JPH0888023A - Nonaqueous electrolyte and nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte and nonaqueous electrolyte battery

Info

Publication number
JPH0888023A
JPH0888023A JP6221663A JP22166394A JPH0888023A JP H0888023 A JPH0888023 A JP H0888023A JP 6221663 A JP6221663 A JP 6221663A JP 22166394 A JP22166394 A JP 22166394A JP H0888023 A JPH0888023 A JP H0888023A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
alkyl group
group
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6221663A
Other languages
Japanese (ja)
Other versions
JP3821495B2 (en
Inventor
Akio Hibara
昭男 檜原
Keiichi Yokoyama
恵一 横山
Shigeru Fujita
茂 藤田
Yoshiaki Naruse
義明 成瀬
Tokuo Komaru
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Sony Corp
Original Assignee
Mitsui Petrochemical Industries Ltd
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP22166394A priority Critical patent/JP3821495B2/en
Application filed by Mitsui Petrochemical Industries Ltd, Sony Corp filed Critical Mitsui Petrochemical Industries Ltd
Priority to CA002153478A priority patent/CA2153478C/en
Priority to DE69508671T priority patent/DE69508671T2/en
Priority to EP97119010A priority patent/EP0825664B1/en
Priority to DE69531901T priority patent/DE69531901T2/en
Priority to EP95304775A priority patent/EP0696077B1/en
Priority to US08/499,393 priority patent/US5580684A/en
Publication of JPH0888023A publication Critical patent/JPH0888023A/en
Application granted granted Critical
Publication of JP3821495B2 publication Critical patent/JP3821495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a nonaqueous electrolyte with self-fire extinguishing function and having conductivity of a practical-use level by using an organic solvent containing a specific compound as the solvent of an electrolyte. CONSTITUTION: By replacing at least one of substituent groups of a phosphoric ester with a halogen atom such as a fluorine atom, reactivity of the phosphoric ester with lithium metal is decreased, and by adding it to an electrolyte, self-fire extinguishing function is kept and performance of a battery is enhanced. A phosphoric ester compound has self-fire extinguishing function, and by adding to the electrolyte, the self-fire extinguishing function is given to the electrolyte, and by replacing at least one of R<1> , R<2> , and R<3> with a halogen atom, reactivity of the nonaqueous electrolyte with lithium metal can be decreased. The self-fire extinguishing function is increased with the increase in the content of phosphorus, that is, with the decrease in the molecular weight of R<1> , R<2> , and R<3> , and with the increase in the adding amount. By increasing the adding amount of phosphoric ester with high molecular weight, since viscosity of the electrolyte is increased and conductivity is decreased, the amount of carbon of R<1> , R<2> , and R<3> is required to decrease.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な非水電解液及びそ
れを用いた非水電解液電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel non-aqueous electrolyte and a non-aqueous electrolyte battery using the same.

【0002】[0002]

【従来の技術】非水電解液を用いた電池は、高電圧、高
エネルギー密度を有し、かつ貯蔵性などの信頼性に優れ
ているため、広く民生用電子機器の電源に用いられてい
る。非水電解液としては、一般に高誘電率の溶媒である
炭酸プロピレン、γ−ブチロラクトン、スルホラン等
に、低粘度溶媒であるジメトキシエタン、テトラヒドロ
フラン、また1,3−ジオキソラン等を混合した溶媒に
LiBF4、LiPF6、LiClO4、LiAsF6、L
iCF3SO3、LiN(CF3SO22、LiAlC
4、LiSiF6等の電解質を混合したものが用いられ
ている。
2. Description of the Related Art Batteries using non-aqueous electrolytes are widely used as power sources for consumer electronic devices because they have high voltage, high energy density, and excellent reliability such as storability. . As the non-aqueous electrolytic solution, propylene carbonate, γ-butyrolactone, sulfolane, etc., which are generally high-dielectric constant solvents, and dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, etc., which are low-viscosity solvents, are mixed in a solvent such as LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , L
iCF 3 SO 3, LiN (CF 3 SO 2) 2, LiAlC
A mixture of electrolytes such as l 4 and LiSiF 6 is used.

【0003】しかし、このような非水電解液の溶媒は耐
電圧の低いものが多く、耐電圧の低い溶媒を用いた電解
液を二次電池に使用した場合、充放電を繰返すと溶媒が
電気分解され、そのため生成したガスにより電池の内圧
が上昇したり、生成物が重合反応を起こし電極に付着す
る等の事態が生じてしまう。このため、電池の充放電効
率が低下し、電池エネルギー密度の低下により、電池の
寿命が短くなる等の問題があった。電解液の耐久性を向
上させる試みとしては、従来用いられていたγ−ブチロ
ラクトン、エチルアセテート等のエステル類や、1,3
−ジオキソラン、テトラヒドロフラン、ジメトキシエタ
ン等のエーテル類などの耐電圧の低い溶媒の代りに耐電
圧の高い炭酸ジエチル等の炭酸エステルを使用し、充放
電の反復後の電池エネルギー密度の低下を抑制すること
が提案されている(例えば特開平2−10666号公
報)。
However, many of the solvents of such non-aqueous electrolytes have a low withstand voltage, and when an electrolyte using a solvent with a low withstand voltage is used for a secondary battery, the solvent becomes an electric solvent when charging and discharging are repeated. As a result of the decomposition, the generated gas raises the internal pressure of the battery, and the product causes a polymerization reaction to adhere to the electrode. As a result, the charge / discharge efficiency of the battery is lowered, and the energy density of the battery is lowered, so that the life of the battery is shortened. As an attempt to improve the durability of the electrolytic solution, conventionally used esters such as γ-butyrolactone and ethyl acetate, and 1,3
-Using a carbonate with a high withstand voltage such as diethyl carbonate or the like instead of a solvent with a low withstand voltage such as ethers such as dioxolane, tetrahydrofuran, dimethoxyethane, etc., and suppressing the decrease in battery energy density after repeated charge and discharge. Has been proposed (for example, JP-A-2-10666).

【0004】一方、リチウム二次電池の負極には金属リ
チウム、またはリチウム合金が用いられているが、充放
電を繰返すと電解液中のリチウムイオンが負極上に偏っ
て析出し、デンドライトと呼ばれる針状の反応性の高い
金属が生成される場合があった。デンドライトが電極か
ら脱落すると、自己消耗し電池のサイクル寿命が短くな
ってしまう、正極と負極を隔てるセパレータをデンドラ
イトが貫通しショートする可能性がある等の問題点も考
えられている。
On the other hand, metallic lithium or a lithium alloy is used for the negative electrode of a lithium secondary battery. When charging and discharging are repeated, lithium ions in the electrolytic solution are unevenly deposited on the negative electrode, which is called a dendrite. In some cases, highly reactive metals were produced. When the dendrite falls off the electrode, it is self-depleted and the cycle life of the battery is shortened, and there is a possibility that the dendrite may penetrate the separator separating the positive electrode and the negative electrode to cause a short circuit.

【0005】[0005]

【発明が解決すべき課題】ところで、エネルギー密度の
高い電池が望まれていることから、高電圧電池について
各方面から研究が進められている。例えば、電池の正極
にLiCoO2やLiNiO2、Li2Mn24などのリ
チウムと遷移金属の複合酸化物を使用し、負極に炭素材
料を使用した、ロッキングチェア型とよばれる二次電池
が研究されてきた。この場合、電池電圧は4Vを発生す
ることができ、しかも金属リチウムの析出がないため、
過充電、外部ショート、針刺し、押しつぶし等の実験に
よっても安全性が確認され、民生用として出回るように
なっている。しかしながら、今後の大幅な高エネルギー
密度化、また大型化がなされた場合には、一層の難燃化
などの安全性向上が求められている。現在使用されてい
る電解液溶媒は、必ずしも満足のいく高い引火点を有す
るものでなく、自己消火性もない。
By the way, since a battery having a high energy density is desired, research on a high-voltage battery is being promoted from various fields. For example, there is a secondary battery called a rocking chair type that uses a composite oxide of lithium and a transition metal such as LiCoO 2 , LiNiO 2 , and Li 2 Mn 2 O 4 for the positive electrode of the battery and a carbon material for the negative electrode. Has been studied. In this case, the battery voltage can generate 4 V, and since there is no deposition of metallic lithium,
Safety has been confirmed by experiments such as overcharging, external short-circuiting, needle stick, and crushing, and it is now available for consumer use. However, in the future, when the energy density is increased significantly and the size is increased, further improvement in safety such as flame retardancy is required. The electrolyte solvents currently used do not necessarily have a satisfactory high flash point, nor are they self-extinguishing.

【0006】このため、自己消火性のある化合物として
知られているリン酸エステル類を電解液に添加すること
が提案されている(特開平4−184870号公報)。
しかしながら、この種の化合物を15重量%以上添加し
た電解液は、難燃性はクリアーされるが、逆に電池充放
電効率、電池のエネルギー密度、電池寿命の点で問題が
あった。更にリン酸トリメチルやリン酸トリエチルなど
のリン酸エステル類は金属リチウムとの反応性があるた
め、負極に金属リチウム、リチウム合金を用いたリチウ
ム二次電池には適していない。また前述のロッキングチ
ェア型のリチウムイオン二次電池であっても、誤使用に
よって極度の過充電を行うなど苛酷な試験条件下では、
金属リチウムが析出する可能性がある。
For this reason, it has been proposed to add phosphoric acid esters, which are known as self-extinguishing compounds, to the electrolytic solution (JP-A-4-184870).
However, although the electrolyte solution containing 15% by weight or more of this type of compound clears the flame retardancy, it has problems in terms of battery charge / discharge efficiency, battery energy density, and battery life. Furthermore, since phosphoric acid esters such as trimethyl phosphate and triethyl phosphate have reactivity with metallic lithium, they are not suitable for a lithium secondary battery using metallic lithium or a lithium alloy for the negative electrode. Even with the rocking chair type lithium ion secondary battery described above, under severe test conditions such as extreme overcharging due to misuse,
Lithium metal may precipitate.

【0007】本発明は上記の問題点に鑑みてなされたも
ので、充放電効率の低下や充放電繰返後の電池エネルギ
ー密度の低下を生じることがなく、自己消火性を有し、
引火点が高く、しかも金属リチウムとの反応性の低い非
水電解液を提供することを目的とする。更に本発明は、
耐電圧及び電気伝導性に優れ、負荷特性、低温特性に優
れた非水電解液を提供することを目的とする。更に本発
明は、高電圧を発生でき、電池性能が優れ、長寿命の非
水電解液電池を提供することを目的とする。
The present invention has been made in view of the above problems and has self-extinguishing property without causing a decrease in charge / discharge efficiency or a decrease in battery energy density after repeated charge / discharge.
It is an object of the present invention to provide a non-aqueous electrolytic solution having a high flash point and a low reactivity with metallic lithium. Further, the present invention is
It is an object of the present invention to provide a non-aqueous electrolytic solution which is excellent in withstand voltage and electric conductivity, and is excellent in load characteristics and low temperature characteristics. Another object of the present invention is to provide a non-aqueous electrolyte battery that can generate a high voltage, has excellent battery performance, and has a long life.

【0008】[0008]

【課題を解決するための手段】本発明者らは、高電圧を
発生でき、電池特性に優れた非水電池用電解液を作るた
め、高い自己消火性作用を持つリン酸エステル化合物に
ついて鋭意研究を行った。その結果、リン酸エステルの
置換基の少なくとも一つをフッ素原子などのハロゲン原
子で置換するとリチウム金属との反応性を低下させるこ
とができることを見出し、このリン酸エステルを添加す
ることによって自己消火性を維持し電池性能にも優れた
非水電池用電解液が得られることを見出した。
[Means for Solving the Problems] The inventors of the present invention have diligently studied phosphoric acid ester compounds having a high self-extinguishing action in order to produce an electrolytic solution for a non-aqueous battery which can generate a high voltage and has excellent battery characteristics. I went. As a result, it was found that the reactivity with lithium metal can be reduced by substituting at least one of the substituents of the phosphoric acid ester with a halogen atom such as a fluorine atom, and by adding this phosphoric acid ester, the self-extinguishing property can be improved. It was found that an electrolyte solution for non-aqueous batteries, which maintains the above-mentioned value and is excellent in battery performance, can be obtained.

【0009】すなわち、本発明の非水電解液は、一般式
[1]で示されるリン酸エステル化合物を含有するもの
である。
That is, the non-aqueous electrolytic solution of the present invention contains the phosphoric acid ester compound represented by the general formula [1].

【0010】[0010]

【化3】 [Chemical 3]

【0011】(R1、R2、R3は同一あるいは異なって
いてもよく、それぞれアルキル基またはハロゲン原子置
換アルキル基を表し、R1、R2、R3の少なくとも1つ
はハロゲン原子置換アルキル基を表す。) また本発明の非水電解液電池は、上記リン酸エステル化
合物を含有する電解液を使用するものである。
(R 1 , R 2 and R 3 may be the same or different and each represents an alkyl group or a halogen atom-substituted alkyl group, and at least one of R 1 , R 2 and R 3 is a halogen atom-substituted alkyl group. In addition, the non-aqueous electrolyte battery of the present invention uses an electrolyte solution containing the above phosphoric acid ester compound.

【0012】一般式[1]のリン酸エステル化合物は自
己消火性を有し、電解液に添加することにより電解液に
自己消火性を付与するとともに、R1、R2、R3のうち
少なくとも1つがハロゲン原子で置換されることによ
り、本発明の非水電解液のリチウム金属との反応性を減
少させることができる。R1、R2、R3の少なくとも1
つがハロゲン原子置換アルキル基であれば、残りはアル
キル基でもハロゲン原子置換アルキル基であってもよ
い。
The phosphoric acid ester compound represented by the general formula [1] has self-extinguishing property, and when added to the electrolytic solution, imparts self-extinguishing property to the electrolytic solution, and at least one of R 1 , R 2 and R 3 By substituting one with a halogen atom, the reactivity of the non-aqueous electrolyte of the present invention with lithium metal can be reduced. At least 1 of R 1 , R 2 and R 3
If one is a halogen atom-substituted alkyl group, the rest may be an alkyl group or a halogen atom-substituted alkyl group.

【0013】ここで、リン酸エステルの自己消火作用
は、リン酸エステル中のリン含量が高いほど、すなわち
置換基のR1、R2、R3の分子量が小さいほど大きく、
また添加量が多いほど大きい。しかし、分子量の大きい
リン酸エステルの添加量を増やすことは、その添加によ
って電解液の粘度増加が大きくなり電導度が低下するた
め好ましくない。従って、R1、R2、R3の炭素数はな
るべく小さいことが望ましく、R1、R2、R3がアルキ
ル基の場合、好適には1〜4個、ハロゲン原子置換アル
キル基の場合に好適には2〜4個である。
Here, the self-extinguishing action of the phosphoric acid ester increases as the phosphorus content in the phosphoric acid ester increases, that is, as the molecular weight of the substituents R 1 , R 2 and R 3 decreases.
Also, the larger the amount added, the larger. However, increasing the addition amount of the phosphoric acid ester having a large molecular weight is not preferable because the addition of the phosphoric acid ester increases the viscosity of the electrolytic solution and decreases the conductivity. Therefore, it is desirable that the number of carbon atoms of R 1 , R 2 and R 3 is as small as possible, and when R 1 , R 2 and R 3 are alkyl groups, preferably 1 to 4 and when halogen atom-substituted alkyl groups are used. It is preferably 2 to 4.

【0014】アルキル基としては、メチル基、エチル
基、ノルマルプロピル基、イソプロピル基、ノルマルブ
チル基、sec−ブチル基、t−ブチル基、イソブチル基
などが挙げられる。またハロゲン原子置換アルキル基と
しては、フッ素原子置換アルキル基、塩素原子原子置換
アルキル基、臭素原子置換アルキル基が挙げられ、また
1つの置換基にフッ素、塩素、または臭素が混在してい
るものでもよい。フッ素原子置換アルキル基の場合を例
に挙げると、トリフルオロエチル基、ジフルオロエチル
基、モノフルオロエチル基、ペンタフルオロプロピル
基、2,2,3,3−テトラフルオロプロピル基、1,
1,1−トリフルオロイソプロピル基、1,3−ジフル
オロ−2−プロピル基、ヘキサフルオロイソプロピル
基、2,2,3,3,4,4,4−ヘプタフルオロブチ
ル基、2,2,3,4,4,4−ヘキサフルオロブチル
基、ヘキサフルオロ−2−メチルイソプロピル基、3,
3,4,4,4−ペンタフルオロ−2−ブチル基、4,
4,4−トリフルオロブチル基、パーフルオロ−t−ブ
チル基などが挙げられる。その他、上記と同様の構造で
フッ素の代りに塩素、臭素で置換したものも例示され
る。
Examples of the alkyl group include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a sec-butyl group, a t-butyl group and an isobutyl group. Examples of the halogen atom-substituted alkyl group include a fluorine atom-substituted alkyl group, a chlorine atom atom-substituted alkyl group, and a bromine atom-substituted alkyl group, and one in which fluorine, chlorine, or bromine is mixed in one substituent. Good. Taking the case of a fluorine atom-substituted alkyl group as an example, a trifluoroethyl group, a difluoroethyl group, a monofluoroethyl group, a pentafluoropropyl group, a 2,2,3,3-tetrafluoropropyl group, 1,
1,1-trifluoroisopropyl group, 1,3-difluoro-2-propyl group, hexafluoroisopropyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 2,2,3 4,4,4-hexafluorobutyl group, hexafluoro-2-methylisopropyl group, 3,
3,4,4,4-pentafluoro-2-butyl group, 4,
Examples include 4,4-trifluorobutyl group and perfluoro-t-butyl group. In addition, those having the same structure as the above and substituting chlorine or bromine instead of fluorine are also exemplified.

【0015】本発明のリン酸エステル化合物としては、
リン酸トリ(トリフルオロエチル)、リン酸メチル(ジ
トリフルオロエチル)、リン酸ジメチル(トリフルオロ
エチル)、リン酸エチル(ジトリフルオロエチル)、リ
ン酸ジエチル(トリフルオロエチル)、リン酸プロピル
(ジトリフルオロエチル)、リン酸ジプロピル(トリフ
ルオロエチル)、リン酸トリ(ペンタフルオロプロピ
ル)、リン酸メチル(ジペンタフルオロプロピル)、リ
ン酸ジメチル(ペンタフルオロプロピル)、リン酸エチ
ル(ジペンタフルオロプロピル)、リン酸ジエチル(ペ
ンタフルオロプロピル)、リン酸ブチル(ジペンタフル
オロプロピル)、リン酸ジブチル(ペンタフルオロプロ
ピル)、そのほか前述のハロゲン原子置換アルキル基と
アルキル基とを有するものが挙げられる。
The phosphoric acid ester compound of the present invention includes
Tri (trifluoroethyl) phosphate, methyl phosphate (ditrifluoroethyl), dimethyl phosphate (trifluoroethyl), ethyl phosphate (ditrifluoroethyl), diethyl phosphate (trifluoroethyl), propyl phosphate (ditrifluoroethyl) Fluoroethyl), dipropyl phosphate (trifluoroethyl), triphosphate (pentafluoropropyl), methyl phosphate (dipentafluoropropyl), dimethyl phosphate (pentafluoropropyl), ethyl phosphate (dipentafluoropropyl) , Diethyl phosphate (pentafluoropropyl), butyl phosphate (dipentafluoropropyl), dibutyl phosphate (pentafluoropropyl), and those having the above-mentioned halogen atom-substituted alkyl group and alkyl group.

【0016】式[1]のハロゲン原子置換リン酸エステ
ル化合物は前述のように溶媒を燃えにくくする作用があ
り、しかもリン酸トリメチルなど通常のリン酸エステル
化合物に比べリチウム金属との反応性も大きく押えられ
ているが、それ単独で溶媒として用いた場合には、電解
液の伝導度を低下し電池のエネルギー密度を低下する性
質を持つ。従って、本発明の非水電解液を実用的な二次
電池用電解液として使用するためには、溶媒として上記
ハロゲン原子置換リン酸エステル化合物と他の溶媒との
混合溶媒を用いる。この場合、ハロゲン原子置換リン酸
エステル化合物の添加量は、好適には溶媒全体に対し1
〜20体積%、より望ましくは5〜15体積%添加され
ていればよい。このような範囲とすることにより、電導
度の低下や電池のエネルギー密度の低下等、電池性能に
影響を及ぼすことなく、しかも十分な自己消火作用を得
ることができる。
The halogen atom-substituted phosphoric acid ester compound of the formula [1] has the action of making the solvent inflammable as described above, and has a greater reactivity with lithium metal than ordinary phosphoric acid ester compounds such as trimethyl phosphate. Although it is suppressed, when it is used alone as a solvent, it has the property of lowering the conductivity of the electrolytic solution and lowering the energy density of the battery. Therefore, in order to use the non-aqueous electrolytic solution of the present invention as a practical secondary battery electrolytic solution, a mixed solvent of the above halogen atom-substituted phosphate compound and another solvent is used as a solvent. In this case, the amount of the halogen atom-substituted phosphate compound added is preferably 1 with respect to the entire solvent.
-20% by volume, more preferably 5-15% by volume may be added. With such a range, sufficient self-extinguishing action can be obtained without affecting the battery performance such as a decrease in electric conductivity and a decrease in energy density of the battery.

【0017】上記ハロゲン原子置換リン酸エステル化合
物が添加される溶媒としては、従来より用いられてい
る、ジメトキシエタンなどの鎖状エーテル類、テトラヒ
ドロフランなどの環状エーテル類、ジメチルホルムアミ
ドなどのアミド類、メチル−N,N−ジメチルカーバメ
ートなどのカーバメート類、更に炭酸ジエチル等の鎖状
エステル類、炭酸プロピレン等の環状エステル類を1種
または2種以上混合して用いることができる。特に高電
圧電池として用いる場合には、上記ハロゲン原子置換リ
ン酸エステルは、鎖状エステル及び/または環状エステ
ルとの混合溶媒とすることによって電解液の電導度を高
めることができ、電池性能を良好にすることができる。
As the solvent to which the above halogen atom-substituted phosphate compound is added, conventionally used chain ethers such as dimethoxyethane, cyclic ethers such as tetrahydrofuran, amides such as dimethylformamide, and methyl. Carbamates such as -N, N-dimethyl carbamate, chain esters such as diethyl carbonate, and cyclic esters such as propylene carbonate can be used alone or in combination of two or more. Especially when used as a high-voltage battery, the halogen atom-substituted phosphate ester can enhance the conductivity of the electrolytic solution by using a mixed solvent with a chain ester and / or a cyclic ester, thereby improving battery performance. Can be

【0018】ここで用いられる鎖状エステルは、一般式
[2]で表される1種またはこれらの混合物である。
The chain ester used here is one kind represented by the general formula [2] or a mixture thereof.

【0019】[0019]

【化4】 [Chemical 4]

【0020】(式中、R4はメチル基、エチル基、プロ
ピル基、メトキシ基あるいはエトキシ基を表し、R5
炭素数1から3個の鎖状あるいは分枝状アルキル基を表
す。) 一般式[2]で表される鎖状エステルをハロゲン原子置
換リン酸エステルに混合して用いることによって、電解
液の粘度を下げることができ、常温から低温での電気伝
導性に優れた電解液が得られる。このような鎖状エステ
ルとしては、例えばジメチルカーボネート、メチルエチ
ルカーボネート、ジエチルカーボネート、メチルプロピ
ルカーボネート、メチルイソプロピルカーボネート、メ
チルブチルカーボネート、エチルブチルカーボネート、
蟻酸メチル、蟻酸エチル、蟻酸プロピル、酪酸メチル、
酪酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、
プロピオン酸メチル、プロピオン酸エチルなどを例示す
ることができる。特に電池の正極として、4Vを発生で
きるLiCoO2、LiMnO2、LiMn24、LiN
iO2等を用いた電池の電解液の場合には、耐酸化安定
性から、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネートが好ましい。
(In the formula, R 4 represents a methyl group, an ethyl group, a propyl group, a methoxy group or an ethoxy group, and R 5 represents a chain or branched alkyl group having 1 to 3 carbon atoms.) By mixing the chain ester represented by the formula [2] with the halogen atom-substituted phosphate ester and using it, the viscosity of the electrolytic solution can be lowered, and an electrolytic solution excellent in electric conductivity from normal temperature to low temperature can be obtained. can get. Examples of such chain ester include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate,
Methyl formate, ethyl formate, propyl formate, methyl butyrate,
Ethyl butyrate, methyl acetate, ethyl acetate, propyl acetate,
Examples include methyl propionate and ethyl propionate. In particular, LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiN capable of generating 4 V as the positive electrode of the battery.
In the case of an electrolyte solution of a battery using iO 2 or the like, dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate are preferable from the viewpoint of oxidation resistance stability.

【0021】鎖状エステルの電解液溶媒中の濃度は通常
20〜90体積%の範囲で用いることができ、好ましく
は40〜80体積%の範囲で用いることができる。また
環状エステルとしては、プロピレンカーボネート、エチ
レンカーボネート、ブチレンカーボネート、ビニレンカ
ーボネート、γ−ブチロラクトンまたはスルホランから
選ばれる1種またはこれらの混合物が用いられ、好まし
くはプロピレンカーボネートとエチレンカーボネートが
選ばれる。これら環状エステルは電解液溶媒中の濃度が
通常10〜70体積%の範囲で用いることができ、好ま
しくは20〜60体積%の範囲で用いることができる。
環状エステルをハロゲン置換リン酸エステルに混合して
用いることによって電解質の解離性を高めることができ
電導度を高めることができる。
The concentration of the chain ester in the solvent of the electrolytic solution can be usually used in the range of 20 to 90% by volume, preferably 40 to 80% by volume. As the cyclic ester, one selected from propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone or sulfolane or a mixture thereof is used, and propylene carbonate and ethylene carbonate are preferably selected. These cyclic esters can be used in a concentration of 10 to 70% by volume, preferably 20 to 60% by volume, in the electrolyte solvent.
By mixing the cyclic ester with the halogen-substituted phosphate and using them, the dissociation property of the electrolyte can be enhanced and the electrical conductivity can be enhanced.

【0022】また上述の鎖状エステルと環状エステルを
ともにハロゲン原子置換リン酸エステルに混合して使用
すると、粘度低下の効果と電解質の解離の効果が相乗さ
れるため更に好ましい。尚、電池の正極として、3V程
度の電圧を発生できるV25、ポリアニリン等を用いた
電池の場合は、これら鎖状エステル及び環状エステルの
代りにあるいは併用して、それより耐電圧の低いジメト
キシエタンなどの鎖状エーテル類、テトラヒドロフラン
などの環状エーテル類、ジメチルホルムアミドなどのア
ミド類、メチル−N,N−ジメチルカーバメートなどの
カーバメート類、N−メチルオキサゾリドン、N−メチ
ルピロリドンなどのカーバメートやアミド類も使用でき
る。
Further, it is more preferable to use both the above-mentioned chain ester and cyclic ester in a mixture with a halogen atom-substituted phosphate ester because the effect of lowering the viscosity and the effect of dissociating the electrolyte are synergistic. In the case of a battery using V 2 O 5 , polyaniline or the like capable of generating a voltage of about 3 V as the positive electrode of the battery, the chain ester or cyclic ester may be used in place of or in combination, and the withstand voltage is lower than that. Chain ethers such as dimethoxyethane, cyclic ethers such as tetrahydrofuran, amides such as dimethylformamide, carbamates such as methyl-N, N-dimethylcarbamate, carbamates and amides such as N-methyloxazolidone and N-methylpyrrolidone. Kinds can also be used.

【0023】本発明の電解液に用いる電解質としては、
LiPF6、LiBF4、LiClO 4、LiAsF6、L
iCF3SO3、LiN(CF3SO22、LiAlC
4、LiSiF6などのリチウム塩を使用することがで
きるが、特にLiPF6が好ましい。電解質としてLi
PF6を用いた場合、本発明のリン酸エステル化合物の
含有量を低くしても高い自己消火性を保持できる。従っ
て、電池の充放電効率やエネルギー密度の低下を防ぐこ
とができる。
As the electrolyte used in the electrolytic solution of the present invention,
LiPF6, LiBFFour, LiClO Four, LiAsF6, L
iCF3SO3, LiN (CF3SO2)2, LiAlC
lFour, LiSiF6Can be used with lithium salts such as
But especially LiPF6Is preferred. Li as electrolyte
PF6Is used, the phosphoric acid ester compound of the present invention
High self-extinguishing property can be maintained even if the content is lowered. Follow
To prevent the battery charge / discharge efficiency and energy density from decreasing.
You can

【0024】電解液中の電解質濃度は通常、0.1〜3
モル/リットルの濃度範囲で使用することができ、好ま
しくは0.5〜2モル/リットルの濃度範囲で用いるこ
とができる。本発明の非水電解液電池は、上記組成の電
解液を使用するものであり、少なくとも正極、負極、セ
パレータから成る電池である。
The electrolyte concentration in the electrolytic solution is usually 0.1 to 3
It can be used in a concentration range of mol / liter, and preferably in a concentration range of 0.5 to 2 mol / liter. The nonaqueous electrolytic solution battery of the present invention uses the electrolytic solution having the above composition, and is a battery including at least a positive electrode, a negative electrode, and a separator.

【0025】負極材料としては金属リチウム、リチウム
合金、リチウムイオンをドープ・脱ドープが可能な炭素
材料を用いることができ、特にリチウムイオンをドープ
・脱ドープが可能な炭素材料を用いることが好ましい。
このような炭素材料としてはグラファイトでも非晶質炭
素でもよく、活性炭、炭素繊維、カーボンブラック、メ
ソカーボンマイクロビーズなどあらゆる炭素材料を用い
ることができる。
As the negative electrode material, metallic lithium, a lithium alloy, or a carbon material capable of doping / dedoping with lithium ions can be used, and particularly a carbon material capable of doping / dedoping with lithium ions is preferably used.
Graphite or amorphous carbon may be used as such a carbon material, and any carbon material such as activated carbon, carbon fiber, carbon black, and mesocarbon microbeads can be used.

【0026】正極材料としては、MoS2、TiS2、M
nO2、V25等の遷移金属酸化物、遷移金属硫化物、
ポリアニリン、ポリピロールなどの導電性高分子、ジス
ルフィド化合物のように可逆的に電解重合、解重合する
化合物あるいはLiCoO2、LiMnO2、LiMn2
4、LiNiO2などのリチウムと遷移金属からなる複
合酸化物を用いることができ、好ましくはリチウムと遷
移金属からなる複合酸化物が用いられる。
As the positive electrode material, MoS 2 , TiS 2 , M
nO 2 , V 2 O 5 and other transition metal oxides, transition metal sulfides,
Conductive polymers such as polyaniline and polypyrrole, compounds that reversibly undergo electrolytic polymerization and depolymerization such as disulfide compounds, or LiCoO 2 , LiMnO 2 , LiMn 2
A composite oxide composed of lithium and a transition metal such as O 4 or LiNiO 2 can be used, and preferably a composite oxide composed of lithium and a transition metal is used.

【0027】本発明の非水電解液電池は電解液として以
上説明した非水電解液を含むことにより、高電圧を発生
でき、電池充放電効率が高く、充放電の繰返し後でも電
池のエネルギー密度の低下のない、実用性に優れた非水
二次電池とすることができる。尚、本発明の非水電解液
電池の形状、形態等は特に限定されるものではなく、円
筒型、角型、コイン型、カード型、大型など本発明の範
囲内で任意に選択することができる。
Since the non-aqueous electrolyte battery of the present invention contains the above-mentioned non-aqueous electrolyte solution as an electrolyte solution, a high voltage can be generated, the battery charging / discharging efficiency is high, and the energy density of the battery can be maintained even after repeated charging / discharging. It is possible to obtain a non-aqueous secondary battery that is excellent in practicability and has no decrease in The shape, form, etc. of the non-aqueous electrolyte battery of the present invention are not particularly limited, and may be arbitrarily selected within the scope of the present invention such as a cylindrical type, a square type, a coin type, a card type, and a large size. it can.

【0028】[0028]

【実施例】以下に実施例を挙げて本発明を具体的に説明
するが、本発明はこれら実施例に限定されるものではな
い。 1.リン酸エステル化合物の金属リチウムとの反応性の
評価 露点−60℃のアルゴン雰囲気で、長さ2cm、幅0.
5cm、厚さ0.5mmの金属リチウム箔と脱水・蒸留
精製したリン酸エステル化合物10mlをガラス容器中
に混合し、リチウム箔を金属の清浄面が現れるようにリ
ン酸エステル中でリチウム表面を削った。このガラス容
器を種々の温度に加熱し金属リチウムとリン酸エステル
化合物の反応を観察した。リン酸エステル化合物として
は、フッ素原子置換リン酸エステル化合物であるリン酸
トリ(トリフルオロエチル)(以下、TFEPAと略記
する)及びリン酸トリス(2−クロロエチル)(以下、
TCEPAと略記する)、比較例としてリン酸トリメチ
ル及びリン酸トリエチル(以下、TEPAと略記する)
を用いた。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. 1. Evaluation of Reactivity of Phosphate Ester Compound with Metallic Lithium In an argon atmosphere with a dew point of −60 ° C., a length of 2 cm and a width of 0.
A 5 cm thick 0.5 mm thick metallic lithium foil and 10 ml of a dehydrated / distilled and purified phosphate ester compound are mixed in a glass container, and the lithium foil is ground in a phosphate ester so that a clean surface of the metal appears. It was This glass container was heated to various temperatures and the reaction between metallic lithium and the phosphate compound was observed. Examples of the phosphoric acid ester compound include a fluorine atom-substituted phosphoric acid ester compound tri (trifluoroethyl) phosphate (hereinafter abbreviated as TFEPA) and tris (2-chloroethyl) phosphate (hereinafter,
Abbreviated as TCEPA), and trimethyl phosphate and triethyl phosphate as comparative examples (hereinafter abbreviated as TEPA)
Was used.

【0029】その結果、リン酸トリエチルでは165℃
で激しく発泡して反応し、その反応熱でリチウムが融解
し、またリン酸トリメチルでも180℃で発泡して反応
したのに対し、TFEPAは180℃において金属リチ
ウムの融解が見られたが、融解しても表面に灰色の被膜
が生成したのみで、反応は継続しなかった。 2.電解液の自己消火性評価 電解液溶媒としてプロピレンカーボネート(以下、PC
と略記する)、メチルエチルカーボネート(以下、ME
Cと略記する)及びリン酸エステル(TFEPA、TC
EPA)の三者を所定割合で混合した溶媒を用い、電解
質として六フッ化リン酸リチウム(LiPF6)を1.
0モル/リットル溶解させた電解液を用意した。また比
較例として溶媒にPCおよびMECの混合溶媒を用いて
電解質として同じ電解質を同量用いた電解液を用意し
た。
As a result, triethyl phosphate was 165 ° C.
The reaction heat caused the lithium to melt, and trimethyl phosphate also foamed and reacted at 180 ° C, whereas TFEPA showed melting of metallic lithium at 180 ° C. However, only a gray film was formed on the surface, and the reaction did not continue. 2. Evaluation of self-extinguishing property of electrolytic solution Propylene carbonate (hereinafter PC
Abbreviated), methyl ethyl carbonate (hereinafter, ME
Abbreviated as C) and phosphoric acid ester (TFEPA, TC
(EPA) using a solvent in which the three components are mixed at a predetermined ratio, and lithium hexafluorophosphate (LiPF 6 ) as an electrolyte is 1.
An electrolytic solution having 0 mol / liter dissolved therein was prepared. As a comparative example, a mixed solvent of PC and MEC was used as a solvent, and an electrolytic solution was prepared using the same amount of the same electrolyte as the electrolyte.

【0030】幅1.5cm、長さ30cm、厚さ0.0
4mmの短冊状のセパレータ用マニラ紙を、電解液試料
の入ったビーカーに1分以上浸した。マニラ紙から滴り
落ちる過剰の試料をビーカー壁で拭った後、マニラ紙を
2.5cm間隔で支持針を有するサンプル台の支持針に
刺して水平に固定した。マニラ紙とサンプル台を25c
m×25cm×50cmの金属製の箱に入れ、一端にラ
イターで着火し、燃えた長さ(燃焼長)および最初の針
から最後の針までの30cmの間にマニラ紙が燃えるの
に要した時間を各3回測定した。燃焼長と、燃焼に要し
た時間から算出した燃焼速度とを表1に示した。
Width 1.5 cm, length 30 cm, thickness 0.0
A 4 mm strip of Manila paper for a separator was immersed in a beaker containing an electrolyte sample for 1 minute or more. After the excess sample dripping from the Manila paper was wiped with the beaker wall, the Manila paper was pierced at 2.5 cm intervals on the supporting needle of the sample table having the supporting needle and fixed horizontally. Manila paper and sample stand 25c
It was put in a metal box of mx 25 cm x 50 cm, ignited with a lighter at one end, and required for the Manila paper to burn within the burned length (burning length) and 30 cm from the first needle to the last needle. The time was measured 3 times each. Table 1 shows the burning length and the burning rate calculated from the time required for burning.

【0031】[0031]

【表1】 [Table 1]

【0032】尚、表中燃焼速度「0」は燃焼しなかった
ことを示す。また電解液溶媒としてPC、MEC及びT
FEPAをそれぞれ40/50/10(体積比)で含む
混合溶媒を用い、電解質濃度を1.0モル/リットルと
し、電解質を種々に変えた場合について上述と同様にセ
パレータ紙(マニラ紙)の燃えた長さを測定した。その
結果を表2に示した。
The burning velocity "0" in the table means that the burning did not occur. In addition, PC, MEC and T are used as electrolyte solvent.
Burning of separator paper (Manila paper) was carried out in the same manner as above when mixed solvents containing FEPA at a ratio of 40/50/10 (volume ratio) were used, the electrolyte concentration was 1.0 mol / liter, and the electrolyte was changed variously. The length was measured. The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】表2からも明らかなように、電解質として
LiPF6を用いた場合に特に優れた自己消火性を示し
た。 3.電解液の耐電圧及び電気伝導度の測定 PC、MEC及びTFEPAの混合組成を表3に示すよ
うに変えた混合溶媒を用いて、電解質としてLiPF6
3.8g(25mモル)を各混合溶媒に溶かし、25m
lの電解液(電解質濃度1.0モル/リットル)を調整
した。これら電解液の電気伝導度及び耐電圧を測定し
た。電気伝導度はインピーダンスメータを用い、10k
Hzで測定した。また電解液の耐電圧の測定は、作用極
にグラッシーカーボン、対極に白金、参照極にリチウム
金属を使用した三極式耐電圧測定セルに上記電解液を入
れ、ポテンシオガルバノスタットで10mV/sccで
電位走引し、リチウム金属の電位を基準として酸化分解
電流が0.1mA以上流れなかった範囲を耐電圧とし
た。結果を表3に示した。
As is clear from Table 2, particularly excellent self-extinguishing property was exhibited when LiPF 6 was used as the electrolyte. 3. Measurement of withstand voltage and electric conductivity of electrolytic solution LiPF 6 was used as an electrolyte using a mixed solvent in which the mixed composition of PC, MEC and TFEPA was changed as shown in Table 3.
Dissolve 3.8 g (25 mmol) in each mixed solvent,
An electrolytic solution of 1 (electrolyte concentration 1.0 mol / liter) was prepared. The electric conductivity and withstand voltage of these electrolytes were measured. Use an impedance meter for electrical conductivity of 10k
It was measured at Hz. The withstand voltage of the electrolytic solution was measured by putting the electrolytic solution in a three-electrode type withstand voltage measuring cell using glassy carbon for the working electrode, platinum for the counter electrode, and lithium metal for the reference electrode, and using a potentiogalvanostat for 10 mV / scc. The potential withstand voltage was set to the range in which the oxidative decomposition current did not flow by 0.1 mA or more based on the potential of the lithium metal. The results are shown in Table 3.

【0035】[0035]

【表3】 [Table 3]

【0036】表3からも明らかなように、本発明の電解
液は高い耐電圧と実用レベルの電気伝導性を示した。 4.電池の充放電効率及びサイクル特性の評価 図1に示すような電池寸法が外径20mm、高さ2.5
mmのコイン形非水電解液電池を作成した。負極1には
リチウム金属を、正極2にはLiCoO285重量部に
導電剤としてグラファイト12重量部、結合剤としてフ
ッ素樹脂3重量部を加えた混合物を加圧成形したものを
用いた。これら負極1、正極2を構成する物質は、ポリ
プロピレンから成る多孔質セパレータ3を介してそれぞ
れ負極缶4及び正極缶5に圧着されている。このような
電池の電解液として、PC、MEC及びTFEPAを体
積比で45:45:10の割合で混合した溶媒に六フッ
化リン酸リチウムを1.0モル/lの割合で溶解させた
ものを用い、封口ガスケット6により封入した。
As is clear from Table 3, the electrolytic solution of the present invention exhibited a high withstand voltage and a practical level of electrical conductivity. 4. Evaluation of charging / discharging efficiency and cycle characteristics of the battery As shown in FIG. 1, the battery has an outer diameter of 20 mm and a height of 2.5.
A mm-shaped non-aqueous electrolyte battery was prepared. Lithium metal was used for the negative electrode 1, and for the positive electrode 2, a mixture of 85 parts by weight of LiCoO 2, 12 parts by weight of graphite as a conductive agent, and 3 parts by weight of fluororesin as a binder was pressure-molded. The substances forming the negative electrode 1 and the positive electrode 2 are pressure-bonded to the negative electrode can 4 and the positive electrode can 5, respectively, via the porous separator 3 made of polypropylene. As an electrolytic solution for such a battery, lithium hexafluorophosphate is dissolved in a solvent in which PC, MEC and TFEPA are mixed in a volume ratio of 45:45:10 at a ratio of 1.0 mol / l. Was sealed with a sealing gasket 6.

【0037】このように作成した電池(実施例1)につ
いて、1.0mAの電流で上限電圧を4.2Vとして1
0時間充電し、続いて1.0mAの電流で3.0Vとな
るまで放電した時の充放電効率を測定した。また、この
ような充放電を所定サイクル繰返し、充放電効率の変化
を観察した。図2はその結果を示すもので、充放電効率
をサイクル数に対してプロットしたものである。
Regarding the battery thus prepared (Example 1), the current was 1.0 mA and the upper limit voltage was 4.2 V.
The charging / discharging efficiency was measured when the battery was charged for 0 hours and then discharged at a current of 1.0 mA to 3.0 V. Further, such charging / discharging was repeated for a predetermined cycle, and changes in charging / discharging efficiency were observed. FIG. 2 shows the result, which is a plot of charge / discharge efficiency against the number of cycles.

【0038】また実施例2として、電解液溶媒にPC、
MEC及びTCEPAを体積比で45:45:10の混
合溶媒を用い、比較例として電解液溶媒にPC、MEC
及びTEPAの混合溶媒(体積比で45:45:10)
を用い、その他は上述と同様に作成したコイン形電池に
ついて、同様の充放電効率を測定した。図2からも明ら
かなように、本実施例の電解液溶媒を用いた電池は、優
れたサイクル特性を示した。
In Example 2, PC was used as the electrolyte solvent.
A mixed solvent of MEC and TCEPA in a volume ratio of 45:45:10 was used, and as a comparative example, PC and MEC were used as electrolyte solvent.
And TEPA mixed solvent (45:45:10 by volume)
The same charge-discharge efficiency was measured for the coin-shaped battery prepared in the same manner as described above. As is clear from FIG. 2, the battery using the electrolytic solution solvent of this example exhibited excellent cycle characteristics.

【0039】[0039]

【発明の効果】以上の実施例からも明らかなように、本
発明によれば電解液溶媒として特定のハロゲン置換リン
酸エステル化合物を含む有機溶媒を用いることにより、
リチウム金属との反応性が低く自己消火作用を示し、実
用レベルの電導度を持つ非水電解液を提供することがで
きる。特に電解液溶媒として特定のハロゲン置換リン酸
エステル化合物と特定のエステル化合物との混合溶媒と
することにより、低粘度で低温特性の優れた電解液を得
ることができる。また本発明によれば、このような非水
電解液を電解液として用いることにより、高電圧を発生
することができ、充放電性能等の電池性能が優れた非水
二次電池を提供することができる。
As is apparent from the above examples, according to the present invention, the use of an organic solvent containing a specific halogen-substituted phosphate compound as the electrolyte solvent,
It is possible to provide a non-aqueous electrolytic solution which has a low reactivity with lithium metal, exhibits a self-extinguishing action, and has a practical level of electrical conductivity. In particular, by using a mixed solvent of a specific halogen-substituted phosphate ester compound and a specific ester compound as the electrolytic solution solvent, an electrolytic solution having low viscosity and excellent low temperature characteristics can be obtained. Further, according to the present invention, by using such a non-aqueous electrolytic solution as an electrolytic solution, it is possible to generate a high voltage, to provide a non-aqueous secondary battery excellent in battery performance such as charge and discharge performance. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の非水電解液電池の1実施例を示す概
略断面図。
FIG. 1 is a schematic cross-sectional view showing one embodiment of a non-aqueous electrolyte battery of the present invention.

【図2】 本発明の非水電解液を用いた電池の充放電サ
イクル特性を示す図。
FIG. 2 is a diagram showing charge / discharge cycle characteristics of a battery using the non-aqueous electrolyte solution of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・負極 2・・・・・・正極 1 ... Negative electrode 2 ... Positive electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 茂 東京都品川区北品川六丁目7番35号 ソニ ー株式会社内 (72)発明者 成瀬 義明 東京都品川区北品川六丁目7番35号 ソニ ー株式会社内 (72)発明者 小丸 篤雄 東京都渋谷区渋谷2丁目22番3号 株式会 社ソニー・エナジーテック内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Shigeru Fujita 6-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation (72) Yoshiaki Naruse 6-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Corporation (72) Inventor Atsushi Komaru 2-32 Shibuya, Shibuya-ku, Tokyo Sony Energy Tech Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電解質としてリチウム塩を含む非水電解
液であって、電解質溶媒は、一般式[1]で表されるリ
ン酸エステル化合物を含有することを特徴とする非水電
解液。 【化1】 (R1、R2、R3は同一あるいは異なっていてもよく、
それぞれアルキル基またはハロゲン原子置換アルキル基
を表し、R1、R2、R3の少なくとも1つはハロゲン原
子置換アルキル基を表す。)
1. A non-aqueous electrolytic solution containing a lithium salt as an electrolyte, wherein the electrolytic solvent contains a phosphoric acid ester compound represented by the general formula [1]. Embedded image (R 1 , R 2 and R 3 may be the same or different,
Each represents an alkyl group or a halogen atom-substituted alkyl group, and at least one of R 1 , R 2 , and R 3 represents a halogen atom-substituted alkyl group. )
【請求項2】 請求項1記載の一般式[1]において、
ハロゲン原子置換アルキル基はフッ素原子置換アルキル
基であることを特徴とする請求項1記載の非水電解液。
2. In the general formula [1] according to claim 1,
The non-aqueous electrolyte according to claim 1, wherein the halogen atom-substituted alkyl group is a fluorine atom-substituted alkyl group.
【請求項3】 請求項1記載の一般式[1]において、
ハロゲン原子置換アルキル基は炭素数が2個ないし4個
であることを特徴とする請求項1又は2記載の非水電解
液。
3. In the general formula [1] according to claim 1,
The non-aqueous electrolyte according to claim 1 or 2, wherein the halogen atom-substituted alkyl group has 2 to 4 carbon atoms.
【請求項4】 前記電解質溶媒として、一般式[2]で
表される鎖状エステル化合物及び/又は環状エステル化
合物を含有することを特徴とする請求項1ないし3のい
ずれか1項記載の非水電解液。 【化2】 (式中、R4はメチル基、エチル基、プロピル基、メト
キシ基あるいはエトキシ基を表し、R5は炭素数1から
3個の鎖状あるいは分枝状アルキル基を表す。)
4. The non-electrolytic solvent according to claim 1, wherein the electrolyte solvent contains a chain ester compound and / or a cyclic ester compound represented by the general formula [2]. Water electrolyte. Embedded image (In the formula, R 4 represents a methyl group, an ethyl group, a propyl group, a methoxy group or an ethoxy group, and R 5 represents a chain or branched alkyl group having 1 to 3 carbon atoms.)
【請求項5】 前記リン酸エステル化合物の含有量が電
解液溶媒全体の1〜20体積%であることを特徴とする
請求項1ないし4のいずれか1項記載の非水電解液。
5. The non-aqueous electrolyte solution according to claim 1, wherein the content of the phosphoric acid ester compound is 1 to 20% by volume of the entire electrolyte solution solvent.
【請求項6】 前記電解質としてLiPF6を含むこと
を特徴とする請求項1ないし5のいずれか1項記載の非
水電解液。
6. The non-aqueous electrolyte solution according to claim 1, which contains LiPF 6 as the electrolyte.
【請求項7】 電解質の含有量が、0.1〜3.0モル
/リットルの範囲であることを特徴とする請求項1ない
し6のいずれか1項記載の非水電解液。
7. The non-aqueous electrolyte solution according to claim 1, wherein the content of the electrolyte is in the range of 0.1 to 3.0 mol / liter.
【請求項8】 電解液として請求項1ないし7のいずれ
か1項記載の非水電解液を含む非水電解液電池。
8. A non-aqueous electrolyte battery containing the non-aqueous electrolyte according to claim 1 as an electrolyte.
【請求項9】 負極活物質として金属リチウム、リチウ
ム合金及びリチウムイオンのドープ・脱ドープが可能な
炭素材料から選ばれる材料を含む負極と、正極活物質と
してリチウムと遷移金属の複合酸化物を含む正極とを有
することを特徴とする請求項8記載の非水電解液電池。
9. A negative electrode containing a material selected from metallic lithium, a lithium alloy, and a carbon material capable of doping / dedoping lithium ions as a negative electrode active material, and a composite oxide of lithium and a transition metal as a positive electrode active material. The non-aqueous electrolyte battery according to claim 8, further comprising a positive electrode.
JP22166394A 1994-07-07 1994-09-16 Non-aqueous electrolyte and non-aqueous electrolyte battery Expired - Lifetime JP3821495B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP22166394A JP3821495B2 (en) 1994-09-16 1994-09-16 Non-aqueous electrolyte and non-aqueous electrolyte battery
DE69508671T DE69508671T2 (en) 1994-07-07 1995-07-07 Non-aqueous electrolyte solutions and secondary cells containing them
EP97119010A EP0825664B1 (en) 1994-07-07 1995-07-07 Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same
DE69531901T DE69531901T2 (en) 1994-07-07 1995-07-07 Non-aqueous electrolyte solutions and cells containing these electrolyte solutions
CA002153478A CA2153478C (en) 1994-07-07 1995-07-07 Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same
EP95304775A EP0696077B1 (en) 1994-07-07 1995-07-07 Non-aqueous electrolyte solutions and secondary cells comprising the same
US08/499,393 US5580684A (en) 1994-07-07 1995-07-07 Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22166394A JP3821495B2 (en) 1994-09-16 1994-09-16 Non-aqueous electrolyte and non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0888023A true JPH0888023A (en) 1996-04-02
JP3821495B2 JP3821495B2 (en) 2006-09-13

Family

ID=16770316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22166394A Expired - Lifetime JP3821495B2 (en) 1994-07-07 1994-09-16 Non-aqueous electrolyte and non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3821495B2 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210835B1 (en) 1998-02-20 2001-04-03 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001516492A (en) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル Non-combustible / self-extinguishing electrolyte for batteries
JP2002203598A (en) * 2001-01-04 2002-07-19 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution for lithium secondary battery
US6800400B2 (en) 2001-04-19 2004-10-05 Sanyo Electric Co., Ltd. Lithium secondary battery
JP2005228683A (en) * 2004-02-16 2005-08-25 Yuasa Corp Non-aqueous electrolyte, fire retardant therefor, and battery thereof
US6949317B2 (en) 2000-12-06 2005-09-27 Nisshinbo Industries, Inc. Polymer gel electrolyte and secondary cell
JP2007141760A (en) * 2005-11-22 2007-06-07 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
WO2009142251A1 (en) * 2008-05-19 2009-11-26 日本電気株式会社 Secondary battery
JP2009289557A (en) * 2008-05-28 2009-12-10 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
WO2010030008A1 (en) 2008-09-11 2010-03-18 日本電気株式会社 Secondary battery
US7851090B2 (en) 2005-08-24 2010-12-14 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP2011049157A (en) * 2009-07-27 2011-03-10 Tosoh F-Tech Inc High purity fluorine-containing phosphate for nonaqueous electrolyte
WO2011030686A1 (en) * 2009-09-09 2011-03-17 日本電気株式会社 Secondary battery
JP2011113889A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2011113822A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
US8062796B2 (en) 2005-08-24 2011-11-22 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
WO2012046514A1 (en) 2010-10-05 2012-04-12 新神戸電機株式会社 Lithium-ion battery
KR20120047898A (en) 2009-08-04 2012-05-14 토소 에프테크 인코퍼레이티드 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
WO2012118179A1 (en) 2011-03-03 2012-09-07 Necエナジーデバイス株式会社 Lithium ion battery
JP2012238524A (en) * 2011-05-13 2012-12-06 Tosoh F-Tech Inc METHOD FOR STABILIZING LiPF6, AND NONAQUEOUS ELECTROLYTIC SOLUTION FOR NONAQUEOUS SECONDARY BATTERY
JP2013020713A (en) * 2011-07-07 2013-01-31 Tosoh F-Tech Inc Non-flammable electrolyte
WO2013145669A1 (en) 2012-03-30 2013-10-03 東ソー・エフテック株式会社 Fluorine-containing phosphate ester-amide, and flame retardant resin, flame retardant liquid and flame retardant solvent for oranic synthesis containing same
JP2013239451A (en) * 2013-07-12 2013-11-28 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2014053240A (en) * 2012-09-10 2014-03-20 Toyota Motor Corp Electrolytic solution for nonaqueous lithium secondary battery and nonaqueous lithium secondary battery
JPWO2012077712A1 (en) * 2010-12-07 2014-05-22 日本電気株式会社 Lithium secondary battery
WO2015098471A1 (en) 2013-12-25 2015-07-02 旭化成株式会社 Composition for addition to electrolyte solutions containing silyl group-containing compound, electrolyte solution for nonaqueous electricity storage devices containing said composition, and lithium ion secondary battery containing said electrolyte solution
US9293787B2 (en) 2010-09-22 2016-03-22 Fujifilm Corporation Nonaqueous electrolyte for secondary battery and lithium secondary battery
WO2016056493A1 (en) * 2014-10-08 2016-04-14 住友電気工業株式会社 Electrolyte solution for sodium ion secondary battery, and sodium ion secondary battery
CN112786968A (en) * 2021-02-02 2021-05-11 中国科学院过程工程研究所 Phosphate-based high-voltage flame-retardant electrolyte
WO2023079988A1 (en) 2021-11-05 2023-05-11 国立大学法人京都大学 Flame-retardant non-aqueous electrolytic solution and secondary battery using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312073B2 (en) 2010-02-10 2016-04-12 Nec Energy Devices, Ltd. Nonaqueous electrolyte solution, and lithium ion secondary battery having the same
JP5975523B2 (en) 2010-12-27 2016-08-23 Necエナジーデバイス株式会社 Gel electrolyte for lithium ion secondary battery and lithium ion secondary battery
BR112014030119A2 (en) 2012-06-05 2017-06-27 Nec Corp lithium secondary battery
CN104471780B (en) 2012-07-17 2017-05-24 日本电气株式会社 Lithium secondary battery
WO2014080871A1 (en) 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001516492A (en) * 1996-05-24 2001-09-25 エス・アール・アイ・インターナシヨナル Non-combustible / self-extinguishing electrolyte for batteries
US6210835B1 (en) 1998-02-20 2001-04-03 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
US6696202B2 (en) 1998-02-20 2004-02-24 Hitachi, Ltd. Electrical appliance using lithium secondary batteries
EP0938151A3 (en) * 1998-02-20 2003-08-20 Hitachi, Ltd. Lithium secondary battery and liquid electrolyte for the battery
JP2001102088A (en) * 1999-07-29 2001-04-13 Bridgestone Corp Non-aqueous electrolyte cell
JP2001217005A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP4666540B2 (en) * 1999-11-25 2011-04-06 株式会社ブリヂストン Non-aqueous electrolyte secondary battery
JP2001217007A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
JP2001217006A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Non-aqueous electrolyte secondary battery
US7088572B2 (en) 2000-12-06 2006-08-08 Nisshinbo Industries, Inc. Polymer gel electrolyte, secondary cell, and electrical double-layer capacitor
US6949317B2 (en) 2000-12-06 2005-09-27 Nisshinbo Industries, Inc. Polymer gel electrolyte and secondary cell
JP2002203598A (en) * 2001-01-04 2002-07-19 Mitsubishi Chemicals Corp Non-aqueous electrolytic solution for lithium secondary battery
US6800400B2 (en) 2001-04-19 2004-10-05 Sanyo Electric Co., Ltd. Lithium secondary battery
US7309548B2 (en) 2001-04-19 2007-12-18 Sanyo Electric Co., Ltd Lithium secondary battery
JP2005228683A (en) * 2004-02-16 2005-08-25 Yuasa Corp Non-aqueous electrolyte, fire retardant therefor, and battery thereof
JP4537726B2 (en) * 2004-02-16 2010-09-08 株式会社Gsユアサ Non-aqueous electrolyte flame retardant, non-aqueous electrolyte and non-aqueous electrolyte battery
US8062796B2 (en) 2005-08-24 2011-11-22 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
US7851090B2 (en) 2005-08-24 2010-12-14 Samsung Sdi Co., Ltd. Organic electrolytic solution and lithium battery using the same
JP2007141760A (en) * 2005-11-22 2007-06-07 Gs Yuasa Corporation:Kk Nonaqueous electrolyte battery
JPWO2009142251A1 (en) * 2008-05-19 2011-09-29 日本電気株式会社 Secondary battery
WO2009142251A1 (en) * 2008-05-19 2009-11-26 日本電気株式会社 Secondary battery
JP5645260B2 (en) * 2008-05-19 2014-12-24 日本電気株式会社 Secondary battery
JP2009289557A (en) * 2008-05-28 2009-12-10 Gs Yuasa Corporation Nonaqueous electrolyte secondary battery
WO2010030008A1 (en) 2008-09-11 2010-03-18 日本電気株式会社 Secondary battery
KR101351671B1 (en) * 2008-09-11 2014-01-14 닛본 덴끼 가부시끼가이샤 Secondary battery
JP5557337B2 (en) * 2008-09-11 2014-07-23 日本電気株式会社 Secondary battery
JP2011049157A (en) * 2009-07-27 2011-03-10 Tosoh F-Tech Inc High purity fluorine-containing phosphate for nonaqueous electrolyte
KR20120047898A (en) 2009-08-04 2012-05-14 토소 에프테크 인코퍼레이티드 Asymmetric and/or low-symmetry fluorine-containing phosphate ester for use in a nonaqueous electrolyte solution
JP5716667B2 (en) * 2009-09-09 2015-05-13 日本電気株式会社 Secondary battery
WO2011030686A1 (en) * 2009-09-09 2011-03-17 日本電気株式会社 Secondary battery
JP2011113889A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2011113822A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
US9293787B2 (en) 2010-09-22 2016-03-22 Fujifilm Corporation Nonaqueous electrolyte for secondary battery and lithium secondary battery
WO2012046514A1 (en) 2010-10-05 2012-04-12 新神戸電機株式会社 Lithium-ion battery
JPWO2012077712A1 (en) * 2010-12-07 2014-05-22 日本電気株式会社 Lithium secondary battery
JP6138490B2 (en) * 2010-12-07 2017-05-31 日本電気株式会社 Lithium secondary battery
US9620812B2 (en) 2011-03-03 2017-04-11 Nec Energy Devices, Ltd. Lithium ion battery
WO2012118179A1 (en) 2011-03-03 2012-09-07 Necエナジーデバイス株式会社 Lithium ion battery
JP2012238524A (en) * 2011-05-13 2012-12-06 Tosoh F-Tech Inc METHOD FOR STABILIZING LiPF6, AND NONAQUEOUS ELECTROLYTIC SOLUTION FOR NONAQUEOUS SECONDARY BATTERY
JP2013020713A (en) * 2011-07-07 2013-01-31 Tosoh F-Tech Inc Non-flammable electrolyte
KR20140145601A (en) 2012-03-30 2014-12-23 토소 에프테크 인코퍼레이티드 Fluorine-containing phosphate ester-amide, and flame retardant resin, flame retardant liquid and flame retardant solvent for oranic synthesis containing same
US9879037B2 (en) 2012-03-30 2018-01-30 Tosoh F-Tech, Inc. Fluorine-containing phosphate ester-amide, and flame retardant resin, flame retardant liquid and flame retardant solvent for organic synthesis containing same
WO2013145669A1 (en) 2012-03-30 2013-10-03 東ソー・エフテック株式会社 Fluorine-containing phosphate ester-amide, and flame retardant resin, flame retardant liquid and flame retardant solvent for oranic synthesis containing same
JP2014053240A (en) * 2012-09-10 2014-03-20 Toyota Motor Corp Electrolytic solution for nonaqueous lithium secondary battery and nonaqueous lithium secondary battery
JP2013239451A (en) * 2013-07-12 2013-11-28 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2015098471A1 (en) 2013-12-25 2015-07-02 旭化成株式会社 Composition for addition to electrolyte solutions containing silyl group-containing compound, electrolyte solution for nonaqueous electricity storage devices containing said composition, and lithium ion secondary battery containing said electrolyte solution
CN106797054A (en) * 2014-10-08 2017-05-31 住友电气工业株式会社 Sodium ion secondary battery electrolyte and sodium ion secondary battery
JP2016076424A (en) * 2014-10-08 2016-05-12 住友電気工業株式会社 Electrolyte for sodium ion secondary battery, and sodium ion secondary battery
WO2016056493A1 (en) * 2014-10-08 2016-04-14 住友電気工業株式会社 Electrolyte solution for sodium ion secondary battery, and sodium ion secondary battery
CN106797054B (en) * 2014-10-08 2019-09-03 住友电气工业株式会社 Sodium ion secondary battery electrolyte and sodium ion secondary battery
CN112786968A (en) * 2021-02-02 2021-05-11 中国科学院过程工程研究所 Phosphate-based high-voltage flame-retardant electrolyte
WO2023079988A1 (en) 2021-11-05 2023-05-11 国立大学法人京都大学 Flame-retardant non-aqueous electrolytic solution and secondary battery using same
KR20240055899A (en) 2021-11-05 2024-04-29 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Flame-retardant non-aqueous electrolyte and secondary battery using the same

Also Published As

Publication number Publication date
JP3821495B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP3821495B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
EP0825664B1 (en) Non-aqueous electrolytic solutions and non-aqueous electrolyte cells comprising the same
KR100644850B1 (en) Non-Aqueous Electrolyte Secondary Cell
JP4187959B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4726282B2 (en) Non-aqueous electrolyte and secondary battery using the same
EP1798792B1 (en) Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same
JP4463333B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
KR101515316B1 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
JP4557381B2 (en) Non-aqueous electrolyte and secondary battery using the same
KR101766568B1 (en) Nonaqueous electrolyte solution for batteries, novel compound, polymer electrolyte, and lithium secondary battery
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
KR20010031892A (en) Nonaqueous electrolytic liquid and secondary battery with nonaqueous electrolytic liquid
JP2002158035A (en) Non-aqueous electrolyte and secondary battery using the same
JP3369310B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP4565707B2 (en) Nonaqueous electrolyte and secondary battery using the same
JPH10189039A (en) Nonaqueous electrolyte and nonaqueous electrolytic secondary battery
JP3294446B2 (en) Non-aqueous electrolyte
JP2002343426A (en) Nonaqueous electrolyte and secondary battery using the same
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JPH0963644A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP3695947B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
KR20050091753A (en) Additive for nonaqueous electrolytic solution of secondary battery and nonaqueous electrolyte secondary battery
JP3986216B2 (en) Non-aqueous electrolyte and secondary battery using the same
JP4179521B2 (en) Flame retardant electrolyte and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040615

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term