図1に示す鉄芯4F,4Lを2a−2a線に
おいて水平に破断した拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of the iron cores 4F and 4L shown in FIG. 1 which is horizontally broken along line 2a-2a.

【図3】 図2の3a−3a線拡大断面図である。FIG. 3 is an enlarged sectional view taken along line 3a-3a of FIG.

【図4】 図3に示すリニアモータ3Lの各部寸法を示
す拡大断面図である。
FIG. 4 is an enlarged cross-sectional view showing the dimensions of each part of the linear motor 3L shown in FIG.

【図5】 図4に示すリニアモータ3Lの一点破線5a
−5a線における断面を寸法を記入して示す断面図であ
る。
5 is an alternate long and short dash line 5a of the linear motor 3L shown in FIG.
FIG. 5 is a cross-sectional view showing dimensions of a cross section taken along line -5a.

【図6】 リニアモ−タ3Lの分解斜視図である。FIG. 6 is an exploded perspective view of the linear motor 3L.

【図7】 図2に示す電気コイルの相区分を示す図2相
当の断面図である。
7 is a cross-sectional view corresponding to FIG. 2 showing phase divisions of the electric coil shown in FIG.

【図8】 図2に示す電気コイルの結線を示す電気回路
図である。
FIG. 8 is an electric circuit diagram showing connection of the electric coil shown in FIG.

【図9】 図2に示す各リニアモ−タの電気コイルに3
相交流電圧を印加する電源回路VCの構成を示す電気回
路図である。
FIG. 9 is a schematic view showing an electric coil of each linear motor shown in FIG.
It is an electric circuit diagram which shows the structure of the power supply circuit VC which applies a phase alternating voltage.

【符号の説明】 1:鋳型の内壁 2:水箱 3F,3L:リニアモ−タ PW:パウダ MM:溶鋼 SB:鋳片 4F,4L:鉄芯 L1,L2,L3,L4,L5,L6:鉄芯 5F,5L:長辺 6R,6L:短辺 7F,7L:銅板 8R,8L:銅板 9F,9L:非磁性ステンレ
ス板 10R,10L:非磁性ステンレス板 CF1〜CF36,CL1〜CL36:電気コイル U1,V1,W1:鉄芯4Fの電源接続端子 U2,V2,W2:鉄芯4Lの電源接続端子 VC:電源回路 22:注湯ノズル流出口
[Explanation of Codes] 1: Inner wall of mold 2: Water box 3F, 3L: Linear motor PW: Powder MM: Molten steel SB: Cast slab 4F, 4L: Iron core L1, L2, L3, L4, L5, L6: Iron core 5F, 5L: long side 6R, 6L: short side 7F, 7L: copper plate 8R, 8L: copper plate 9F, 9L: non-magnetic stainless plate 10R, 10L: non-magnetic stainless plate CF1-CF36, CL1-CL36: electric coil U1, V1, W1: Power supply connection terminal for iron core 4F U2, V2, W2: Power supply connection terminal for iron core 4L VC: Power supply circuit 22: Pouring nozzle outlet

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】溶融金属に沿ってx方向に延びかつ、x方
向と直交するy方向に凹の、x方向に所定ピッチで分布
する複数個のスロットを有する鉄芯と、該鉄芯が貫通す
る複数個の、各スロットに一辺がはめ込まれた電気コイ
ルを有する溶融金属の流動制御装置おいて、 前記スロットのy方向の深さをysとし、前記電気コイ
ルの、前記鉄芯が貫通する内空間のy方向の幅をycと
すると、 前記鉄芯は、前記スロットを有しy方向の幅y1がys
<y1<ycなる第1鉄芯(L1)と、この第1鉄芯(L1)の
スロットを刻んだ面に対向する背面に当接してx方向に
延びy方向の幅y6がyc−y1<y6<yc−(y1
−ys)なる第2鉄芯(L6)を有することを特徴とする、
溶融金属の流動制御装置。
1. An iron core having a plurality of slots extending along the molten metal in the x direction and concave in the y direction orthogonal to the x direction and distributed at a predetermined pitch in the x direction, and the iron core penetrates the iron core. In a molten metal flow control device having a plurality of electric coils each side of which is fitted in each slot, the depth of the slots in the y direction is defined as ys, and the iron core of the electric coil penetrates. When the width of the space in the y direction is yc, the iron core has the slot and the width y1 in the y direction is ys.
<Y1 <yc and the first iron core (L1) and the back surface facing the slotted surface of the first iron core (L1) are brought into contact with the back surface and extend in the x direction so that the width y6 in the y direction is yc-y1 < y6 <yc- (y1
-Ys) having a second iron core (L6),
Molten metal flow control device.
【請求項2】溶融金属に沿ってx方向に延びかつ、x方
向と直交するy方向に凹の、x方向に所定ピッチで分布
する複数個のスロットを有する鉄芯と、該鉄芯が貫通す
る複数個の、各スロットに一辺がはめ込まれた電気コイ
ルを有する溶融金属の流動制御装置おいて、 前記スロットのy方向の深さをysとし、前記電気コイ
ルの内空間のy方向の幅,z方向の高さおよび対角方向
の幅をそれぞれyc,zcおよびyzcとすると、 前記鉄芯は、前記スロットを有しy方向の幅y1がys
<y1<yc、z方向の高さz1がz1<zcなる第1
鉄芯(L1)と、この第1鉄芯(L1)のスロットを刻んだ面に
対向する背面に当接してx方向に延びy方向の幅y6が
yc−y1<y6<yc−(y1−ys)、z方向の高
さがz1なる第2鉄芯(L6)と、z方向で第1鉄芯(L1)の
上面又は下面に当接しz1+z2+z3<zcなる高さ
z2+z3を有し第1鉄芯(L1)のスロットと整合し前記
電気コイルがはめ込まれたスロットを有しy方向の幅(y
1+y6)がycより大きくyzcより小さい第3鉄芯(L
2,L3)と、を有することを特徴とする、溶融金属の
流動制御装置。
2. An iron core having a plurality of slots extending along the molten metal in the x direction and concave in the y direction orthogonal to the x direction and distributed at a predetermined pitch in the x direction, and the iron core penetrates through the iron core. In a molten metal flow control device having a plurality of electric coils, one side of which is fitted in each slot, the depth of the slots in the y direction is defined as ys, and the width of the inner space of the electric coil in the y direction, Assuming that the height in the z direction and the width in the diagonal direction are yc, zc, and yzc, respectively, the iron core has the slot and the width y1 in the y direction is ys.
<Y1 <yc, the height z1 in the z direction is z1 <zc
The iron core (L1) and the back surface facing the slotted surface of the first iron core (L1) are contacted with each other and extend in the x direction so that the width y6 in the y direction is yc-y1 <y6 <yc- (y1- ys), a second iron core (L6) whose height in the z direction is z1, and a height z2 + z3 which abuts on the upper surface or the lower surface of the first iron core (L1) in the z direction and z1 + z2 + z3 <zc. It has a slot aligned with the slot of the core (L1) and fitted with the electric coil, and has a width (y
1 + y6) is larger than yc and smaller than yzc Third iron core (L
2, L3), and a molten metal flow control device.
【請求項3】第3鉄芯(L2,L3)は、z方向で第1
鉄芯(L1)の上面に接合した高さz2の鉄芯(L2)と、z方
向で第1鉄芯(L1)の下面に接合した高さz3の鉄芯(L3)
でなる、請求項2記載の溶融金属の流動制御装置。
3. The third iron core (L2, L3) is first in the z direction.
An iron core (L2) of height z2 joined to the upper surface of the iron core (L1) and an iron core of height z3 (L3) joined to the lower surface of the first iron core (L1) in the z direction.
The molten metal flow control device according to claim 2, comprising:
【請求項4】前記鉄芯の上面および下面に当接し、先端
面が鉄芯のスロットを刻んだ面と実質上同一面をなし、
それぞれがx方向で隣り合う電気コイルのスロットには
め込まれた辺と直交する辺の間に介挿された複数個の第
4鉄芯(L4,L5)を更に備える、請求項1,請求項2又は
請求項3記載の溶融金属の流動制御装置。
4. The upper surface and the lower surface of the iron core are contacted, and the front end surface is substantially the same surface as the slotted surface of the iron core,
The plurality of fourth iron cores (L4, L5) interposed between the sides orthogonal to the sides fitted in the slots of the electric coils adjacent to each other in the x direction, respectively. Alternatively, the molten metal flow control device according to claim 3.
【請求項5】第2鉄芯(L6)は、x−y平面の鋼板をz方
向に積層したことを特徴とする請求項1又は請求項2記
載の溶融金属の流動制御装置。
5. The molten metal flow control device according to claim 1 or 2, wherein the second iron core (L6) is formed by laminating steel plates in an xy plane in the z direction.
JP23001194A 1994-09-26 1994-09-26 Flow controller for molten metal Expired - Lifetime JP3273105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23001194A JP3273105B2 (en) 1994-09-26 1994-09-26 Flow controller for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23001194A JP3273105B2 (en) 1994-09-26 1994-09-26 Flow controller for molten metal

Publications (2)

Publication Number Publication Date
JPH0890169A true JPH0890169A (en) 1996-04-09
JP3273105B2 JP3273105B2 (en) 2002-04-08

Family

ID=16901195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23001194A Expired - Lifetime JP3273105B2 (en) 1994-09-26 1994-09-26 Flow controller for molten metal

Country Status (1)

Country Link
JP (1) JP3273105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628196B2 (en) 2000-07-10 2009-12-08 Jfe Steel Corporation Method and apparatus for continuous casting of metals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519600B2 (en) 2004-10-15 2010-08-04 新日本製鐵株式会社 Electromagnetic stirring coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628196B2 (en) 2000-07-10 2009-12-08 Jfe Steel Corporation Method and apparatus for continuous casting of metals

Also Published As

Publication number Publication date
JP3273105B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
JP4527826B2 (en) High thrust linear motor and manufacturing method thereof
JP3273105B2 (en) Flow controller for molten metal
JP3510101B2 (en) Flow controller for molten metal
JPH08186974A (en) Permanent magnet field linear motor
JPH07100223B2 (en) Electromagnetic coil device for continuous casting mold
JP3293746B2 (en) Flow controller for molten metal
JP3041182B2 (en) Flow controller for molten metal
JP3577389B2 (en) Flow controller for molten metal
JP3533047B2 (en) Flow controller for molten metal
JP3210811B2 (en) Flow controller for molten metal
JP3089176B2 (en) Flow controller for molten metal
JP2001008432A (en) Linear motor
JP3124217B2 (en) Flow controller for molten metal
JP6677048B2 (en) Moving coil type linear motor
JPH09135563A (en) Rotating field generator and continuous casting machine
JP3124214B2 (en) Flow controller for molten metal
JPH07246444A (en) Device for controlling flow of molten metal
JPH105948A (en) Molten metal flow control device
JP3501997B2 (en) Method for producing continuous cast slab and electromagnetic stirrer in continuous cast mold
JP2002136096A (en) Armature coil connection device for linear motor
JPS639355B2 (en)
JPH07246445A (en) Device for controlling flow of molten metal
JPH0522923A (en) Armature winding of linear motor
JP3793384B2 (en) Molten metal flow control device
Onuki et al. Improvement of short primary member linear induction motor performance by partial adoption of the wound secondary

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 12

EXPY Cancellation because of completion of term