JPH0887333A - Servo control method - Google Patents

Servo control method

Info

Publication number
JPH0887333A
JPH0887333A JP24864494A JP24864494A JPH0887333A JP H0887333 A JPH0887333 A JP H0887333A JP 24864494 A JP24864494 A JP 24864494A JP 24864494 A JP24864494 A JP 24864494A JP H0887333 A JPH0887333 A JP H0887333A
Authority
JP
Japan
Prior art keywords
time constant
integration time
cutting direction
position command
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24864494A
Other languages
Japanese (ja)
Other versions
JP3271440B2 (en
Inventor
Shigenori Takayama
茂典 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP24864494A priority Critical patent/JP3271440B2/en
Publication of JPH0887333A publication Critical patent/JPH0887333A/en
Application granted granted Critical
Publication of JP3271440B2 publication Critical patent/JP3271440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE: To prevent torque, generated when a position command overshoots, from oscillating. CONSTITUTION: This servo control method is provided with a position loop gain 8 and, a speed loop gain 10 and drives the feed shaft of a machine tool. This method after removing a positioning error due to a backlash predicts a cutting direction inversion period from at least a position command 25 in consideration of response delay, decreases the integration time constant of an integrator 9 at the time of cutting direction inversion, and puts the integration time constant back to the original value when a torque command reaches a specific value. After the integration time constant is decreased on detecting the inversion of a cutting direction, compensating operation is canceled once the position command 25 is inverted again and the integration time constant is put back to the original value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、工作機械のテーブルを
サーボモータで駆動する際発生する真円突起(象限突起
ともいう)が生じないようなサーボモータの制御方法に
係り、特に位置指令がオーバシュートする場合の制御方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a servomotor control method in which a perfect circular protrusion (also referred to as a quadrant protrusion) generated when a table of a machine tool is driven by a servomotor is not generated, and in particular, a position command The present invention relates to a control method when overshooting.

【従来の技術】従来、工作機械においてテーブルをボー
ルネジを介して駆動するサーボモータの制御方法は、図
7に示すものが知られている。図において、1は工作機
の移動テーブル、2はサーボモータ、3はパルスジェネ
レータ、4はNC装置、5は逆伝達関数補償器、6はパ
ルスカウンタ、7はF/V変換器、8は位置ループゲイ
ン、9は積分器、10は速度ループゲイン、11は電流
アンプ、12、13は積分ゲイン、14は切替スイッ
チ、15は積分時定数を切り替える補償器である。パル
スカウンタ6はパルスジェネレータ3の出力パルス21
をカウントし、サーボモータ2の位置フィードバック2
2を出力する。F/V変換器7はパルスジェネレータ3
の出力パルス21をF/V変換し、サーボモータ2の速
度フィードバック23を出力する。NC装置4より出力
される位置指令値24は逆伝達関数補償器5に入力さ
れ、その出力である位置指令値25と位置フィードバッ
ク22との偏差に位置ループゲイン8を掛けて速度目標
値26を得る。積分器9は速度指令値26と速度フィー
ドバック23の偏差に積分時定数の逆数である積分ゲイ
ン12または13を掛けた値を積算する。積分器9に積
算された値27と速度フィードバック23の偏差に速度
ループゲイン10を掛けてトルク指令値28を得る。電
流アンプ11はトルク指令値28に応じた電流指令29
をサーボモータ2に出力する。補償器15は、スイッチ
14を切り替えて、切削方向反転時に摩擦により発生す
る象限突起を補償する。図8は補償器15で行われる処
理をフローチャートで表したものである。以下に、その
処理内容を説明する。 (S1)補償器15はNCより出力される位置指令を監
視し、位置指令と位置出力の遅れを考慮して、象現の切
り替わり時期を予測する。 (S2)補償器15は予測された切削方向反転時期を判
断する。 (S3)切削方向反転時期にきたら、積分時定数13を
積分時定数12に切り替える。 (S4)補償器15は図8に示したトルク設定値(静止
摩擦担当)と現在出力しているトルク指令28を比較す
る。 (S5)補償器15は現在のトルク指令28がトルク設
定値に達したら、積分時定数12をもとの積分時定数1
3に戻す。
2. Description of the Related Art Conventionally, as a method of controlling a servo motor for driving a table via a ball screw in a machine tool, a method shown in FIG. 7 is known. In the figure, 1 is a machine tool moving table, 2 is a servo motor, 3 is a pulse generator, 4 is an NC device, 5 is an inverse transfer function compensator, 6 is a pulse counter, 7 is an F / V converter, and 8 is a position. Loop gain, 9 is an integrator, 10 is a speed loop gain, 11 is a current amplifier, 12 and 13 are integral gains, 14 is a changeover switch, and 15 is a compensator for switching the integration time constant. The pulse counter 6 outputs the output pulse 21 of the pulse generator 3.
The position feedback 2 of the servo motor 2
2 is output. The F / V converter 7 is the pulse generator 3
The output pulse 21 of is converted to F / V, and the speed feedback 23 of the servo motor 2 is output. The position command value 24 output from the NC device 4 is input to the inverse transfer function compensator 5, and the deviation between the position command value 25 that is the output and the position feedback 22 is multiplied by the position loop gain 8 to obtain the speed target value 26. obtain. The integrator 9 integrates the value obtained by multiplying the deviation between the speed command value 26 and the speed feedback 23 by the integral gain 12 or 13 which is the reciprocal of the integral time constant. A torque command value 28 is obtained by multiplying the difference between the value 27 accumulated in the integrator 9 and the speed feedback 23 by the speed loop gain 10. The current amplifier 11 uses the current command 29 corresponding to the torque command value 28.
Is output to the servo motor 2. The compensator 15 switches the switch 14 to compensate for a quadrant protrusion generated by friction when the cutting direction is reversed. FIG. 8 is a flowchart showing the processing performed by the compensator 15. The processing content will be described below. (S1) The compensator 15 monitors the position command output from the NC, and predicts the switching timing of the quadrangle in consideration of the delay between the position command and the position output. (S2) The compensator 15 determines the predicted cutting direction reversal timing. (S3) When the cutting direction reversal timing comes, the integration time constant 13 is switched to the integration time constant 12. (S4) The compensator 15 compares the torque setting value (in charge of static friction) shown in FIG. 8 with the torque command 28 currently output. (S5) When the current torque command 28 reaches the torque setting value, the compensator 15 sets the integration time constant 12 to the original integration time constant 1
Return to 3.

【0003】[0003]

【発明が解決しようとする課題】ところが、従来の制御
方法では、サーボ系の追従誤差を軽減するために、図7
の5のように逆伝達関数補償5を行うと、図3の位置指
令24が図4のようにオーバシュート(P1 −P2 −P
3 の変化過程)して位置制御系へ払い出される場合があ
る(指令25)。位置指令25が図4のように払い出さ
れた場合、従来の補償器では切削方向の反転(P1 点)
を検出し積分時定数を小さくした後、位置指令が再度反
転(P2 点)するので、トルク指令が所定の値に達する
前に、所定の値に対し反対方向に増加していくため、補
償動作を終了することができず、積分時定数が小さい状
態のままとなり、図5のように、サーボ系の不安定によ
る発振等の問題が発生していた。
However, in the conventional control method, in order to reduce the tracking error of the servo system, as shown in FIG.
When the inverse transfer function compensation 5 is performed as shown in No. 5, the position command 24 in FIG. 3 causes the overshoot (P 1 -P 2 -P 2
There is a case where it is paid out to the position control system after the change process of 3 ) (command 25). When the position command 25 is delivered as shown in Fig. 4, the conventional compensator reverses the cutting direction (P 1 point).
Is detected and the integration time constant is reduced, the position command is inverted (point P 2 ) again, so the torque command increases in the opposite direction to the specified value before reaching the specified value. The operation could not be terminated and the integration time constant remained small, causing problems such as oscillation due to instability of the servo system as shown in FIG.

【0004】[0004]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、位置ループゲインと速度ループゲインを
備え、工作機械の送り軸を駆動するサーボ制御方法であ
って、バックラッシュから生ずる位置決め誤差を除去し
たのち、少なくとも位置指令から応答遅れを考慮して切
削方向反転時期を予測し、切削方向反転時に前記積分器
の積分時定数を小さくするとともに、トルク指令が所定
の値に達した後に前記積分時定数をもとにもどすように
したサーボ制御方法において、切削方向の反転を検出し
積分時定数を小さくした後、位置指令が再度反転すると
補償動作をキャンセルして通常の積分時定数にもどすよ
うにしたものである。
In order to solve the above problems, the present invention is a servo control method for driving a feed shaft of a machine tool, the servo control method comprising a position loop gain and a velocity loop gain. After removing the error, predict the cutting direction reversal timing at least from the position command in consideration of the response delay, reduce the integration time constant of the integrator when reversing the cutting direction, and after the torque command reaches a predetermined value. In the servo control method that restores the integration time constant to the original value, after detecting the reversal of the cutting direction and reducing the integration time constant, when the position command is reversed again, the compensation operation is canceled and the normal integration time constant is restored. It was made to return.

【0005】[0005]

【作用】上記手段により、図1のような逆伝達関数補償
5によって、位置指令がオーバーシュートする制御方法
においても、切削方向の反転を検出し積分時定数を小さ
くした後、位置指令が再度反転すると、補償動作をキャ
ンセルし通常の積分時定数にもどすため、発振等の問題
が発生しない。
By the above means, even in the control method in which the position command overshoots by the inverse transfer function compensation 5 as shown in FIG. 1, the reversal of the position command is detected again after detecting the reversal of the cutting direction and reducing the integration time constant. Then, since the compensation operation is canceled and the normal integration time constant is restored, problems such as oscillation do not occur.

【0006】[0006]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。図1は、本発明のサーボモータの制御方法である。
図7の制御ブロックに反転検出器30を加えたものであ
る。その他の符号はすべて図7と同じである。図2は、
補償器15と反転検出器30で行われる処理を示すフロ
ーチャートである。以下にその処理内容を説明する。 (S1)補償器15はNCより出力される位置指令25
を監視し、位置指令と位置出力の遅れを考慮して、象現
の切り替わり時期を予測する。 (S2)補償器15は予測された切削方向反転時期を判
断する。 (S3)切削方向反転時期にきたら、積分時定数13を
積分時定数12に切り替える。 (S41)補償器15は図6に示したトルク設定値と現
在出力しているトルク指令を比較する。 (S42)反転検出器30は位置指令が再度反転した場
合、反転検出後、強制的にS5に移行する。 (S5)補償器15は現在のトルク指令28がトルク設
定値に達したら積分時定数12をもとの積分時定数13
に戻す。 以上の処理を行うことにより、図1の実施例では、位置
指令がオーバーシュートする制御方法においても、図6
のような発振等の問題が発生しない。図1の実施例はI
・P型制御の例を示したが、PI型制御においても本発
明は有効である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a method for controlling a servo motor according to the present invention.
The inversion detector 30 is added to the control block of FIG. All other reference numerals are the same as in FIG. 7. Figure 2
6 is a flowchart showing processing performed by the compensator 15 and the inversion detector 30. The processing content will be described below. (S1) The compensator 15 outputs the position command 25 output from the NC.
And predicts the switching time of the quadrant by considering the delay of the position command and the position output. (S2) The compensator 15 determines the predicted cutting direction reversal timing. (S3) When the cutting direction reversal timing comes, the integration time constant 13 is switched to the integration time constant 12. (S41) The compensator 15 compares the torque setting value shown in FIG. 6 with the currently output torque command. (S42) When the position command is reversed again, the reversal detector 30 forcibly shifts to S5 after the reversal is detected. (S5) When the current torque command 28 reaches the torque set value, the compensator 15 uses the integration time constant 12 as the original integration time constant 13
Return to. By performing the above processing, in the embodiment of FIG. 1, even in the control method in which the position command overshoots, FIG.
Problems such as oscillation do not occur. The embodiment of FIG.
Although an example of P-type control is shown, the present invention is also effective for PI-type control.

【0007】[0007]

【発明の効果】以上述べたように、本発明によれば、逆
伝達関数補償によって位置指令がオーバーシュートする
場合においても、補償中の位置指令の反転を検出し積分
時定数をもとの値にもどし強制的に補償動作を終了させ
ることにより、発振等の問題を発生させず正常に補償動
作を終了させることができる。
As described above, according to the present invention, even when the position command overshoots due to the inverse transfer function compensation, the reversal of the position command during compensation is detected and the integral time constant is set to the original value. By forcibly ending the compensation operation, the compensation operation can be normally terminated without causing a problem such as oscillation.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を示すブロック図FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】 本発明の補償器、反転検出器の処理を示すフ
ローチャート
FIG. 2 is a flowchart showing processing of a compensator and an inversion detector according to the present invention.

【図3】 逆伝達関数補償器への位置入力FIG. 3 Position input to inverse transfer function compensator

【図4】 位置指令がオーバーシュートする状態を示す
FIG. 4 is a diagram showing a state in which a position command overshoots.

【図5】 位置指令がオーバーシュートする場合の、従
来技術によるトルク波形
FIG. 5 is a torque waveform according to the related art when the position command overshoots.

【図6】 位置指令がオーバーシュートする場合の、本
発明によるトルク波形
FIG. 6 is a torque waveform according to the present invention when the position command overshoots.

【図7】 従来技術の例を示すブロック図FIG. 7 is a block diagram showing an example of a conventional technique.

【図8】 従来技術の補償器の処理を示すフローチャー
FIG. 8 is a flowchart showing processing of a compensator according to the related art.

【符号の説明】[Explanation of symbols]

1 工作機の移動テーブル 2 サーボモータ 3 パルスジェネレータ 4 NC装置 5 逆伝達関数補償器 6 パルスカウンタ 7 F/V変換器 8 位置ループゲイン 9 積分器 10 速度ループゲイン 11、12 積分ゲイン 11 電流アンプ 14 切替スイッチ 15 積分時定数を切り替える補償器 30 反転検出器 1 Machine Tool Moving Table 2 Servo Motor 3 Pulse Generator 4 NC Device 5 Inverse Transfer Function Compensator 6 Pulse Counter 7 F / V Converter 8 Position Loop Gain 9 Integrator 10 Speed Loop Gain 11, 12 Integral Gain 11 Current Amplifier 14 Changeover switch 15 Compensator for switching integration time constant 30 Inversion detector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G05B 13/02 B 9131−3H 17/02 7531−3H // G05B 19/404 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G05B 13/02 B 9131-3H 17/02 7531-3H // G05B 19/404

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 位置ループゲインと速度ループゲインを
備え、工作機械の送り軸を駆動するサーボ制御方法であ
って、バックラッシュから生ずる位置決め誤差を除去し
たのち、少なくとも位置指令から応答遅れを考慮して切
削方向反転時期を予測し、切削方向反転時に前記積分器
の積分時定数を小さくするとともに、トルク指令が所定
の値に達した後に前記積分時定数をもとにもどすように
したサーボ制御方法において、 切削方向の反転を検出し積分時定数を小さくした後、位
置指令が再度反転すると補償動作をキャンセルして通常
の積分時定数にもどすことを特徴とするサーボ制御方
法。
1. A servo control method for driving a feed shaft of a machine tool, comprising a position loop gain and a velocity loop gain, wherein after removing a positioning error caused by a backlash, at least a response delay is considered from a position command. A servo control method for predicting the cutting direction reversal timing, reducing the integration time constant of the integrator when the cutting direction is reversed, and restoring the integration time constant after the torque command reaches a predetermined value. In (2), the servo control method is characterized in that after detecting the reversal of the cutting direction and reducing the integration time constant, the compensation operation is canceled and the normal integration time constant is restored when the position command reverses again.
JP24864494A 1994-09-16 1994-09-16 Servo control method Expired - Fee Related JP3271440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24864494A JP3271440B2 (en) 1994-09-16 1994-09-16 Servo control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24864494A JP3271440B2 (en) 1994-09-16 1994-09-16 Servo control method

Publications (2)

Publication Number Publication Date
JPH0887333A true JPH0887333A (en) 1996-04-02
JP3271440B2 JP3271440B2 (en) 2002-04-02

Family

ID=17181189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24864494A Expired - Fee Related JP3271440B2 (en) 1994-09-16 1994-09-16 Servo control method

Country Status (1)

Country Link
JP (1) JP3271440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016015A (en) * 2006-06-06 2008-01-24 Optex Co Ltd Sensitivity selective type intrusion detecting system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011611A (en) 2005-06-29 2007-01-18 Ricoh Co Ltd Positioning control device, positioning control method, program for causing computer to execute the method, image forming apparatus, and recording medium
JP4532363B2 (en) 2005-07-07 2010-08-25 株式会社リコー DIGITAL SPEED CONTROL DEVICE, DIGITAL MOTOR CONTROL DEVICE, PAPER CONVEYING DEVICE, DIGITAL SPEED CONTROL METHOD, PROGRAM FOR COMPUTER EXECUTING THE METHOD, COMPUTER READABLE RECORDING MEDIUM, AND IMAGE FORMING DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016015A (en) * 2006-06-06 2008-01-24 Optex Co Ltd Sensitivity selective type intrusion detecting system

Also Published As

Publication number Publication date
JP3271440B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP2709969B2 (en) Servo motor control method
US5107193A (en) Feedforward control apparatus for a servomotor
JPS63274385A (en) Speed controller for servo-motor
JPH0887333A (en) Servo control method
JPS605306A (en) Servo-controlling device
EP0287684B1 (en) Negative feedback control system
JPH0974783A (en) Control apparatus for motor
JP4038805B2 (en) Motor friction compensation method
JPH09167023A (en) Servo control method
JP3226413B2 (en) Numerical control unit
JP2826391B2 (en) Backlash acceleration control method
JP3253022B2 (en) Servo motor backlash compensation control method
JP3246559B2 (en) Servo control method
JP3413579B2 (en) Rotation speed control device
JPH0792702B2 (en) Control device
US6920362B2 (en) Control apparatus
JPS6140616A (en) Position control system
JPH10177407A (en) Servo control method
JPH08286759A (en) Robot driving control method for compensating statical friction
JPH10105247A (en) Overshoot preventing method for servomotor
JPH09167024A (en) Servo control method
JP3330221B2 (en) Acceleration / deceleration control device for press feeder device
JP2681969B2 (en) Coulomb friction compensation method by variable structure system
JPH048451A (en) Control system for servomotor
JP2575832B2 (en) Multi-variable control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees