JPH0888118A - Exchange coupled film and magnetoresistance effective element - Google Patents

Exchange coupled film and magnetoresistance effective element

Info

Publication number
JPH0888118A
JPH0888118A JP6220714A JP22071494A JPH0888118A JP H0888118 A JPH0888118 A JP H0888118A JP 6220714 A JP6220714 A JP 6220714A JP 22071494 A JP22071494 A JP 22071494A JP H0888118 A JPH0888118 A JP H0888118A
Authority
JP
Japan
Prior art keywords
film
antiferromagnetic
composition
exchange coupling
exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6220714A
Other languages
Japanese (ja)
Other versions
JP3497573B2 (en
Inventor
Hiromi Fukuya
ひろみ 福家
Yuzo Kamiguchi
裕三 上口
Susumu Hashimoto
進 橋本
Tomoki Funayama
知己 船山
Hitoshi Iwasaki
仁志 岩崎
Masashi Sahashi
政司 佐橋
Hiroyuki Hasebe
裕之 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22071494A priority Critical patent/JP3497573B2/en
Publication of JPH0888118A publication Critical patent/JPH0888118A/en
Application granted granted Critical
Publication of JP3497573B2 publication Critical patent/JP3497573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3218Exchange coupling of magnetic films via an antiferromagnetic interface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE: To obtain an exchange coupled film having an excellent exchange coupling force and corrosion resistance by a method wherein an antiferromagnetic body film is composition modulated structured. CONSTITUTION: The switched connection film is provided with antiferromagnetic body films 3, 4 in the composition represented by M100-x Mnx as well as a ferromagnetic body film 2 lamination formed on these antiferromagnetic body films 3, 4 wherein M in the antiferromagnetic body film 3 is at least one kind of element selected from Fe, Co, Pd, Pt while the value of x: 40<x<=60 near the interface of the ferromagnetic body film 2 side but 20<=x<=40 near the opposite side to the interface. Besides, the composition of the antiferromagnetic body film changes within the range of 20<=x<=80 through the film thickness direction or the composition of antiferromagnetic body film is continuously changes or the composition of the antiferromagnetic body film changes stepwise. Furthermore, an electrode for current supply to at least the antiferromagnetic body film out of these exchange coupled films is formed on a substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反強磁性体膜と強磁性
体膜との交換結合を用いた交換結合膜、およびこの交換
結合膜を具備してなる磁界検出用センサや再生用磁気ヘ
ッド等の磁気抵抗効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exchange coupling film using exchange coupling between an antiferromagnetic material film and a ferromagnetic material film, and a magnetic field detecting sensor or reproducing magnetic field provided with this exchange coupling film. The present invention relates to a magnetoresistive element such as a head.

【0002】[0002]

【従来の技術】以前より高密度磁気記録における再生用
ヘッドとして、磁気抵抗効果素子を用いた磁気ヘッドの
研究が進められている。現在、磁気抵抗効果素子材料と
しては80 at%Ni− 20 at%Fe(通称;パーマロ
イ)合金薄膜が用いられている。近年、これにかわる材
料として、巨大磁気抵抗効果を示す(Co/Cu)
の人工格子膜やスピンバルブ膜が注目されている。
2. Description of the Related Art As a reproducing head for high density magnetic recording, a magnetic head using a magnetoresistive effect element has been researched for some time. Currently, 80 at% Ni-20 at% Fe (commonly known as permalloy) alloy thin film is used as a magnetoresistive element material. In recent years, artificial lattice films such as (Co / Cu) n exhibiting a giant magnetoresistive effect and spin valve films have been attracting attention as alternative materials.

【0003】しかし、これらの材料を用いた磁気抵抗効
果膜は磁区を持つため、これに起因するバルクハウゼン
ノイズが実用化の上で大きな問題となっており、磁気抵
抗効果膜を単磁区化する方法が種々検討されている。そ
の一つに強磁性体である磁気抵抗効果膜と反強磁性体膜
との交換結合を用いて磁気抵抗効果膜の磁区を特定方向
に制御する方法があり、ここでの反強磁性体材料として
はγ−FeMn合金が従来より広く知られている(たと
えば、米国特許第 4103315号明細書および米国特許第 5
014147号明細書)。しかしながら、γ−FeMn合金は
耐食性、とくに水に対する腐食が問題であり、磁気抵抗
効果素子としての加工工程における腐食または、大気中
の水分による腐食により経時的に磁気抵抗効果膜との交
換結合力が劣化するという問題がある。
However, since the magnetoresistive effect film using these materials has magnetic domains, Barkhausen noise resulting from this is a big problem in practical use, and the magnetoresistive effect film is made into a single magnetic domain. Various methods have been studied. One of them is a method of controlling the magnetic domain of the magnetoresistive film in a specific direction by using exchange coupling between the magnetoresistive film and the antiferromagnetic film, which are ferromagnetic materials. Γ-FeMn alloys have been widely known as the above (for example, US Pat. No. 4,103,315 and US Pat.
No. 014147). However, the γ-FeMn alloy has a problem of corrosion resistance, particularly corrosion with respect to water, and the exchange coupling force with the magnetoresistive effect film is deteriorated over time due to corrosion in the processing step as a magnetoresistive effect element or corrosion due to moisture in the atmosphere. There is a problem of deterioration.

【0004】また、反強磁性体膜としてMnPt、Mn
Rh合金など他のγ−Mn合金を用いた例や酸化物系の
NiO等を用いた例なども米国特許第 4103315号に開示
されている。しかし、これらγ−Mn合金は強磁性体と
の交換結合力が十分でなく、またNiO等の酸化物系は
熱安定性に劣り 100℃以上程度の高温下での強磁性体膜
との交換結合力が不安定である。さらに、NiOなどの
電気抵抗の高い絶縁性酸化物系では、この部分から直接
電極を取り出すことができないため素子構造が複雑にな
るという問題もある。
Further, MnPt and Mn are used as an antiferromagnetic material film.
U.S. Pat. No. 4,103,315 also discloses examples using other .gamma.-Mn alloys such as Rh alloys and examples using oxide NiO. However, these γ-Mn alloys do not have sufficient exchange coupling force with the ferromagnetic material, and oxide systems such as NiO have poor thermal stability and exchange with the ferromagnetic material film at a high temperature of 100 ° C or higher. The binding force is unstable. Further, in the case of an insulating oxide system having a high electric resistance such as NiO, there is a problem that the element structure becomes complicated because the electrode cannot be directly taken out from this portion.

【0005】[0005]

【発明が解決しようとする課題】上述したように、たと
えば磁気抵抗効果素子のバルクハウゼンノイズの低減
等、強磁性体膜との交換結合を得るために用いられてき
た従来の反強磁性体膜は、その耐食性に問題があった。
As described above, the conventional antiferromagnetic material film used for obtaining exchange coupling with the ferromagnetic material film, for example, reduction of Barkhausen noise of the magnetoresistive effect element. Had a problem with its corrosion resistance.

【0006】本発明は、このような課題に対処するため
になされたもので、良好な交換結合力を有し、かつ耐食
性に優れた反強磁性体膜を備えた交換結合膜およびその
交換結合膜を具備してなり、安定した出力を長期間にわ
たって得ることのできる磁気抵抗効果素子を提供するこ
とを目的とする。
The present invention has been made in order to solve such a problem, and has a good exchange coupling force and an exchange coupling film provided with an antiferromagnetic material film excellent in corrosion resistance, and the exchange coupling film thereof. An object of the present invention is to provide a magnetoresistive effect element including a film and capable of obtaining stable output over a long period of time.

【0007】[0007]

【課題を解決するための手段および作用】本発明の交換
結合膜は、組成がM100-x Mnx で表される反強磁性体
膜と、この反強磁性体膜と積層形成される強磁性体膜と
を備え、反強磁性体膜におけるMはFe、Co、Ni、
Pd、Ptから選ばれた少なくとも 1種からなり、 xの
値は、強磁性体膜側の界面近傍において 40 < x≦ 60
であり、界面と反対側の面近傍において 20 ≦ x≦ 40
であることを特徴とする。
The exchange-coupling film of the present invention comprises an antiferromagnetic film having a composition represented by M 100-x Mn x , and a strong layer formed with this antiferromagnetic film. And a magnetic film, M in the antiferromagnetic film is Fe, Co, Ni,
It consists of at least one selected from Pd and Pt, and the value of x is 40 <x ≤ 60 near the interface on the ferromagnetic film side.
And 20 ≤ x ≤ 40 near the surface opposite to the interface.
Is characterized in that.

【0008】本発明の磁気抵抗効果素子は、上述の交換
結合膜と、この交換結合膜のうち少なくとも強磁性体膜
に電流を通電するための電極とが基板上に形成されてな
ることを特徴とする。
The magnetoresistive effect element of the present invention is characterized in that the above-mentioned exchange coupling film and an electrode for passing a current through at least a ferromagnetic film of this exchange coupling film are formed on a substrate. And

【0009】以下、本発明を詳細に説明する。まず、本
発明の交換結合膜における反強磁性体膜はその組成がM
100-x Mnx(MはFe、Co、Ni、Pd、Ptから
選ばれた少なくとも 1種)からなるものであり、これら
Fe、Co、Ni、PdまたはPtをMとして用いたM
n合金は一概に大きな交換結合力を有している。ここ
で、 xの値は、強磁性体膜側の界面近傍において 40 <
x≦ 60 であり、界面と反対側の面近傍において 20 ≦
x≦ 40 である。なお、本発明において xの数値は原子
%を表し、近傍とは、たとえば界面より 2nm以内の範囲
をいう。このように、界面近傍とその反対側の面近傍に
おいて上述の範囲内で反強磁性体膜の組成を変えること
により、優れた交換結合力を維持しつつ耐食性を向上さ
せることができる。強磁性体膜側の界面近傍における好
ましい組成はMとMnの組成比が 1対1 である。この組
成は、交換結合力、ブロッキング温度の点でとくに好ま
しい。
The present invention will be described in detail below. First, the composition of the antiferromagnetic material film in the exchange coupling film of the present invention is M
100-x Mn x (M is at least one selected from Fe, Co, Ni, Pd, and Pt), and M using Fe, Co, Ni, Pd, or Pt as M
The n alloy generally has a large exchange coupling force. Here, the value of x is 40 <in the vicinity of the interface on the ferromagnetic film side.
x ≤ 60, 20 ≤ near the surface on the opposite side of the interface
x ≦ 40. In the present invention, the numerical value of x represents atomic%, and the vicinity means a range within 2 nm from the interface, for example. In this way, by changing the composition of the antiferromagnetic material film in the vicinity of the interface and in the vicinity of the surface on the opposite side within the above range, it is possible to improve corrosion resistance while maintaining excellent exchange coupling force. A preferable composition in the vicinity of the interface on the ferromagnetic film side is a composition ratio of M to Mn of 1: 1. This composition is particularly preferable in terms of exchange coupling force and blocking temperature.

【0010】また、本発明の交換結合膜では、反強磁性
体膜の膜厚方向中央部近傍については、その組成はとく
に限定されない。しかしながら、反強磁性体膜の組成が
膜厚方向に亘って、 20 ≦ x≦ 80 の範囲内に設定され
ることが好ましい。何となれば、 80 <x の組成ではM
n量が多すぎて耐食性が低下し、また x< 20 の組成で
はネール温度が室温以下となって交換結合が得られなく
なるおそれがあるからである。さらに好ましくは、上述
の範囲内で強磁性体膜との積層界面から遠ざかるに従い
Mn量が減少する組成変調型反強磁性体膜である。ま
た、この組成変調形態であるが、連続的な組成変化はも
ちろん好ましいが、ステップ形態の組成変化、すなわ
ち、組成の互いに異なる膜の積層膜でもよい。連続的な
組成変化は、組成を段階的に変化させた多層膜を形成し
てアニール処理をすることにより、または、多元同時成
膜等により形成することができる。ただし、本発明の交
換結合が反強磁性体膜の膜厚方向中央部近傍で最大ある
いは最小となるような組成変調形態であってもよく、要
は強磁性体との界面近傍およびその界面と反対側の面に
おいて上述の範囲にあれば、良好な耐食性、交換結合力
を発揮することができる。 本発明の交換結合膜に係わ
る強磁性体膜とは強磁性を発現する膜であり、とくに限
定されないが、磁気抵抗効果素子に用いる場合、飽和磁
界の小さいパーマロイ等の磁気抵抗効果素子や、巨大磁
気抵抗効果を示すたとえばFe、Ni、Coの強磁性金
属、これらの合金であるFem Ni100-m 、Fem Co
100-m 、Fem Con Ni100-m-n ( m、n の数値は原
子%を表す。)ならびにこれらの強磁性金属合金に磁気
特性の向上を目的として第3元素や第4元素を添加した
合金と非磁性金属合金からなる人工格子やスピンバルブ
膜、グラニュラー磁性合金膜等があげられる。
Further, in the exchange coupling film of the present invention, the composition is not particularly limited in the vicinity of the central portion in the film thickness direction of the antiferromagnetic material film. However, it is preferable that the composition of the antiferromagnetic material film is set within the range of 20 ≦ x ≦ 80 over the film thickness direction. What makes M for 80 <x composition
This is because if the amount of n is too large, the corrosion resistance is reduced, and if the composition is x <20, the Neel temperature may be lower than room temperature and exchange coupling may not be obtained. More preferably, it is a composition-modulation type antiferromagnetic material film in which the amount of Mn decreases as it moves away from the laminated interface with the ferromagnetic material film within the above range. In addition, although this composition-modulated form is preferably a continuous composition change, it may be a step-form composition change, that is, a laminated film of films having different compositions. The continuous composition change can be formed by forming a multilayer film having a composition which is changed stepwise and performing an annealing treatment, or by multi-element simultaneous film formation. However, the composition modulation mode may be such that the exchange coupling of the present invention becomes maximum or minimum in the vicinity of the central portion in the film thickness direction of the antiferromagnetic material film, that is, in the vicinity of the interface with the ferromagnetic material and If the surface on the opposite side is in the above range, good corrosion resistance and exchange coupling force can be exhibited. The ferromagnetic film relating to the exchange coupling film of the present invention is a film that exhibits ferromagnetism, and is not particularly limited, but when used in a magnetoresistive effect element, a magnetoresistive effect element such as permalloy having a small saturation magnetic field or a giant magnetoresistive effect element is used. Ferromagnetic metals such as Fe, Ni and Co, which exhibit a magnetoresistive effect, and alloys of these, Fe m Ni 100-m and Fe m Co.
100-m, Fe m Co n Ni 100-mn (m, n numerical values represents. Atomic%) was added a third element and a fourth element for the purpose of improving and magnetic properties of these ferromagnetic metal alloy Examples include artificial lattices composed of alloys and non-magnetic metal alloys, spin valve films, granular magnetic alloy films, and the like.

【0011】とくに、Fem Co100-m 、Fem Con
Ni100-m-n 、Fem Con Pd10 0-m-n などのCo系
強磁性体膜は、交換結合が消失する温度であるブロッキ
ング温度をより高めることができるので好ましい。ブロ
ッキング温度が高いと、素子構造に形成する際に熱サイ
クルを伴うプロセスにおいて交換結合力の劣化を防ぐと
いう点において効果がある。
In particular, Fe m Co 100-m , Fe m Co n
Co based ferromagnetic material such as Ni 100-mn, Fe m Co n Pd 10 0-mn film is preferable since it is possible to increase the blocking temperature is the temperature at which the exchange coupling disappears. When the blocking temperature is high, it is effective in preventing the deterioration of the exchange coupling force in the process involving a thermal cycle when forming the device structure.

【0012】本発明に係わる強磁性体膜と反強磁性体膜
は少なくともその一部が積層形成されて、交換結合して
いればよい。
At least a part of the ferromagnetic film and the antiferromagnetic film according to the present invention may be laminated and exchange-coupled.

【0013】本発明の交換結合膜に係わる組成変調型の
反強磁性体膜は、格子整合や耐食性向上の目的から、添
加元素としてCuを添加することが好ましい。すなわち
組成が(MMn)100-y Cuy ( 0< y≦ 50 )となる
反強磁性体膜とすることにより格子整合や耐食性がより
向上する。ここでMはFe、Co、Ni、Pd、Ptか
ら選ばれた少なくとも 1種を表し、MMn単独における
各成分の組成は上述のようにM100-x Mnx と表した場
合、 20 ≦ x≦ 80 の組成範囲が好ましい。なお、 yの
数値は原子%を表す。ここで、Cuは界面から表面まで
一定の添加量でもよく、濃度変調していてもよい。ま
た、たとえば、交換結合力の維持、耐食性向上の観点か
ら界面近傍の反対側の表面近傍のみに添加されてもよ
い。この(MMn)100-y Cuy の組成において、 50
<y ではCu量が多すぎて十分な交換結合が得られなく
なる。十分な交換結合を得るための好ましい範囲は 0<
y≦ 20 である。なお、本発明の交換結合膜に係わる組
成変調型の反強磁性体膜は、(MMn)100-y Cu
y ( 0< y≦ 50 )の組成においてCu量のみを変化さ
せた組成変調型とすることもできる。
In the composition-modulation type antiferromagnetic material film relating to the exchange coupling film of the present invention, it is preferable to add Cu as an additional element for the purpose of lattice matching and improvement of corrosion resistance. That is, by using an antiferromagnetic film having a composition of (MMn) 100-y Cu y (0 <y ≦ 50), lattice matching and corrosion resistance are further improved. Here, M represents at least one selected from Fe, Co, Ni, Pd, and Pt, and when the composition of each component in MMn alone is M 100-x Mn x as described above, 20 ≤ x ≤ A compositional range of 80 is preferred. The numerical value of y represents atomic%. Here, Cu may be added in a constant amount from the interface to the surface, or may be concentration-modulated. Further, for example, it may be added only in the vicinity of the surface on the opposite side of the interface from the viewpoint of maintaining the exchange coupling force and improving the corrosion resistance. In this (MMn) 100-y Cu y composition, 50
In the case of <y, the amount of Cu is too large to obtain sufficient exchange coupling. The preferred range for obtaining sufficient exchange coupling is 0 <
y ≦ 20. The composition-modulation type antiferromagnetic material film relating to the exchange coupling film of the present invention is (MMn) 100-y Cu
It is also possible to use a composition modulation type in which only the amount of Cu is changed in the composition of y (0 <y ≦ 50).

【0014】本発明の交換結合膜に係わる反強磁性体膜
の膜厚は、反強磁性を発現する範囲であればとくに限定
されない。しかし、大きな交換結合力を得るためには、
反強磁性体膜の膜厚が強磁性体膜の膜厚よりも厚いこと
が望ましい。さらに、強磁性体との積層界面近傍の組成
であるM100-x Mnx ( 40 ≦ x≦ 60 )反強磁性体膜
が、15nm以下の膜厚を有することが好ましい。
The thickness of the antiferromagnetic material film relating to the exchange coupling film of the present invention is not particularly limited as long as it is in the range where antiferromagnetism is exhibited. However, in order to obtain a large exchange coupling force,
It is desirable that the thickness of the antiferromagnetic material film be thicker than the thickness of the ferromagnetic material film. Further, it is preferable that the M 100-x Mn x (40 ≤ x ≤ 60) antiferromagnetic material film, which is a composition near the laminated interface with the ferromagnetic material, has a film thickness of 15 nm or less.

【0015】本発明の交換結合膜は、蒸着法、スパッタ
法、MBE法など公知の成膜方法を用いてたとえば基板
上に形成される。このとき反強磁性体膜に一方向異方性
を付与するために、磁界中で成膜、熱処理を行ってもよ
い。
The exchange coupling film of the present invention is formed on, for example, a substrate by using a known film forming method such as a vapor deposition method, a sputtering method and an MBE method. At this time, in order to impart unidirectional anisotropy to the antiferromagnetic film, film formation and heat treatment may be performed in a magnetic field.

【0016】また、基板としては、ガラス、樹脂などの
非晶質基板や、Si、MgO、Al2 3 、各種フェラ
イトなどの単結晶基板、配向基板、焼結基板などとくに
限定されず、さらに反強磁性体膜や強磁性体膜の結晶性
を向上させるために、基板上に 1〜100nm の厚さの下地
層を設けてもよい。下地層は結晶性を向上させるもので
あればとくに限定されないが、たとえば、PdやPtな
どの貴金属やCoZrNbなどの非結晶金属、また面心
立方構造を持つ金属、合金等を用いることができる。
The substrate is not particularly limited, and is not particularly limited to amorphous substrates such as glass and resin, single crystal substrates such as Si, MgO, Al 2 O 3 and various ferrites, oriented substrates, and sintered substrates. An underlayer having a thickness of 1 to 100 nm may be provided on the substrate in order to improve the crystallinity of the antiferromagnetic material film or the ferromagnetic material film. The underlayer is not particularly limited as long as it improves crystallinity, but for example, a noble metal such as Pd or Pt, an amorphous metal such as CoZrNb, a metal having a face-centered cubic structure, an alloy, or the like can be used.

【0017】さらにこのような本発明の交換結合膜に対
し、少なくとも強磁性体膜に電流を通電するための電極
をたとえばCu、Ag、Au、Alやこれらの合金で形
成すれば、本発明の磁気抵抗効果素子を容易に得ること
ができる。ここで電極は強磁性体膜に直接接触する形態
でも、反強磁性体膜を介する形態でもよい。
Further, in the above-mentioned exchange coupling film of the present invention, at least an electrode for passing a current through the ferromagnetic film is formed of, for example, Cu, Ag, Au, Al or an alloy thereof, so that the present invention can be realized. The magnetoresistive effect element can be easily obtained. Here, the electrode may be in a form of being in direct contact with the ferromagnetic film or a form of interposing an antiferromagnetic film.

【0018】このように本発明の交換結合膜は、磁界検
出用センサー、再生用磁気ヘッドなどの磁気抵抗効果素
子を用いた種々のデバイスに応用できる。
As described above, the exchange coupling film of the present invention can be applied to various devices using a magnetoresistive effect element such as a magnetic field detecting sensor and a reproducing magnetic head.

【0019】なお、本発明の磁気抵抗効果素子におい
て、反強磁性体膜と強磁性体膜との交換結合力は強磁性
体膜におけるバルクハウゼンノイズ除去に限らず、人工
格子膜やスピンバルブ膜に対する磁化固着などに供する
こともできる。
In the magnetoresistive element of the present invention, the exchange coupling force between the antiferromagnetic material film and the ferromagnetic material film is not limited to the Barkhausen noise removal in the ferromagnetic material film, but is also an artificial lattice film or spin valve film. It can also be used for fixing the magnetization to.

【0020】[0020]

【実施例】つぎに図面を用いて本発明を説明する。 実施例1 RFマグネトロンスパッタ装置を用いて反強磁性体膜と
強磁性体膜とからなる本発明の交換結合膜を作製した。
交換結合膜の断面図を図1に示す。具体的には、サファ
イアC面1上に、組成がCoFePdで表される強磁性
体膜2を 5nmの厚さに、組成がFe50Mn50(50at%F
e−50at%Mn)で表される反強磁性体膜3を 10nm の
厚さに、さらにその上に組成がFe65Mn35で表される
反強磁性体膜4を 5nmの厚さにそれぞれ磁界中で成膜し
た。このとき基板の加熱はとくに行わなかった。得られ
た交換結合膜について、X線回折で結晶構造とその配向
方位を調べたところ、結晶構造が面心立方構造で、(1
11)配向した膜であることが確認された。
The present invention will be described below with reference to the drawings. Example 1 An exchange coupling film of the present invention composed of an antiferromagnetic material film and a ferromagnetic material film was produced using an RF magnetron sputtering apparatus.
A cross-sectional view of the exchange coupling membrane is shown in FIG. Specifically, on the sapphire C face 1, a ferromagnetic film 2 having a composition of CoFePd is formed with a thickness of 5 nm and a composition of Fe 50 Mn 50 (50 at% F
The antiferromagnetic film 3 represented by e-50 at% Mn) has a thickness of 10 nm, and the antiferromagnetic film 4 having a composition of Fe 65 Mn 35 has a thickness of 5 nm. The film was formed in a magnetic field. At this time, the substrate was not particularly heated. The crystal structure and the orientation of the exchange-coupled film thus obtained were examined by X-ray diffraction, and the crystal structure was a face-centered cubic structure.
11) It was confirmed that the film was oriented.

【0021】この膜を純水中に 1時間放置して腐食ピッ
ト発生状況を調べた。その結果を図2に示す。図2より
本実施例の交換結合膜は、腐食ピット発生確率が大幅に
小さくほとんど腐食ピットは見受けられなかった。比較
例1として実施例1と同様に作製した 15nm 厚さのFe
50Mn50のみを反強磁性体膜とする交換結合膜について
も、同じように純水中に 1時間放置した結果を図2に示
す。図2に示すように腐食ピット発生確率は大幅に大き
かった。なお、図3に光学顕微鏡観察した腐食ピット発
生状況を示す。図3(a)が本実施例、図3(b)が比
較例1の結果である。腐食ピットは図の中で黒点で示し
た。このように、組成を変化させたFeMn膜を積層膜
とすることによりFeMn膜の耐食性が大幅に改善され
ていることがわかる。
This film was allowed to stand in pure water for 1 hour, and the occurrence of corrosion pits was examined. The result is shown in FIG. As shown in FIG. 2, the exchange coupling film of this example had a significantly low probability of corrosion pits, and almost no corrosion pits were found. As Comparative Example 1, 15 nm thick Fe prepared in the same manner as in Example 1 was used.
FIG. 2 shows the result of leaving the same in the pure water for 1 hour for the exchange coupling film having only 50 Mn 50 as the antiferromagnetic film. As shown in FIG. 2, the probability of occurrence of corrosion pits was significantly high. Incidentally, FIG. 3 shows a situation of occurrence of corrosion pits observed by an optical microscope. FIG. 3A shows the results of this example, and FIG. 3B shows the results of Comparative Example 1. Corrosion pits are indicated by black dots in the figure. As described above, it can be seen that the corrosion resistance of the FeMn film is significantly improved by forming the FeMn film with the composition changed into the laminated film.

【0022】実施例2 実施例1と同様の方法で交換結合膜を作製した。ここで
作製した交換結合膜の磁化容易軸方向a(成膜時の磁界
方向)と磁化困難軸方向bの磁化曲線を図4に示す。こ
のとき、図4のcの値が交換バイアス磁界(Hua)と
なる。本発明の交換結合膜において、Fe50Mn50のみ
を反強磁性体膜とする交換結合膜と同等の交換結合バイ
アス磁界が得られた。
Example 2 An exchange coupling membrane was prepared in the same manner as in Example 1. FIG. 4 shows the magnetization curves of the easy-axis direction a (magnetic field direction during film formation) and the hard-axis direction b of the exchange-coupling film produced here. At this time, the value of c in FIG. 4 becomes the exchange bias magnetic field (Hua). In the exchange-coupling film of the present invention, an exchange-coupling bias magnetic field equivalent to that of the exchange-coupling film having only Fe 50 Mn 50 as the antiferromagnetic film was obtained.

【0023】実施例3 実施例1と同様の方法で、強磁性体膜として膜厚 5nmの
CoFePdを、反強磁性体膜として膜厚が 10nm のN
50Mn50および 5nmのNi65Mn35を、それぞれ磁界
中成膜磁界中熱処理して交換結合膜を作製した。
Example 3 In the same manner as in Example 1, a ferromagnetic film made of CoFePd having a thickness of 5 nm and an antiferromagnetic film made of N having a thickness of 10 nm were used.
i 50 Mn 50 and 5 nm of Ni 65 Mn 35 were heat-treated in a magnetic field and in a magnetic field to form an exchange coupling film.

【0024】得られた交換結合膜を純水中に 1時間放置
した結果、腐食ピットは殆ど見受けられなかった。比較
例2として実施例1と同様に作製した 15nm の厚さのN
50Mn50のみを反強磁性体膜とする交換結合膜につい
ても、同じように純水中に 1時間放置したが多くの腐食
ピットが発生していた。腐食ピット発生確率を図2に示
す。このように、組成を変化させたNiMn膜を積層膜
とすることによりNiMn膜の耐食性が大幅に改善され
ていることがわかる。
As a result of leaving the obtained exchange-coupled membrane in pure water for 1 hour, almost no corrosion pits were found. As Comparative Example 2, an N film having a thickness of 15 nm was prepared in the same manner as in Example 1.
Similarly, with respect to the exchange-coupling film having only i 50 Mn 50 as the antiferromagnetic film, many corrosion pits were formed when the film was left in pure water for 1 hour. The probability of occurrence of corrosion pits is shown in FIG. As described above, it can be seen that the corrosion resistance of the NiMn film is significantly improved by forming the NiMn film with the composition changed into the laminated film.

【0025】実施例4から実施例9 実施例1と同様の方法で、表1に示す強磁性体膜および
反強磁性体膜を成膜して交換結合膜を作製した。なお、
実施例7は多元同時成膜により連続的な組成変化となる
ように反強磁性体膜を形成したものであり、表1に示す
膜厚は強磁性体膜との界面からの距離を示し、組成はそ
の距離での組成を示している。
Example 4 to Example 9 In the same manner as in Example 1, the ferromagnetic film and antiferromagnetic film shown in Table 1 were formed to form an exchange coupling film. In addition,
In Example 7, an antiferromagnetic film was formed by simultaneous multi-component film formation so that the composition changed continuously, and the film thickness shown in Table 1 represents the distance from the interface with the ferromagnetic film. The composition indicates the composition at that distance.

【0026】得られた交換結合膜を純水中に 1時間放置
した結果、腐食ピットは殆ど見受けられなかった。ま
た、界面近傍の反強磁性体膜のみを使用する交換結合膜
についても比較例3から比較例6として実施例1と同様
に作製し、同じように純水中に1時間放置したが多くの
腐食ピットが発生していた。腐食ピット発生確率を図2
に示す。なお、実施例4と比較例3とが、実施例5と比
較例4とが、実施例6と比較例5とが、実施例7と比較
例6とがそれぞれ対応する。このように、反強磁性体膜
の組成を変化させた積層膜とすることにより膜の耐食性
が大幅に改善されていることがわかる。
As a result of leaving the obtained exchange-coupled film in pure water for 1 hour, almost no corrosion pits were found. Also, exchange coupling films using only the antiferromagnetic material film near the interface were prepared as Comparative Example 3 to Comparative Example 6 in the same manner as in Example 1 and left in pure water for 1 hour in the same manner. There was a corrosion pit. Figure 2 shows the probability of corrosion pits
Shown in In addition, Example 4 and Comparative Example 3 correspond to Example 5, Comparative Example 4, Example 6 and Comparative Example 5, and Example 7 and Comparative Example 6, respectively. As described above, it can be understood that the corrosion resistance of the film is significantly improved by forming the laminated film in which the composition of the antiferromagnetic film is changed.

【0027】[0027]

【表1】 実施例10 実施例1と同様の方法で、強磁性体膜として膜厚 5nmの
CoFePdを、反強磁性体膜として膜厚が 10nm のF
50Mn50および 5nmのFe63.7Mn34.3Cu2 を、そ
れぞれ成膜して交換結合膜を作製した。得られた交換結
合膜について、X線回折で結晶構造とその配向方位を調
べたところ、結晶構造が面心立方構造で、(111)配
向した膜であることが確認された。
[Table 1] Example 10 In the same manner as in Example 1, CoFePd having a film thickness of 5 nm was used as the ferromagnetic film and F having a film thickness of 10 nm was used as the antiferromagnetic film.
e 50 Mn 50 and Fe 63.7 Mn 34.3 Cu 2 having a thickness of 5 nm were formed to form an exchange coupling film. When the crystal structure and the orientation of the exchange-exchanged film thus obtained were examined by X-ray diffraction, it was confirmed that the crystal structure was a face-centered cubic structure and was a (111) -oriented film.

【0028】この膜を純水中に放置して腐食ピット発生
状況を調べた。 1時間放置した後の光学顕微鏡観察した
結果、腐食ピットの発生は殆ど見られなかった。また18
時間放置した結果、比較例1の交換結合膜は膜がほぼ完
全に腐食して剥がれ落ちていたのに対して、本実施例の
交換結合膜は、腐食は進行していたが膜は一部を除いて
基板上に残っていた。このようにCuを添加することに
よりFeMn膜の耐食性が大幅に改善された。
This film was allowed to stand in pure water to examine the state of corrosion pit formation. As a result of observing with an optical microscope after standing for 1 hour, almost no corrosion pits were found. Again 18
As a result of standing for a time, the exchange-coupling film of Comparative Example 1 was almost completely corroded and peeled off, whereas the exchange-coupling film of the present Example had corrosion progressed but part of the film. Remained on the substrate except. Thus, the addition of Cu significantly improved the corrosion resistance of the FeMn film.

【0029】実施例11 実施例8と同様の方法で、強磁性体膜として膜厚 5nmの
CoFePdを、反強磁性体膜として膜厚が 10nm のF
50Mn50および 5nmの(Fe0.65Mn0.35100-y
y ( y=0,1,2,5,10,15 )を、それぞれ成膜して交換
結合膜を作製した。得られた交換結合膜を同一の純水中
に 3時間放置して光学顕微鏡により腐食ピット発生確率
を調べた。その結果を図5に示す。図5より 1at%のC
u量の添加であっても耐食性は大幅に改善された。また
放置後の交換バイアス磁界(Hua)も初期値に比較し
て 90 %以上を示した。
Example 11 In the same manner as in Example 8, a ferromagnetic film made of CoFePd having a film thickness of 5 nm and an antiferromagnetic film made of F having a film thickness of 10 nm were used.
e 50 Mn 50 and 5 nm (Fe 0.65 Mn 0.35 ) 100-y C
u y (y = 0,1,2,5,10,15) was formed into an exchange coupling film. The obtained exchange-bonded film was left in the same pure water for 3 hours, and the probability of occurrence of corrosion pits was examined by an optical microscope. The result is shown in FIG. From Figure 5, 1at% C
Even with the addition of u, the corrosion resistance was significantly improved. Also, the exchange bias magnetic field (Hua) after standing was 90% or more compared with the initial value.

【0030】実施例12 実施例1で十分な交換バイアス磁界および耐食性が得ら
れた反強磁性体膜と強磁性体膜との交換結合膜を用いて
本発明の磁気抵抗効果素子を作製した。その磁気抵抗効
果素子の断面図を図6に示す。基板5には熱酸化された
Siウェハ、強磁性体膜6、7には膜厚がそれぞれ 5nm
と 3nmのCoFePdを、反強磁性体膜8には膜厚が 1
0nm のFe50Mn50および 5nmのFe65Mn35を、非磁
性体膜9には膜厚 3nmのCuをそれぞれ用いた。また、
高抵抗軟磁性体膜10としてCoZrNb膜を 10nm 成
膜した。さらに、電極11には、20μm のCuを用い、
ハード膜12には 4nmのCoPt膜を用いた。6、7、
8、9、12の膜については磁界中で成膜を行い、さら
に磁界中で熱処理を行うことにより、反強磁性体膜8に
一方向異方性を付与し、強磁性体膜7の磁化を固着し
た。また、高抵抗軟磁性体膜9も磁界中で成膜し、一軸
異方性を付与しさらに、ハード膜12を着磁することに
より、よりその高抵抗軟磁性体膜の一軸性を強めてい
る。その後、通常の半導体プロセスを用いて素子の加工
を行い磁気抵抗効果素子を得た。
Example 12 A magnetoresistive effect element of the present invention was produced by using an exchange coupling film of an antiferromagnetic material film and a ferromagnetic material film, which had sufficient exchange bias magnetic field and corrosion resistance in Example 1. A sectional view of the magnetoresistive effect element is shown in FIG. The substrate 5 has a thermally oxidized Si wafer, and the ferromagnetic films 6 and 7 each have a thickness of 5 nm.
And 3 nm CoFePd, and the antiferromagnetic film 8 has a thickness of 1
Fe 50 Mn 50 having a thickness of 0 nm and Fe 65 Mn 35 having a thickness of 5 nm were used, and Cu having a thickness of 3 nm was used for the nonmagnetic film 9. Also,
A CoZrNb film having a thickness of 10 nm was formed as the high-resistance soft magnetic film 10. Further, Cu of 20 μm is used for the electrode 11,
A 4 nm CoPt film was used for the hard film 12. 6, 7,
The films Nos. 8, 9 and 12 are formed in a magnetic field, and further heat-treated in a magnetic field to impart unidirectional anisotropy to the antiferromagnetic film 8 and to magnetize the ferromagnetic film 7. Fixed. The high resistance soft magnetic material film 9 is also formed in a magnetic field to impart uniaxial anisotropy, and the hard film 12 is magnetized to further strengthen the uniaxiality of the high resistance soft magnetic material film. There is. After that, the element was processed using a normal semiconductor process to obtain a magnetoresistive element.

【0031】得られた磁気抵抗効果素子に外部から磁界
を印加して、その磁界応答性を調べたところ、まったく
同様の磁気抵抗効果素子と同程度の安定した出力が得ら
れ、なおかつ磁壁移動に伴うバルクハウゼンノイズの発
生も見受けられなかった。また、素子として得られる生
産歩留まりも向上した。
When a magnetic field was applied from the outside to the obtained magnetoresistive effect element and its magnetic field response was examined, a stable output comparable to that of the same magnetoresistive effect element was obtained, and magnetic domain wall movement was caused. There was no occurrence of Barkhausen noise accompanying it. In addition, the production yield obtained as a device was also improved.

【0032】実施例13 反強磁性体膜として膜厚が 10 nmのFe50Mn50および
5nmのFe63.7Mn34 .3Cu2 からなる積層膜を使用す
る以外は、実施例11と同様の方法で本発明の磁気抵抗
効果素子を作製した。
Example 13 As an antiferromagnetic film, Fe 50 Mn 50 having a film thickness of 10 nm and
But using a laminated film composed of Fe 63.7 Mn 34 .3 Cu 2 of 5 nm, to prepare a magneto-resistance effect element of the present invention in the same manner as in Example 11.

【0033】得られた磁気抵抗効果素子に外部から磁界
を印加して、その磁界応答性を調べたところ、実施例1
1の磁気抵抗効果素子と同程度の安定した出力が得ら
れ、なおかつ磁壁移動に伴うバルクハウゼンノイズの発
生も見受けられなかった。また、素子として得られる生
産歩留まりも向上した。
A magnetic field was externally applied to the obtained magnetoresistive effect element, and its magnetic field response was examined.
The same stable output as that of the magnetoresistive effect element of No. 1 was obtained, and the Barkhausen noise accompanying the domain wall movement was not found. In addition, the production yield obtained as a device was also improved.

【0034】[0034]

【発明の効果】以上、詳述したように本発明の交換結合
膜は、反強磁性体膜を組成変調構造とすることにより、
良好な交換結合力を有し、かつ耐食性にも優れ、このよ
うな交換結合膜を具備してなる本発明の磁気抵抗効果素
子は、安定した出力を長期間にわたって得ることがで
き、その工業的価値は大なるものがある。
As described above in detail, in the exchange coupling film of the present invention, the antiferromagnetic film has a composition modulation structure,
The magnetoresistive effect element of the present invention having a good exchange coupling force and excellent in corrosion resistance and comprising such an exchange coupling film can obtain a stable output for a long time, There is great value.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係わる交換結合膜の断面図である。FIG. 1 is a cross-sectional view of an exchange coupling membrane according to a first embodiment.

【図2】純水中に 1時間放置された交換結合膜の腐食ピ
ット発生確率を示す図である。
FIG. 2 is a diagram showing a probability of occurrence of corrosion pits in an exchange coupling film left in pure water for 1 hour.

【図3】光学顕微鏡観察した腐食ピット発生状況を示す
図である。
FIG. 3 is a diagram showing a situation of occurrence of corrosion pits observed by an optical microscope.

【図4】交換結合膜の磁化容易軸方向aと磁化困難軸方
向bの磁化曲線を示す図である。
FIG. 4 is a diagram showing a magnetization curve in an easy-axis direction a and a hard-axis direction b of the exchange coupling film.

【図5】Cu量と腐食ピット発生確率を示す図である。FIG. 5 is a diagram showing a Cu amount and a corrosion pit occurrence probability.

【図6】本発明の磁気抵抗効果素子の断面図である。FIG. 6 is a sectional view of a magnetoresistive effect element of the present invention.

【符号の説明】[Explanation of symbols]

1………サファイアC面、2、6、7………強磁性体
膜、3、4、8………反強磁性体膜、5………基板、9
………非磁性体膜、10………高抵抗軟磁性体膜、11
………電極、12………ハード膜。
1 ... Sapphire C plane, 2, 6, 7 ... Ferromagnetic material film, 3, 4, 8 ... Antiferromagnetic material film, 5 ......... Substrate, 9
……… Non-magnetic material film, 10 ………… High resistance soft magnetic material film, 11
……… Electrode, 12 ……… Hard film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船山 知己 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 岩崎 仁志 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 佐橋 政司 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 (72)発明者 長谷部 裕之 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝研究開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomomi Funayama No. 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Toshiba Research & Development Center (72) Inventor Hitoshi Iwasaki Komukai-Toshiba, Kawasaki-shi, Kanagawa Town No. 1 Incorporated company Toshiba Research and Development Center (72) Inventor Masashi Sahashi Komukai-shi, Kawasaki, Kanagawa Prefecture Komukai Toshiba Town No. 1 Incorporated company Toshiba Research and Development Center (72) Inventor Hiroyuki Hasebe Kawasaki, Kanagawa Prefecture Komukai-Toshiba-cho 1-ku, Toshiba Research & Development Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 組成がM100-x Mnx で表される反強磁
性体膜と、この反強磁性体膜と積層形成される強磁性体
膜とを備えた交換結合膜であって、 前記反強磁性体膜におけるMはFe、Co、Ni、P
d、Ptから選ばれた少なくとも 1種からなり、 xの値
は、前記強磁性体膜側の界面近傍において 40 <x≦ 60
であり、前記界面と反対側の面近傍において 20 ≦ x
≦ 40 であることを特徴とする交換結合膜。
1. An exchange coupling film comprising an antiferromagnetic film having a composition represented by M 100-x Mn x , and a ferromagnetic film laminated with the antiferromagnetic film. M in the antiferromagnetic material film is Fe, Co, Ni, P
It is composed of at least one selected from d and Pt, and the value of x is 40 <x ≤ 60 near the interface on the ferromagnetic film side.
And near the surface opposite to the interface, 20 ≤ x
An exchange-coupling membrane characterized in that ≦ 40.
【請求項2】 請求項1記載の交換結合膜において、前
記反強磁性体膜の組成が膜厚方向を通して 20 ≦ x≦ 8
0 の範囲内で変化することを特徴とする交換結合膜。
2. The exchange coupling film according to claim 1, wherein the composition of the antiferromagnetic film is 20 ≦ x ≦ 8 throughout the film thickness direction.
An exchange-coupling membrane characterized by varying within the range of 0.
【請求項3】 請求項1記載の交換結合膜において、前
記反強磁性体膜の組成が連続的に変化することを特徴と
する交換結合膜。
3. The exchange coupling film according to claim 1, wherein the composition of the antiferromagnetic film continuously changes.
【請求項4】 請求項1記載の交換結合膜において、前
記反強磁性体膜の組成が段階的に変化することを特徴と
する交換結合膜。
4. The exchange coupling film according to claim 1, wherein the composition of the antiferromagnetic film changes stepwise.
【請求項5】 請求項1ないし請求項4記載のいずれか
1項記載の交換結合膜と、前記交換結合膜のうち少なく
とも強磁性体膜に電流を通電するための電極とが基板上
に形成されてなることを特徴とする磁気抵抗効果素子。
5. The exchange coupling film according to claim 1, and an electrode for passing a current through at least a ferromagnetic film of the exchange coupling film is formed on a substrate. A magnetoresistive effect element characterized by being formed.
JP22071494A 1994-09-16 1994-09-16 Exchange coupling film and magnetoresistive element Expired - Fee Related JP3497573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22071494A JP3497573B2 (en) 1994-09-16 1994-09-16 Exchange coupling film and magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22071494A JP3497573B2 (en) 1994-09-16 1994-09-16 Exchange coupling film and magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH0888118A true JPH0888118A (en) 1996-04-02
JP3497573B2 JP3497573B2 (en) 2004-02-16

Family

ID=16755365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22071494A Expired - Fee Related JP3497573B2 (en) 1994-09-16 1994-09-16 Exchange coupling film and magnetoresistive element

Country Status (1)

Country Link
JP (1) JP3497573B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214716A (en) * 1997-01-28 1998-08-11 Sharp Corp Switched connection film and preparation thereof, and magnetoresistance element using the same
JPH10256038A (en) * 1997-03-13 1998-09-25 Sharp Corp Exchange coupled film, manufacture thereof and magnetoresistance effect element
US6607641B2 (en) 2000-04-12 2003-08-19 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using the exchange coupling film
US6648985B2 (en) 2000-04-12 2003-11-18 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling
US6678128B2 (en) 2000-04-12 2004-01-13 Alps Electric Co., Ltd. Exchange coupling film and electroresistive sensor using the same
US6790541B2 (en) 2000-04-12 2004-09-14 Alps Electric Co., Ltd. Exchange coupling film and electroresistive sensor using the same
US6896975B2 (en) 2002-01-04 2005-05-24 International Business Machines Corporation Spin-valve sensor with pinning layers comprising multiple antiferromagnetic films
US7119998B2 (en) 2000-07-11 2006-10-10 Alps Electric Co., Ltd. Exchange coupling film and magnetoresistive element using the same
US7300645B2 (en) 1998-04-24 2007-11-27 Sunstar Kabushiki Kaisha Oral composition comprising isomalt and remineralizing enhancing agent
JP2011159988A (en) * 2003-03-14 2011-08-18 Ntn-Snr Roulements Measurement assembly with magnetoresistive magnetic field sensor and electronic processing circuit

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214716A (en) * 1997-01-28 1998-08-11 Sharp Corp Switched connection film and preparation thereof, and magnetoresistance element using the same
JPH10256038A (en) * 1997-03-13 1998-09-25 Sharp Corp Exchange coupled film, manufacture thereof and magnetoresistance effect element
US7300645B2 (en) 1998-04-24 2007-11-27 Sunstar Kabushiki Kaisha Oral composition comprising isomalt and remineralizing enhancing agent
US6879472B2 (en) 2000-04-12 2005-04-12 Alps Electric Co., Ltd. Exchange coupling film and electoresistive sensor using the same
US6678128B2 (en) 2000-04-12 2004-01-13 Alps Electric Co., Ltd. Exchange coupling film and electroresistive sensor using the same
US6790541B2 (en) 2000-04-12 2004-09-14 Alps Electric Co., Ltd. Exchange coupling film and electroresistive sensor using the same
US6648985B2 (en) 2000-04-12 2003-11-18 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling
US7005014B2 (en) 2000-04-12 2006-02-28 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling film
US7077936B2 (en) 2000-04-12 2006-07-18 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling film
US6607641B2 (en) 2000-04-12 2003-08-19 Alps Electric Co., Ltd. Method of producing exchange coupling film and method of producing magnetoresistive sensor by using the exchange coupling film
US7119998B2 (en) 2000-07-11 2006-10-10 Alps Electric Co., Ltd. Exchange coupling film and magnetoresistive element using the same
US7142399B2 (en) * 2000-07-11 2006-11-28 Alps Electric Co., Ltd. Exchange coupling film and magnetoresistive element using the same
US7218487B2 (en) 2000-07-11 2007-05-15 Alps Electric Co., Ltd. Exchange coupling film and magnetoresistive element using the same
US6896975B2 (en) 2002-01-04 2005-05-24 International Business Machines Corporation Spin-valve sensor with pinning layers comprising multiple antiferromagnetic films
JP2011159988A (en) * 2003-03-14 2011-08-18 Ntn-Snr Roulements Measurement assembly with magnetoresistive magnetic field sensor and electronic processing circuit

Also Published As

Publication number Publication date
JP3497573B2 (en) 2004-02-16

Similar Documents

Publication Publication Date Title
US6057049A (en) Exchange coupling film and magnetoresistive element
JP3735443B2 (en) Exchange coupling film, magnetoresistive effect element, magnetic head, and magnetic storage device using the same
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US5552949A (en) Magnetoresistance effect element with improved antiferromagnetic layer
JP2000160332A (en) Sputtering target, antiferromagnetic film formed by using the same, magneto-resistance effect element and magnetic device
EP0843368A2 (en) Magnetoresistive film
JPH11134620A (en) Ferromagnetic tunnel junction element sensor and its manufacture
JPH11191647A (en) Exchange coupling film, magnetoresistance effect element using this exchange coupling film and thin-film magnetic head using the magnetoresistance effect element
JPH10143822A (en) Thin-film magnetic structure and thin-film magnetic head
JP2637360B2 (en) Magnetoresistance effect element
US5756191A (en) Exchange coupling film and magnetoresistance effect element
JP3497573B2 (en) Exchange coupling film and magnetoresistive element
JPH08315326A (en) Magnetoresistant head
US5919580A (en) Spin valve device containing a Cr-rich antiferromagnetic pinning layer
JPH1032118A (en) Magnetoresistance effect thin film
JP3247535B2 (en) Magnetoresistance effect element
JP2672802B2 (en) Exchange coupling film and magnetoresistive element
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
JP3655031B2 (en) Magnetoresistive element and magnetic reproducing system
JPH10116728A (en) Magnetoresistance effect film and its manufacture
JP3393963B2 (en) Exchange coupling film and magnetoresistive element
JP2002289947A (en) Exchange coupling element and manufacturing method for the exchange coupling element
JP2000068569A (en) Exchange coupled film and magneto resistive effect element using the same
JPH09237716A (en) Exchange bonding film, magnetoresistance effect element and method for manufacturing magnetoresistance effect element
JP3691920B2 (en) Magnetoresistive element and magnetic reproducing system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees