JPH0888148A - Electrode of electric double layer capacitor and manufacture thereof - Google Patents

Electrode of electric double layer capacitor and manufacture thereof

Info

Publication number
JPH0888148A
JPH0888148A JP6251369A JP25136994A JPH0888148A JP H0888148 A JPH0888148 A JP H0888148A JP 6251369 A JP6251369 A JP 6251369A JP 25136994 A JP25136994 A JP 25136994A JP H0888148 A JPH0888148 A JP H0888148A
Authority
JP
Japan
Prior art keywords
electrode
double layer
electric double
active carbon
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6251369A
Other languages
Japanese (ja)
Inventor
Yosuke Ushio
洋介 牛尾
Yoshimitsu Sawada
喜充 沢田
Tetsuya Aisaka
哲彌 逢坂
Satoyuki Kadoma
聰之 門間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP6251369A priority Critical patent/JPH0888148A/en
Publication of JPH0888148A publication Critical patent/JPH0888148A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: To prevent nitrogen oxides from being adsorbed on the surface of an active carbon by a method wherein an electrode is formed into the active carbon oxidized electrochemically using a cyclic voltammetry method, in which the oxidation potential range of the active carbon is freely prescribed and it is free to change arbitrarily a potential scanning speed. CONSTITUTION: An active carbon fiber cloth is punched into a disc and that fiber cloth is dipped in a dilute sulfuric acid. This cloth is inserted in a holder 7 for a working pole 6 of a three-pole electrochemical cell 5, the cell 5 is connected with a cyclic voltammetry testing device and a current is made to flow through the testing device. Voltages between the pole 6 and paired poles 8 are controlled so as to change a potential difference between the pole 6 and a reference pole 9 at a constant speed. In short, a potential scanning is performed and an active carbon is electrochemically oxidized to manufacture an electrode. Thereby, nitrogen oxides are not adsorbed on the surface of the active carbon and even if the electrode is used for a long period of time, it is little deteriorated and a high-capacitance electric double layer capacitor can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電極として活性炭を用
い、水溶液系の電解液を使用した電気二重層コンデンサ
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor using an activated carbon as an electrode and an aqueous electrolyte.

【0002】[0002]

【従来の技術】誘電体を用いるコンデンサとは動作原理
の異なる固体と液体との界面に生成される電気二重層を
利用した電気二重層コンデンサは大静電容量が得られる
ため、電子機器のメモリのバックアップ電源として用い
られ、規模を大きくしたものとしては電気自動車の電池
があり、電池のパワー用補助電源としての利用が提案さ
れている。
2. Description of the Related Art An electric double layer capacitor using an electric double layer generated at an interface between a solid and a liquid, which has a different operation principle from that of a capacitor using a dielectric material, can obtain a large electrostatic capacitance, and therefore a memory of an electronic device. A battery for electric vehicles is used as a back-up power source of the electric vehicle, and its use as an auxiliary power source for battery power has been proposed.

【0003】そして、電気二重層コンデンサの電極とし
て使用される活性炭については、従来から種々の研究が
なされ、例えば、特開昭63ー66373号公報には電
極となる活性炭を硝酸で酸化処理したものに関する出願
が示されている。
Various studies have been made on activated carbon used as an electrode of an electric double layer capacitor. For example, Japanese Patent Laid-Open No. 63-66373 discloses activated carbon which is oxidized by nitric acid. Application is shown.

【0004】上記公報には、活性炭の単位体積当りの電
気二重層容量が活性炭表面の官能基により大きく左右さ
れることに着目し、前記官能基を制御して活性炭の単位
体積当りの電気二重層容量を向上させることを目的とし
ており、硝酸で活性炭を酸化処理し、それらの活性炭を
電極とした電気二重層コンデンサの電気二重層容量を測
定し、硝酸により酸化処理した場合に電気二重層容量が
増大することが示されている。
In the above publication, attention is paid to the fact that the electric double layer capacity per unit volume of activated carbon is largely influenced by the functional groups on the surface of the activated carbon, and the functional groups are controlled to control the electric double layer per unit volume of the activated carbon. The purpose is to improve the capacity.Oxidizing the activated carbon with nitric acid, measuring the electric double layer capacity of the electric double layer capacitor using those activated carbons as electrodes, and measuring the electric double layer capacity with nitric acid It has been shown to increase.

【0005】[0005]

【発明が解決しようとする課題】上述の公報で示された
活性炭を硝酸で酸化処理した電極は、公報に示されてい
るように処理を施していない活性炭を使用した電極に比
し静電容量の向上が見られるが、硝酸による酸化処理は
酸化度合いの制御が難しく、また活性炭表面に窒素酸化
物が吸着し、その吸着した窒素酸化物を洗い流すことが
できない。この表面に吸着した窒素酸化物は、電気二重
層コンデンサとして長期間使用される過程で脱離、ガス
化し電気二重層コンデンサの性能を低下させるという問
題があった。さらに、酸化剤、及び使用後の酸化剤を含
んだ洗浄水が廃液となるためその処理も行う必要があっ
た。
The electrode obtained by oxidizing the activated carbon shown in the above publication with nitric acid has a capacitance larger than that of the electrode using the untreated activated carbon as shown in the publication. However, it is difficult to control the degree of oxidation in nitric acid, and nitrogen oxides are adsorbed on the surface of activated carbon, and the adsorbed nitrogen oxides cannot be washed away. The nitrogen oxide adsorbed on the surface has a problem that it is desorbed and gasified in the process of being used as an electric double layer capacitor for a long period of time to deteriorate the performance of the electric double layer capacitor. Furthermore, since the washing water containing the oxidizing agent and the used oxidizing agent becomes waste liquid, it is necessary to perform the treatment.

【0006】本発明は、このような従来の活性炭の問題
点を改善するものであり、その目的は電気二重層コンデ
ンサの電極用の活性炭の表面の酸化処理を従来のように
酸化剤により処理するのではなく、サイクリックボルタ
ンメトリー法で行ない、活性炭表面に窒素酸化物が吸着
しないようにし長期に使用しても劣化の少ない活性炭電
極及びその製造方法を提供することにある。
The present invention solves the above problems of conventional activated carbon, and its purpose is to treat the surface of activated carbon for electrodes of electric double layer capacitors with an oxidizing agent as in the conventional case. Rather, a cyclic voltammetry method is used to provide an activated carbon electrode and a method for producing the same, in which nitrogen oxides are not adsorbed on the surface of the activated carbon and which is less deteriorated even after long-term use.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成するた
めに本発明によれば、活性炭を電極とする電気二重層コ
ンデンサの電極において、前記電極は、前記活性炭の酸
化電位範囲を規定自在で、電位走査速度を任意に変える
ことが自在なサイクリックボルタンメトリー法を用いて
電気化学的に酸化させた活性炭である電気二重層コンデ
ンサの電極と、活性炭と電解液とを電極とする電気二重
層コンデンサの電極の製造方法において、前記電極の製
造方法は、前記活性炭の酸化電位範囲を規定自在で、電
位走査速度を任意に変えることが自在なサイクリックボ
ルタンメトリー法を用いて電気化学的に酸化させる電気
二重層コンデンサの電極の製造方法が提供される。
In order to achieve the above object, according to the present invention, in an electrode of an electric double layer capacitor having activated carbon as an electrode, the electrode can freely define an oxidation potential range of the activated carbon. , An electrode of an electric double layer capacitor which is an activated carbon electrochemically oxidized by a cyclic voltammetry method capable of arbitrarily changing a potential scanning speed, and an electric double layer capacitor having an activated carbon and an electrolytic solution as electrodes In the method for producing an electrode, the method for producing an electrode is an electrochemical oxidation method using a cyclic voltammetry method capable of freely defining the oxidation potential range of the activated carbon and freely changing the potential scanning rate. A method of manufacturing an electrode of a double layer capacitor is provided.

【0008】[0008]

【作用】電気二重層コンデンサの静電容量を向上させる
電極用活性炭として、電気化学的な酸化により製造した
活性炭を用いたので、長期間の使用においても電極の劣
化が少なく、かつ高静電容量の電気二重層コンデンサが
得られている。
[Function] Since the activated carbon produced by electrochemical oxidation is used as the activated carbon for the electrode for improving the electrostatic capacity of the electric double layer capacitor, the electrode is not deteriorated even after long-term use and has a high electrostatic capacity. The electric double layer capacitor of is obtained.

【0009】[0009]

【実施例】次に、本発明の実施例について詳細に説明す
る。水蒸気賦活したフェノール樹脂系活性炭繊維布を直
径15mmの円盤状に打ち抜き、それを希硫酸(1NH
2 SO4 )中に10時間浸積した。これを図3に示す三
極式電気化学セル5の作用極6のホルダー7にはさみ、
対極8としてグラッシーカーボンを使用し、参照極9と
してAg/AgClを用いた。この三極式電気化学セル
5を公知のサイクリックボルタンメトリー実験装置に接
続し通電を行った。サイクリックボルタンメトリー実験
装置は、上述した三極式電気化学セル5に電位掃引器を
有するポテンショスタットを接続し、作用極6と参照極
9との電位差を一定の速度で変化させるように、上記作
用極6と対極8との間の電圧を制御する、つまり電位走
査を行うことができる装置である。その電位走査を行う
電位の範囲を電位走査範囲と呼ぶが、本実施例では、前
記電位走査範囲として還元側を−0.2(VvsAg/
AgCl)、酸化側を+0.8〜1.0(VvsAg/
AgCl)とし、電位走査速度を1、50、100(m
V/sec)、酸化時間(電位走査時間)を30分から
40時間の範囲で4水準として電極を作製した。
Next, embodiments of the present invention will be described in detail. A steam activated phenolic resin-based activated carbon fiber cloth was punched out into a disk shape with a diameter of 15 mm, which was then diluted with dilute sulfuric acid (1 NH
2 SO 4 ) for 10 hours. This is inserted into the holder 7 of the working electrode 6 of the three-electrode electrochemical cell 5 shown in FIG.
Glassy carbon was used as the counter electrode 8 and Ag / AgCl was used as the reference electrode 9. The triode type electrochemical cell 5 was connected to a known cyclic voltammetry experimental apparatus and energized. In the cyclic voltammetry experimental apparatus, a potentiostat having a potential sweeper is connected to the above-mentioned three-electrode electrochemical cell 5, and the above-mentioned action is performed so that the potential difference between the working electrode 6 and the reference electrode 9 is changed at a constant speed. This is a device capable of controlling the voltage between the pole 6 and the counter electrode 8, that is, performing potential scanning. The range of potentials for performing the potential scanning is called a potential scanning range. In the present embodiment, the reduction side is -0.2 (VvsAg / as the potential scanning range).
AgCl), + 0.8-1.0 (VvsAg /
AgCl) and the potential scanning speed is 1, 50, 100 (m
V / sec) and oxidation time (potential scanning time) were set to 4 levels in the range of 30 minutes to 40 hours to prepare an electrode.

【0010】酸化過程における作用極6と参照極9との
電位差(E)と、作用極6と対極8との間の電流(i)
の波形(サイクリックボルタモグラム)を図4に示す。
図4は横軸が前記電位差(E)で、縦軸が前記電流
(i)であり、酸化時間0、30分、1時間及び22時
間でのサイクリックボルタモグラムを重ねて示してあ
る。図4のカーブにおいて、aで示したカーブが酸化時
間0の場合のサイクリックボルタモグラフであり、以下
b、c、dのカーブは、それぞれ酸化時間30分、1時
間、22時間のサイクリックボルタモグラムである。本
図から分かるように酸化時間が長くなるに従って充放電
電流の増加が認められる(図4矢印方向)。
The potential difference (E) between the working electrode 6 and the reference electrode 9 in the oxidation process and the current (i) between the working electrode 6 and the counter electrode 8
The waveform (cyclic voltammogram) of is shown in FIG.
In FIG. 4, the horizontal axis represents the potential difference (E), the vertical axis represents the current (i), and the cyclic voltammograms at the oxidation times of 0, 30 minutes, 1 hour, and 22 hours are shown in an overlapping manner. In the curve of FIG. 4, the curve indicated by a is a cyclic voltammogram when the oxidation time is 0, and the curves b, c, and d are cyclic time of 30 minutes, 1 hour, and 22 hours, respectively. It is a voltammogram. As can be seen from this figure, an increase in charging / discharging current is recognized as the oxidation time becomes longer (arrow direction in FIG. 4).

【0011】上記のようにして製作した電極を用い、図
1に示す電気二重層コンデンサを製作し周知の方法で充
放電電気量を測定した。図1の1は、活性炭繊維クロス
を直径15mmに切断した電極であり、2は集電体、3
はセパレータ、4は絶縁性ガスケットを示す。電気二重
層コンデンサの構造、動作については周知のものである
のでここでは説明を省略する。上述したように周知の方
法で測定した充放電電気量から電極単位重量当りの充放
電電気量を求め、酸化時間を横軸に、電極単位重量当り
の充放電電気量を縦軸にして図2にプロットした。図2
には、前記電位走査速度が1、50、100(mV/s
ec)の場合の酸化時間と電極単位重量当りの充放電電
気量の関係を示す。本図から分かるように電位走査速度
が1mV/secの場合酸化時間に対して電極単位重量
当りの充放電電気量の増加が最も顕著で、約15時間の
酸化で酸化処理をしていない電極に比較し約1.5倍の
電極単位重量当りの充放電電気量が得られた。電極単位
重量当りの充放電電気量の増加は酸化時間が20時間程
度で飽和することが分かった。電位走査速度50mV/
sec及び100mV/secでも、同様に電極単位重
量当りの充放電電気量の増加が見られたがその程度は小
さいことが分かった。以上、本発明を上述の実施例によ
って説明したが、本発明の主旨の範囲内で種々の変形や
応用が自在であり、これらの変形や応用を本発明の範囲
から排除するものではない。
The electric double layer capacitor shown in FIG. 1 was manufactured using the electrodes manufactured as described above, and the charge / discharge electric quantity was measured by a known method. 1 in FIG. 1 is an electrode obtained by cutting an activated carbon fiber cloth into a diameter of 15 mm, 2 is a current collector, 3
Indicates a separator and 4 indicates an insulating gasket. Since the structure and operation of the electric double layer capacitor are well known, their explanation is omitted here. As described above, the charge / discharge quantity of electricity per unit weight of the electrode is obtained from the charge / discharge quantity of electricity measured by the well-known method, and the oxidation time is plotted along the horizontal axis and the charge / discharge quantity of electricity per unit weight of the electrode is plotted along the vertical axis. Plotted on. Figure 2
The potential scanning speed is 1, 50, 100 (mV / s
The relationship between the oxidation time and the amount of charge and discharge electricity per unit weight of the electrode in the case of ec) is shown. As can be seen from the figure, when the potential scanning speed is 1 mV / sec, the increase in the charge / discharge electricity quantity per unit weight of the electrode is most remarkable with respect to the oxidation time, and the electrode not subjected to the oxidation treatment after the oxidation for about 15 hours By comparison, about 1.5 times as much charge / discharge electricity per unit weight of the electrode was obtained. It was found that the increase in the amount of charge / discharge electricity per unit weight of the electrode was saturated when the oxidation time was about 20 hours. Potential scanning speed 50 mV /
Similarly, at sec and 100 mV / sec, the amount of charge / discharge electricity per unit weight of the electrode also increased, but it was found to be small. Although the present invention has been described above with reference to the above-described embodiments, various modifications and applications are possible within the scope of the gist of the present invention, and these modifications and applications are not excluded from the scope of the present invention.

【0012】[0012]

【発明の効果】本発明によれば、活性炭を電極とする電
気二重層コンデンサの電極を、活性炭の酸化電位範囲を
規定自在で、電位走査速度を任意に変えることが自在な
サイクリックボルタンメトリー法を用いて電気化学的に
酸化させた活性炭としたので、活性炭表面に窒素酸化物
が吸着せず長期に使用しても劣化が少なく、かつ高静電
容量の電気二重層コンデンサが得られ、さらに酸化剤を
使用しないので、酸化剤、及び酸化剤を含んだ洗浄水が
廃液とならず、その処理を不要とすることができた。
According to the present invention, an electrode of an electric double layer capacitor having activated carbon as an electrode is provided with a cyclic voltammetry method capable of freely defining the oxidation potential range of activated carbon and freely changing the potential scanning speed. Since it is electrochemically oxidized by using activated carbon, nitrogen oxides are not adsorbed on the activated carbon surface, so there is little deterioration even after long-term use, and an electric double layer capacitor with high capacitance can be obtained. Since no agent is used, the oxidizing agent and the washing water containing the oxidizing agent are not wasted, and the treatment can be made unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の電気二重層コンデンサの断
面図である。
FIG. 1 is a sectional view of an electric double layer capacitor according to an embodiment of the present invention.

【図2】本発明の一実施例の電気二重層コンデンサの静
電容量と酸化時間の関係を表すグラフである。
FIG. 2 is a graph showing the relationship between the capacitance and the oxidation time of the electric double layer capacitor of one example of the present invention.

【図3】(A)は本発明の一実施例の電極の酸化に使用
した三極式電気化学セルの写真であり、(B)は、作用
極の拡大図である。
FIG. 3 (A) is a photograph of a three-electrode electrochemical cell used for oxidizing an electrode of one embodiment of the present invention, and (B) is an enlarged view of a working electrode.

【図4】本発明の一実施例の電極酸化時のサイクリック
ボルタモグラムである。
FIG. 4 is a cyclic voltammogram during electrode oxidation according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1・・・電極 2・・・集電体 3・・・セパレータ 4・・・絶縁性ガスケット 5・・・三極式電気化学セル 6・・・作用極 7・・・ホルダー 8・・・対極 9・・・参照極 DESCRIPTION OF SYMBOLS 1 ... Electrode 2 ... Current collector 3 ... Separator 4 ... Insulating gasket 5 ... Tripolar electrochemical cell 6 ... Working electrode 7 ... Holder 8 ... Counter electrode 9 ... Reference pole

フロントページの続き (72)発明者 門間 聰之 東京都新宿区西早稲田2−8−26 早稲田 大学材料技術 研究所内Front Page Continuation (72) Inventor Toshiyuki Kadama 2-8-26 Nishi-Waseda, Shinjuku-ku, Tokyo Waseda University Institute for Materials Technology

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】活性炭を電極とする電気二重層コンデンサ
の電極において、前記電極は、前記活性炭の酸化電位範
囲を規定自在で、電位走査速度を任意に変えることが自
在なサイクリックボルタンメトリー法を用いて電気化学
的に酸化させた活性炭であることを特徴とする電気二重
層コンデンサの電極。
1. An electrode of an electric double layer capacitor having activated carbon as an electrode, wherein the electrode uses a cyclic voltammetry method capable of defining an oxidation potential range of the activated carbon and freely changing a potential scanning speed. An electrode of an electric double layer capacitor, which is an activated carbon that is electrochemically oxidized.
【請求項2】活性炭を電極とする電気二重層コンデンサ
の電極の製造方法において、前記電極の製造方法は、前
記活性炭の酸化電位範囲を規定自在で、電位走査速度を
任意に変えることが自在なサイクリックボルタンメトリ
ー法を用いて電気化学的に酸化させることを特徴とする
電気二重層コンデンサの電極の製造方法。
2. A method of manufacturing an electrode of an electric double layer capacitor using activated carbon as an electrode, wherein the method of manufacturing the electrode is capable of defining an oxidation potential range of the activated carbon and freely changing a potential scanning speed. A method of manufacturing an electrode of an electric double layer capacitor, which comprises electrochemically oxidizing the material using a cyclic voltammetry method.
JP6251369A 1994-09-20 1994-09-20 Electrode of electric double layer capacitor and manufacture thereof Pending JPH0888148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6251369A JPH0888148A (en) 1994-09-20 1994-09-20 Electrode of electric double layer capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6251369A JPH0888148A (en) 1994-09-20 1994-09-20 Electrode of electric double layer capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0888148A true JPH0888148A (en) 1996-04-02

Family

ID=17221812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6251369A Pending JPH0888148A (en) 1994-09-20 1994-09-20 Electrode of electric double layer capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0888148A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332637A (en) * 1997-05-30 1998-12-18 Toyota Motor Corp Method and apparatus for measurement of potential window in electric double layer capacitor
US20110162960A1 (en) * 2010-01-05 2011-07-07 Samsung Electronics Co., Ltd. Method of preparing an electrode for a capacitive deionization device, an electrode for a capacitive deionization device, and a capacitive deionization device having the electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332637A (en) * 1997-05-30 1998-12-18 Toyota Motor Corp Method and apparatus for measurement of potential window in electric double layer capacitor
US20110162960A1 (en) * 2010-01-05 2011-07-07 Samsung Electronics Co., Ltd. Method of preparing an electrode for a capacitive deionization device, an electrode for a capacitive deionization device, and a capacitive deionization device having the electrode

Similar Documents

Publication Publication Date Title
Momma et al. Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor
CN104576082B (en) Two pole rooms add the potassium ferricyanide and potassium ferrocyanide Asymmetric Supercapacitor and preparation method thereof respectively
JPH05315188A (en) Conductive polymer-based supercapacitor
Sakamoto et al. 522—Catalytic oxydation of biological components on platinum electrodes modified by adsorbed metals: Anodic oxidation of glucose
JPH10270293A (en) Electric double layer capacitor
EP1724797A2 (en) Electric double layer capacitor, control method thereof, and energy storage system using the same
Norouzi et al. Using fast Fourier transformation continuous cyclic voltammetry method for new electrodeposition of nano-structured lead dioxide
RU2140681C1 (en) Asymmetric electrochemical capacitor
CN106158410B (en) A kind of preparation method of zinc oxide/graphene composite electrode material for super capacitor
JPH0888148A (en) Electrode of electric double layer capacitor and manufacture thereof
Pavese et al. Oxidation of formic acid on palladium anodes in acidic medium. Effect of Pd (II) ions
JP3097585B2 (en) Capacitor charger
JP2000049053A (en) Electric double-layer capacitor
JPH11307404A (en) Electric double layer capacitor and its manufacture, ana active carbon for positive electrode
JPH0888149A (en) Electrode of electric double layer capacitor and manufacture thereof
JPWO2021241333A5 (en)
Shi et al. Influence of perfluorinated surfactants on the positive active-material of lead/acid batteries
JP2013534730A (en) Hybrid ultracapacitor, method for assembling and using the same, and method for preparing substrate integrated lead dioxide electrode
CN108134096B (en) Modification method of carbon felt electrode for all-vanadium redox flow battery
Amlie et al. Adsorption of Hydrogen and Oxygen on Electrode Surfaces
KR20140100782A (en) Active material for anode of lithium ion capacitor, manufacturing method for the same and lithium ion capacitor comprising the same
JP3433444B2 (en) Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor
JP2001284187A (en) Electric double-layer capacitor and its manufacturing method
CN111105936A (en) Energy storage system of modified carbon-based electrode in cooperation with redox electrolyte
US11862394B2 (en) Electrochemical capacitor device with a biofilm