JPH0889485A - Blood pressure meter - Google Patents

Blood pressure meter

Info

Publication number
JPH0889485A
JPH0889485A JP7178863A JP17886395A JPH0889485A JP H0889485 A JPH0889485 A JP H0889485A JP 7178863 A JP7178863 A JP 7178863A JP 17886395 A JP17886395 A JP 17886395A JP H0889485 A JPH0889485 A JP H0889485A
Authority
JP
Japan
Prior art keywords
blood pressure
pulse wave
value
pressure
spline function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7178863A
Other languages
Japanese (ja)
Inventor
Jun Negi
潤 根木
Yoshio Sakai
由夫 酒井
Boku Takeda
朴 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Koden Corp
Original Assignee
Nippon Koden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Koden Corp filed Critical Nippon Koden Corp
Priority to JP7178863A priority Critical patent/JPH0889485A/en
Publication of JPH0889485A publication Critical patent/JPH0889485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a blood pressure meter capable of accurately measuring average blood pressure and diastolic blood pressure by reducing variation of blood pressure by pulse wave height value fluctuation by obtaining a smooth continuous curve passing adjacency of a pulse wave height value. CONSTITUTION: Discrete wave height value data obtained together with increasing and decreasing cuff pressure detected by a pressure sensor 2 of this blood pressure meter and stored in RAM 13c are processed by CPU 13b with spline function and creates smooth continuous curve data passing adjacency of the discrete pulse wave height value. By this processing, variation of pulse wave height values can be reduced. Furthermore, diastolic blood pressure is measured by inflection points of the continuous curve data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、検出した脈波波高
値を繋ぐ連続線から血圧を測定する血圧測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood pressure measuring device for measuring blood pressure from a continuous line connecting detected pulse wave peak values.

【0002】[0002]

【従来の技術】従来、血圧計では動脈の拍動に起因する
脈波を、例えば、カフ内の振動として捉え、この振動に
基づいて収縮期血圧と拡張期血圧および平均血圧を測定
している。
2. Description of the Related Art Conventionally, a sphygmomanometer captures a pulse wave caused by a pulsation of an artery as, for example, vibration in a cuff, and measures systolic blood pressure, diastolic blood pressure, and average blood pressure based on this vibration. .

【0003】そしてカフ圧の変化に対する、血圧を測定
する各種の方法が提案されている。例えば、特開昭62
−72317号公報に示す如く「データ強化を伴う改良
された自動化拡張期血圧モニター」が知られており、こ
の公報例では、検出した脈波の波高値のうち単調増加又
は単調減少するものを血圧算出に用いており、最大波高
値の69%、55%の波高値をとるカフ圧の平均値を血
圧測定上に必要な拡張期血圧としている。
Various methods for measuring blood pressure with respect to changes in cuff pressure have been proposed. For example, Japanese Patent Laid-Open No. Sho 62
As disclosed in Japanese Patent Laid-Open No. 72317/1990, an “improved automated diastolic blood pressure monitor with data enhancement” is known. In this publication example, the detected pulse wave crest value that monotonically increases or decreases monotonically. It is used for the calculation, and the average value of the cuff pressure having the peak values of 69% and 55% of the maximum peak value is taken as the diastolic blood pressure required for blood pressure measurement.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来例の血圧測定装置では、検出した脈波の波高値の単調
増加又は単調減少を連続した脈波の波高値としているた
め、脈波の波高値を補正し、その波高値を繋ぐ滑らかな
連続線が得られ難い。さらに、上記従来例では最大波高
値の69%、55%の波高値をとるカフ圧の平均値を血
圧測定上に必要な拡張期血圧としているように、拡張期
血圧を経験的に得られた数値を用いて計算して求めてい
るため拡張期血圧値の血圧値を正確に測定できない場合
があった。
However, in the above-mentioned blood pressure measuring device of the conventional example, since the peak value of the detected pulse wave is monotonically increased or monotonically decreased, the peak value of the pulse wave is continuous. It is difficult to obtain a smooth continuous line that corrects the peak value and connects the peak values. Furthermore, in the above-mentioned conventional example, the diastolic blood pressure was empirically obtained such that the average value of the cuff pressure having the peak values of 69% and 55% of the maximum peak value is set as the diastolic blood pressure necessary for blood pressure measurement. In some cases, the blood pressure value of the diastolic blood pressure value cannot be accurately measured because it is calculated by using numerical values.

【0005】本発明は、このような従来の技術における
課題を解決するものであり、脈波の波高値の近傍を通る
滑らかな連続線が得られて、そのカフ圧の変化に対する
脈波波高値のばらつきによる血圧値の変動を少なく出来
る血圧測定装置の提供を目的とする。
The present invention solves the problems in the prior art as described above. A smooth continuous line passing near the peak value of the pulse wave is obtained, and the pulse wave peak value with respect to the change of the cuff pressure is obtained. It is an object of the present invention to provide a blood pressure measurement device capable of reducing fluctuations in blood pressure value due to variations in.

【0006】さらに、他の目的として、脈波波高値の最
大値をとる平均血圧と、脈波波高値の近傍を通る連続線
から、その連続線の変曲点を拡張期血圧として求めるた
め、拡張期血圧をより正確に測定できる血圧測定装置を
提供する。
Further, as another object, the inflection point of the continuous line is obtained as the diastolic blood pressure from the average blood pressure having the maximum value of the pulse wave peak value and the continuous line passing near the pulse wave peak value. Provided is a blood pressure measurement device capable of more accurately measuring diastolic blood pressure.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の血圧測定装置は、生体の脈波を連続
して検出する脈波検出手段と、前記脈波検出手段からの
連続脈波のデータを保持する保持手段と、保持手段が保
持している離散的な脈波波高値のデータを読み出してス
プライン関数で処理し、離散的な脈波波高値から滑らか
な連続線データを生成するスプライン関数処理手段とを
備える構成としている。
In order to achieve the above object, a blood pressure measuring apparatus according to claim 1 comprises a pulse wave detecting means for continuously detecting a pulse wave of a living body, and a pulse wave detecting means from the pulse wave detecting means. Holding means for holding the continuous pulse wave data, and the discrete pulse wave peak value data held by the holding means is read and processed by the spline function, and smooth continuous line data is obtained from the discrete pulse wave peak values. And a spline function processing means for generating.

【0008】他の目的に対応する請求項2記載の血圧測
定装置は、生体の脈波を連続して検出する脈波検出手段
と、脈波検出手段からの連続脈波のデータを保持する保
持手段と、保持手段が保持している離散的な脈波波高値
のデータを読み出してスプライン関数で処理し、離散的
な脈波波高値から滑らかな連続線データを生成するスプ
ライン関数処理手段と、スプライン関数処理手段からの
連続線データの変曲点を与えるカフ圧を拡張期血圧値と
して検出する検出手段とを備える構成としている。
According to another aspect of the blood pressure measuring apparatus, a pulse wave detecting means for continuously detecting a pulse wave of a living body and a holding means for holding continuous pulse wave data from the pulse wave detecting means. Means, and a spline function processing means for reading the data of the discrete pulse wave peak value held by the holding means and processing it with a spline function, and generating smooth continuous line data from the discrete pulse wave peak value, And a detecting means for detecting a cuff pressure giving an inflection point of continuous line data from the spline function processing means as a diastolic blood pressure value.

【0009】請求項3記載の血圧測定装置は、スプライ
ン関数処理手段でスプライン関数の処理を行う前に脈波
検出手段からの離散的な脈波の波高値のデータに重み付
けを行う重付手段を備えるとを特徴とする請求項1又は
2記載の血圧測定装置。構成としている。
A blood pressure measuring apparatus according to a third aspect of the present invention comprises weighting means for weighting discrete crest value data of the pulse wave from the pulse wave detecting means before the spline function processing means processes the spline function. The blood pressure measurement device according to claim 1 or 2, further comprising: It is configured.

【0010】[0010]

【作用】このような構成の請求項1,3記載の血圧測定
装置では、生体の脈波を連続して検出し、そのデータを
保持する。そして、保持している離散的な脈波の波高値
のデータに重み付けを行って、さらに、スプライン関数
で処理し、離散的に得られる脈波の波高値を滑らかな連
続線データに生成している。したがって、脈波波高値が
補正され、実測の脈波波高値の近傍を通る滑らかな連続
線が得られて、そのカフ圧の変化に対する脈波波高値の
ばらつきによる血圧値の変動が少なくなる。
With the blood pressure measuring device having the above-mentioned structure according to the first and third aspects, the pulse wave of the living body is continuously detected and the data thereof is held. Then, by weighting the data of the crest value of the discrete pulse wave held, further processed by the spline function, to generate the crest value of the pulse wave obtained discretely into smooth continuous line data. There is. Therefore, the pulse wave crest value is corrected, a smooth continuous line passing near the actually measured pulse wave crest value is obtained, and fluctuations in the blood pressure value due to variations in the pulse wave crest value due to changes in the cuff pressure are reduced.

【0011】請求項2,3記載の血圧測定装置では、請
求項1記載と同様に、スプライン関数で処理して脈波の
波高値を滑らかな連続線データに生成するとともに、こ
の連続線データの変曲点を与えるカフ圧を拡張期血圧値
として検出している。したがって、脈波波高値の最大値
をとるカフ圧の平均血圧と、脈波波高値の近傍を通る連
続線の変曲点のカフ圧である拡張期血圧とが正確に測定
される。
In the blood pressure measuring device according to the second and third aspects, similarly to the first aspect, the crest value of the pulse wave is processed into smooth continuous line data by processing with the spline function, and the continuous line data The cuff pressure that gives an inflection point is detected as the diastolic blood pressure value. Therefore, the average blood pressure of the cuff pressure having the maximum pulse wave peak value and the diastolic blood pressure which is the cuff pressure at the inflection point of the continuous line passing near the pulse wave peak value are accurately measured.

【0012】[0012]

【発明の実施の形態】次に、本発明の血圧測定装置の実
施例を図面を参照して詳細に説明する。図1は本発明の
血圧測定装置が適用される血圧計の構成例を示すブロッ
ク図である。図1において、この血圧計は、被測定者の
上腕に取り付られるカフ1と、このカフ1での空気圧力
を検出する圧力センサ2と、カフ1を制御信号C1の指
示値まで加圧するためのポンプ3とが設けられている。
さらに、カフ1の加圧後に制御信号C2の指示値で段階
的に排気して減圧を行うための電磁弁4と、圧力センサ
2からの直流の圧力信号(S1)を増幅する直流増幅回
路6とが設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the blood pressure measuring device of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration example of a sphygmomanometer to which the blood pressure measurement device of the present invention is applied. In FIG. 1, this sphygmomanometer has a cuff 1 attached to the upper arm of a person to be measured, a pressure sensor 2 for detecting an air pressure in the cuff 1, and a pressure of the cuff 1 to a value indicated by a control signal C1. And a pump 3 of.
Further, after the cuff 1 is pressurized, a solenoid valve 4 for gradually exhausting the pressure according to the instruction value of the control signal C2 to reduce the pressure, and a DC amplification circuit 6 for amplifying the DC pressure signal (S1) from the pressure sensor 2 And are provided.

【0013】さらに、直流増幅回路6からの圧力信号
(S1)をデジタル信号に変換するA/D変換回路7
と、直流増幅回路6からの圧力信号(S1)を増幅し、
血圧脈波信号(S2)を出力する交流増幅回路8とが設
けられている。また、交流増幅回路8からの血圧脈波信
号(S2)をデジタル信号に変換するA/D変換回路9
と、ポンプ3からの空気送出を制御するためのポンプ制
御回路11と、電磁弁4での排気を制御するための電磁
弁駆動回路12とが設けられている。
Further, an A / D conversion circuit 7 for converting the pressure signal (S1) from the DC amplification circuit 6 into a digital signal.
And the pressure signal (S1) from the DC amplifier circuit 6 is amplified,
An AC amplifier circuit 8 that outputs a blood pressure pulse wave signal (S2) is provided. Further, an A / D conversion circuit 9 for converting the blood pressure pulse wave signal (S2) from the AC amplification circuit 8 into a digital signal.
A pump control circuit 11 for controlling the delivery of air from the pump 3 and a solenoid valve drive circuit 12 for controlling the exhaust of the solenoid valve 4 are provided.

【0014】さらに、この血圧計には、A/D変換回路
7,9からの圧力信号(S1)及び血圧脈波信号(S
2)を取り込んで以降で詳細に説明する平滑化スプライ
ン処理と、この処理の後に拡張期血圧を算出し、さら
に、ポンプ制御回路11を通じてポンプ3を制御し、ま
た、電磁弁駆動回路12を通じてカフ1内の圧縮空気を
排気して減圧する制御を行う制御回路13を有してい
る。さらに、測定スタートを指示し、また、各種の操作
を行うためのキーパネル14と、処理内容や処理波形な
どを画面表示する液晶ディスプレイ(LCD)15とが
設けられている。
Further, this blood pressure monitor has a pressure signal (S1) from the A / D conversion circuits 7 and 9 and a blood pressure pulse wave signal (S).
2) is taken in to perform a smoothing spline process which will be described in detail later, a diastolic blood pressure is calculated after this process, the pump 3 is controlled by the pump control circuit 11, and the cuff is controlled by the solenoid valve drive circuit 12. The control circuit 13 has a control circuit 13 that performs control to exhaust the compressed air in 1 to reduce the pressure. Further, a key panel 14 for instructing the start of measurement and performing various operations, and a liquid crystal display (LCD) 15 for displaying processing contents and processing waveforms on the screen are provided.

【0015】制御回路13は、A/D変換回路7,9か
らの圧力信号S1及び血圧脈波信号(S2)を取り込
み、ポンプ制御回路11及び電磁弁駆動回路12への制
御信号を送出するためのI/0ポート13aと、CPU
13bと、ワーキング用のRAM13cと、この装置の
制御プログラムを格納したROM13dとで構成されて
いる。
The control circuit 13 takes in the pressure signal S1 and the blood pressure pulse wave signal (S2) from the A / D conversion circuits 7 and 9 and sends the control signals to the pump control circuit 11 and the solenoid valve drive circuit 12. I / O port 13a and CPU
13b, a working RAM 13c, and a ROM 13d storing a control program for this apparatus.

【0016】次に、この実施例の動作について説明す
る。図2は、図1に示す血圧計の全体動作(血圧測定)
の処理手順を示すフローチャートである。図1及び図2
において、図1中の制御回路13によってポンプ3が、
予めキーパネル14から設定された値に制御されてカフ
1が加圧され、かつ、制御回路13によって電磁弁4が
制御されてカフ1が段階的に減圧される。この減圧を状
態を示す圧力信号(S1)を圧力センサ2、直流増幅回
路6及びA/D変換回路7を通じて1/0ポート13a
を介して制御回路13のCPU13bが取り込む。
Next, the operation of this embodiment will be described. FIG. 2 shows the overall operation of the sphygmomanometer shown in FIG. 1 (blood pressure measurement).
6 is a flowchart showing the processing procedure of FIG. 1 and 2
In, the pump 3 is controlled by the control circuit 13 in FIG.
The cuff 1 is pressurized by being controlled to a value set in advance by the key panel 14, and the solenoid valve 4 is controlled by the control circuit 13 to depressurize the cuff 1 step by step. The pressure signal (S1) indicating the reduced pressure is sent to the 1/0 port 13a through the pressure sensor 2, the DC amplification circuit 6 and the A / D conversion circuit 7.
It is taken in by the CPU 13b of the control circuit 13 via.

【0017】同時に血圧脈波信号(S2)を圧力センサ
2、直流増幅回路6、交流増幅回路8及びA/D変換回
路9を通じて1/0ポート13aを介して制御回路13
のCPU13bが取り込む(ステップ(図中、Sで示
す)10)。CPU13bは血圧脈波信号(S2)から
脈波波形の最大値点を探し決定する(ステップ11,1
2)。さらに、脈波波形の立ち上がり点を決定する(ス
テップ13)。次に、脈波波形の波高値を決定し、か
つ、カフ1の減圧過程での血圧脈波信号S2の脈波波高
が、所定の終了条件を満たしているか否かを判断する
(ステップ14,15)。終了条件としては、本実施例
では最大波高値の50%〜70%以下の脈波波高値が1
〜4拍検出される場合を設定する。ここで満たされてい
ない場合(ステップ15:No)、さらに、次のカフ1
の減圧(ステップ16)を行ってステップ10に戻りこ
れまでの処理を繰り返す。
At the same time, the blood pressure pulse wave signal (S2) is sent to the control circuit 13 through the pressure sensor 2, the DC amplification circuit 6, the AC amplification circuit 8 and the A / D conversion circuit 9 and the 1/0 port 13a.
Is taken in by the CPU 13b (step (indicated by S in the figure) 10). The CPU 13b searches for the maximum value point of the pulse wave waveform from the blood pressure pulse wave signal (S2) and determines it (steps 11, 1).
2). Further, the rising point of the pulse wave waveform is determined (step 13). Next, the crest value of the pulse wave waveform is determined, and it is determined whether or not the pulse wave height of the blood pressure pulse wave signal S2 during the depressurization process of the cuff 1 satisfies a predetermined termination condition (step 14, 15). As the termination condition, in this embodiment, the pulse wave peak value of 50% to 70% of the maximum peak value is 1 or less.
~ Set the case where 4 beats are detected. If not satisfied (step 15: No), the next cuff 1
The pressure is reduced (step 16) and the process returns to step 10 to repeat the above-described processing.

【0018】ステップ15でカフ1の減圧過程での血圧
脈波信号(S2)の脈波波高値が決定された場合(ステ
ップ15:Yes)、制御回路13が電磁弁駆動回路1
2を通じて電磁弁を全開する。これまでのデータが制御
回路13のRAM13cに記憶されており、この後、制
御回路13で算出してカフ1の減圧に対する脈波の波高
値に対して、重み付け処理を行う(ステップ17)。す
なわち、脈波の波高値、血圧測定中に被検者が突然動い
た場合などに突然大きな値やまた、突然小さな値になる
ことがあるため、その脈波の波高値の誤差を重み付けに
よって少なくするものである。
When the pulse wave crest value of the blood pressure pulse wave signal (S2) in the depressurizing process of the cuff 1 is determined in step 15 (step 15: Yes), the control circuit 13 causes the solenoid valve drive circuit 1 to operate.
Fully open the solenoid valve through 2. The data so far are stored in the RAM 13c of the control circuit 13, and thereafter, the peak value of the pulse wave with respect to the pressure reduction of the cuff 1 calculated by the control circuit 13 is weighted (step 17). In other words, the peak value of the pulse wave, suddenly large value when the subject suddenly moves during blood pressure measurement, or suddenly small value, so the error of the peak value of the pulse wave is reduced by weighting. To do.

【0019】この重み付けには、各種の手法があるが、
例えば、脈波波高値そのものを一度、暫定的に平滑化ス
プライン処理をし、脈波の波高値の補正を行った後に、
その補正された脈波の波高値と、実測された脈波の波高
値の差が、実測された脈波の波高値の何%になるかによ
って重み付け係数を可変する。差が実測された脈波の波
高値の10%以内の場合は、重み付け係数を1とし、ま
た、30%以内の差の場合は、重み付け係数を0.5に
する。
There are various methods for this weighting.
For example, once the pulse wave peak value itself is temporarily subjected to smoothing spline processing, and after correcting the pulse wave peak value,
The weighting coefficient is varied depending on what percentage of the measured pulse wave crest value is different from the corrected pulse wave crest value. When the difference is within 10% of the actually measured pulse wave crest value, the weighting coefficient is set to 1, and when the difference is within 30%, the weighting coefficient is set to 0.5.

【0020】次に、このようにして得られた重み付けら
れた係数を用い脈波の波高値の近傍を通る滑らかな連続
線を得るための、図1に示す制御回路13によって(2
M−1)次の平滑化スプライン処理を行う(M:自然
数)(ステップ18)。平滑化スプライン処理はスプラ
イン処理の一種であり、本実施例ではその処理方法のな
かでも特に(2M−1)次のスプライン処理を行う。平
滑化スプライン処理は、離散的なデータに、最も近い滑
らかな曲線をあてはめる処理方法をいう。その平滑化さ
れた近似曲線は必ずしもグラフ上でデータ点を通る必要
はなく、平滑化された近似曲線とデータとの差が全体と
して最も少なくなるように、また、その平滑化された近
似曲線自体の滑らかさを調節し、その平滑化された近似
曲線を求めていく方法である。図3はこのカフ圧に対す
る脈波の波高値を平滑化スプライン処理をして補正した
滑らかな連続線を示す図である。即ち図3において、図
1中のRAM13cに記憶しているカフ1の圧力の上
昇、減圧とともに得られた離散的な脈波の波高値のデー
タを、CPU13bがスプライン関数で処理し、その離
散的な脈波の波高値の近傍を通る滑らかな連続線のデー
タが生成される。この連続線データがRAM13cに記
憶される。このようにして平滑化スプライン処理を行っ
たカフ圧に対する補正された脈波の波高値の曲線から、
脈波波高値のばらつきによる血圧値の変動を少なくする
ことが出来る。
Next, the control circuit 13 shown in FIG. 1 (2) is used to obtain a smooth continuous line passing near the crest value of the pulse wave using the weighted coefficients thus obtained.
M-1) The next smoothing spline process is performed (M: natural number) (step 18). The smoothing spline processing is a kind of spline processing, and in this embodiment, the (2M-1) th order spline processing is performed among the processing methods. The smoothing spline processing is a processing method for fitting a smooth curve closest to discrete data. The smoothed approximation curve does not necessarily have to pass through the data points on the graph, so that the difference between the smoothed approximation curve and the data is the smallest as a whole, and the smoothed approximation curve itself This is a method of adjusting the smoothness of and obtaining the smoothed approximated curve. FIG. 3 is a diagram showing a smooth continuous line in which the crest value of the pulse wave with respect to the cuff pressure is corrected by smoothing spline processing. That is, in FIG. 3, the CPU 13b processes the data of the crest value of the discrete pulse wave obtained with the rise and the decompression of the pressure of the cuff 1 stored in the RAM 13c in FIG. Data of a smooth continuous line that passes near the peak value of a pulse wave is generated. This continuous line data is stored in the RAM 13c. From the curve of the peak value of the corrected pulse wave for the cuff pressure that has been subjected to smoothing spline processing in this way,
Fluctuations in blood pressure values due to variations in pulse wave crest values can be reduced.

【0021】次に、平滑化スプライン処理し、得られた
滑らかな連続線から平均血圧値を算出する(ステップ1
9)。図4は、平均血圧値の算出状態を示す図である。
図3に示す滑らかな連続線データをRAM13cから読
み出してCPU13bで一階微分を行う。微分値がゼロ
となるカフ圧を平均血圧値としてRAM13cに記憶す
る。
Next, smoothing spline processing is performed, and a mean blood pressure value is calculated from the obtained smooth continuous line (step 1).
9). FIG. 4 is a diagram showing a calculation state of the average blood pressure value.
The smooth continuous line data shown in FIG. 3 is read from the RAM 13c, and the CPU 13b performs first-order differentiation. The cuff pressure having a differential value of zero is stored in the RAM 13c as a mean blood pressure value.

【0022】次に、図3に示す滑らかな連続線から拡張
期血圧値を算出する(ステップ20)。図5は、この拡
張期血圧値の算出状態を示す図である。図5において、
図3に示す滑らかな連続線データをRAM13cから読
み出してCPU13bで二階微分を行う。この二階分値
がゼロとなるカフ圧を拡張期血圧値としてRAM13c
に記憶する。すなわち、二階微分によって、実測された
波高値の近傍を通る滑らかな連続線の変曲点を正確に判
明し、原理に基づいた拡張期血圧を算出することができ
る。
Next, the diastolic blood pressure value is calculated from the smooth continuous line shown in FIG. 3 (step 20). FIG. 5 is a diagram showing a calculation state of the diastolic blood pressure value. In FIG.
The smooth continuous line data shown in FIG. 3 is read from the RAM 13c, and the CPU 13b performs second-order differentiation. The cuff pressure at which the second-order value becomes zero is set as the diastolic blood pressure value in the RAM 13c.
To memorize. That is, it is possible to accurately find the inflection point of a smooth continuous line passing through the vicinity of the actually measured peak value by the second derivative, and to calculate the diastolic blood pressure based on the principle.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、請求項
1,3記載の血圧測定装置によれば、生体の脈波を連続
して検出し、その離散的な脈波の波高値のデータに重み
付けを行って、さらに、スプライン関数で処理し、離散
的な脈波の波高値を滑らかな連続線データに補正してい
るため、実測された脈波の波高値の近傍を通る滑らかな
連続線が得られて、そのカフ圧の変化に対する脈波波高
値のばらつきによる血圧値の変動を少なく出来る。すな
わち、正確な平均血圧値と拡張期血圧値が測定可能にな
るという効果を有する。
As is apparent from the above description, according to the blood pressure measuring device of the first and third aspects, the pulse wave of the living body is continuously detected, and the data of the peak value of the discrete pulse wave is obtained. Are further weighted and processed with a spline function to correct the discrete pulse wave crest values into smooth continuous line data, so a smooth continuation that passes in the vicinity of the actually measured pulse wave crest value. A line is obtained, and the fluctuation of the blood pressure value due to the variation of the pulse wave crest value with respect to the change of the cuff pressure can be reduced. That is, there is an effect that an accurate mean blood pressure value and diastolic blood pressure value can be measured.

【0024】請求項2,3記載の血圧測定装置によれ
ば、スプライン関数で処理して脈波の波高値を滑らかな
連続線データに生成するとともに、この連続線データの
変曲点を与えるカフ圧を拡張期血圧値として検出してい
るため、原理に基いた拡張期血圧の算出が正確に測定で
きるという効果を有する。
According to the blood pressure measuring device of the second and third aspects, the cuff value is processed by the spline function to generate the peak value of the pulse wave into smooth continuous line data, and the cuff which gives the inflection point of the continuous line data. Since the pressure is detected as the diastolic blood pressure value, there is an effect that the diastolic blood pressure based on the principle can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の血圧測定装置が適用される血圧計の構
成例を示すブロック図である。
FIG. 1 is a block diagram showing a configuration example of a sphygmomanometer to which a blood pressure measurement device of the present invention is applied.

【図2】図1に示す血圧計の全体動作の処理手順を示す
フローチャートである。
FIG. 2 is a flowchart showing a processing procedure of overall operation of the sphygmomanometer shown in FIG.

【図3】実施例にあってカフ圧に対する脈波の波高値を
平滑化スプライン処理によって補正した滑らかな連続線
を示す図である。
FIG. 3 is a diagram showing a smooth continuous line in which the crest value of a pulse wave with respect to the cuff pressure is corrected by a smoothing spline process in the embodiment.

【図4】実施例にあって平均血圧値の算出状態を示す図
である。
FIG. 4 is a diagram showing a calculation state of a mean blood pressure value in the embodiment.

【図5】実施例にあって拡張期血圧値の算出状態を示す
図である。
FIG. 5 is a diagram showing a calculation state of a diastolic blood pressure value in the embodiment.

【符号の説明】[Explanation of symbols]

1 カフ S1 圧力信号 S2 血圧脈波信号 2 圧力センサ 3 ポンプ 4 電磁弁 6 直流増幅回路 8 交流増幅回路 11 ポンプ制御回路 12 電磁弁駆動回路 13 制御回路 14 液晶ディスプレイ(LCD) 1 Cuff S1 Pressure signal S2 Blood pressure pulse wave signal 2 Pressure sensor 3 Pump 4 Electromagnetic valve 6 DC amplification circuit 8 AC amplification circuit 11 Pump control circuit 12 Electromagnetic valve drive circuit 13 Control circuit 14 Liquid crystal display (LCD)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 動脈の拍動に起因する圧脈波から血圧を
演算する血圧演算手段を持つ血圧測定装置において、 生体の脈波を連続して検出する脈波検出手段と、 前記脈波検出手段からの連続脈波のデータを保持する保
持手段と、 前記血圧演算手段が、前記保持手段が保持している離散
的な脈波波高値のデータを読み出してスプライン関数で
処理し、滑らかな連続線データを生成するスプライン関
数処理手段と、 前記連続線データから血圧を算出する血圧算出手段と、 からなることを特徴とする血圧測定装置。
1. A blood pressure measuring device having a blood pressure calculating means for calculating a blood pressure from a pressure pulse wave caused by a pulsation of an artery, a pulse wave detecting means for continuously detecting a pulse wave of a living body, and the pulse wave detecting means. Holding means for holding continuous pulse wave data from the means, the blood pressure calculating means, the discrete pulse wave peak value data held by the holding means is read and processed by a spline function, smooth continuous A blood pressure measuring device comprising: a spline function processing means for generating line data; and a blood pressure calculating means for calculating blood pressure from the continuous line data.
【請求項2】 前記血圧算出手段に、 前記スプライン関数処理手段からの連続線データの変曲
点を与えるカフ圧を拡張期血圧値として検出する検出手
段を、 備えることを特徴とする請求項1記載の血圧測定装置。
2. The blood pressure calculating means is provided with a detecting means for detecting a cuff pressure which gives an inflection point of the continuous line data from the spline function processing means, as a diastolic blood pressure value. The blood pressure measurement device described.
【請求項3】 スプライン関数処理手段でスプライン関
数の処理を行う前に脈波検出手段からの離散的な脈波の
波高値のデータに重み付けを行う重付手段を備えるとを
特徴とする請求項1又は2記載の血圧測定装置。
3. A weighting means for weighting discrete pulse wave crest value data from the pulse wave detecting means before the spline function processing means processes the spline function. The blood pressure measurement device according to 1 or 2.
JP7178863A 1994-07-26 1995-07-14 Blood pressure meter Pending JPH0889485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7178863A JPH0889485A (en) 1994-07-26 1995-07-14 Blood pressure meter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17302794 1994-07-26
JP6-173027 1994-07-26
JP7178863A JPH0889485A (en) 1994-07-26 1995-07-14 Blood pressure meter

Publications (1)

Publication Number Publication Date
JPH0889485A true JPH0889485A (en) 1996-04-09

Family

ID=26495158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7178863A Pending JPH0889485A (en) 1994-07-26 1995-07-14 Blood pressure meter

Country Status (1)

Country Link
JP (1) JPH0889485A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016688A1 (en) * 2004-08-12 2006-02-16 Shisei Datum Co., Ltd. Electronic hemodynamometer pulse wave data compensation device, electronic hemodynamometer, electronic hemodynamometer pulse wave data correction method, electronic hemodynamometer control method, program, and recording medium
JP2008506472A (en) * 2004-07-14 2008-03-06 エドワーズ ライフサイエンシーズ コーポレイション Real-time measurement of ventricular stroke volume variance by continuous arterial pulse contour analysis
WO2009113653A1 (en) * 2008-03-14 2009-09-17 オムロンヘルスケア株式会社 Blood pressure measurement apparatus, recording medium on which blood pressure derivation program is recorded, and method for deriving blood pressure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008506472A (en) * 2004-07-14 2008-03-06 エドワーズ ライフサイエンシーズ コーポレイション Real-time measurement of ventricular stroke volume variance by continuous arterial pulse contour analysis
JP4896015B2 (en) * 2004-07-14 2012-03-14 エドワーズ ライフサイエンシーズ コーポレイション Real-time measurement of ventricular stroke volume variance by continuous arterial pulse contour analysis
WO2006016688A1 (en) * 2004-08-12 2006-02-16 Shisei Datum Co., Ltd. Electronic hemodynamometer pulse wave data compensation device, electronic hemodynamometer, electronic hemodynamometer pulse wave data correction method, electronic hemodynamometer control method, program, and recording medium
JP2006051197A (en) * 2004-08-12 2006-02-23 Shisei Deetamu:Kk Pulse wave data correction apparatus of electronic tonometer, electronic tonometer, pulse wave data correction method for electronic tonometer, and control process, program and recording medium for electronic tonometer
JP4646195B2 (en) * 2004-08-12 2011-03-09 株式会社志成データム Electronic blood pressure monitor, pulse wave data correction method for electronic blood pressure monitor, program, and recording medium
US8652055B2 (en) 2004-08-12 2014-02-18 Shisei Datum Co., Ltd. Electronic hemomanometer, method of correcting pulse wave data of electronic hemomanometer, program for causing a computer to execute procedures and computer-readable recording medium
WO2009113653A1 (en) * 2008-03-14 2009-09-17 オムロンヘルスケア株式会社 Blood pressure measurement apparatus, recording medium on which blood pressure derivation program is recorded, and method for deriving blood pressure
JP2009219623A (en) * 2008-03-14 2009-10-01 Omron Healthcare Co Ltd Blood pressure measurement apparatus, blood pressure derivation program and method for deriving blood pressure
US9131859B2 (en) 2008-03-14 2015-09-15 Omron Healthcare Co., Ltd. Blood pressure measurement apparatus, recording medium that records blood pressure derivation program, and blood pressure derivation method

Similar Documents

Publication Publication Date Title
JP4841739B2 (en) Oscillometric blood pressure monitor in the presence of arrhythmia
RU2525213C2 (en) Electronic sphygmomanometer
JP3590613B2 (en) Amplitude increase index calculation device and arteriosclerosis test device
JPH057558A (en) Continuous type non-invasive blood pressure measuring apparatus
JPS62292139A (en) Electronic hemomanometer
WO2005110210A1 (en) Circulation kinetics evaluation system
US4870973A (en) Electronic blood pressure meter having means for detecting artifacts
US5699807A (en) Blood pressure measuring system
US5522395A (en) Electronic sphygmomanometer and method of controlling operation of same
JP2008188303A (en) Electronic sphygmometer
JPH06189918A (en) Electronic sphygmomanometer and its maximum pulse wave amplitude value judging method
JP4153543B2 (en) Electronic blood pressure monitor
CN111588365B (en) Blood pressure measuring device capable of evaluating arteriosclerosis
JP4047898B1 (en) Electronic blood pressure monitor
JPH0889485A (en) Blood pressure meter
WO2006016688A1 (en) Electronic hemodynamometer pulse wave data compensation device, electronic hemodynamometer, electronic hemodynamometer pulse wave data correction method, electronic hemodynamometer control method, program, and recording medium
JPH02265528A (en) Method and apparatus for determining average arterial pressure in automatic blood pressure measuring meter
JPH07284479A (en) Continuous blood pressure monitoring apparatus
JPH08131410A (en) Blood pressure measuring apparatus
JPH05207979A (en) Blood pressure measuring instrument
JPS63317131A (en) Electronic hemomanometer
JP2001104258A (en) Equipment of and method for measuring hemodynamics, and the recording media
JPH09201339A (en) Blood pressure measuring device
JPH08581A (en) Electronic sphygmomanometer
JPH0889487A (en) Pulse waveform detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330