JPH0886771A - Method and device for quickly measuring number of living bacteria - Google Patents

Method and device for quickly measuring number of living bacteria

Info

Publication number
JPH0886771A
JPH0886771A JP6222122A JP22212294A JPH0886771A JP H0886771 A JPH0886771 A JP H0886771A JP 6222122 A JP6222122 A JP 6222122A JP 22212294 A JP22212294 A JP 22212294A JP H0886771 A JPH0886771 A JP H0886771A
Authority
JP
Japan
Prior art keywords
semiconductor element
measured
semiconductor
viable cell
cell count
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6222122A
Other languages
Japanese (ja)
Inventor
Yutaka Iwasaki
裕 岩崎
Takeshi Sato
猛 佐藤
Tatsu Oishi
竜 大石
Hirofumi Akano
裕文 赤野
Kichiya Kawamura
吉也 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakano Vinegar Co Ltd
Original Assignee
Nakano Vinegar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakano Vinegar Co Ltd filed Critical Nakano Vinegar Co Ltd
Priority to JP6222122A priority Critical patent/JPH0886771A/en
Publication of JPH0886771A publication Critical patent/JPH0886771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: To provide a method and a device for quickly measuring the number of living bacteria. CONSTITUTION: An electrolyte-containing culture medium 3 containing microorganisms is brought into intimate contact with the upper surface of a semiconductor device 2 having a thin-film insulating layer 1, and a constant voltage is applied between an electrode 4 and the semiconductor device 2 from a constant voltage source 5, so that as light rays from a light source 7 are scanned two-dimensionally by an optical scanner 8, currents that flow are measured by a current measuring device 6. The measured current values are converted into pHs by a computing unit 9 and the two-dimensional distribution of the pHs is measured, and the number of living bacteria is measured from spots where pH changes of 0.02 or more and 0.2 or less have occurred. The semiconductor device 2 uses a smooth semiconductor not more than 200μm thick and 200nm or less in surface roughness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生菌数を迅速に測定す
る方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for rapidly measuring the viable cell count.

【0002】[0002]

【従来の技術】食品や医薬品、化粧品など微生物による
汚染が問題となる産業分野においては、製造工程や品質
管理及び食中毒の衛生検査など微生物の生菌数を測定し
て安全性を確認する微生物検査が一般に行われている。
2. Description of the Related Art In the industrial field where contamination by microorganisms such as foods, pharmaceuticals and cosmetics is a problem, microbial inspection to confirm the safety by measuring the number of viable microorganisms such as manufacturing process, quality control and hygiene inspection of food poisoning. Is commonly practiced.

【0003】その方法としては、従来から、測定目的と
する微生物に応じた培地成分を含有する寒天平板培地に
食品などの被検体又はその希釈物の一定量を塗抹又は混
釈して、一定期間、恒温状態で培養して出現するコロニ
ーを主として目視で計測して生菌数とする、いわゆる微
生物培養による検査方法が広く行われてきた。
Conventionally, as a method thereof, an agar plate medium containing a medium component corresponding to a microorganism to be measured is smeared or mixed with a fixed amount of an analyte such as food or a diluted product thereof, and a fixed period of time is applied. A so-called microbial culture inspection method has been widely used, in which colonies appearing after culturing in a constant temperature state are mainly visually measured to determine the viable cell count.

【0004】しかし、この方法は、培養に数日を要する
ため、結果が判明するまでの待ち時間が発生するなど迅
速な対応ができないという問題があった。この問題を解
決する目的で、種々の微生物迅速測定法が提案されてお
り、例えば、検体中の微生物からアデノシン−3−リン
酸(ATP)を抽出し、発光試薬により発光させその量
をルミノメータで測定し、これから微生物数を算出する
バイオルミネッセンス法(特開平2−163098号)
等が知られている。また、本発明者らは、これまでに、
空間分解能を有する光走査型半導体pHセンサを用い
て、寒天平板上の生菌を検出することができることを見
出だしている(1993年9月27日、秋期第54回応
用物理学会学術講演会予稿集、1066頁27a−ZA
−4)。
However, this method has a problem that it takes a few days for culturing, so that it cannot be promptly dealt with because of a waiting time until the result is known. For the purpose of solving this problem, various rapid microorganism measurement methods have been proposed, for example, adenosine-3-phosphate (ATP) is extracted from the microorganisms in a sample, and the amount is measured with a luminometer by causing a luminescence reagent to emit light. Bioluminescence method for measuring and calculating the number of microorganisms therefrom (Japanese Patent Laid-Open No. 163098/1990)
Etc. are known. In addition, the present inventors have so far
We have found that an optical scanning semiconductor pH sensor with spatial resolution can be used to detect viable bacteria on an agar plate (September 27, 1993, Autumn 54th Annual Meeting of the Society of Applied Physics, Japan). Shu, page 1066 27a-ZA
-4).

【0005】[0005]

【発明が解決しようとする課題】しかし、上記バイオル
ミネッセンス法は検出限界が低く、例えば細菌では検出
に少なくとも103 個程度の菌数が必要で、生菌数がそ
れ以下の場合にはそのままでは測定できないことや、複
数の種類の微生物が存在した場合、微生物によりATP
の含有量が異なるため、正確な菌数が算出できないなど
実用上問題がある。
However, the above-mentioned bioluminescence method has a low detection limit. For example, in the case of bacteria, at least about 10 3 bacteria are required for detection. When it is not possible to measure or when multiple types of microorganisms are present, ATP is caused by the microorganisms.
Therefore, there is a problem in practical use, such as an inaccurate number of bacteria cannot be calculated because the contents of the are different.

【0006】また、前述の空間分解能を有する光走査型
半導体pHセンサを用いる方法においては、pH変化の
分布を二次元的に測定するため、生菌の数を正確に測定
できるという点では有効であるものの、短時間で生菌を
検出するには感度と分解能が不十分であるという問題が
あった。
Further, in the method using the optical scanning semiconductor pH sensor having the above-mentioned spatial resolution, since the distribution of pH change is two-dimensionally measured, it is effective in that the number of viable bacteria can be accurately measured. However, there was a problem that the sensitivity and resolution were insufficient to detect live bacteria in a short time.

【0007】そこでさらに、高感度、高分解能とするた
めには、pHセンサの半導体基板を薄膜化することが有
効な手段であることを予測していた(1993年9月2
7日、秋期第54回応用物理学会学術講演会予稿集、1
083頁27p−ZC−46)が、単に半導体基板を薄
膜化するだけでは信号強度とノイズの比率いわゆるS/
N比が低く高感度、迅速な生菌測定を実現することがで
きなかった。以上のような状況を鑑み、本発明は生菌数
を迅速に測定する方法及び装置を提供することを目的に
なされたものである。
Therefore, it was predicted that thinning the semiconductor substrate of the pH sensor would be an effective means for achieving high sensitivity and high resolution (September 2, 1993).
Proceedings of 54th JSAP Autumn Meeting, 1st
083 page 27p-ZC-46), the ratio of signal intensity to noise is so-called S /
It was not possible to realize a high sensitivity and rapid viable cell measurement with a low N ratio. In view of the above situation, the present invention has been made for the purpose of providing a method and an apparatus for rapidly measuring the viable cell count.

【0008】[0008]

【課題を解決するための手段】一般に半導体層/絶縁体
層/電解質層からなる構造において、半導体と電解質層
の間に電圧を印加し、半導体中に空乏層を形成した状態
で断続した光エネルギーを与えると、交流の光励起電流
が流れる。一方、絶縁体である例えば窒化シリコンと二
酸化シリコン膜表面のシラノール基(Si−O−H)は
周囲のpHの状態により、Si−O-,Si−O−H,
Si−O−H2 +の各構造をとる。これらの構造の違いに
より絶縁体に接する半導体のバンドの曲がり方が異な
り、同じ光エネルギーを与えても光励起電流の流れ出す
電圧が異なり、逆にこの電圧(バイアス電圧)を一定に
した状態では、表面のとりうる構造の違いで電流値が異
なる。この電流値と半導体表面のpHには強い相関があ
り、例えば、後述する本発明による装置によればpH1
当たり約59mVの電圧変化が観測される。従って、一
定のバイアス電圧を印加した状態で半導体表面に光を照
射し、その部分での光励起電流を測定することで局所領
域のpHを測定することができ、半導体上を光走査する
とpH分布を二次元画像として測定できる。
Generally, in a structure composed of a semiconductor layer / insulator layer / electrolyte layer, a voltage is applied between the semiconductor and the electrolyte layer, and light energy is intermittent in a state where a depletion layer is formed in the semiconductor. , An alternating photoexcitation current will flow. On the other hand, the silanol group is for example, silicon nitride and silicon dioxide film surface an insulator (Si-O-H) by the state of the surrounding pH, Si-O -, Si- O-H,
Take Si-O-H 2 + each structure. Due to the difference in these structures, the bending of the semiconductor band in contact with the insulator is different, and the voltage at which the photoexcitation current flows out differs even when the same optical energy is applied. Conversely, when this voltage (bias voltage) is constant, the surface The current value differs due to the difference in the possible structure. There is a strong correlation between this current value and the pH of the semiconductor surface. For example, according to the device of the present invention described later,
A voltage change of about 59 mV is observed. Therefore, the pH of a local region can be measured by irradiating the semiconductor surface with light with a constant bias voltage applied, and measuring the photoexcitation current at that portion. It can be measured as a two-dimensional image.

【0009】以上の機能を備えた空間分解能を有するp
Hセンサとしては、電解質含有溶液と接する絶縁層及び
半導体層からなる半導体素子の半導体側から光を照射し
ながら二次元方向(X−Y方向)に走査し、絶縁層と接
している溶液のpH分布を測定できるものが望ましく、
たとえば、半導体層としてはシリコン半導体層、絶縁層
としては窒化シリコン層及び二酸化シリコン層、電解質
含有溶液としては塩化カリウム溶液又は塩化ナトリウム
溶液を使用することができる。
P having a spatial resolution having the above functions
As the H sensor, the pH of the solution in contact with the insulating layer is obtained by scanning in a two-dimensional direction (XY direction) while irradiating light from the semiconductor side of the semiconductor element including the insulating layer and the semiconductor layer in contact with the electrolyte-containing solution. What can measure the distribution is desirable,
For example, a silicon semiconductor layer can be used as the semiconductor layer, a silicon nitride layer and a silicon dioxide layer can be used as the insulating layer, and a potassium chloride solution or a sodium chloride solution can be used as the electrolyte-containing solution.

【0010】一方、微生物はその代謝によって細胞外に
様々な物質を分泌することが知られている。その物質の
多くは、有機酸やアルカリ性の有機物等であり、周囲の
環境のpHを変化させる。従って、生菌であればその増
殖と代謝の過程で周囲のpHを変化させ、死菌では代謝
が行われず増殖もしないため周囲のpHに与える影響は
ほとんどない。よって、生菌の表面及び周囲のpHと微
生物の存在しない培地上のpHを測定し、その分布状態
を解析することで生菌数を測定することができる。
On the other hand, it is known that microorganisms secrete various substances extracellularly by their metabolism. Most of the substances are organic acids, alkaline organic substances, etc., and change the pH of the surrounding environment. Therefore, if it is a live bacterium, the surrounding pH is changed in the process of its growth and metabolism, and if it is a dead bacterium, it is not metabolized and does not grow, so there is almost no effect on the surrounding pH. Therefore, the number of viable bacteria can be measured by measuring the pH on the surface and the surroundings of the viable bacteria and the pH of the medium on which no microorganism is present and analyzing the distribution state thereof.

【0011】さらに迅速に生菌を測定するためには、上
記のように生菌の産出する物質に対応するpHの変化量
を測定する方法において、検出するpHの変化量(以
下、ΔpHという)が検出可能な最も小さい値であるこ
とが望ましいが、この変化は微生物の種類によっても異
なり、また使用する培地によっても異なる。充分に迅速
で、かつ生菌を確実に検出して測定できる最も好適なp
Hの変化量ΔpHは0.02以上、0.2以下以下、望
ましくは0.05以上、0.1以下である。生菌による
pHの変化量が0.2より大きくなるためには長時間を
要し、例えば大腸菌の場合には10時間以上を要し、迅
速性に欠ける。また、pHの変化量が0.02以下で
は、生菌以外の例えば電解質含有培地の状態のばらつき
によってもpHの変化が起こり、正確な生菌数の測定が
できない。
In order to measure live cells more rapidly, the amount of change in pH to be detected (hereinafter referred to as ΔpH) in the method for measuring the amount of change in pH corresponding to the substance produced by live cells as described above. Is preferably the smallest value that can be detected, but this change also differs depending on the type of microorganism and the medium used. The most suitable p that is sufficiently fast and can reliably detect and measure viable bacteria.
The change amount ΔpH of H is 0.02 or more and 0.2 or less, preferably 0.05 or more and 0.1 or less. It takes a long time for the amount of change in pH by viable bacteria to become larger than 0.2, and for E. coli, for example, it takes 10 hours or more, which is not quick. Further, when the amount of change in pH is 0.02 or less, the pH also changes due to variations in the state of the electrolyte-containing medium other than live cells, and the viable cell count cannot be accurately measured.

【0012】また、上記pH変化量を測定するに際し
て、空間分解能を有するpHセンサが光走査型半導体p
Hセンサであり、半導体素子の厚さは200μm以下、
望ましくは100μm以下であり、かつ半導体素子表面
の粗さ、すなわち半導体素子の厚さの最も厚いところと
最も薄いところの差が200nm以下、望ましくは10
0nm以下の平滑な半導体素子を使用することが望まし
い。半導体素子の厚さが200μm以上では、光を半導
体の裏面から照射したとき、光で励起された電子やホー
ルが半導体素子中で拡散し、絶縁層上でのpHを測定す
る範囲が広くなり、その結果生菌表面及び周囲のpH分
布の変化を感度良くとらえることができず、例えば8時
間以内で細菌を検出することができない。
When measuring the above-mentioned pH change amount, a pH sensor having a spatial resolution is used as an optical scanning semiconductor p.
H sensor, the thickness of the semiconductor element is 200 μm or less,
It is preferably 100 μm or less, and the roughness of the semiconductor element surface, that is, the difference between the thickest part and the thinnest part of the semiconductor element is 200 nm or less, and preferably 10
It is desirable to use a smooth semiconductor element of 0 nm or less. When the thickness of the semiconductor element is 200 μm or more, when light is irradiated from the back surface of the semiconductor, electrons and holes excited by the light diffuse in the semiconductor element and the range of measuring the pH on the insulating layer becomes wide, As a result, changes in the pH distribution on the surface of the live bacteria and in the surroundings cannot be detected with high sensitivity, and bacteria cannot be detected within, for example, 8 hours.

【0013】また、半導体の表面が粗く、半導体層の厚
さが不均一な場合も光で励起された電子やホールの半導
体層中での減衰率が異なり、絶縁層上での信号強度がば
らつくために、結果としてノイズが大きくなり感度が著
しく低下する。半導体表面の粗さが200nmを超える
場合には、半導体に光励起電流を発生させるために使用
する光照射装置のエネルギーの強弱にかかわらず絶縁層
上で実際に検出できるΔpHが0.2より大きくなり迅
速な生菌検出ができない。半導体素子の厚さが100μ
mの場合は表面の粗さは100nm以下が望ましく、厚
さが50μmの場合は粗さが50nm以下が好適であ
る。すなわち半導体素子の厚さと半導体素子表面の粗さ
の割合は概ね1000:1以上であることが望ましい。
Further, even when the surface of the semiconductor is rough and the thickness of the semiconductor layer is non-uniform, the attenuation factor of electrons and holes excited by light in the semiconductor layer is different, and the signal intensity on the insulating layer varies. As a result, noise is increased and sensitivity is significantly reduced. When the roughness of the semiconductor surface exceeds 200 nm, ΔpH that can be actually detected on the insulating layer becomes larger than 0.2 regardless of the energy level of the light irradiation device used to generate the photoexcitation current in the semiconductor. Rapid live bacteria detection is not possible. The thickness of the semiconductor element is 100μ
When the thickness is m, the surface roughness is preferably 100 nm or less, and when the thickness is 50 μm, the roughness is preferably 50 nm or less. That is, it is desirable that the ratio of the thickness of the semiconductor element to the roughness of the surface of the semiconductor element is approximately 1000: 1 or more.

【0014】図1に、光走査型半導体pHセンサを用い
た本発明による生菌数迅速測定装置の構成を示す。絶縁
性薄膜1で皮膜された半導体素子2上に、測定すべき微
生物を含む電解質含有培養基3が配置され、電解質含有
培養基3の表面あるいは内部には電極4が装着されてい
る。半導体素子2の絶縁性薄膜1で皮膜されていない側
には、光源7からの光線が光走査装置8によって二次元
方向(X−Y方向)に走査されて照射される。電極4と
半導体素子2の間には定電圧電源5によって一定の電圧
が印加され、流れる電流が電流測定装置6によって測定
される。演算装置9は、測定された電流値と光走査信号
とをもとに、電流測定装置6で測定された電流値を二次
元のpH分布として演算し、ディスプレイ10に表示す
る。
FIG. 1 shows the construction of a rapid viable cell count measuring apparatus according to the present invention using an optical scanning semiconductor pH sensor. An electrolyte-containing culture medium 3 containing a microorganism to be measured is arranged on a semiconductor element 2 coated with an insulating thin film 1, and an electrode 4 is attached to the surface or inside of the electrolyte-containing culture medium 3. On the side of the semiconductor element 2 not coated with the insulating thin film 1, the light beam from the light source 7 is scanned by the optical scanning device 8 in the two-dimensional direction (X-Y direction) and irradiated. A constant voltage is applied between the electrode 4 and the semiconductor element 2 by the constant voltage power source 5, and the flowing current is measured by the current measuring device 6. The calculation device 9 calculates the current value measured by the current measurement device 6 as a two-dimensional pH distribution based on the measured current value and the optical scanning signal, and displays it on the display 10.

【0015】培養基3に含有させる電解質としては、塩
化カリウム溶液、塩化ナトリウム溶液などを用いること
ができる。電解質の量は、pHの変化量が測定できる導
電性が得られる程度の量、例えば0.01M〜0.5M
程度とすることができる。絶縁性薄膜で皮膜された半導
体素子としては、窒化シリコン層及び二酸化シリコン層
を有するシリコン半導体を使用することができる。半導
体素子上への二酸化シリコン層の形成方法は通常の方法
でよいが、例えばシリコン基板を酸素気流中で1000
℃程度で焼成して形成することができる。窒化シリコン
層は二酸化シリコン層にさらに化学的気相堆積法により
形成することができる。半導体層の厚さは200μm以
下、絶縁性薄膜の厚さは概ね1〜100nm程度とする
ことができる。この半導体素子の絶縁性薄膜上に、微生
物を含む例えば厚さ1mm程度の電解質含有培養基を密
着させる。この場合、微生物を含む電解質含有培養基の
微生物が存在する面を絶縁層に接触させることが望まし
いが、電解質含有培養基の厚さが薄い場合にはこの限り
ではない。電極4は通常使用されるものであればいずれ
でも良いが、特に好適には白金電極が使用できる。光源
7は、半導体素子2に対して光励起電流を発生させるこ
とができるものならいずれでも良いが、半導体素子上で
200μm程度以下のスポットに絞ることのできるレー
ザ光源等が好ましい。電流測定装置6は10nA程度以
上の電流が測定できるものが好ましい。定電圧電源5
は、半導体素子2と微生物を含む電解質含有培養基3に
装着された電極4の間に一定電圧、例えば−10V〜+
10V程度を印加できるものであれば良い。また、光走
査装置8は、固定した光線に対して半導体素子の方を移
動させる方式のものでもよいし、光線の偏向走査と半導
体素子の移動とを組み合わせて光走査を行うものであっ
てもよい。
As the electrolyte contained in the culture medium 3, a potassium chloride solution, a sodium chloride solution or the like can be used. The amount of the electrolyte is such that the amount of change in pH can be measured to obtain conductivity, for example, 0.01 M to 0.5 M.
It can be a degree. As the semiconductor element coated with the insulating thin film, a silicon semiconductor having a silicon nitride layer and a silicon dioxide layer can be used. The method for forming the silicon dioxide layer on the semiconductor element may be a usual method, but for example, a silicon substrate may be formed in an oxygen stream at a temperature of 1000.
It can be formed by firing at about ° C. The silicon nitride layer can be further formed on the silicon dioxide layer by chemical vapor deposition. The thickness of the semiconductor layer can be 200 μm or less, and the thickness of the insulating thin film can be about 1 to 100 nm. An electrolyte-containing culture medium containing microorganisms, for example, having a thickness of about 1 mm is brought into close contact with the insulating thin film of this semiconductor element. In this case, it is desirable to bring the surface of the electrolyte-containing culture medium containing the microorganisms into contact with the insulating layer, but this is not the case when the thickness of the electrolyte-containing culture medium is thin. The electrode 4 may be any one as long as it is usually used, but a platinum electrode is particularly preferably used. The light source 7 may be any as long as it can generate a photoexcitation current to the semiconductor element 2, but a laser light source or the like that can focus on a spot of about 200 μm or less on the semiconductor element is preferable. It is preferable that the current measuring device 6 can measure a current of about 10 nA or more. Constant voltage power supply 5
Is a constant voltage between the semiconductor element 2 and the electrode 4 attached to the electrolyte-containing culture medium 3 containing microorganisms, for example, −10 V to +.
Any voltage capable of applying about 10 V may be used. Further, the optical scanning device 8 may be of a type in which the semiconductor element is moved with respect to a fixed light beam, or may be one in which deflection scanning of the light beam and movement of the semiconductor element are combined to perform optical scanning. Good.

【0016】[0016]

【作用】空間分解能を有するpHセンサを使用し、生菌
の産生する物質に対応するpHの変化量を測定し、該p
Hの変化量が0.02以上、0.2以下の範囲で生菌数
を迅速に測定することができる。例えば、大腸菌であれ
ば、通常の培養方法では検出に24〜48時間かかる
が、本発明の方法によれば約8時間で検出が可能であ
る。また、酵母は8時間、乳酸菌は24時間、カビは1
2時間程度でそれぞれ検出でき迅速測定が可能である。
A pH sensor having a spatial resolution is used to measure the amount of change in pH corresponding to a substance produced by viable bacteria,
The viable cell count can be rapidly measured when the change amount of H is 0.02 or more and 0.2 or less. For example, in the case of Escherichia coli, it takes 24 to 48 hours to detect by a usual culture method, but it can be detected in about 8 hours by the method of the present invention. 8 hours for yeast, 24 hours for lactic acid bacteria, 1 for mold
Each can be detected in about 2 hours, and rapid measurement is possible.

【0017】[0017]

【実施例】以下に、実施例を挙げて説明するが、本発明
はこれに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0018】(実施例1)〔大腸菌の測定〕 図1に示した装置を用いて大腸菌(E. coli IFO 0330
1)の生菌数測定を行った。使用した半導体素子は厚さ
200μm、表面の粗さ200nmのシリコン半導体
で、光源には出力5mW、波長830nmの赤外線半導
体レーザーを使用した。光走査装置で半導体素子の2.
56cm2 の範囲を走査して測定した。また、半導体素
子には定電圧電源より0.5Vの定電圧を印加した。電
解質含有培養基としては、市販の大腸菌群検出用寒天培
地(栄研化学社製)に電解質として0.1Mとなるよう
塩化ナトリウムを添加したものを用い、2.56cm2
あたり10個程度の大腸菌が存在するように接種し、3
7℃に保った。測定した電流値は演算装置により二次元
のpH分布として表されるが、そのpH変化が周囲と比
較して円状に変化して分布している点の中心のpHと、
円の周囲のpH、すなわち変化していない初期の電解質
含有培養基のpHとの差(ΔpH)を測定した。
(Example 1) [Measurement of E. coli] E. coli IFO 0330 using the apparatus shown in FIG.
The viable cell count of 1) was measured. The semiconductor element used was a silicon semiconductor having a thickness of 200 μm and a surface roughness of 200 nm, and an infrared semiconductor laser having an output of 5 mW and a wavelength of 830 nm was used as a light source. 1. It is a semiconductor device in the optical scanning device.
The area of 56 cm 2 was scanned and measured. A constant voltage of 0.5 V was applied to the semiconductor element from a constant voltage power source. The electrolyte-containing culture media, used after adding sodium chloride to a 0.1M as an electrolyte in commercial coliform detection agar medium (Eiken Chemical Co., Ltd.), 2.56 cm 2
Inoculate so that about 10 E. coli are present per 3
It was kept at 7 ° C. The measured current value is expressed as a two-dimensional pH distribution by the computing device, and the pH at the center of the point where the pH change is circularly distributed compared to the surroundings,
The pH around the circle, i.e. the difference from the pH of the unchanged initial electrolyte-containing culture medium ([Delta] pH) was measured.

【0019】走査して測定した範囲においてΔpHが
0.02以上、0.2以下の範囲である点の数を生菌数
の数とした場合、表1に示すように実際に存在する大腸
菌の数とよく一致する結果が得られた。また、測定時間
は通常の培養方法では24時間程度かかる大腸菌の検出
が上記ΔpHの範囲では8時間以内で検出でき、迅速測
定が可能であった。なお、実際の大腸菌の数は、寒天培
地に接種後、37℃に保って24時間後の数を用いた。
また、表中の百分率は測定に供した寒天平板に実際に存
在した大腸菌生菌数に対する本装置で測定された生菌数
の割合を各5回測定し、その結果を平均して、1の位を
四捨五入したものである。従って、例えば本装置の測定
結果が実際の生菌数と完全に一致した場合は100%、
また半数しか測定されない場合は50%である。
When the number of points where ΔpH is 0.02 or more and 0.2 or less in the range measured by scanning is taken as the number of viable bacteria, as shown in Table 1, The results were in good agreement with the numbers. Further, the measurement time was about 24 hours in the usual culture method, but the detection of Escherichia coli could be detected within 8 hours within the above ΔpH range, and rapid measurement was possible. The actual number of Escherichia coli was used after inoculating the agar medium and keeping it at 37 ° C. for 24 hours.
The percentage in the table is the ratio of the viable cell count measured by this device to the viable cell count of E. coli actually present on the agar plate used for the measurement, measured 5 times each, and the result is averaged to 1 The numbers are rounded off. Therefore, for example, if the measurement result of this device completely matches the actual viable cell count, 100%,
When only half is measured, it is 50%.

【0020】[0020]

【表1】 [Table 1]

【0021】(実施例2)〔半導体素子の厚さ〕 図1の装置で、半導体素子の厚さを種々変えて、実施例
1と同様の条件で大腸菌(E. coli IFO 03301)の検出
を行った。半導体素子の厚さの調整は、厚さ600μm
の市販シリコンを研磨装置で削り調整した。なお、半導
体素子表面の粗さは触針式粗さ計(デクタック)で測定
し、200nmを越えない程度とした。継時的に測定を
行った結果を表2に示すが、半導体素子の厚さが200
μm以下で大腸菌が8時間以内に検出でき、迅速測定が
可能であった。
(Embodiment 2) [Thickness of semiconductor element] With the apparatus shown in FIG. 1, the thickness of the semiconductor element is variously changed to detect E. coli IFO 03301 under the same conditions as in the first embodiment. went. The thickness of the semiconductor element is adjusted to 600 μm.
The commercially available silicon of No. 1 was shaving and adjusted with a polishing device. The roughness of the surface of the semiconductor element was measured with a stylus roughness meter (Dectac) and was set to a level not exceeding 200 nm. Table 2 shows the results of the successive measurements.
E. coli could be detected within 8 hours at a size of less than μm, and rapid measurement was possible.

【0022】[0022]

【表2】 [Table 2]

【0023】(実施例3)〔半導体素子の表面粗さ〕 図1の装置で、使用する半導体素子の表面の粗さを種々
変えて、実施例1と同様の条件で測定した。表面の粗さ
を変える方法は、1N程度の水酸化カリウム溶液にシリ
コン基板を浸漬し表面を溶解するいわゆるエッチングに
よる方法と、サンドペーパーで研磨する方法、及び機械
研磨で鏡面加工する方法を組み合わせて用いた。最終的
には半導体素子の厚さを200μmとし、測定した。表
3に大腸菌の検出に要する時間とその時のΔpHの値を
示したが、粗さが200nm以下の場合には8時間以内
で大腸菌が検出できた。粗さが200nmを超える場合
には、検出可能なΔpHの下限値が大きく、大腸菌の産
生する物質によるpH変化が大きくないと検出ができな
かった。
(Example 3) [Surface Roughness of Semiconductor Element] The apparatus shown in FIG. 1 was used to measure the surface roughness of the semiconductor element to be used under the same conditions as in Example 1. The method of changing the surface roughness is a combination of a so-called etching method of immersing a silicon substrate in a potassium hydroxide solution of about 1N and dissolving the surface, a method of polishing with sandpaper, and a method of mirror-finishing by mechanical polishing. Using. Finally, the thickness of the semiconductor element was set to 200 μm and the measurement was performed. Table 3 shows the time required for detecting E. coli and the ΔpH value at that time. When the roughness was 200 nm or less, E. coli could be detected within 8 hours. When the roughness was more than 200 nm, the lower limit of detectable ΔpH was large, and detection was not possible unless the pH change due to the substance produced by E. coli was large.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】本発明によれば、生菌数を迅速に測定す
ることができる。
According to the present invention, the viable cell count can be rapidly measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】光走査型半導体pHセンサを用いた生菌数迅速
測定装置の概略図。
FIG. 1 is a schematic view of a rapid viable cell count measuring apparatus using an optical scanning semiconductor pH sensor.

【符号の説明】[Explanation of symbols]

1…絶縁性薄膜、2…半導体素子、3…電解質含有培養
基、4…電極、5…定電圧電源、6…電流測定装置、7
…光源、8…光走査装置、9…演算装置、10…ディス
プレイ
DESCRIPTION OF SYMBOLS 1 ... Insulating thin film, 2 ... Semiconductor element, 3 ... Electrolyte containing culture medium, 4 ... Electrode, 5 ... Constant voltage power supply, 6 ... Current measuring device, 7
... light source, 8 ... optical scanning device, 9 ... arithmetic device, 10 ... display

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空間分解能を有するpHセンサを使用
し、生菌の産生する物質に対応するpHの変化量を測定
して生菌数を検出する生菌数測定方法において、前記p
Hの変化量が0.02以上、0.2以下であることを特
徴とする生菌数の迅速測定方法。
1. A viable cell count measuring method for detecting a viable cell count by using a pH sensor having a spatial resolution to measure an amount of change in pH corresponding to a substance produced by a viable cell to detect the viable cell count.
A rapid measuring method for the viable cell count, wherein the amount of change in H is 0.02 or more and 0.2 or less.
【請求項2】 絶縁性薄膜で皮膜された半導体素子、電
極、該電極と半導体素子の間に定電圧を印加する定電圧
電源、前記電極と半導体素子の間に流れる電流を測定す
る電流測定装置、光源、及び該光源からの光線を絶縁性
薄膜で皮膜されていない側の半導体素子表面上に走査す
る光走査装置を含む空間分解能を有する光走査型pHセ
ンサと、前記光走査型pHセンサの半導体素子の絶縁性
薄膜上に密着設置した電解質含有培養基を含み、前記電
解質含有培養基に前記電極を装着したことを特徴とする
生菌数迅速測定装置。
2. A semiconductor element coated with an insulating thin film, an electrode, a constant voltage power source for applying a constant voltage between the electrode and the semiconductor element, and a current measuring device for measuring a current flowing between the electrode and the semiconductor element. An optical scanning pH sensor having a spatial resolution including a light source, and an optical scanning device that scans a light beam from the light source onto a surface of the semiconductor element that is not coated with an insulating thin film, and the optical scanning pH sensor A rapid viable cell count measuring device comprising an electrolyte-containing culture medium closely attached to an insulating thin film of a semiconductor element, wherein the electrode is attached to the electrolyte-containing culture medium.
【請求項3】 前記半導体素子は厚さが200μm以下
で、且つ表面の粗さが200nm以下の平滑な半導体で
あることを特徴とする請求項2記載の生菌数の迅速測定
方法。
3. The rapid viable cell count measuring method according to claim 2, wherein the semiconductor element is a smooth semiconductor having a thickness of 200 μm or less and a surface roughness of 200 nm or less.
JP6222122A 1994-09-16 1994-09-16 Method and device for quickly measuring number of living bacteria Pending JPH0886771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6222122A JPH0886771A (en) 1994-09-16 1994-09-16 Method and device for quickly measuring number of living bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6222122A JPH0886771A (en) 1994-09-16 1994-09-16 Method and device for quickly measuring number of living bacteria

Publications (1)

Publication Number Publication Date
JPH0886771A true JPH0886771A (en) 1996-04-02

Family

ID=16777514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6222122A Pending JPH0886771A (en) 1994-09-16 1994-09-16 Method and device for quickly measuring number of living bacteria

Country Status (1)

Country Link
JP (1) JPH0886771A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132095A1 (en) 2016-01-25 2017-08-03 Avails Medical, Inc. Devices, systems and methods for detecting viable infectious agents in a fluid sample using an electrolyte-insulator-semiconductor sensor
US10883135B2 (en) 2015-08-25 2021-01-05 Avails Medical, Inc. Devices, systems and methods for detecting viable infectious agents in a fluid sample
US11385200B2 (en) 2017-06-27 2022-07-12 Avails Medical, Inc. Apparatus, systems, and methods for determining susceptibility of microorganisms to anti-infectives
US11655494B2 (en) 2017-10-03 2023-05-23 Avails Medical, Inc. Apparatus, systems, and methods for determining the concentration of microorganisms and the susceptibility of microorganisms to anti-infectives based on redox reactions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10883135B2 (en) 2015-08-25 2021-01-05 Avails Medical, Inc. Devices, systems and methods for detecting viable infectious agents in a fluid sample
WO2017132095A1 (en) 2016-01-25 2017-08-03 Avails Medical, Inc. Devices, systems and methods for detecting viable infectious agents in a fluid sample using an electrolyte-insulator-semiconductor sensor
EP3356511A4 (en) * 2016-01-25 2019-07-03 Avails Medical, Inc. Devices, systems and methods for detecting viable infectious agents in a fluid sample using an electrolyte-insulator-semiconductor sensor
US11385200B2 (en) 2017-06-27 2022-07-12 Avails Medical, Inc. Apparatus, systems, and methods for determining susceptibility of microorganisms to anti-infectives
US11655494B2 (en) 2017-10-03 2023-05-23 Avails Medical, Inc. Apparatus, systems, and methods for determining the concentration of microorganisms and the susceptibility of microorganisms to anti-infectives based on redox reactions

Similar Documents

Publication Publication Date Title
Nakao et al. High-resolution pH imaging sensor for microscopic observation of microorganisms
Nakao et al. Scanning-laser-beam semiconductor pH-imaging sensor
Voigt et al. Diamond-like carbon-gate pH-ISFET
Horrocks et al. Scanning electrochemical microscopy. 19. Ion-selective potentiometric microscopy
Yoshinobu et al. Light-addressable potentiometric sensors for quantitative spatial imaging of chemical species
Yoshida et al. A mediator-type biosensor as a new approach to biochemical oxygen demand estimation
Fragkou et al. Determination of the real surface area of a screen-printed electrode by chronocoulometry
CN1156825A (en) Two-dimensional sensor using LAPS for measuring cell activity
Krommenhoek et al. Lab‐scale fermentation tests of microchip with integrated electrochemical sensors for pH, temperature, dissolved oxygen and viable biomass concentration
Nakao et al. Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope
Yang et al. PIN amorphous silicon for thin-film light-addressable potentiometric sensors
Yoshinobu et al. Alternative sensor materials for light-addressable potentiometric sensors
Miyamoto et al. Image correction method for the chemical imaging sensor
Ismail et al. Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications
Yang et al. IGZO thin-film light-addressable potentiometric sensor
Morkvenaite-Vilkonciene et al. Redox competition and generation-collection modes based scanning electrochemical microscopy for the evaluation of immobilised glucose oxidase-catalysed reactions
JPH0886771A (en) Method and device for quickly measuring number of living bacteria
Lin et al. A simple and convenient set-up of light addressable potentiometric sensors (LAPS) for chemical imaging using a commercially available projector as a light source
Tanaka et al. Application of the chemical imaging sensor to electrophysiological measurement of a neural cell
JPH09281066A (en) Measuring system using impedance ct
Özsoylu et al. Effect of plasma treatment on the sensor properties of a light‐addressable potentiometric sensor (LAPS)
JP3688096B2 (en) Material evaluation method
Schoening et al. Semiconductor-based field-effect structures for chemical sensing
Truong et al. Multi‐Well Sensor Platform Based on a Partially Etched Structure of a Light‐Addressable Potentiometric Sensor
Taniizumi et al. Development of Ion Concentration Measurement Method for Minute Volume of Blood Using Terahertz Chemical Microscope