JPH0890037A - Control method for coiling temp. of hot rolling - Google Patents

Control method for coiling temp. of hot rolling

Info

Publication number
JPH0890037A
JPH0890037A JP6223543A JP22354394A JPH0890037A JP H0890037 A JPH0890037 A JP H0890037A JP 6223543 A JP6223543 A JP 6223543A JP 22354394 A JP22354394 A JP 22354394A JP H0890037 A JPH0890037 A JP H0890037A
Authority
JP
Japan
Prior art keywords
water injection
speed
water
cooling
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6223543A
Other languages
Japanese (ja)
Inventor
Ichiro Maeda
一郎 前田
Ryuta Mogi
龍太 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6223543A priority Critical patent/JPH0890037A/en
Publication of JPH0890037A publication Critical patent/JPH0890037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE: To precisely control a target coiling temp. with reduced computing quantity in the case a passing speed is rapidly changed in coiling a rolled sheet by a coiler. CONSTITUTION: When a rolled sheet finished by hot rolling process is introduced into a cooling equipment and is coiled to the prescribed coiling device while pouring cooling water to rolled sheet, while a pouring quantity (pouring distance) is estimated, at a virtual cut sheet of the prescribed length set to rolled sheet, based on the measured temp. at the outlet side of finish rolling mill and the passing speed set beforehand, the water pouring to virtual cut sheet is executed. The water pouring quantity 6 for the virtual cut sheet, in which a passing speed 1 is accelerated in linear like B, is in a simple way set to the value linearly increasing/decreasing, an error 7 from the target temp. generated as a result is compensated to the adjusting zone arranged at the latter part of cooling equipment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延巻取温度制御
方法、特に熱間圧延プロセスで製造される圧延鋼板等の
圧延板をコイラーに巻取る際に適用して好適な熱間圧延
巻取温度制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot rolling coiling temperature control method, and particularly to hot rolling suitable for winding a rolled plate such as a rolled steel plate produced by a hot rolling process into a coiler. The present invention relates to a winding temperature control method.

【0002】[0002]

【従来の技術】一般に、熱間圧延では仕上圧延機で所望
の厚さに圧延された鋼板を最終的にコイラーに巻取る作
業が行われているが、その巻取りの際、製品品質を維持
する等のために所定の巻取温度に冷却することが行われ
ている。この熱間圧延プロセスにおける巻取温度の制御
は、通常、仕上圧延機とコイラーとの間に配設された冷
却設備で行われる。
2. Description of the Related Art Generally, in hot rolling, a steel plate rolled to a desired thickness by a finishing mill is finally wound around a coiler, but the product quality is maintained during the winding. In order to prevent this, cooling to a predetermined winding temperature is performed. The control of the winding temperature in this hot rolling process is usually performed by a cooling facility arranged between the finish rolling mill and the coiler.

【0003】図6は、これら設備の位置関係を概念的に
示したもので、仕上圧延機の最終スタンドSFと該仕上
圧延機で圧延された鋼板Sを巻取るコイラー10との間
には冷却設備12が配設され、最終スタンドSFと冷却
設備12の間には、鋼板Sの仕上圧延機出側温度(Fin
ishar Delivaly Temperature、以下FDTともいう)
を測定するためのFDT計14が、又、冷却設備12と
コイラー10の間には巻取温度(Coiling Temperatu
re、以下CTともいう)を測定するためのCT計16
が、設置されている。
FIG. 6 conceptually shows the positional relationship of these facilities. Cooling is provided between the final stand SF of the finish rolling mill and the coiler 10 for winding the steel sheet S rolled by the finish rolling mill. A facility 12 is provided, and between the final stand SF and the cooling facility 12, the finish rolling mill outlet side temperature (Fin of the steel sheet S
ishar Delivaly Temperature (hereinafter also referred to as FDT)
An FDT meter 14 for measuring the temperature is also provided between the cooling equipment 12 and the coiler 10 (Coiling Temperature).
re, hereinafter also referred to as CT) CT meter 16 for measuring
Is installed.

【0004】上記冷却設備12の内部には、図7に斜視
図で概略を示すように、矢印方向に進行する鋼板Sに沿
って、その上方と下方のそれぞれに多数の注水ヘッダ1
8(鋼板Sの幅方向に延びる直線で示した)が配設され
ている。これら各注水ヘッダ18では、バルブ(アクチ
ュエータ)20を開閉することにより、複数のノズル1
8A(図では鋼板Sの上面又は下面に垂直な7本の直線
で示した)から冷却水(図では網掛模様で示した)が鋼
板Sの表裏両面にそれぞれ噴射(注水)されるようにな
っており、全ての注水ヘッダは実質的に同一の冷却能力
を有している。
Inside the cooling equipment 12, a large number of water injection headers 1 are provided above and below the steel plate S traveling in the direction of the arrow, as schematically shown in the perspective view of FIG.
8 (indicated by a straight line extending in the width direction of the steel plate S) are arranged. In each of these water injection headers 18, a plurality of nozzles 1 are opened by opening / closing a valve (actuator) 20.
8A (indicated by 7 straight lines perpendicular to the upper or lower surface of the steel plate S in the figure), cooling water (indicated by a mesh pattern in the figure) is sprayed (water injection) on both front and back surfaces of the steel plate S. In addition, all water injection headers have substantially the same cooling capacity.

【0005】上記冷却設備12で鋼板Sを冷却し、CT
計16で実測されるCTが一定になるように制御する場
合、従来は図8に示すように鋼板Sを所定の長さに仮想
的に分割した仮想切板i 、i +1、i +2、・・・を考
え、仮想切板毎にFDT計14で鋼板Sの温度を実測
(又は予測)し、そのFDTと、コイラー10による巻
取り迄のスケジュールから予測される通板速度変動とを
考慮して適切な注水量(冷却量)を推定し、その注水量
になるように仮想切板が到達するタイミングに合せてバ
ルブ20を開閉する(実際にはバルブの開閉等の応答遅
れがあるのでその分適正に先出しする)ことにより、注
水距離(冷却設備12の入側から出側に向って冷却水を
噴射させるヘッダ18の数)を調整している。
The steel sheet S is cooled by the cooling equipment 12 and CT
When the CT measured by the total 16 is controlled to be constant, conventionally, as shown in FIG. 8, virtual cutting plates i 1, i +1, i +2, ... ··· Considering the temperature of the steel plate S with the FDT meter 14 for each virtual cutting plate (or predicting), and considering the FDT and fluctuations in the strip running speed predicted from the schedule until winding by the coiler 10. Then, an appropriate amount of water injection (cooling amount) is estimated, and the valve 20 is opened / closed in accordance with the timing at which the virtual cutting plate reaches the amount of water injection (actually, there is a response delay such as opening / closing of the valve. The water injection distance (the number of headers 18 for injecting the cooling water from the inlet side to the outlet side of the cooling facility 12) is adjusted by first advancing appropriately.

【0006】ところで、一般に熱間圧延ラインにおける
仕上圧延機では、図9に示すような経時的に変化する圧
延速度で表わされる圧延スケジュールに従って速度を変
更しながら圧延を行っている。即ち、圧延開始後、鋼板
Sの先端がコイラー10に巻取られる迄は一定の低速A
で圧延した後、圧延時間を短縮するために略一定の加速
率の加速状態Bを経て高速状態Cにし、その状態を維持
した後、コイル形状を整える等のために略一定の減速率
の減速状態Dを経て低速状態Eにし、所定時間経過後圧
延を終了する。
By the way, generally, in a finish rolling mill in a hot rolling line, rolling is performed while changing the speed according to a rolling schedule represented by a rolling speed that changes with time as shown in FIG. That is, after the start of rolling, until the tip of the steel plate S is wound around the coiler 10, a constant low speed A
After rolling, the speed is changed to a high speed state C through an acceleration state B of a substantially constant acceleration rate to reduce the rolling time, and after maintaining that state, a deceleration of a substantially constant deceleration rate is applied to adjust the coil shape. After the state D, the low speed state E is set, and the rolling is finished after a lapse of a predetermined time.

【0007】上記図9に示した圧延スケジュールで仕上
圧延する場合、前記冷却設備12内を通過する鋼板Sの
速度も図9に示した圧延速度と実質的に同一の変動で推
移することになる。従って、前記FDT計14で実測さ
れる仮想切板のFDTが一定である場合には、同一のC
Tにするために要求される冷却量(冷却時間)を一定と
すればよいことから、鋼板Sが冷却設備12内を通過す
る速度(通板速度)の変動に合せて、即ち図9の速度変
動に比例する注水距離となるようにバルブ20の開閉を
制御すればよい。
When finish rolling according to the rolling schedule shown in FIG. 9, the speed of the steel sheet S passing through the cooling equipment 12 also changes substantially at the same fluctuations as the rolling speed shown in FIG. . Therefore, when the FDT of the virtual cutting board measured by the FDT meter 14 is constant, the same C
Since the amount of cooling (cooling time) required to achieve T may be constant, the sheet steel S passes through the cooling facility 12 in accordance with fluctuations in speed (passing speed), that is, the speed in FIG. The opening / closing of the valve 20 may be controlled so that the water injection distance is proportional to the fluctuation.

【0008】ところが、実測されるFDTは、図10に
示すように目標FDTに対して鋼板Sの温度がその長さ
方向(先端→尾端)に周期的に変動するスキッドマーク
SM、尾端側が先端側より低温になるランダウンRD、
逆に尾端側が先端側より高温になるランアップRU等が
原因となって変動している。ここで、スキッドマークS
Mは、仕上圧延する前にスラブを加熱炉(図示せず)で
スキッド上に載置して加熱したために、スキッド位置に
対応して生じる周期的な温度変動であり、ランダウンR
Dは加熱炉から出したスラブを圧延した場合に、先端と
尾端とで圧延開始時間に差があるため、尾端に近いほど
圧延開始が遅れるために冷えることに起因する変動であ
り、又、ランアップRUは、圧延速度を加速したため
に、仕上圧延機で圧延中に冷される程度が減少し、それ
がランダウンの程度を超えることに起因する変動であ
る。
However, in the actually measured FDT, as shown in FIG. 10, the skid mark SM on which the temperature of the steel plate S periodically fluctuates in the length direction (from tip to tail end) with respect to the target FDT, the tail end side is Rundown RD, which has a lower temperature than the tip side,
On the contrary, the fluctuations are caused by the run-up RU or the like in which the tail end side becomes hotter than the tip end side. Where skid mark S
M is a periodic temperature fluctuation that occurs corresponding to the skid position because the slab was placed on a skid and heated by a heating furnace (not shown) before finish rolling, and rundown R
When the slab discharged from the heating furnace is rolled, there is a difference in rolling start time between the tip end and the tail end, and therefore D is a variation due to the fact that the rolling start is delayed as it is closer to the tail end, and the slab is cooled. The run-up RU is a fluctuation caused by the fact that the degree of cooling during the rolling by the finish rolling mill decreases due to the acceleration of the rolling speed, which exceeds the degree of run-down.

【0009】このように、仕上圧延機出側で実測される
FDTは実際には変動しているため、仮想切板i 、i +
1、i +2、・・・毎に、実測したFDT及び巻取り迄
の速度変動(通板時間の違いによる空冷量の差も含む)
等に基づいて推定される注水距離は、注水タイミング t
i 、 ti+1 、 ti+2 、・・・との関係を図11に示すよ
うに、仮想切板毎に異なることになる。
As described above, since the FDT actually measured on the exit side of the finish rolling mill is actually fluctuating, the virtual cutting plates i, i +
For each 1, i +2, ..., measured FDT and speed fluctuation until winding (including difference in air cooling amount due to difference in strip running time)
The water injection distance estimated based on the
As shown in FIG. 11, the relationship between i , t i + 1 , t i + 2 , ... Is different for each virtual cutting board.

【0010】図12は、前記図9に示したスケジュール
に従って仕上圧延を実行する際に、仮想切板毎にFDT
計14で実測されるFDTと予測される通板速度等に基
づいて推定演算して得られる注水距離(冷却整備12で
バルブを開にする注水ヘッダの数)を、経過時間に対し
て、即ち仮想切板毎に概念的に示したグラフである。な
お、この図では、経過時間が短い程仮想切板の番号i は
若いため、番号が若い仮想切板程その注水距離は左側に
表示されている。
FIG. 12 shows the FDT for each virtual cutting plate when the finish rolling is executed according to the schedule shown in FIG.
The water injection distance (the number of water injection headers that open the valves in the cooling maintenance 12) obtained by the estimation calculation based on the FDT actually measured by the total 14 and the predicted plate passing speed, etc. It is a graph which showed notionally for every virtual cutting board. In this figure, as the elapsed time is shorter, the number i of the virtual cutting plate is smaller. Therefore, the water injection distance is displayed on the left side of the virtual cutting plate having the smaller number.

【0011】上述した如く、仮想切板毎に注水距離を推
定演算し、その推定結果に基づいて該当する仮想切板に
対してタイミングをとってバルブの開閉を行うことによ
り注水距離(注水量)を調整し、鋼板Sが同一の巻取温
度になるように制御する方法において、前記図9に示し
た圧延スケジュールにおける、A→B→Cのように、低
い定速状態から直線的な加速率で、高い定速状態に速度
変動する場合を更に詳細に検討する。
As described above, the water pouring distance is estimated and calculated for each virtual cutting plate, and the water pouring distance (water pouring amount) is calculated by opening and closing the valve at a timing corresponding to the virtual cutting plate based on the estimation result. In the rolling schedule shown in FIG. 9 in the rolling schedule shown in FIG. 9 such that the steel sheet S is controlled to have the same winding temperature. Now, the case where the speed fluctuates to a high constant speed state will be examined in more detail.

【0012】図13は、グラフ1に示すように、前記図
9に示した圧延スケジュールと同様にA→B→Cのよう
に低速状態から直線的に加速されて高速状態になる場合
の通板速度、注水距離(図では注水終了位置)及び巻取
温度誤差の関係を、細いFDT変動を無視し、簡単化し
て示したもので、Aの定速状態から加速状態Bを経てC
の定速状態へ速度を変化させているのに、注水距離をグ
ラフ2のように変更せずに同一とする場合には、コイラ
ーによる巻取温度にグラフ3のような誤差が発生するこ
とになる。この誤差は、加速前後の速度差が大きいほど
大きく、100〜200℃になることもあり、この誤差
をグラフ4のように略0℃にするためには、グラフ3の
温度変動に対応させて注水距離の設定をグラフ5のよう
に変えなければならない。このような注水距離の設定変
更は、現象としては逆になるが、前記図9におけるC→
D→Eのように減速する場合にも同様に必要である。
FIG. 13 shows, as shown in Graph 1, the strip running when the rolling schedule is linearly accelerated from a low speed state to a high speed state like A → B → C as in the rolling schedule shown in FIG. The relationship between speed, water injection distance (water injection end position in the figure) and coiling temperature error is shown in a simplified manner, ignoring thin FDT fluctuations. From the constant speed state of A to the acceleration state B to C
Although the speed is changed to the constant speed state of No. 2, if the water injection distance is the same without changing as in Graph 2, an error as shown in Graph 3 will occur in the coiling temperature by the coiler. Become. This error becomes larger as the speed difference before and after acceleration becomes larger, and sometimes becomes 100 to 200 ° C. In order to make this error approximately 0 ° C. as shown in Graph 4, it is necessary to correspond to the temperature fluctuation in Graph 3. The water injection distance setting must be changed as shown in Graph 5. Although such a change in the setting of the water injection distance is the reverse of the phenomenon, C → in FIG.
It is also necessary when decelerating as D → E.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記の
ように速度変動に合せて注水距離を適切に推定し、変更
するためには、許容される巻取温度誤差がΔT[℃]で
あるとすれば、実際の誤差がこの範囲内になるような注
水距離を、仮想切板毎に、収束計算の繰返し等の複雑な
計算処理を短時間(Δt )で行って推定演算しなければ
ならない。
However, in order to properly estimate and change the water injection distance according to the speed fluctuation as described above, the allowable winding temperature error is ΔT [° C]. For example, it is necessary to estimate and calculate the water pouring distance such that the actual error falls within this range by performing complicated calculation processing such as repeated convergence calculation in a short time (Δt) for each virtual cutting plate.

【0014】即ち、定速状態A、Cの場合は、巻取温度
誤差が比較的小さいため特に問題はないが、仮想切板毎
に速度変動に応じた注水距離(注水量)を推定し、その
冷却水を注水ヘッダ18から鋼板Sに噴射して巻取温度
を制御する場合には、FDTに大きな変動が無いとして
も、常に同等の制御精度を得ようとすると、通板速度の
加速率(又は減速率)が大きい程、又、通板速度自体が
大きい程、計算単位である仮想切板の長さを小さくしな
ければならなくなる。
That is, in the constant speed states A and C, since the winding temperature error is relatively small, there is no problem, but the water injection distance (water injection amount) according to the speed fluctuation is estimated for each virtual cutting plate, When the cooling water is sprayed from the water injection header 18 to the steel plate S to control the winding temperature, even if there is no large fluctuation in the FDT, if an equal control accuracy is always attempted, the acceleration rate of the strip running speed is increased. The larger (or the deceleration rate) or the plate passing speed itself, the smaller the length of the virtual cutting plate, which is the unit of calculation, must be reduced.

【0015】その結果、計算周期Δt が短くなり、冷却
設備を制御するコントローラが有するCPU(中央演算
処理装置)による計算処理が間に合わなくなる事態が生
じ、高精度の巻取温度制御ができなくなるという問題が
ある。この問題は、注水量の推定に用いる温度計算モデ
ル式(推定式)が複雑になればそれだけCPUによる計
算処理の量が増大するため更に大きくなる。このこと
は、上記計算周期には、コントローラの計算処理能力と
1回の推定に要する計算量で決まる限界があることを意
味する。
As a result, the calculation cycle Δt becomes short, and the calculation processing by the CPU (central processing unit) of the controller for controlling the cooling equipment may not be in time, which makes it impossible to control the winding temperature with high accuracy. There is. This problem becomes more serious as the temperature calculation model formula (estimation formula) used for estimating the water injection amount becomes complicated, and the amount of calculation processing by the CPU increases accordingly. This means that the calculation cycle has a limit determined by the calculation processing capacity of the controller and the calculation amount required for one estimation.

【0016】本発明は、前記従来の問題点を解決するべ
くなされたもので、スケジュールに従って熱間圧延され
る圧延板をコイラーで巻取る際、通板速度が急激に変化
する場合でも、コントローラの計算処理能力を増大させ
ることなく、高精度に目標の巻取温度に制御することが
できる熱間圧延巻取温度制御方法を提供することを課題
とする。
The present invention has been made to solve the above-mentioned conventional problems, and when winding a rolled sheet to be hot-rolled according to a schedule with a coiler, even if the stripping speed changes abruptly, An object of the present invention is to provide a hot rolling coiling temperature control method capable of controlling the coiling temperature to a target coiling temperature with high accuracy without increasing the calculation processing capacity.

【0017】[0017]

【課題を解決するための手段】本発明は、熱間圧延プロ
セスで仕上圧延した圧延板を冷却設備に進入させ、該圧
延板に冷却水を注水して所定の巻取温度に冷却する際、
冷却水の注水量を、圧延板に仮想的に設定した所定長さ
の仮想切板毎に、実測した仕上圧延機出側温度と予め設
定してある通板速度とに基づいて推定し、推定した注水
量の冷却水を、該当する仮想切板が到達するタイミング
に合せて該仮想切板に注水する熱間圧延巻取温度制御方
法において、通板速度が変動中にある仮想切板に対する
注水量を、実測又は予測される仕上圧延機出側温度と設
定通板速度とに基づいて予め推定計算してある変動前の
注水量から、同様に推定計算してある変動後の注水量に
向って任意の割合で漸増又は漸減する値に簡易設定する
ことにより、前記課題を解決したものである。
Means for Solving the Problems The present invention, when a rolled sheet finish-rolled in a hot rolling process is introduced into a cooling facility and cooling water is poured into the rolled sheet to cool it to a predetermined coiling temperature,
Estimate the injection amount of cooling water for each virtual cutting plate of a predetermined length that is virtually set on the rolling plate based on the measured finish rolling mill outlet temperature and the preset strip passing speed, and estimate In the hot rolling coiling temperature control method of pouring the cooling water of the specified water injection amount into the virtual cutting plate in accordance with the timing when the corresponding virtual cutting plate arrives, pouring is performed on the virtual cutting plate whose passing speed is fluctuating. The amount of water is changed from the amount of water injection before change calculated in advance based on the measured or predicted exit side temperature of the finishing mill and the set strip passing speed to the amount of water injection after change calculated in the same way. The problem is solved by simply setting a value that gradually increases or decreases at an arbitrary rate.

【0018】本発明は、又、上記巻取温度制御方法にお
いて、通板速度が線形の変動中にある仮想切板に対する
注水量を、線形に漸増又は漸減する値に簡易設定するよ
うにしたものである。
In the winding temperature control method according to the present invention, the amount of water injected to the virtual cutting plate in which the strip passing speed is linearly varying is simply set to a value that linearly increases or decreases. Is.

【0019】本発明は、更に、上記巻取温度制御方法に
おいて、通板速度の変動中に実測した仕上圧延機出側温
度から発生が予測される目標巻取温度からの誤差を、簡
易設定した注水量の冷却水を注水する制御ゾーンの後方
の冷却設備内に設けた調整ゾーンで補償するようにした
ものである。
Further, in the present invention, in the above-described winding temperature control method, an error from the target winding temperature, which is predicted to be generated from the finish rolling mill outlet side temperature measured during the fluctuation of the strip running speed, is simply set. The adjustment zone is provided in the cooling equipment behind the control zone that injects the amount of cooling water.

【0020】[0020]

【作用】本発明においては、通板速度が変動中にある仮
想切板に対する注水量を、変動前の注水量から変動後の
注水量に向って漸増又は漸減する値に簡易設定するよう
にしたので、変動前と後の注水量をそれぞれ実測又は予
測されるFDTと通板速度とを推定式に適用して予め高
精度に求めておき、変動中は変動前の注水量から最終的
に変動後の注水量になるように、予め求めておいた速度
変動の比率に合せて順次変化させることが可能となる。
In the present invention, the amount of water injected to the virtual cutting plate whose passage speed is changing is simply set to a value that gradually increases or gradually decreases from the amount of water before change to the amount of water after change. Therefore, the amount of water injection before and after the change is applied to the estimation formula by the FDT and the strip running speed, which are actually measured or predicted, and highly accurately determined in advance, and during the change, the amount of water injection before the change finally changes. It is possible to sequentially change the amount of water to be injected later in accordance with the ratio of speed fluctuations obtained in advance.

【0021】従って、変動中は、変動前の注水量に、変
動前後の注水量差に所定の比率を乗じた値を加算するだ
けで済むので、各仮想切板毎に全て同一の方法で時間の
掛る推定演算を行う場合に比べて大幅に計算量を軽減す
ることが可能となるため、速度の変化率が大きい場合で
もコントローラの処理能力を増大させることなく、高精
度の巻取温度制御を行うことが可能となる。
Therefore, during the fluctuation, it is sufficient to add the value obtained by multiplying the difference in the amount of water before and after the fluctuation by a predetermined ratio to the amount of water before the fluctuation, and thus the time is calculated by the same method for each virtual cutting plate. Since the amount of calculation can be significantly reduced compared to the case of performing a costly estimation calculation, even if the rate of change in speed is large, highly accurate winding temperature control can be performed without increasing the processing capacity of the controller. It becomes possible to do.

【0022】又、本発明において、通板速度が線形の変
動中にある仮想切板に対する注水量を、線形に漸増又は
漸減する値に簡易設定する場合は、通板速度の変動中に
設定する注水量を単純な比例計算で求めることが可能と
なるため、コントローラによる計算処理の対応が一段と
容易となる。従って、圧延スケジュールとして設定され
る速度変動のように単調で連続的な変動に対して極めて
有効に対応することができる。
Further, in the present invention, when the water injection amount for the virtual cutting plate in which the strip passing speed is linearly changing is simply set to a value that linearly gradually increases or decreases, it is set while the strip passing speed is changing. Since it is possible to obtain the water injection amount by a simple proportional calculation, it becomes easier for the controller to perform the calculation process. Therefore, it is possible to very effectively cope with monotonous and continuous fluctuations such as speed fluctuations set as a rolling schedule.

【0023】更に、本発明において、通板速度の変動中
に実測した仕上圧延機出側温度から発生が予測される目
標巻取温度からの誤差を、簡易設定した注水量の冷却水
を注水する制御ゾーンの後方の冷却設備内に設けた調整
ゾーンで補償する場合には、通板速度の変動中に設定す
る注水量を上述した簡易計算で求めて冷却したために誤
差が生じたとしても、短時間で急激な注水量の修正を必
要とする冷却は既に上記簡易計算に基づいて終了してい
るため、この誤差は変動の傾きと大きさが共に小さくな
っている。従って、上記誤差を補償する注水量を算出す
るための計算周期を長くすることができるため、正確な
推定式を用いて注水量を算出することが可能となり、そ
の注水量を適用して誤差を解消することができるため、
極めて高精度な巻取温度制御が可能となる。
Further, in the present invention, the error from the target coiling temperature, which is predicted to be generated from the temperature on the exit side of the finish rolling mill actually measured during the fluctuation of the strip running speed, is injected with the cooling water of the amount that is simply set. When compensating in the adjustment zone provided in the cooling equipment behind the control zone, even if there is an error due to cooling by calculating the water injection amount set during the fluctuation of strip running speed by the above-mentioned simple calculation, Since the cooling, which requires a rapid correction of the water injection amount with time, has already been completed based on the above-mentioned simple calculation, both the inclination and the magnitude of the fluctuation are small. Therefore, it is possible to lengthen the calculation cycle for calculating the water injection amount that compensates for the above error, so that it is possible to calculate the water injection amount using an accurate estimation formula, and apply the water injection amount to reduce the error. Because it can be resolved,
It is possible to control the winding temperature with extremely high accuracy.

【0024】[0024]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】図1は、本発明に係る一実施例に適用され
る冷却設備の配置を概念的に示した前記図6に相当する
図面であり、図2は本実施例の巻取温度制御方法の特徴
を概念的に示した前記図13に相当する図面である。
FIG. 1 is a drawing corresponding to FIG. 6 conceptually showing the arrangement of cooling equipment applied to one embodiment according to the present invention, and FIG. 2 is a winding temperature control method of this embodiment. FIG. 14 is a diagram conceptually showing the characteristics of FIG.

【0026】本実施例に適用される冷却設備12は、従
来の場合と同様に、その内部には前記図7に示したよう
に多数の注水ヘッダ18が鋼板Sの進行方向に配設さ
れ、バルブ20を開閉することにより、注水ヘッダ18
からの冷却水の注水距離(注水量)を修正できるように
なっていると共に、冷却設備12の長さ方向全体に亘る
冷却ゾーンが、上流側の制御ゾーン12Aと下流側の調
整ゾーン12Bとに分離され、各ゾーンにおける注水距
離の調整が独立してなされるようなっている。
As in the conventional case, the cooling equipment 12 applied to the present embodiment has therein a large number of water injection headers 18 arranged in the traveling direction of the steel plate S, as shown in FIG. By opening and closing the valve 20, the water injection header 18
The cooling water pouring distance (water pouring amount) can be corrected, and the cooling zone over the entire length of the cooling equipment 12 is the upstream control zone 12A and the downstream adjustment zone 12B. Separated, the water injection distance in each zone is adjusted independently.

【0027】本実施例の巻取温度制御方法の特徴を、前
記図13の場合と同様に、グラフ1のように通板速度が
Aから、加速状態Bを経てCに変動する場合について図
2を用いて説明する。
Similar to the case of FIG. 13, the winding temperature control method of the present embodiment is characterized in that the passing speed varies from A to C through an acceleration state B as shown in FIG. Will be explained.

【0028】本実施例では、制御ゾーン12Aにおい
て、仮想切板に対して注水距離がグラフ6のように変化
するように設定し、該当する仮想切板が到達するタイミ
ングに合せてバルブの開閉を行ってその数を調整し、仮
想切板毎に設定した注水距離になるように修正して鋼板
Sを冷却する。
In this embodiment, in the control zone 12A, the water injection distance is set to change with respect to the virtual cut plate as shown in Graph 6, and the valve is opened and closed in accordance with the timing when the virtual cut plate reaches. After that, the number is adjusted, and the steel plate S is cooled by correcting the water injection distance set for each virtual cutting plate.

【0029】本実施例では、通板速度が低速状態Aと高
速状態Cのときは、従来と同様にFDTを実測しなが
ら、その実測FDTを用いて注水距離を推定演算して決
定しながら設定するが、通板速度が線形の加速を開始し
た後は、注水距離を以下のように線形に増大させる。
In this embodiment, when the strip running speed is in the low speed state A and the high speed state C, the FDT is actually measured as in the conventional case, and the water injection distance is estimated and calculated using the actually measured FDT and set. However, after the passage speed starts to accelerate linearly, the water injection distance is increased linearly as follows.

【0030】加速前に設定する低速時の注水距離を、実
測(又は予測)したFDT、及びスケジュールから決ま
る通板速度に基づいて予め正確に推定演算し、且つ加速
後に設定する高速時の注水距離を、予測したFDT、及
びスケジュールから決まる通板速度に基づいて後述する
方法により予め正確に推定演算すると共に、通板速度を
加速後に設定する注水距離を、加速開始時点1Sと同時
刻の始点6Sから終点6Eにかけて線形に変化する値と
して算出する。
The water pouring distance at low speed set before acceleration is accurately estimated in advance based on the measured (or predicted) FDT and the strip speed determined from the schedule, and the water pouring distance at high speed is set after acceleration. Is accurately estimated and calculated in advance by a method described later based on the predicted FDT and the strip running speed determined from the schedule, and the water injection distance set after the strip running speed is accelerated is set to the start point 6S at the same time as the acceleration start point 1S. It is calculated as a value that linearly changes from the end point to the end point 6E.

【0031】即ち、加速する前の速度と加速を完了した
速度で全冷却ゾーンを通板する場合の注水距離をそれぞ
れ高精度な処理により予め求め、次いで加速前と後の注
水距離を適用できる時間範囲をそれぞれ求めると共に、
両注水距離の間を線形に結合する簡易計算により算出さ
れる注水距離を設定する簡易方式により注水距離を変更
する時間範囲とを決定する。この簡易計算により設定す
る注水距離を、前記図10に対応させて示すと図3のよ
うになる。
That is, the water injection distance in the case of passing through all the cooling zones at a speed before acceleration and a speed at which acceleration is completed is obtained in advance by highly accurate processing, and then the water injection distance before and after acceleration can be applied. While seeking each range,
The time range for changing the water injection distance is determined by the simple method of setting the water injection distance calculated by the simple calculation that linearly connects both water injection distances. The water injection distance set by this simple calculation is shown in FIG. 3 in correspondence with FIG.

【0032】この推定演算は、図4のブロック図に示し
たフローに従って、モデル式(複雑なので省略する)
に、鋼板仕様(厚さ等)、FDT、任意の注水距離から
決定される注水ヘッダのON/OFFの組合せ及び冷却
設備内移動時間等を適用して温度計算して目標地点の温
度Tを算出し、その計算温度Tと目標温度T0 とを比較
し、その差δの絶対値が許容誤差δ0 より小さい値に収
束するまで注水距離を増減させながら温度計算を繰返
し、収束した時の注水距離を推定値とすることで行うこ
とができる。
This estimation operation is a model expression (because it is complicated, omitted) according to the flow shown in the block diagram of FIG.
The temperature T of the target point is calculated by applying the steel plate specifications (thickness, etc.), FDT, ON / OFF combination of the water injection header determined from an arbitrary water injection distance, the moving time in the cooling equipment, etc. Then, the calculated temperature T is compared with the target temperature T0, the temperature calculation is repeated while increasing or decreasing the water injection distance until the absolute value of the difference δ converges to a value smaller than the allowable error δ0, and the water injection distance at the time of convergence is calculated. This can be done by using an estimated value.

【0033】前述のように注水距離を線形に変動させる
簡易計算を行う理由を説明する。本実施例で注水距離を
線形に変動するということは、各仮想切板に対する注水
時間を一定にすることを意味する。注水時間を一定にす
れば、水冷による温度降下量は略一定になるが、線形の
速度変動に伴い空冷時間が線形に変動し、空冷による温
度降下量は略線形変動することになるため、線形速度変
動時に注水時間を一定にする(即ち、注水距離を線形に
変動させる)ことにより、全体としての温度降下量を略
線形に変動することができる。
The reason for performing the simple calculation for linearly varying the water injection distance as described above will be described. The linear variation of the water injection distance in this embodiment means that the water injection time for each virtual cutting plate is constant. If the water injection time is kept constant, the temperature drop due to water cooling will be almost constant, but the air cooling time will change linearly with linear velocity fluctuations, and the temperature drop due to air cooling will change substantially linearly. By making the water injection time constant when the speed changes (that is, changing the water injection distance linearly), the overall temperature drop amount can be changed substantially linearly.

【0034】本実施例で注水距離の変更を開始する時点
6Sは、その制御をし易くするために通板速度の加速を
開始する時点1Sと同時点に設定するが、注水距離の変
更を終了する時点6Eは通板速度の加速完了時点1Eよ
り時間ΔEの経過後に設定される。この時間ΔEは、加
速終了時に冷却ゾーンへ突入した部位が冷却ゾーンを出
るまでに要する時間である。
In the present embodiment, the time point 6S at which the change of the water injection distance is started is set at the same time as the time point 1S at which the acceleration of the strip passing speed is started in order to facilitate the control, but the change of the water injection distance is completed. The time point 6E is set after a lapse of time ΔE from the time point 1E at which the acceleration of the strip passing speed is completed. This time ΔE is the time required for the part that has entered the cooling zone at the end of acceleration to leave the cooling zone.

【0035】上記図2に示したグラフ6の注水距離は、
上述した方法で簡単に求めることができ、しかも同一種
の圧延板については一度算出し、決定しておけば繰返し
用いることができる。
The water injection distance of the graph 6 shown in FIG.
It can be easily obtained by the above-mentioned method, and can be repeatedly used if it is calculated once for a rolled plate of the same kind and determined.

【0036】上記のように通板速度が直線状に変化する
場合は、直線状に変化する注水距離に設定し、各注水距
離になるように、注水バルブを操作するタイミング(時
刻)を決め、そのタイミングに合せてバルブ20を開く
ことにより鋼板Sの冷却を行う。
When the plate passing speed changes linearly as described above, the water injection distance that changes linearly is set, and the timing (time) for operating the water injection valve is determined so that each water injection distance is reached. The steel sheet S is cooled by opening the valve 20 at the timing.

【0037】ところで、速度変動中に制御ゾーン12A
で、上記グラフ6の注水距離になるようにバルブ20を
調整した場合には、前記図13にグラフ5として示した
実際に必要な注水距離(図2には破線で示した)と、グ
ラフ6で示した直線的に増大する注水距離との間には差
があるため、図2にグラフ7として示す巻取温度の誤差
が生じることになる。
By the way, during the speed fluctuation, the control zone 12A
Then, when the valve 20 is adjusted so as to have the water injection distance of the above graph 6, the actually required water injection distance (shown by the broken line in FIG. 2) shown as the graph 5 in FIG. 13 and the graph 6 Since there is a difference between the linearly increasing water injection distance shown by, the error of the winding temperature shown as a graph 7 in FIG. 2 occurs.

【0038】上記誤差は、グラフ5の注水距離の設定で
対応しようとする場合の温度変化に比べれば、変動の傾
きと大きさは共に小さいので、前記図13に示したよう
に、ΔT℃以内の巻取温度の制御精度を達成するために
必要とされる計算の処理頻度は少なくなり、計算周期Δ
t を長くとることが可能となるため、複雑な推定式によ
る計算処理に対応し易くなるので、高精度な制御の実現
が可能となる。
The above-mentioned error is smaller than ΔT ° C as shown in FIG. 13, because both the inclination and the magnitude of the variation are smaller than the temperature variation when the water injection distance is set in Graph 5. The frequency of calculation required to achieve the control accuracy of the coiling temperature is reduced, and the calculation cycle Δ
Since it becomes possible to take a long t, it becomes easy to deal with the calculation processing by a complicated estimation formula, and it is possible to realize highly accurate control.

【0039】本実施例では、上述した簡易方式により生
じる巻取温度誤差を、前記冷却設備の下流側に設けた調
整ゾーン12Bで修正する補償を行う。
In the present embodiment, the winding temperature error caused by the above-mentioned simple method is corrected in the adjustment zone 12B provided on the downstream side of the cooling equipment.

【0040】この補償方式では、例えば、仮想切板毎
に、実測したFDTと、制御ゾーン12Aの内部に存在
する間の実績の速度や注水状況とに基づいて現在の温度
を適宜計算により求め、求めた現在位置の計算温度とそ
の後の予定速度を基にして修正に要する注水距離(注水
量)を推定し、その注水距離を調整ゾーン12Bにおけ
る注水量として設定することにより誤差を解消する。こ
こでの注水距離の推定演算は、前記図4に示したフロー
で、(2)の「FDT」を「現在位置での計算温度」に
置き変えることにより、前述した計算手順に従って同様
に行うことができる。
In this compensation method, for example, for each virtual cutting plate, the current temperature is appropriately calculated based on the actually measured FDT and the actual speed and water injection status while existing inside the control zone 12A. The error is eliminated by estimating the water injection distance (water injection amount) required for correction based on the calculated temperature at the obtained current position and the expected speed thereafter, and setting the water injection distance as the water injection amount in the adjustment zone 12B. The estimation operation of the water injection distance here is similarly performed according to the above-described calculation procedure by replacing "FDT" in (2) with "calculation temperature at the current position" in the flow shown in FIG. You can

【0041】本実施例方法を適用した場合の、前記図1
2に相当する仮想切板毎に設定される注水距離を概念的
に示すと図5のようになる。この図に示す調整ゾーンで
行う「簡易計算により注水」は、注水距離を補償する時
に増減できるように、予めいくらかの固定の注水距離で
注水しておくことを意味する。
FIG. 1 when the method of this embodiment is applied.
FIG. 5 conceptually shows the water injection distance set for each virtual cutting plate corresponding to 2. “Water injection by simple calculation” performed in the adjustment zone shown in this figure means that water is previously supplied at some fixed water injection distance so that the water injection distance can be increased or decreased when the water injection distance is compensated.

【0042】以上詳述した本実施例によれば、例えば、
普通鋼を対象とする熱間圧延巻取温度制御において、従
来コントローラのCPUに対する計算負荷がネックにな
って発生していた複雑な処理を適正な周期で実行するこ
とが困難なケースが発生していたが、これを解消するこ
とができ、且つ高精度な計算処理を調整ゾーンのみを対
象に適正なタイミングで実施できることにより、高精度
な巻取温度制御を達成することが可能となる。
According to this embodiment described in detail above, for example,
In hot rolling coiling temperature control for ordinary steel, there are cases in which it is difficult to execute complex processing in a proper cycle, which was caused by the computational load on the CPU of the conventional controller. However, it is possible to eliminate this, and by performing high-precision calculation processing only for the adjustment zone at appropriate timing, it is possible to achieve high-precision winding temperature control.

【0043】以上、本発明について、具体的に説明した
が、本発明は、前記実施例に示したものに限られるもの
でなく、その要旨を逸脱しない範囲で種々変更可能であ
る。
The present invention has been specifically described above, but the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the scope of the invention.

【0044】例えば、前記実施例では、注水量が注水距
離である場合を示したが、注水量の修正をノズル等のア
クチュエータの開度を調整して行ってもよい。
For example, in the above embodiment, the case where the water injection amount is the water injection distance has been described, but the water injection amount may be corrected by adjusting the opening degree of the actuator such as the nozzle.

【0045】又、本発明は、前記図9に示した圧延スケ
ジュールの前半の加速時や、後半の減速時のように、単
調な加減速時に限らず、先端の通板性を良好にするた
め、加速、減速を交互に短時間で繰返し切替えるジクザ
ク通板に適用してもよい。
Further, according to the present invention, not only the monotonous acceleration / deceleration such as the acceleration in the first half and the deceleration in the latter half of the rolling schedule shown in FIG. It may be applied to a zigzag threading plate in which acceleration and deceleration are alternately and repeatedly switched in a short time.

【0046】又、冷却水の注水を可能とするためのアク
チュエータとしては、前記バルブに限定されない。
The actuator for allowing cooling water to be injected is not limited to the valve.

【0047】[0047]

【発明の効果】以上説明してとおり、本発明によれば、
スケジュールに従って熱間圧延される圧延板をコイラー
で巻取る際、通板速度が急激に変化する場合でも、コン
トローラの計算処理能力を増大させることなく、高精度
に目標の巻取温度に制御することができる。
As described above, according to the present invention,
When rolling a rolled sheet that is hot-rolled according to a schedule with a coiler, even if the stripping speed changes abruptly, control the target winding temperature with high accuracy without increasing the calculation processing capacity of the controller. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に適用される熱間圧延ライン
における冷却設備の位置関係を示す説明図
FIG. 1 is an explanatory view showing a positional relationship of cooling equipment in a hot rolling line applied to an embodiment of the present invention.

【図2】本実施例の巻取温度制御方法を説明するための
線図
FIG. 2 is a diagram for explaining a winding temperature control method of the present embodiment.

【図3】本実施例の特徴を示す線図FIG. 3 is a diagram showing the features of this embodiment.

【図4】注水距離の推定演算の手順を示すブロック線図FIG. 4 is a block diagram showing a procedure for estimating and calculating a water injection distance.

【図5】本実施例を適用した場合の全長に亘る注水距離
を概念的に示す説明図
FIG. 5 is an explanatory view conceptually showing the water injection distance over the entire length when this embodiment is applied.

【図6】従来の冷却設備の配置関係を示す説明図FIG. 6 is an explanatory diagram showing a layout relationship of conventional cooling equipment.

【図7】冷却設備内部の要部構成の概略を示す斜視図FIG. 7 is a perspective view showing an outline of a main configuration inside a cooling facility.

【図8】仮想切板を説明するための線図FIG. 8 is a diagram for explaining a virtual cutting board.

【図9】一般的な圧延スケジュールによる速度変動を示
す線図
FIG. 9 is a diagram showing speed fluctuations due to a general rolling schedule.

【図10】FDT変動の原因を説明するための線図FIG. 10 is a diagram for explaining the cause of FDT fluctuation.

【図11】従来の注水距離の設定状況を説明するための
線図
FIG. 11 is a diagram for explaining a conventional setting condition of a water injection distance.

【図12】従来の仕上圧延で冷却設備に設定する注水距
離を示す図4に相当する線図
FIG. 12 is a diagram corresponding to FIG. 4, showing a water injection distance set in a cooling facility in conventional finish rolling.

【図13】従来の巻取温度制御方法の問題点を説明する
ための線図
FIG. 13 is a diagram for explaining the problems of the conventional winding temperature control method.

【符号の説明】[Explanation of symbols]

10…コイラー 12…冷却設備 12A…制御ゾーン 12B…調整ゾーン 14…FDT計 16…CT計 18…注水ヘッダ 20…バルブ 10 ... Coiler 12 ... Cooling equipment 12A ... Control zone 12B ... Adjustment zone 14 ... FDT meter 16 ... CT meter 18 ... Water injection header 20 ... Valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱間圧延プロセスで仕上圧延した圧延板を
冷却設備に進入させ、該圧延板に冷却水を注水して所定
の巻取温度に冷却する際、 冷却水の注水量を、圧延板に仮想的に設定した所定長さ
の仮想切板毎に、実測した仕上圧延機出側温度と予め設
定してある通板速度とに基づいて推定し、 推定した注水量の冷却水を、該当する仮想切板が到達す
るタイミングに合せて該仮想切板に注水する熱間圧延巻
取温度制御方法において、 通板速度が変動中にある仮想切板に対する注水量を、実
測又は予測される仕上圧延機出側温度と設定通板速度と
に基づいて予め推定計算してある変動前の注水量から、
同様に推定計算してある変動後の注水量に向って任意の
割合で漸増又は漸減する値に簡易設定することを特徴と
する熱間圧延巻取温度制御方法。
1. When a rolled plate finish-rolled in a hot rolling process is introduced into a cooling facility and cooling water is poured into the rolled plate to cool it to a predetermined coiling temperature, For each virtual cut plate of a predetermined length virtually set on the plate, it is estimated based on the measured finish rolling mill outlet temperature and the preset strip passing speed, and the estimated amount of cooling water is In the hot rolling coiling temperature control method in which water is poured into the virtual cutting plate at the timing when the corresponding virtual cutting plate arrives, the water injection amount for the virtual cutting plate whose striping speed is fluctuating is measured or predicted. From the water injection amount before the change which is estimated and calculated in advance based on the finish rolling mill outlet temperature and the set strip passing speed,
Similarly, a hot rolling coiling temperature control method is characterized in that it is simply set to a value that gradually increases or decreases gradually at an arbitrary ratio toward the estimated and calculated changed water injection amount.
【請求項2】請求項1において、 通板速度が線形の変動中にある仮想切板に対する注水量
を、線形に漸増又は漸減する値に簡易設定することを特
徴とする熱間圧延巻取温度制御方法。
2. The hot rolling coiling temperature according to claim 1, wherein the water injection amount for the virtual cutting plate in which the strip passing speed is linearly changing is simply set to a value that gradually increases or decreases linearly. Control method.
【請求項3】請求項1又は2において、 通板速度の変動中に実測した仕上圧延機出側温度から発
生が予測される目標巻取温度からの誤差を、簡易設定し
た注水量の冷却水を注水する制御ゾーンの後方の冷却設
備内に設けた調整ゾーンで補償することを特徴とする熱
間圧延巻取温度制御方法。
3. The cooling water according to claim 1 or 2, wherein an error from a target winding temperature, which is predicted to be generated from the temperature on the exit side of the finish rolling mill actually measured during the fluctuation of the strip running speed, is simply set as the cooling water. A hot rolling coiling temperature control method, characterized in that compensation is performed in an adjusting zone provided in a cooling facility behind a control zone for water injection.
JP6223543A 1994-09-19 1994-09-19 Control method for coiling temp. of hot rolling Pending JPH0890037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6223543A JPH0890037A (en) 1994-09-19 1994-09-19 Control method for coiling temp. of hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6223543A JPH0890037A (en) 1994-09-19 1994-09-19 Control method for coiling temp. of hot rolling

Publications (1)

Publication Number Publication Date
JPH0890037A true JPH0890037A (en) 1996-04-09

Family

ID=16799812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6223543A Pending JPH0890037A (en) 1994-09-19 1994-09-19 Control method for coiling temp. of hot rolling

Country Status (1)

Country Link
JP (1) JPH0890037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290156A (en) * 2008-09-08 2008-12-04 Jfe Steel Kk Cooling system for hot-rolled steel strip and its cooling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290156A (en) * 2008-09-08 2008-12-04 Jfe Steel Kk Cooling system for hot-rolled steel strip and its cooling method

Similar Documents

Publication Publication Date Title
US6225609B1 (en) Coiling temperature control method and system
JP5217516B2 (en) Cooling control method in hot rolling and manufacturing method of hot rolled metal strip
JP2013000765A (en) Temperature prediction method of steel plate
JP6816829B2 (en) Endless rolling line temperature control device
JPH08252625A (en) Method for controlling coiling temperature in hot rolling
JP2006281300A (en) Cooling control method, device, and computer program
KR20040046126A (en) A uniform laminar flow system to width direction of strip
JPS63168211A (en) Temperature control method for hot rolling process
US20220371066A1 (en) Method for controlling a cooling device in a rolling train
JPH0890036A (en) Method for controlling coiling temperature in hot rolling mill
JP2007301603A (en) Method for controlling coiling temperature of rolled stock and rolling equipment
JP5948967B2 (en) Temperature prediction method, cooling control method and cooling control device for metal plate in hot rolling
JPH0890037A (en) Control method for coiling temp. of hot rolling
KR20030053621A (en) Hot strip cooling control mothode for chage target temperature
JPH05277535A (en) Method for controlling cooling of steel strip
JP5691221B2 (en) Winding temperature control method for metal strip in hot rolling line
JPH08103809A (en) Cooling control method of steel plate in hot rolling
JP2007283346A (en) Method for controlling cooling of rolled stock and rolling equipment
KR910010145B1 (en) Method of controlling winding temperature in hot rolling
JPH0910812A (en) Method for controlling coiling temperature of hot rolled steel sheet
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
JPH06238312A (en) Method for controlling cooling of hot rolled steel sheet
RU2783688C1 (en) Method for controlling the cooling device in the rolling mill line
JPH09174136A (en) Cooling controller for hot rolled plate
JP7239726B2 (en) Method for manufacturing strips or plates of metal