JPH0888162A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0888162A
JPH0888162A JP6223283A JP22328394A JPH0888162A JP H0888162 A JPH0888162 A JP H0888162A JP 6223283 A JP6223283 A JP 6223283A JP 22328394 A JP22328394 A JP 22328394A JP H0888162 A JPH0888162 A JP H0888162A
Authority
JP
Japan
Prior art keywords
film
layer wiring
layer
wiring film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6223283A
Other languages
Japanese (ja)
Inventor
Toshio Taniguchi
敏雄 谷口
Takashi Hasegawa
隆史 長谷川
Michiari Kono
通有 河野
Daisuke Matsunaga
大輔 松永
Hiroyuki Tanaka
裕之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6223283A priority Critical patent/JPH0888162A/en
Publication of JPH0888162A publication Critical patent/JPH0888162A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE: To obtain a device of high quality by making the step-difference of a substratum layer on which a first layer wiring film is formed smaller than or equal to the exposure focal depth of a photoresist film for forming the first layer wiring film. CONSTITUTION: In the multilayer interconnection of a semiconductor device, the height of the step-difference D of a substratum layer such as the substratum electrode 2 and the substratum insulating film 3 of a capacitor cell or the like is determined by the focal depth B of exposure of a resist film 5 for forming a first layer wiring film which resist film is used for forming a first layer wiring film 4 of a fine pattern. In this case, a pattern wherein wiring patterns of 0.5μm width and wiring intervals of 0.5μm width are alternately repeated is defined as the line & space of 0.5μm. The wiring pattern is so limited that the line & space is smaller than or equal to 0.5μm, and the step-difference D of the substratum layer is smaller than or equal to the exposure focal depth B, where the step-difference D is set smaller than or equal to 1.0μm. The thickness of the first wiring film 4 and the thickness of the photoresist film 5 for forming the first layer wiring film are set 0.5μm or less and 1.5μm or less, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、0.5μm以下のライン
&スペースを有する半導体装置、特にスタックトキャパ
シタを有するD−RAMのように、第1層目の金属配線
形成時のグローバル段差がキャパシタの高さに依存し、
且つ、第2層目の金属配線を有する半導体装置の製造方
法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor device having a line & space of 0.5 .mu.m or less, especially a global step when forming a metal wiring of the first layer such as a D-RAM having a stacked capacitor. Depends on the height of the capacitor,
In addition, the present invention relates to a method for manufacturing a semiconductor device having a second layer metal wiring.

【0002】近年、半導体装置の製造において、高集積
化、微細化により、多層配線の段差に起因する工程の困
難さが増大し、これを克服する技術が必要とされてき
た。
In recent years, in the manufacture of semiconductor devices, due to high integration and miniaturization, the difficulty of the process due to the step of the multi-layer wiring has increased, and a technique for overcoming this has been required.

【0003】[0003]

【従来の技術】図5〜7は従来例の説明図である。図に
おいて、11は半導体ウェーハ、12は下地電極膜、 12aは
蓄積電極、 12bは対向電極、13は下地絶縁膜、14は第1
層配線膜、15はレジストパターン、16はワード線、17は
ビット線である。
2. Description of the Related Art FIGS. 5 to 7 are explanatory views of a conventional example. In the figure, 11 is a semiconductor wafer, 12 is a base electrode film, 12a is a storage electrode, 12b is a counter electrode, 13 is a base insulating film, and 14 is a first electrode.
A layer wiring film, 15 is a resist pattern, 16 is a word line, and 17 is a bit line.

【0004】従来の半導体装置においては、特に、図5
(b)に示すようなスタックトキャパシタを有するD−
RAMにおいて、第1層配線膜14形成時の下地電極12、
或いは下地絶縁膜13の下地層の段差Dの高さは、ほぼス
タックドキャパシタのセルのフィンの高さは0.6〜
1.0μm程度となり、このことは、第1層配線膜14の
形成時のフォトレジストの露光の焦点深度(Depth of F
ocus) により決定され、実際の量産工程で限界となる焦
点深度余裕度(マージン)の限界までに制限される。
In the conventional semiconductor device, in particular, FIG.
D- having a stacked capacitor as shown in (b)
In the RAM, the base electrode 12 when the first-layer wiring film 14 is formed,
Alternatively, the height of the step D of the base layer of the base insulating film 13 is about 0.6 to about 0.6 for the fin height of the cell of the stacked capacitor.
This is about 1.0 μm, which means that the depth of focus of the exposure of the photoresist when forming the first layer wiring film 14 (Depth of F
ocus) and is limited to the limit of the depth of focus margin (margin) which is the limit in the actual mass production process.

【0005】更に、図5(a)に示すようなシリンダキ
ャパシタの場合にはキャパシタのシリンダの高さが図5
(b)に示したフィンキャパシタの2倍程度の高さも
1.2〜2.0μmもあり、従って下地層の段差Dもほ
ぼ1.2〜2.0μmの高さとなる。
Further, in the case of a cylinder capacitor as shown in FIG. 5 (a), the height of the cylinder of the capacitor is as shown in FIG.
The height of the fin capacitor is about twice as high as that of the fin capacitor shown in (b) and 1.2 to 2.0 μm. Therefore, the step D of the underlayer is about 1.2 to 2.0 μm.

【0006】すなわち、従来の露光焦点深度は第1層配
線膜が1.0μm以上のライン&スペースの配線パター
ンからなる場合においては、従来の焦点深度は2.5μ
m程度であり、焦点深度の余裕度を上下に0.5μm程
度を考慮して、キャパシタセルのフィンの高さは1.5
μm以下の段差が許容されており、実際のセルの高さも
各種のキャパシタで、1.0μm以上が可能である。
That is, the conventional exposure depth of focus is 2.5 μm when the first layer wiring film has a wiring pattern of line and space of 1.0 μm or more.
The height of the fin of the capacitor cell is 1.5 m, considering the margin of depth of focus of about 0.5 μm above and below.
A step height of less than μm is allowed, and the actual cell height can be 1.0 μm or more for various capacitors.

【0007】また、第一層配線膜14の膜厚に関しても、
その配線抵抗の要求値により決められ、かなり厚い膜厚
でも使用可能であった。
Regarding the film thickness of the first-layer wiring film 14,
It was determined by the required value of the wiring resistance, and it was possible to use even a considerably thick film thickness.

【0008】[0008]

【発明が解決しようとする課題】ところが、ライン&ス
ペースが0.5μm以下となり、また、第1層配線膜とし
て高融点金属膜を用いるケースにおいては、その下地層
の段差の高さはフォトレジスト形成時のみならず、第1
層配線膜のエッチング能力にも大きな影響を与えること
がわかってきた。
However, in the case where the line & space is 0.5 μm or less and the refractory metal film is used as the first layer wiring film, the height of the step of the underlying layer is the photoresist. Not only at the time of formation, but also the first
It has been found that the etching ability of the layer wiring film is also greatly affected.

【0009】また、高融点金属によって形成された第1
層配線膜の膜厚が0.5μmを越えると、第1層配線膜間
の電流リークが生じること、及びその上に形成された第
2層配線膜のリーク電流の増大や歩留りの低下等の影響
を与えることも判ってきた。すなわち、図6の左に示す
ような下地電極膜の高さが0.5μm以下の場合に対し
て、図6の右に示すような1.0μm以上の下地電極膜の
高さを有する時には、段差の部分においてその上にパタ
ーニングされた第1層配線膜のエッチング残渣を生じ、
第1層配線膜間のショートを引き起こす原因となる。
Also, the first element formed of a refractory metal
When the film thickness of the layer wiring film exceeds 0.5 μm, current leakage between the first layer wiring films occurs, and the leakage current of the second layer wiring film formed thereon increases and the yield decreases. It has become clear that it will have an impact. That is, when the height of the base electrode film is 0.5 μm or less as shown on the left of FIG. 6, when the height of the base electrode film is 1.0 μm or more as shown on the right of FIG. In the step portion, an etching residue of the patterned first layer wiring film is generated on the step portion,
This causes a short circuit between the first layer wiring films.

【0010】また、図7(a)に示すような、ライン&
スペースが1μmの場合に従来用いてきた1.7μm程度
のフォトレジスト膜の膜厚では、0.5μm以下のライン
&スペース形成時ではレジストパターン15の抜き幅のア
スペクト比が図7(b)に示すように、3を越え、レジ
ストパターン15が倒れるといった現象も起こっている。
Further, as shown in FIG. 7A, the line &
With a photoresist film thickness of about 1.7 μm, which has been conventionally used when the space is 1 μm, the aspect ratio of the blank width of the resist pattern 15 is shown in FIG. 7 (b) when a line & space of 0.5 μm or less is formed. As shown, there is also a phenomenon that the resist pattern 15 falls over 3 and falls.

【0011】すなわち、フォトリソグラフィ工程にてフ
ォトレジスト膜を塗布するが、ここで、そのフォトレジ
スト膜の膜厚による第1層配線膜14の形成時には図7に
示すような問題点が生じていた。すなわち、この時、
1.5μm以上の膜厚のフォトレジストではレジストパ
ターン倒れが発生し、第1層配線膜間のショートが発生
する。
That is, the photoresist film is applied in the photolithography process. However, when the first layer wiring film 14 is formed due to the thickness of the photoresist film, a problem as shown in FIG. 7 occurs. . That is, at this time,
In a photoresist having a film thickness of 1.5 μm or more, the resist pattern collapses, causing a short circuit between the first-layer wiring films.

【0012】更に、0.5μm以上の第1層配線膜14につ
いては、従来用いてきたCVDによる層間絶縁膜や、薄
いSOG膜においては、第1層配線膜14の端部の絶縁膜
形状に起因するフォトレジスト膜の膜厚の増大が、第1
層配線膜14と同様に、アスペクトの増大によるレジスト
パターン倒れを引き起こす。
Further, for the first layer wiring film 14 having a thickness of 0.5 μm or more, the interlayer insulating film formed by CVD which has been used conventionally, and for the thin SOG film, the shape of the insulating film at the end of the first layer wiring film 14 is used. The increase in the thickness of the photoresist film caused by
Like the layer wiring film 14, the resist pattern collapses due to an increase in aspect.

【0013】本発明は、上記の問題点に鑑み、0.5μ
m以下のライン&スペースを有する半導体装置の第1層
配線膜の形成時の下地層の段差等に起因する障害を克服
する各種膜厚の限界値を設定し、高品質のデバイスを得
ることを目的として提供される。
In view of the above problems, the present invention provides 0.5 μm.
In order to obtain a high quality device by setting limit values of various film thicknesses to overcome obstacles caused by a step of the underlying layer when forming the first layer wiring film of a semiconductor device having a line & space of m or less. It is provided for the purpose.

【0014】[0014]

【課題を解決するための手段】図1は本発明の原理説明
図である。図において、1は半導体ウェーハ、2は下地
電極膜、3は下地絶縁膜、4は第1層配線膜、5は第1
層配線膜形成用フォトレジスト膜である。
FIG. 1 is a diagram for explaining the principle of the present invention. In the figure, 1 is a semiconductor wafer, 2 is a base electrode film, 3 is a base insulating film, 4 is a first layer wiring film, 5 is a first
It is a photoresist film for forming a layer wiring film.

【0015】前述したように、半導体デバイスの多層配
線において、キャパシタセル等の下地電極や下地絶縁膜
等の下地層の段差Dの高さは、微細パターンの第1層配
線膜4を形成するための第1層配線膜形成用レジスト膜
5の露光の焦点深度Bにより決定され、実際の量産工程
で限界となる焦点深度のマージンCの限界まで、その高
さが制限されることとなる。
As described above, in the multi-layer wiring of the semiconductor device, the height of the step D of the base electrode such as the capacitor cell or the base layer such as the base insulating film forms the first-layer wiring film 4 having a fine pattern. The height is limited to the limit of the margin C of the depth of focus, which is determined by the depth of focus B of the exposure of the first layer wiring film forming resist film 5 and becomes a limit in the actual mass production process.

【0016】すなわち、図1に示すように、露光装置の
焦点深度Aそのものは露光技術とフォトレジスト膜のパ
ターンの線巾により決まるものであるが、或る点におい
てパターン寸法が、細くなったり太くなったり変形した
りせず、一定の適正範囲に内に形成出来る焦点深度であ
る露光焦点深度Bは下地層の段差Dと量産余裕度(ばら
つきの許容範囲)Cとの和であり、例えば0.4±0.
04μm巾のレジストパターンが形成出来る焦点深度の
量が2.0μmであれば、量産時のばらつきである量産
余裕度Cを上側C1 と下側C2 に0.5μmづつ、合わ
せて1.0μmとすれば、下地層の段差Dは焦点深度A
から量産余裕度Cを差し引いた露光焦点深度Bの1.0
μmより低く例えば0.9μm以下にする必要がある。
That is, as shown in FIG. 1, the focal depth A of the exposure apparatus itself is determined by the exposure technique and the line width of the pattern of the photoresist film, but at a certain point, the pattern dimension becomes thin or thick. The exposure depth of focus B, which is the depth of focus that can be formed within a certain appropriate range without being deformed or deformed, is the sum of the step D of the underlayer and the mass production margin (allowable range of variation) C, for example, 0. .4 ± 0.
If the depth of focus capable of forming a resist pattern having a width of 04 μm is 2.0 μm, the mass production margin C, which is a variation at the time of mass production, is 0.5 μm on the upper side C 1 and the lower side C 2 and is 1.0 μm in total. Then, the step D of the underlayer is the depth of focus A
1.0 of exposure depth of focus B minus mass production margin C
It must be lower than μm, for example, 0.9 μm or less.

【0017】このように、本発明は、第1層配線膜形成
時の下地層の段差が何μmであれば、第1層配線膜形成
が可能であるか、また、第1層配線の膜厚が何μmであ
れば第1層配線膜及び第2層配線膜のリーク問題が解決
できるかを実験的に明らかにし、その限界値を明らかに
することで、第1層配線膜の下地のグローバル段差の許
容値、第1層配線膜のトータル膜厚、また第1層配線膜
形成のためのフォトレジスト膜厚の限界値を示す。ま
た、第2層配線膜のリーク電流を減らす方法について
は、滑らかな下地層の形成のための厚いSOG膜を使用
する。
As described above, according to the present invention, if the step difference of the underlying layer at the time of forming the first layer wiring film is several μm, the first layer wiring film can be formed, and the film of the first layer wiring is formed. By experimentally clarifying how many μm the thickness can solve the leak problem of the first-layer wiring film and the second-layer wiring film, and clarifying the limit value thereof, The allowable values of the global level difference, the total film thickness of the first layer wiring film, and the limit values of the photoresist film thickness for forming the first layer wiring film are shown. As a method of reducing the leak current of the second-layer wiring film, a thick SOG film for forming a smooth underlayer is used.

【0018】すなわち、本発明の目的は、図1に示すよ
うに、0.5μm以下のライン&スペースの配線パター
ンを有する半導体装置において、第1層配線膜が形成さ
れる下地層の段差Dを、第1層配線膜形成用フォトレジ
スト膜の露光焦点深度B以下にすることにより達成され
る。
That is, as shown in FIG. 1, an object of the present invention is to provide a semiconductor device having a line & space wiring pattern of 0.5 μm or less with a step D of a base layer on which a first layer wiring film is formed. , The exposure depth of focus B of the photoresist film for forming the first-layer wiring film or less.

【0019】[0019]

【作用】上記のように、本発明では0.5μm以下のライ
ン&スペースを有するスタックトキャパシタ形のD−R
AMにおいて、その第1層配線膜の形成時の下地層の段
差を1.0μm以下に限定することで、第1層配線膜のフ
ォトレジスト膜の形成や、エッチング性能を向上し、そ
の第1層配線膜そのもののトータル膜厚を0.5μmとす
ることで、第1層配線膜、及び第2層配線膜間のリーク
電流を下げることが可能となる。
As described above, in the present invention, the stacked capacitor type D-R having a line & space of 0.5 μm or less is used.
In the AM, by limiting the step difference of the underlayer at the time of forming the first-layer wiring film to 1.0 μm or less, the photoresist film of the first-layer wiring film and the etching performance are improved. By setting the total film thickness of the layer wiring film itself to 0.5 μm, it becomes possible to reduce the leak current between the first layer wiring film and the second layer wiring film.

【0020】また、第1層配線膜形成時のフォトレジス
ト膜の膜厚を1.5μm以下にすることで、レジストパタ
ーンのアスペクト比を軽減し、レジストパターン倒れを
防止する。但し、この技術はエッチング時のレジストア
ッシングレートに大きく影響するため、第1層配線膜の
トータル膜厚制限と併せて用いることが必要となる。
Further, by setting the film thickness of the photoresist film at the time of forming the first layer wiring film to 1.5 μm or less, the aspect ratio of the resist pattern is reduced and the collapse of the resist pattern is prevented. However, since this technique greatly affects the resist ashing rate during etching, it is necessary to use it together with the limitation of the total film thickness of the first layer wiring film.

【0021】更に、第1層配線膜として、1μm以上の
膜厚を用いざるを得ない場合においては、問題点となる
第2層配線膜のリーク電流が、第2層配線膜端部のレジ
スト膜厚の変動に起因するものであるから、CVD層間
絶縁膜上に厚いSOG膜を塗布することで、滑らかなフ
ォトレジスト膜の下地を形成し、フォトレジストの膜厚
の変動を極力抑えるという手段を用いることで、リーク
電流の問題を回避することが可能となる。
Further, when the film thickness of 1 μm or more must be used as the first layer wiring film, the leak current of the second layer wiring film, which is a problem, is caused by the resist at the end portion of the second layer wiring film. Since it is caused by the fluctuation of the film thickness, a means for forming a smooth underlayer of the photoresist film by applying a thick SOG film on the CVD interlayer insulating film and suppressing the fluctuation of the photoresist film thickness as much as possible. By using, it becomes possible to avoid the problem of leakage current.

【0022】[0022]

【実施例】図2〜図4は本発明の実施例の説明図であ
る。図において、3は下地絶縁膜、4は第1層配線膜、
6は層間絶縁膜、7は第2層配線膜、8はカバー絶縁
膜、9はSOG膜である。
2 to 4 are explanatory views of an embodiment of the present invention. In the figure, 3 is a base insulating film, 4 is a first layer wiring film,
6 is an interlayer insulating film, 7 is a second layer wiring film, 8 is a cover insulating film, and 9 is an SOG film.

【0023】一般に半導体デバイスの電極配線パターン
において、高密度、高集積の場合、信号線は極端に密集
して配線する必要があるため、製造技術のレベルぎりぎ
で配線巾及び配線間隔をとるので、配線巾及び配線間隔
が同じ寸法のものを繰り返すパターンが多い。
Generally, in the case of high density and high integration in the electrode wiring pattern of a semiconductor device, the signal lines need to be extremely densely wired, so that the wiring width and the wiring interval are set at the limit of the manufacturing technology. In many cases, patterns with the same wiring width and wiring interval are repeated.

【0024】本発明では、0.5μm巾の配線パターン
と0.5μm巾の配線間隔を交互に繰り返したパターン
の場合を0.5μmのライン&スペースと定義する。本
発明ではライン&スペースが0.5μm以下の配線パタ
ーンに限定して、下地層の段差を露光焦点深度以下とし
ているが、根拠としては、実際にフォトレジストの塗布
膜厚は2μm以下の場合が多く、実験的にフォトレジス
トの露光装置の焦点深度(DOF)が図2に示すよう
に、焦点深度が2μm以下に狭まるのはライン&スペー
スが0.5μm以下の場合となるためである。
In the present invention, the case where a wiring pattern having a width of 0.5 μm and a wiring interval having a width of 0.5 μm are alternately repeated is defined as a line and space of 0.5 μm. In the present invention, the line and space is limited to the wiring pattern of 0.5 μm or less, and the step of the underlayer is set to the exposure depth of focus or less. The rationale is that the coating film thickness of the photoresist is actually 2 μm or less. In many cases, the depth of focus (DOF) of the photoresist exposure apparatus is experimentally narrowed to 2 μm or less because the line and space is 0.5 μm or less.

【0025】本発明の第1の実施例として64MのD−
RAMの多層配線形成プロセスの例を示す。従来例で述
べた図5(a)に示すようなシリンダ構造や単純スタッ
ク構造においては2.0μm以上の下地段差を有する
が、図5(b)に示すようなフィン構造を有するスタッ
クトキャパシタにおいては第1層配線膜4形成時の下地
層の段差として、約1μmの下地層の段差を有していた
が、本発明のキャパシタにおいてはフィンの段差を0.
5μm以下に抑え、第1層配線膜も0.5μm以下とす
ることが必要となる。
As a first embodiment of the present invention, a 64M D-
An example of a multi-layer wiring formation process for a RAM will be shown. The stacked capacitor having a fin structure as shown in FIG. 5B has a ground step of 2.0 μm or more in the cylinder structure and the simple stack structure as shown in FIG. 5A described in the conventional example. Has a step of the underlayer of about 1 μm as the step of the underlayer when forming the first layer wiring film 4, but in the capacitor of the present invention, the step of the fin is 0.
It is necessary to suppress the thickness to 5 μm or less and to make the first-layer wiring film also 0.5 μm or less.

【0026】図3(a)の従来例に対比して示す図3
(b)の本発明の実施例では、下地層の段差の状況は図
1や図5で説明したので省略し、下地絶縁膜3上に第1
層配線膜4を形成するところから説明する。
FIG. 3 shown in comparison with the conventional example of FIG.
In the embodiment of the present invention in (b), the condition of the step of the underlying layer has been described with reference to FIGS.
The process of forming the layer wiring film 4 will be described.

【0027】微細パターンのため、第1層配線膜4とし
てポリSi膜やAl膜に代わって、高融点金属配線を用い
る。例えば、スパッタ法によりTi膜を 100〜300 Å、
その後グルーレイヤー(バリア膜)として連続してTi
N膜を 400〜600 Åの厚さにスパッタ法により形成す
る。
Due to the fine pattern, a refractory metal wiring is used as the first layer wiring film 4 instead of the poly-Si film or the Al film. For example, a Ti film of 100 to 300 Å by the sputtering method,
After that, Ti is continuously used as a glue layer (barrier film).
An N film is formed with a thickness of 400 to 600 Å by the sputtering method.

【0028】続いて、CVD法により下地絶縁膜3上の
全面にW膜を 3,000〜 4,000Åの厚さに被覆形成する。
またW膜のパターニングのために、反射防止膜としてア
モルファスカーボン(α−C)膜を 500〜600 Åの厚さ
にスパッタ法にて被覆し、フォトリソグラフィ工程に進
める。この時の第1層配線膜4のグローバルの厚さは
0.5μm以下となる。
Then, a W film is formed on the entire surface of the base insulating film 3 by the CVD method so as to have a thickness of 3,000 to 4,000 Å.
For patterning the W film, an amorphous carbon (α-C) film as an antireflection film is coated to a thickness of 500 to 600 Å by the sputtering method, and the photolithography process is performed. At this time, the global thickness of the first-layer wiring film 4 is 0.5 μm or less.

【0029】フォトリソグラフィ工程にて第1層配線膜
膜形成用のフォトレジスト膜を塗布するが、ここで、そ
のフォトレジスト膜の膜厚による第1層配線膜4の形成
時には従来例でのべたような図3に示す問題点が生じて
いた。すなわち、この時、1.5μm以上のフォトレジ
スト膜ではレジストパターン倒れが発生し、第1層配線
膜4間のショートが発生する。
A photoresist film for forming the first-layer wiring film film is applied in the photolithography process. Here, when forming the first-layer wiring film 4 according to the thickness of the photoresist film, the conventional method is used. The problem shown in FIG. 3 has occurred. That is, at this time, the resist pattern collapses in the photoresist film having a thickness of 1.5 μm or more, and a short circuit occurs between the first-layer wiring films 4.

【0030】この問題は1.5μm以下の厚さのフォトレ
ジスト膜を用いる本発明で解消することが可能となる。
この場合、ブランケットW膜厚が、4,500 Åを越えると
グルーレイヤーを含めた第1層配線膜4のグローバル膜
厚が0.5 μmを越えてしまい、対レジスト選択比の問
題からフォトレジスト膜を充分残したままエッチングを
完了することが困難となり、実際の出来上り配線形状が
悪化する。
This problem can be solved by the present invention using a photoresist film having a thickness of 1.5 μm or less.
In this case, when the blanket W film thickness exceeds 4,500 Å, the global film thickness of the first-layer wiring film 4 including the glue layer exceeds 0.5 μm, and the photoresist film is not used due to the problem of resist selectivity. It becomes difficult to complete the etching while leaving enough, and the actual finished wiring shape deteriorates.

【0031】次に、1.0μm以上の下地層の段差を有す
る時も従来例の図5で示したように、段差部においてエ
ッチング残渣を生じ、第1層配線膜の間ショートとなっ
てしまう。また、同時に、0.5μm程度の段差では問題
ないことも分り、図3(c)に示すような本発明の第2
の実施例のように、ここで0.5μmの下地層の段差で
抑えられるフィン形キャパシタ以外の、下地層の段差が
1.0μmにもなるシリンダキャパシタ等を採用する場
合においても、下地層の段差は1.0μm以下に抑えるこ
とが必要である。
Next, even when there is a step difference of 1.0 μm or more in the underlying layer, as shown in FIG. 5 of the conventional example, an etching residue is generated in the step portion, resulting in a short circuit between the first layer wiring films. . At the same time, it was also found that there is no problem with a step difference of about 0.5 μm, and the second aspect of the present invention as shown in FIG.
In the case where a cylinder type capacitor having a step difference of 1.0 μm in the base layer is adopted other than the fin type capacitor in which the step difference of the base layer of 0.5 μm is suppressed as in the embodiment of FIG. It is necessary to suppress the step to 1.0 μm or less.

【0032】第1層配線膜形成後、層間絶縁膜6を形成
する。層間絶縁膜6としては、例えば、PE−CVD法
によるSiON膜を 1,000〜2,000 Åの厚さに、続いて
常圧O3 −TEOS法によるNSG膜を 6,000〜8,000
Åの厚さに形成する。
After forming the first layer wiring film, the interlayer insulating film 6 is formed. As the interlayer insulating film 6, for example, a SiON film formed by PE-CVD method with a thickness of 1,000 to 2,000 Å, and then an NSG film formed by atmospheric pressure O 3 -TEOS method from 6,000 to 8,000.
Form to a thickness of Å.

【0033】次に、ビアホール窓の開口、及びビアホー
ルのエッチング後に、第2層配線膜7を成膜する。ここ
では、バリアメタル膜としてTiN膜を 1,000Åの厚さ
に、次にAl膜を1.0μmの厚さに、反射防止膜としての
TiN膜を 350Åの厚さに連続してスパッタ法により形
成する。
Next, after the opening of the via hole window and the etching of the via hole, the second layer wiring film 7 is formed. Here, a TiN film as a barrier metal film with a thickness of 1,000Å, an Al film with a thickness of 1.0 μm, and a TiN film as an antireflection film with a thickness of 350Å are successively formed by sputtering. To do.

【0034】こうして形成した第2層金属配線膜7をエ
ッチングした後、この第2層配線膜7のリーク電流の第
1層配線膜4の膜厚依存性は、図4に示すように、第1
層金属配線膜4の膜厚が0.5μmより厚い場合が、0.5
μmより薄い場合に比べてリーク電流が高く、歩留りが
悪くなっている。
After the second-layer metal wiring film 7 thus formed is etched, the film thickness dependence of the first-layer wiring film 4 of the leak current of the second-layer wiring film 7 is as shown in FIG. 1
If the thickness of the layer metal wiring film 4 is thicker than 0.5 μm, 0.5
The leakage current is higher and the yield is worse than when the thickness is less than μm.

【0035】そこで、第2層配線膜7の問題からも第1
層配線膜4のグローバルな膜厚は薄い方が望ましいこと
が分る。すなわち、薄くすることで、第1層配線膜4の
端部での常圧O3 −TEOS法により形成したNSG膜
の形状が滑らかになり、レジストの厚膜化を抑制するこ
とができるためである。
Therefore, from the problem of the second layer wiring film 7, the first
It is understood that it is desirable that the global film thickness of the layer wiring film 4 is thin. That is, by making the thickness thinner, the shape of the NSG film formed by the atmospheric pressure O 3 -TEOS method at the end portion of the first-layer wiring film 4 becomes smoother, and the thickening of the resist can be suppressed. is there.

【0036】次に、本発明の第2の実施例として、第1
配線膜4の膜厚が0.5μmを越える場合の層間絶縁膜6
の形成方法を示す。上記常圧O3 −TEOS膜成膜後、
SOG膜9を 4,000〜5,000 Åの厚さに塗布し、キュア
することで、常圧O3 −TEOSの段差を緩和すること
ができる。
Next, as a second embodiment of the present invention, the first
Interlayer insulating film 6 when the film thickness of the wiring film 4 exceeds 0.5 μm
A method of forming the is shown. After forming the atmospheric pressure O 3 -TEOS film,
By applying the SOG film 9 to a thickness of 4,000 to 5,000 Å and curing it, it is possible to mitigate the step difference of the normal pressure O 3 -TEOS.

【0037】この緩和目的は、図3(c)に示すよう
に、第1層配線膜4が密な場所に対するものではなく、
第1層配線膜4の粗な部分において特に強調される適正
に近い形状により生じた段差によるレジスト膜厚の厚膜
化の防止であり、この段差部において滑らかなSOG膜
9を形成することが肝心となる。
As shown in FIG. 3C, this relaxation purpose is not for a place where the first layer wiring film 4 is dense, but
This is to prevent an increase in the resist film thickness due to a step caused by a shape close to an appropriate shape which is particularly emphasized in the rough portion of the first layer wiring film 4, and a smooth SOG film 9 can be formed in this step portion. It is essential.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
スタックトキャパシタを有するD−RAMのように、下
地層にセル等の下地電極の段差のある半導体デバイスの
0.5μm以下のライン&スペースを有する第1層配線
膜、及び第2層配線膜のパターン形成に効果を奏し、係
る半導体デバイスの歩留り向上、及び性能向上に寄与す
るところが大きい。
As described above, according to the present invention,
In a first-layer wiring film and a second-layer wiring film having a line & space of 0.5 μm or less of a semiconductor device having a step of a base electrode such as a cell in a base layer like a D-RAM having a stacked capacitor. In many cases, it is effective in pattern formation and contributes to improvement in yield and performance of such semiconductor devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 本発明の実施例の説明図(その1)FIG. 2 is an explanatory diagram of an embodiment of the present invention (No. 1)

【図3】 本発明の実施例の説明図(その2)FIG. 3 is an explanatory diagram of an embodiment of the present invention (No. 2)

【図4】 本発明の実施例の説明図(その3)FIG. 4 is an explanatory diagram of an embodiment of the present invention (No. 3)

【図5】 従来例の説明図(その1)FIG. 5 is an explanatory diagram of a conventional example (No. 1)

【図6】 従来例の説明図(その2)FIG. 6 is an explanatory diagram of a conventional example (No. 2)

【図7】 従来例の説明図(その3)FIG. 7 is an explanatory diagram of a conventional example (No. 3)

【符号の説明】[Explanation of symbols]

図において 1 半導体ウェーハ 2 下地電極膜 3 下地絶縁膜 4 第1層配線膜 5 第1層配線膜形成用フォトレジスト膜 6 層間絶縁膜 7 第2層配線膜 8 カバー絶縁膜 9 SOG膜 In the figure, 1 semiconductor wafer 2 underlying electrode film 3 underlying insulating film 4 first layer wiring film 5 first layer wiring film forming photoresist film 6 interlayer insulating film 7 second layer wiring film 8 cover insulating film 9 SOG film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松永 大輔 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (72)発明者 田中 裕之 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Daisuke Matsunaga 1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited (72) Inventor Hiroyuki Tanaka 1015, Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Fujitsu Limited

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウェーハ露光時のフォトレジスト
膜の焦点深度から焦点深度余裕度を差し引いた値を露光
焦点深度と定義した場合、 0.5μm以下のライン&スペースの配線パターンを有
する半導体装置において、第1層配線膜が形成される下
地層の段差を、該第1層配線膜形成用フォトレジスト膜
の露光焦点深度以下にすることを特徴とする半導体装置
の製造方法。
1. When a value obtained by subtracting a depth of focus margin from a depth of focus of a photoresist film at the time of exposing a semiconductor wafer is defined as an exposure depth of focus, a semiconductor device having a wiring pattern of 0.5 μm or less in line & space is provided. A method of manufacturing a semiconductor device, characterized in that a step of a base layer on which a first-layer wiring film is formed is set to be equal to or less than an exposure focal depth of a photoresist film for forming the first-layer wiring film.
【請求項2】 前記下地層の段差が1.0μm以下であ
ることを特徴とする請求項1記載の半導体装置の製造方
法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the step difference of the underlayer is 1.0 μm or less.
【請求項3】 前記下地層がスタックトキャパシタから
なることを特徴とする請求項1または2記載の半導体装
置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the underlayer is a stacked capacitor.
【請求項4】 前記第1層配線膜の膜厚が0.5μm以
下であることを特徴とする請求項1、2または3記載の
半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the film thickness of the first layer wiring film is 0.5 μm or less.
【請求項5】 前記第1層配線膜形成用フォトレジスト
膜の膜厚が1.5μm以下であることを特徴とする請求
項1〜4記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein the photoresist film for forming the first layer wiring film has a film thickness of 1.5 μm or less.
JP6223283A 1994-09-19 1994-09-19 Manufacture of semiconductor device Withdrawn JPH0888162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6223283A JPH0888162A (en) 1994-09-19 1994-09-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6223283A JPH0888162A (en) 1994-09-19 1994-09-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0888162A true JPH0888162A (en) 1996-04-02

Family

ID=16795707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6223283A Withdrawn JPH0888162A (en) 1994-09-19 1994-09-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0888162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839264B2 (en) 2002-03-22 2005-01-04 Nec Electronics Corporation Semiconductor device without adverse effects caused by inclinations of word line and bit line
CN112158794A (en) * 2020-09-04 2021-01-01 杭州探真纳米科技有限公司 Method for preparing atomic force microscope probe stepped substrate by adopting plasma etching

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839264B2 (en) 2002-03-22 2005-01-04 Nec Electronics Corporation Semiconductor device without adverse effects caused by inclinations of word line and bit line
CN112158794A (en) * 2020-09-04 2021-01-01 杭州探真纳米科技有限公司 Method for preparing atomic force microscope probe stepped substrate by adopting plasma etching
CN112158794B (en) * 2020-09-04 2024-03-22 杭州探真纳米科技有限公司 Method for preparing atomic force microscope probe stepped substrate by adopting plasma etching

Similar Documents

Publication Publication Date Title
KR100704470B1 (en) Method for fabrication of semiconductor device using amorphous carbon layer to sacrificial hard mask
US8808971B2 (en) Method for forming fine patterns of semiconductor device
US7482279B2 (en) Method for fabricating semiconductor device using ArF photolithography capable of protecting tapered profile of hard mask
US7396751B2 (en) Method for manufacturing semiconductor device
US6680163B2 (en) Method of forming opening in wafer layer
JPH0888162A (en) Manufacture of semiconductor device
US20050280035A1 (en) Semiconductor device and method for fabricating the same
JPH09237879A (en) Manufacture of capacitor of semiconductor device
KR100482029B1 (en) Method for forming mim capacitor
KR100792409B1 (en) Method for fabrication of semiconductor device using tungsten layer to sacrificial hard mask
JPH0529479A (en) Semiconductor device and forming method of contact hole thereof
JPH0468566A (en) Semiconductor device and manufacture thereof
US6287752B1 (en) Semiconductor device, method of manufacturing a semiconductor device, and method of forming a pattern for semiconductor device
JP2998655B2 (en) Method for manufacturing semiconductor device
KR100714284B1 (en) Forming method of metal line in semiconductor memory device having word line strapping structure
US20050067643A1 (en) Device and a method for forming a ferroelectric capacitor device
KR960002781B1 (en) Method of making a capacitor of dram memory cell
JPH05175195A (en) Manufacture of semiconductor device
KR19990012665A (en) Knock Control Method for Correction of Learning Value by Driving Area
JPH05129549A (en) Semiconductor device and manufacture thereof
KR100191464B1 (en) Method of fabricating a capacitor in a semiconductor device
KR100214261B1 (en) Method for forming metal wiring in semiconductor device
JPH06132408A (en) Semiconductor device and its manufacture
KR19990012265A (en) Method for manufacturing a DRAM and logic device using an epi layer to suppress the step difference in the cell region
JPH10178091A (en) Multilayer interconnection of semiconductor device and formation thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120