JPH0886743A - Polarimetric analyzing device - Google Patents

Polarimetric analyzing device

Info

Publication number
JPH0886743A
JPH0886743A JP24891294A JP24891294A JPH0886743A JP H0886743 A JPH0886743 A JP H0886743A JP 24891294 A JP24891294 A JP 24891294A JP 24891294 A JP24891294 A JP 24891294A JP H0886743 A JPH0886743 A JP H0886743A
Authority
JP
Japan
Prior art keywords
light
polarizer
sample
linearly polarized
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24891294A
Other languages
Japanese (ja)
Other versions
JP3343795B2 (en
Inventor
Shoichi Akiyama
省一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP24891294A priority Critical patent/JP3343795B2/en
Publication of JPH0886743A publication Critical patent/JPH0886743A/en
Application granted granted Critical
Publication of JP3343795B2 publication Critical patent/JP3343795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To provide a polarimetric analyzing device which executes the polarimetric analysis of a sample properly and quickly with its light extinguishing action achieved in a short time. CONSTITUTION: A beam of light from a light source 1 is set in a predetermined polarized state through a polarizer 2 and radiated to a sample 9 at a predetermined incident angle, and the beam reflected from the sample 9 is incident on a photosensor 5 via a compensator 3, a beam splitter 6 and an analyzer 4, and part of the outgoing beam from the compensator 3 is diverted to a linearly polarized light detection means 7 by the beam splitter 6 provided between the compensator 3 and the analyzer 4, and the ellipticity of the diverted beam is measured, so that a state in which the beam is almost linearly polarized is detected. In accordance with a detection signal of the linearly polarized light detection means 7 a control means 8 sets the azimuth of the polarizer 2 to azimuth at which the beam is almost linearly polarized, and with the beam extinguished by the compensator 3 and the analyzer 4, a variation in the polarized state at the sample 9 is detected for measurements of the physical characteristics of the sample 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、試料からの反射光束ま
たは透過光束の偏光状態の変化から、試料の物理特性を
測定する偏向解析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deflection analyzer for measuring physical properties of a sample from changes in the polarization state of a reflected light beam or a transmitted light beam from the sample.

【0002】■

【従来の技術】光源からの光束を偏光子とコンペンセー
タとを通して所定の偏光状態に設定し、この光束を試料
に照射し、コンペンセータの方位角を所定の方位角に固
定し、偏光子と検光子の方位角を変化させることによ
り、試料からの反射光束に消光条件を設定し、試料の複
素屈折率、複屈折率、薄膜試料の膜厚などの物理特性を
測定する偏光解析装置は、従来から大学の研究室や企業
の研究部門では広く利用されている。この種の偏光解析
装置については、例えば光学的測定ハンドブック(朝倉
書店 1982年10月1日)に内容が解説記載されて
いる。
2. Description of the Related Art A light beam from a light source is set in a predetermined polarization state through a polarizer and a compensator, a sample is irradiated with this light beam, and the azimuth angle of the compensator is fixed at a predetermined azimuth angle. By setting the extinction condition for the reflected light flux from the sample by changing the azimuth angle of, the ellipsometer that measures the physical properties such as the complex refractive index of the sample, the birefringence index, and the film thickness of the thin film sample has been It is widely used in university laboratories and corporate research departments. This kind of polarization analyzer is described in detail, for example, in an optical measurement handbook (Asakura Shoten, October 1, 1982).

【0003】この種の偏光解析装置では、消光条件を定
めるために、偏光子及び検光子を交互に回転させて、完
全な消光状態が達成されるまでこの回転が繰り返され
る。通常は、先ず偏光子を方位角0°から90°の範囲
にわたって回転させ、検出器に入る光量が最小の位置を
検出してその位置に偏光子を止め、次に、検光子を方位
角−90°から90°の範囲で回転させ、検出器に入る
光量が最小の位置に検光子を止める。そして、通常は、
この操作を5回から10回繰り返し、最終的な消光点位
置に偏光子及び検光子を位置決め設定する。
In this type of ellipsometer, in order to determine the extinction condition, the polarizer and the analyzer are alternately rotated, and this rotation is repeated until a complete extinction state is achieved. Normally, the polarizer is first rotated over the range of 0 ° to 90 ° in azimuth, the position where the amount of light entering the detector is detected is detected and the polarizer is stopped at that position, and then the analyzer is set in azimuth. Rotate in the range 90 ° to 90 ° to stop the analyzer at the position where the amount of light entering the detector is minimal. And usually,
This operation is repeated 5 to 10 times to position and set the polarizer and the analyzer at the final extinction point position.

【0004】[0004]

【発明が解決しようとする課題】従来の偏光解析装置で
は、前述のように、偏光子と検光子とを5回から10回
回転させて、最終的な消光点位置を設定するが、偏光子
や検光子はプリズムを使用した光学素子であり、慣性が
大きく且つ光軸調整のために精密なあおり機構に搭載さ
れて回転するので、高速回転をさせることはできず、消
光操作に時間がかかるという問題がある。
In the conventional polarization analyzer, as described above, the polarizer and the analyzer are rotated 5 to 10 times to set the final extinction point position. The analyzer is an optical element that uses a prism. Since it has a large inertia and is mounted on a precise tilt mechanism for adjusting the optical axis and rotates, it cannot be rotated at high speed and the extinction operation takes time. There is a problem.

【0005】また、この種の偏光解析装置では、系統誤
差を補正するために、一点の測定において、2箇所ない
し4箇所の異なる領域(ゾーン)の消光点を求める必要
があり、装置設計に測定時間短縮のための技術が取り入
れられいるにもかかわらず、一点の測定に数10秒を要
している。
Further, in this type of ellipsometer, in order to correct the systematic error, it is necessary to obtain the extinction points of two or four different areas (zones) in one point measurement, and the measurement is made in the device design. It takes several tens of seconds to measure one point, although the technology for shortening the time is adopted.

【0006】この種の偏光解析装置では、消光条件を求
めた後に、各光学素子の方位角を基に、解析演算を行な
って試料の特性値を得て測定を終了するが、この解析演
算は、近年のコンピュータの性能向上によって、瞬時に
実行可能であり、所要測定時間の殆どは、消光条件の設
定に費やされている。また、より高精度の測定を行なう
ために消光点をより正確に求めようとすると、消光動作
の繰り返し回数を増加させることが必要で、さらに測定
時間が長くなる。
In this type of polarization analyzer, after the extinction condition is obtained, an analytical calculation is performed based on the azimuth angle of each optical element to obtain the characteristic value of the sample, and the measurement is completed. With the recent improvement in computer performance, it can be executed instantly, and most of the required measurement time is spent on setting the extinction condition. Further, in order to obtain the extinction point more accurately in order to perform the measurement with higher accuracy, it is necessary to increase the number of times the extinction operation is repeated, which further increases the measurement time.

【0007】この場合、オペレータが予想される試料の
光学特性を、事前に偏光解析装置に入力し、予想消光位
置に光学素子を移動させておくことも可能ではあるが、
一般には、試料の光学特性を調査して入力する時間がか
なりかかり、実質的に偏光解析時間の短縮にはならない
ことが多い。このために、この種の偏光解析装置は、研
究開発の分野では広く有用に利用されているが、生産現
場での製品検査に利用されるには至っていない。
In this case, it is possible that the operator inputs the expected optical characteristics of the sample into the polarization analyzer in advance and moves the optical element to the expected extinction position.
Generally, it takes a considerable time to investigate and input the optical characteristics of the sample, and in many cases, the polarization analysis time is not substantially shortened. For this reason, this type of ellipsometer is widely and usefully used in the field of research and development, but has not yet been used for product inspection at the production site.

【0008】本発明は、前述したようなこの種の偏光解
析装置の現状に鑑みてなされたものであり、その目的
は、消光動作が短時間で行なわれ、試料の偏光解析を適
確且つ迅速に実行する偏光解析装置を提供することにあ
る。
The present invention has been made in view of the current state of the above-described polarization analyzer of this type, and its purpose is to perform an extinction operation in a short time and to accurately and quickly perform polarization analysis of a sample. It is to provide an ellipsometer for executing the method.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
に、請求項1記載の発明は、光源からの光束を、偏光子
を通して所定の偏光状態に設定し、該光束を所定の入射
角で試料に照射し、前記試料からの反射光或いは透過光
を、コンペンセータと検光子とにより消光し、受光セン
サによって、試料での透過或いは反射により生じた偏光
状態の変化量を検出することにより、前記試料の物理特
性を測定する偏光解析装置において、前記コンペンセー
タと前記検光子との間に設けられ、前記コンペンセータ
から出射される光束の一部を分岐するビームスプリッタ
と、該ビームスプリッタにより分岐された光束の楕円率
を測定し、前記光束がほぼ直線偏光となる状態を検出す
る直線偏光検出手段と、該直線偏光検出手段の検出信号
に基づき、前記偏光子の方位角を、前記光束がほぼ直線
偏光となる方位角に設定する制御手段とを有することを
特徴とするものである。
In order to achieve the above object, the invention according to claim 1 sets a light beam from a light source into a predetermined polarization state through a polarizer, and sets the light beam at a predetermined incident angle. By irradiating the sample, the reflected light or the transmitted light from the sample is extinguished by the compensator and the analyzer, and the light receiving sensor detects the change amount of the polarization state caused by the transmission or the reflection in the sample, In an ellipsometer for measuring physical properties of a sample, a beam splitter provided between the compensator and the analyzer, which splits a part of a light beam emitted from the compensator, and a light beam split by the beam splitter. The linear polarization detecting means for measuring the ellipticity of the light and detecting the state in which the light flux is substantially linearly polarized, and the polarization based on the detection signal of the linear polarization detecting means. The azimuth angle of the child, is characterized in that a control means for the light beam is set in an azimuth angle substantially linearly polarized light.

【0010】同様に前記目的を達成するために、請求項
2記載の発明は、光源からの光束を、偏光子とコンペン
セータとを通して所定の偏光状態に設定し、該光束を、
所定の入射角で試料に照射し、前記試料からの反射光或
いは透過光を、検光子により消光し、受光センサによっ
て、試料での透過或いは反射により生じた偏光状態の変
化量を検出することにより、前記試料の物理特性を測定
する偏光解析装置において、前記試料と前記検光子との
間に設けられ、前記コンペンセータから出射される光束
の一部を分岐するビームスプリッタと、該ビームスプリ
ッタにより分岐された光束の楕円率を測定し、前記光束
がほぼ直線偏光となる状態を検出する直線偏光検出手段
と、該直線偏光検出手段の検出信号に基づき、前記偏光
子の方位角を、前記光束がほぼ直線偏光となる方位角に
設定する制御手段とを有することを特徴とするものであ
る。
Similarly, in order to achieve the above object, the invention according to claim 2 sets a light beam from a light source into a predetermined polarization state through a polarizer and a compensator,
By irradiating the sample at a predetermined incident angle, the reflected or transmitted light from the sample is extinguished by an analyzer, and the light receiving sensor detects the amount of change in the polarization state caused by the transmission or reflection in the sample. In the ellipsometer for measuring the physical characteristics of the sample, a beam splitter provided between the sample and the analyzer, which splits a part of the light beam emitted from the compensator, and a beam splitter The linear polarization detecting means for measuring the ellipticity of the luminous flux and detecting the state in which the luminous flux becomes substantially linearly polarized light, and the azimuth angle of the polarizer based on the detection signal of the linearly polarized light detecting means. And a control means for setting the azimuth angle to be linearly polarized light.

【0011】同様に前記目的を達成するために、請求項
3記載発明は、請求項1または請求項2記載の発明にお
いて、前記直線偏光検出手段が、回転自在に保持され、
前記ビームスプリッタにより分岐された光束が入射され
るポラライザと、該ポラライザを回転駆動する駆動器
と、前記ポラライザの出射光の光量を測定する光量測定
器と、該光量測定器の出力信号の変動量を測定する変調
度測定器とからなることを特徴とするものである。
Similarly, in order to achieve the above object, the invention according to claim 3 is the invention according to claim 1 or claim 2, wherein the linearly polarized light detecting means is rotatably held.
A polarizer into which the light beam split by the beam splitter is incident, a driver that rotationally drives the polarizer, a light amount measuring device that measures the light amount of the emitted light of the polarizer, and a variation amount of the output signal of the light amount measuring device. And a modulation degree measuring device for measuring.

【0012】同様に前記目的を達成するために、請求項
4記載発明は、請求項1または請求項2記載の発明にお
いて、前記直線偏光検出手段が、回転自在に保持され、
前記ビームスプリッタにより分岐された光束が入射され
る二分の一波長板と、該二分の一波長板を回転駆動する
駆動器と、前記二分の一波長板の後段に配設されるポラ
ライザと、該ポラライザの出射光の光量を測定する光量
測定器と、該光量測定器の出力信号の変動量を測定する
変調度測定器とからなることを特徴とするものである。
Similarly, in order to achieve the above-mentioned object, the invention according to claim 4 is the invention according to claim 1 or 2, wherein the linearly polarized light detecting means is rotatably held,
A half-wave plate on which the light beam split by the beam splitter is incident, a driver for rotationally driving the half-wave plate, and a polarizer arranged at a stage subsequent to the half-wave plate, It is characterized by comprising a light quantity measuring device for measuring the light quantity of the emitted light of the polarizer and a modulation degree measuring device for measuring the variation amount of the output signal of the light quantity measuring device.

【0013】同様に前記目的を達成するために、請求項
5記載発明は、請求項1または請求項2記載の発明にお
いて、前記直線偏光検出手段が、端面に反射鏡部が設け
られ、回転自在に保持され、前記ビームスプリッタによ
り分岐された光束が入射するポラライザと、該ポラライ
ザを回転駆動する駆動器と、前記端面での反射光の光量
を測定する光量測定器と、該光量測定器の出力信号の変
動量を測定する変調度測定器とからなることを特徴とす
るものである。
[0013] Similarly, in order to achieve the above object, the invention according to claim 5 is the invention according to claim 1 or 2, wherein the linearly polarized light detecting means is provided with a reflecting mirror portion on an end face and is rotatable. The polarizer, which is held by the beam splitter and is incident by the light beam split by the beam splitter, a driver that rotationally drives the polarizer, a light amount measuring device that measures the light amount of the reflected light at the end face, and an output of the light amount measuring device. It is characterized by comprising a modulation degree measuring device for measuring a variation amount of a signal.

【0014】同様に前記目的を達成するために、請求項
6記載発明は、請求項1または請求項2記載の発明にお
いて、前記直線偏光検出手段が、端面に反射鏡部が設け
られ、回転自在に保持され、前記ビームスプリッタによ
り分岐された光束が入射する四分の一波長板と、該四分
の一波長板を回転駆動する駆動器と、前記端面での反射
光が透過するポラライザと、該ポラライザの出射光の光
量を測定する光量測定器と、該光量測定器の出力信号の
変動量を測定する変調度測定器とからなることを特徴と
するものである。
Similarly, in order to achieve the above-mentioned object, the invention according to claim 6 is the invention according to claim 1 or 2, wherein the linearly polarized light detecting means is provided with a reflecting mirror portion on an end face and is rotatable. Held by, the quarter-wave plate on which the light beam split by the beam splitter enters, a driver that rotationally drives the quarter-wave plate, and a polarizer that transmits reflected light at the end face, It is characterized by comprising a light amount measuring device for measuring the light amount of the emitted light of the polarizer and a modulation degree measuring device for measuring the variation amount of the output signal of the light amount measuring device.

【0015】同様に前記目的を達成するために、請求項
7記載発明は、請求項1ないし請求項6の何れかに記載
の発明において、前記ビームスプリッタが、全反射プリ
ズムにより光路を変更する形式であり、前記直線偏光検
出手段の作動時に、前記制御手段の制御信号に基づい
て、前記ビームスプリッタを光路に挿入する挿入手段を
さらに有することを特徴とするものである。
Similarly, in order to achieve the above object, the invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the beam splitter changes the optical path by a total reflection prism. According to the control signal of the control means, the insertion means for inserting the beam splitter into the optical path when the linearly polarized light detecting means is activated is further provided.

【0016】同様に前記目的を達成するために、請求項
8記載発明は、請求項1ないし請求項6の何れかに記載
の発明において、前記ビームスプリッタが、全反射鏡に
より光路を変更する形式であり、前記直線偏光検出手段
の作動時に、前記制御手段の制御信号に基づいて、前記
ビームスプリッタを光路に挿入する挿入手段と、前記全
反射鏡により分岐された光路に配置される波長板とをさ
らに有することを特徴とするものである。
[0016] Similarly, in order to achieve the above object, the invention according to claim 8 is the invention according to any one of claims 1 to 6, wherein the beam splitter changes the optical path by a total reflection mirror. In the operation of the linearly polarized light detection means, based on a control signal of the control means, insertion means for inserting the beam splitter into the optical path, and a wavelength plate arranged in the optical path branched by the total reflection mirror. Is further included.

【0017】同様に前記目的を達成するために、請求項
9記載発明は、請求項1ないし請求項8の何れかに記載
の発明において、前記直線偏光検出手段が、回転する光
学素子の方位角を検出する角度検出手段と、該角度検出
手段の検出角に基づいて、前記検光子の方位角を消光条
件位置に設定する角度設定手段とをさらに有することを
特徴とするものである。
Similarly, to achieve the above object, a ninth aspect of the invention is the invention according to any one of the first to eighth aspects, wherein the linearly polarized light detecting means has an azimuth angle of an optical element that rotates. And angle setting means for setting the azimuth angle of the analyzer to the extinction condition position based on the detection angle of the angle detection means.

【0018】[0018]

【作用】請求項1記載の発明では、光源からの光束を偏
光子を通して所定の偏光状態に設定し、該光束が所定の
入射角で試料に照射され、試料からの反射光或いは透過
光が、コンペンセータ、検光子を介して受光センサに入
射される。また、コンペンセータと前記検光子との間に
設けられたビームスプリッタによって、コンペンセータ
から出射される光束の一部が、直線偏光検出手段に分岐
され、分岐された光束の楕円率が測定され、該光束がほ
ぼ直線偏光となる状態が検出される。そして、制御手段
によって、直線偏光検出手段の検出信号に基づき、偏光
子の方位角が、光束がほぼ直線偏光となる方位角に設定
され、コンペンセータと検光子とによる消光により、試
料での透過或いは反射により生じた偏光状態の変化量が
検出されて試料の物理特性が測定される
According to the invention described in claim 1, the light beam from the light source is set to a predetermined polarization state through the polarizer, and the light beam is applied to the sample at a predetermined incident angle, and reflected light or transmitted light from the sample is The light is incident on the light receiving sensor via the compensator and the analyzer. A part of the luminous flux emitted from the compensator is branched by a beam splitter provided between the compensator and the analyzer, and the ellipticity of the branched luminous flux is measured. Is detected to be almost linearly polarized light. Then, the control means sets the azimuth angle of the polarizer to an azimuth angle at which the light flux becomes substantially linearly polarized light based on the detection signal of the linearly polarized light detecting means, and the extinction by the compensator and the analyzer causes the light to pass through the sample or The physical properties of the sample are measured by detecting the amount of change in the polarization state caused by reflection.

【0019】請求項2記載の発明では、光源からの光束
を偏光子及びコンペンセータを通して所定の偏光状態に
設定し、該光束が所定の入射角で試料に照射され、試料
からの反射光或いは透過光が、検光子を介して受光セン
サに入射される。また、試料と検光子との間に設けられ
たビームスプリッタによって、試料からの光束の一部
が、直線偏光検出手段に分岐され、分岐された光束の楕
円率が測定され、該光束がほぼ直線偏光となる状態が検
出される。そして、制御手段によって、直線偏光検出手
段の検出信号に基づき、偏光子の方位角が、光束がほぼ
直線偏光となる方位角に設定され、コンペンセータと検
光子とによる消光により、試料での透過或いは反射によ
り生じた偏光状態の変化量が検出されて試料の物理特性
が測定される
According to the second aspect of the present invention, the light beam from the light source is set to a predetermined polarization state through the polarizer and the compensator, and the light beam is applied to the sample at a predetermined incident angle, and reflected light or transmitted light from the sample is transmitted. Is incident on the light receiving sensor via the analyzer. Further, a part of the light flux from the sample is branched by the beam splitter provided between the sample and the analyzer to the linear polarization detection means, the ellipticity of the branched light flux is measured, and the light flux is almost linear. The polarized state is detected. Then, the control means sets the azimuth angle of the polarizer to an azimuth angle at which the light flux becomes substantially linearly polarized light based on the detection signal of the linearly polarized light detecting means, and the extinction by the compensator and the analyzer causes the light to pass through the sample or The physical properties of the sample are measured by detecting the amount of change in the polarization state caused by reflection.

【0020】請求項7または請求項8記載の発明では、
請求項1または請求項2記載の発明での作用に加えて、
直線偏光検出手段の作動時に、制御手段の制御信号に基
づいて、挿入手段によりビームスプリッタが光路に挿入
される。
In the invention according to claim 7 or claim 8,
In addition to the action of the invention according to claim 1 or claim 2,
When the linearly polarized light detecting means is activated, the beam splitter is inserted into the optical path by the inserting means based on the control signal from the control means.

【0021】請求項9記載の発明では、請求項1または
請求項2記載の発明での作用に加えて、直線偏光検出手
段によって、回転する光学素子の方位角が検出され、検
出された方位角に基づいて、検光子の方位角が消光条件
位置に設定される。
In the ninth aspect of the invention, in addition to the effect of the first or second aspect of the invention, the azimuth angle of the rotating optical element is detected by the linear polarization detecting means, and the detected azimuth angle is detected. Based on the above, the azimuth angle of the analyzer is set to the extinction condition position.

【0022】[0022]

【実施例】【Example】

[第1の実施例]本発明の第1の実施例を図1及び図2
を参照して説明する。図1は本実施例の全体構成を示す
説明図、図2は本実施例の直線偏光検出手段の構成を示
す説明図である。
[First Embodiment] A first embodiment of the present invention will be described with reference to FIGS.
Will be described with reference to. FIG. 1 is an explanatory diagram showing the overall configuration of this embodiment, and FIG. 2 is an explanatory diagram showing the configuration of the linearly polarized light detecting means of this embodiment.

【0023】本実施例では、図1に示すように、光源1
からの光束が入射され、少なくとも0°〜90°の角度
範囲または0°〜−90°の角度範囲を、光軸に垂直な
面内で回転自在で、方位角が連続的に変化する直線偏光
を出射する偏光子2が設けられている。この偏光子2に
対して、光源1の光束が、偏光子2を介して直線偏光光
束として照射される試料9が配設されている。この試料
9からの反射光束は、所定の楕円率の楕円偏光となる
が、この楕円偏光が透過され、楕円偏光の直交する振幅
成分間に所定の位相差を設定し、偏光状態を変化させる
コンペンセータ3が試料9に対して配設されている。
In this embodiment, as shown in FIG.
The linearly polarized light that is incident on the light flux from and is rotatable at least in the angle range of 0 ° to 90 ° or the angle range of 0 ° to −90 ° in the plane perpendicular to the optical axis and whose azimuth angle continuously changes. There is provided a polarizer 2 that emits light. A sample 9 on which the light flux of the light source 1 is irradiated as a linearly polarized light flux through the polarizer 2 is arranged on the polarizer 2. The reflected light flux from the sample 9 becomes elliptically polarized light having a predetermined ellipticity, but this elliptically polarized light is transmitted, and a predetermined phase difference is set between the amplitude components of the elliptically polarized light which are orthogonal to each other to change the polarization state. 3 is provided for the sample 9.

【0024】また、コンペンセータ3からの射出光束が
入射され、該射出光束を透過光束と反射光束とに二分す
るビームスプリッタ6が、コンペンセータ3の後段に配
設されている。このビームスプリッタ6は、直角プリズ
ムの斜面に、金属及び誘電体からなる反射層を堆積形成
し、他の直角プリズムと斜面を対向させて張り合わせた
形式のものが使用される。このビームスプリッタ6から
の透過光束が入射され、光軸に垂直な面内で回転自在
で、該回転によって消光状態を設定する検光子4が、ビ
ームスプリッタ6の後段に配設され、検光子4の後段に
は受光センサ5が配設されている。
Further, a beam splitter 6 which receives a light beam emitted from the compensator 3 and divides the emitted light beam into a transmitted light beam and a reflected light beam is arranged in a subsequent stage of the compensator 3. The beam splitter 6 is of a type in which a reflection layer made of a metal and a dielectric is deposited and formed on the inclined surface of a right-angle prism, and the inclined surface is opposed to another right-angle prism so as to face each other. An analyzer 4 which is incident on the transmitted light flux from the beam splitter 6 and is rotatable in a plane perpendicular to the optical axis, and which sets the extinction state by the rotation is arranged at the subsequent stage of the beam splitter 6, and the analyzer 4 The light receiving sensor 5 is arranged in the subsequent stage.

【0025】一方、ビームスプリッタ6からの反射光束
が入射される直線偏光検出手段7が設けられ、この直線
偏光検出手段7には、直線偏光検出手段7の検出信号に
よって、偏光子2の回転を制御する制御手段8が接続さ
れ、制御手段8には偏光子2が接続されている。
On the other hand, a linearly polarized light detecting means 7 on which the reflected light beam from the beam splitter 6 is incident is provided, and the linearly polarized light detecting means 7 rotates the polarizer 2 by a detection signal from the linearly polarized light detecting means 7. The control means 8 for controlling is connected, and the polarizer 2 is connected to the control means 8.

【0026】本実施例の直線偏光検出手段7は、図2に
示すような構成になっていて、ポラライザ11として
は、偏光解析装置の偏光素子として通常使用されるグラ
ントムソンプリズムが使用され、このポラライザ11は
光軸を中心に中空軸により回転可能に保持され、中空軸
が駆動器12の回転軸16に連結され、駆動器12によ
ってポラライザ11が回転されるように構成されてい
る。
The linearly polarized light detecting means 7 of the present embodiment has a structure as shown in FIG. 2, and as the polarizer 11, a Glan-Thompson prism which is usually used as a polarizing element of a polarization analyzer is used. The polarizer 11 is rotatably held by a hollow shaft about an optical axis, the hollow shaft is connected to a rotating shaft 16 of a driver 12, and the polarizer 12 is rotated by the driver 12.

【0027】このポラライザ11の後段には、ポラライ
ザ11を透過するビームスプリッタ6からの反射光束が
入射される光量測定器10が配設されている。そして、
光量測定器10には、光量測定器10の出力信号の変動
量を測定する変調度測定器17が接続され、変調度測定
器17が制御手段8に接続されている。
A light quantity measuring device 10 on which a reflected light beam from the beam splitter 6 which passes through the polarizer 11 is incident is provided at the subsequent stage of the polarizer 11. And
The light quantity measuring device 10 is connected to a modulation degree measuring device 17 for measuring the variation amount of the output signal of the light amount measuring device 10, and the modulation degree measuring device 17 is connected to the control means 8.

【0028】このような構成の本実施例の偏光解析動作
について説明する。オペレータは、複素屈折率や複屈折
などを測定しようとする試料や、膜厚や複素屈折率など
を測定しようとする薄膜状の試料を、試料9として所定
位置に配置し、光源1よりの光束が所定の入射角にな
り、受光センサ5に光束が入射するように、試料9のあ
おり角を調整する。
The polarization analysis operation of this embodiment having such a configuration will be described. The operator places a sample for measuring the complex refractive index, birefringence, etc., or a thin film sample for measuring the film thickness, complex refractive index, etc. at a predetermined position as the sample 9 so that the light flux from the light source 1 is emitted. Becomes a predetermined incident angle, and the tilt angle of the sample 9 is adjusted so that the light beam enters the light receiving sensor 5.

【0029】この状態で通常の消光動作が実行可能にな
るが、本実施例では、通常の消光動作の前に、制御手段
8からの回転指令が偏光子2に入力され、該回転指令に
基づいて、偏光子2は、少なくとも方位角0°〜90
°、0°〜−90°の何れかの領域を含む角度範囲を回
転する。この場合、偏光子2は該角度範囲を通過するよ
うに回転後停止してもよいし、制御手段8から停止指令
が発せられるまで、該角度範囲を含む領域で定常的な回
転を継続してもよい。その回転方向も、時計回り方向、
反時計回り方向の何れでもよく、回転開始位置の制限も
なく、通常は前回の停止位置から回転を開始する。
In this state, the normal extinction operation can be executed. In this embodiment, however, the rotation command from the control means 8 is input to the polarizer 2 before the normal extinction operation, and based on the rotation command. The polarizer 2 has at least an azimuth angle of 0 ° to 90 °.
Rotate an angle range including a region of 0 ° or 0 ° to −90 °. In this case, the polarizer 2 may be stopped after rotating so as to pass through the angular range, or may be continuously rotated in a region including the angular range until a stop command is issued from the control means 8. Good. The rotation direction is also clockwise.
It may be in any counterclockwise direction, and there is no limitation on the rotation start position, and normally the rotation is started from the previous stop position.

【0030】このように回転する偏光子2を透過する光
源1からの光束は、方位角が連続的に変化する直線偏光
となって試料9に照射され、試料9からの反射光は、所
定楕円率の楕円偏光として、コンペンセータ3に入射す
る。コンペンセータ3としては、通常四分の一波長板が
使用され、該入射光束は、コンペンセータ3によって、
コンペンセータ3の二つの光学軸に沿う互いに直交する
振幅成分間に、コンペンセータ3で定まる位相差が付加
されて偏光状態が変化する。
The light flux from the light source 1 which passes through the rotating polarizer 2 in this way is irradiated onto the sample 9 as linearly polarized light whose azimuth angle continuously changes, and the reflected light from the sample 9 is a predetermined ellipse. The light is incident on the compensator 3 as elliptically polarized light having a refractive index. A quarter-wave plate is usually used as the compensator 3, and the incident light flux is changed by the compensator 3.
A phase difference determined by the compensator 3 is added between the amplitude components orthogonal to each other along the two optical axes of the compensator 3 to change the polarization state.

【0031】このコンペンセータ3からの透過光の一部
は、ビームスプリッタ6によって分岐され、分岐光束は
楕円偏光として直線偏光検出手段7に入射される。この
場合、直線偏光検出手段7のポラライザ11の射出光量
は、その透過軸方位が、入射する楕円偏光の長軸に一致
すると最大に、短軸に一致すると最小になり、光量測定
器10からは時間的に変動する信号出力が変調度測定器
17に入力される。
A part of the transmitted light from the compensator 3 is branched by the beam splitter 6, and the branched light beam is incident on the linearly polarized light detecting means 7 as elliptically polarized light. In this case, the amount of light emitted from the polarizer 11 of the linearly polarized light detecting means 7 becomes maximum when the transmission axis direction thereof coincides with the major axis of the incident elliptically polarized light, and becomes minimum when the transmission axis direction thereof coincides with the minor axis thereof. A signal output that changes with time is input to the modulation degree measuring device 17.

【0032】そして、偏光子2が回転するにつれて、楕
円偏光の楕円率が変化し、消光状態における方位角近傍
では、直線偏向に近い楕円偏光になるので、ポラライザ
11の透過軸方位が楕円偏光の短軸に一致すると射出光
量は小さくなり、信号出力の時間的変動量を測定してい
る変調度測定器17の出力信号が最大となる。
Then, as the polarizer 2 rotates, the ellipticity of the elliptically polarized light changes, and near the azimuth angle in the extinction state, it becomes elliptically polarized light close to linear polarization, so that the transmission axis azimuth of the polarizer 11 is elliptically polarized. When it coincides with the short axis, the amount of emitted light becomes small, and the output signal of the modulation degree measuring device 17, which measures the temporal variation of the signal output, becomes maximum.

【0033】本実施例では、変調度測定器17は、光量
測定器10の出力信号からポラライザ11の回転周期に
同期した周波数成分を抽出し、抽出成分の増幅信号を偏
光子2の回転角に対して微分し、微分値が0となる点
が、制御手段8によって、ビームスプリッタ6により分
岐された光束が直線偏光となる偏光子2の方位角として
検出される。このような状態の偏光子2の方位角は、消
光状態における偏光子2の方位角にほかならず、偏光解
析の原理から、この状態は偏光子2の方位角0°〜90
°、0°〜−90°の範囲に一つずつ存在する。
In the present embodiment, the modulation degree measuring device 17 extracts a frequency component synchronized with the rotation period of the polarizer 11 from the output signal of the light quantity measuring device 10, and outputs the amplified signal of the extracted component as the rotation angle of the polarizer 2. The point where the differential value is differentiated with respect to 0 and the differential value becomes 0 is detected by the control means 8 as the azimuth angle of the polarizer 2 in which the light beam split by the beam splitter 6 becomes linearly polarized light. The azimuth angle of the polarizer 2 in such a state is nothing but the azimuth angle of the polarizer 2 in the extinction state, and this state is 0 ° to 90 ° in the azimuth angle of the polarizer 2 from the principle of polarization analysis.
One exists in the range of 0, 0 ° to -90 °.

【0034】この消光状態の方位角を、直線偏光検出手
段7が検出すると、入射光束が直線偏光となったことを
示す信号が制御手段8に入力され、制御手段8は該信号
によって、偏光子2の回転を停止させる。このようにし
て、偏光子2は、偏光子方位角が消光状態における方位
角にほぼ等しい位置に停止する。
When the linearly polarized light detecting means 7 detects the azimuth angle in the extinction state, a signal indicating that the incident light beam has become linearly polarized light is input to the control means 8, and the control means 8 uses the signal to polarize the polarizer. Stop the rotation of 2. In this way, the polarizer 2 stops at a position where the azimuth angle of the polarizer is substantially equal to the azimuth angle in the extinction state.

【0035】この後に本実施例では、通常の消光動作を
開始するが、前述のように、偏光子2の方位角が消光時
の方位角にほぼ等しく設定されているので、検光子4に
入射する光束はほぼ直線偏光となっており、検光子4を
回転させて入射する直線偏光の方位角に直交させるだけ
の簡単な操作でほぼ完全な消光状態が達成される。かり
に極めて正確な測定を行なう場合で、より完全な消光点
を求める必要がある場合でも、偏光子2及び検光子4の
回転角は僅かで、消光動作の繰り返しは必要ない。
After that, in this embodiment, the normal extinction operation is started, but as described above, since the azimuth angle of the polarizer 2 is set to be substantially equal to the azimuth angle at the time of extinction, the light enters the analyzer 4. The light flux to be emitted is almost linearly polarized light, and a substantially complete extinction state can be achieved by a simple operation of rotating the analyzer 4 and making it orthogonal to the azimuth angle of the incident linearly polarized light. Even when extremely accurate measurement is required to obtain a more complete extinction point, the rotation angles of the polarizer 2 and the analyzer 4 are small, and the extinction operation need not be repeated.

【0036】このように、本実施例によると、試料の特
性が未知な場合でも、偏光子2の回転角は90°以下、
検光子2の回転角は180°以下であり、偏光子2と検
光子4とを交互に回転させる必要はなく、簡単な操作で
完全な消光状態を設定することができ、偏光解析の必要
時間を大幅に削減することが可能になる。
As described above, according to this embodiment, even when the characteristics of the sample are unknown, the rotation angle of the polarizer 2 is 90 ° or less,
Since the rotation angle of the analyzer 2 is 180 ° or less, it is not necessary to rotate the polarizer 2 and the analyzer 4 alternately, and a complete extinction state can be set by a simple operation. Can be significantly reduced.

【0037】また、本実施例の直線偏光検出手段7で
は、ポラライザ11は定常的に回転するだけで、絶対的
な方位設定機構は不要であり、駆動器12には精密な制
御機構のない簡単なモータが使用でき、光量測定器10
も短時間内の安定性があれば十分で、シリコンフォトダ
イオードが使用でき、製造コストを低くすることが可能
である。
Further, in the linearly polarized light detecting means 7 of this embodiment, the polarizer 11 only rotates steadily, an absolute orientation setting mechanism is unnecessary, and the driver 12 is simple and does not have a precise control mechanism. A variety of motors can be used, and the light quantity measuring device 10
Also, it is sufficient if it has stability within a short time, a silicon photodiode can be used, and the manufacturing cost can be reduced.

【0038】発明者等の実測によると、本実施例によ
り、シリコン上の厚さ7nmの酸化珪素膜を試料とし
て、その厚みを測定したところ、従来の装置による測定
時間が約30秒であるのに対して、2秒で測定を終了す
ることができ、測定時間が大幅に短縮されることが確認
された。
According to the actual measurement by the inventors, according to the present embodiment, when a silicon oxide film having a thickness of 7 nm on silicon was used as a sample and its thickness was measured, the measurement time by the conventional apparatus was about 30 seconds. On the other hand, it was confirmed that the measurement can be completed in 2 seconds and the measurement time can be significantly shortened.

【0039】[第2の実施例]本発明の第2の実施例を
図3を参照して説明する。図3は本実施例の直線偏光検
出手段の構成を示す説明図である。
[Second Embodiment] A second embodiment of the present invention will be described with reference to FIG. FIG. 3 is an explanatory diagram showing the configuration of the linearly polarized light detecting means of this embodiment.

【0040】本実施例では、直線偏光検出手段7Aが、
図3に示すような構成を取り、ポラライザ11を固定
し、ポラライザ11の前段に設けた二分の一波長板13
を、駆動器12によって回転させる構成にしてある。
In this embodiment, the linear polarization detecting means 7A is
With the configuration shown in FIG. 3, the polarizer 11 is fixed, and the half-wave plate 13 provided in front of the polarizer 11 is used.
Is rotated by the driver 12.

【0041】一般に、消光動作を行なう前に行なわれ、
偏光子2の方位角を消光時の方位角にほぼ等しく設定す
る動作は、なるべく短時間で終了することが望ましい。
このためには、直線偏光検出手段7の応答時間を短縮さ
せることが必要で、単位時間当たりのポラライザ11の
回転数を増加させることが必要になる。
Generally, it is carried out before the extinction operation,
It is desirable that the operation of setting the azimuth angle of the polarizer 2 to be substantially equal to the azimuth angle at the time of extinction should be completed in as short a time as possible.
For this purpose, it is necessary to shorten the response time of the linearly polarized light detecting means 7, and it is necessary to increase the number of rotations of the polarizer 11 per unit time.

【0042】しかし、ポラライザ11は結晶を用いたプ
リズムであるので、機械的強度が比較的小さくて重いた
めに、高速回転をさせると、遠心力のために結晶の接着
面が剥離して破壊するおそれがある。また、光軸調整の
ために精密なあおり機構に搭載されていて、空気抵抗や
駆動器の駆動力の面からも、高速化には限度がある。例
えば、ポラライザ11に最適のグラントムソンプリズム
を使用する場合、その回転数の上限はほぼ毎分600回
転であり、これ以上の高速回転を長時間続けると、遠心
力のために接着層の剥離が生じるおそれがある。
However, since the polarizer 11 is a prism using crystals, it has a relatively small mechanical strength and is heavy. Therefore, when it is rotated at a high speed, the adhesive surface of the crystals peels off and breaks due to centrifugal force. There is a risk. Further, it is mounted on a precise tilting mechanism for adjusting the optical axis, and there is a limit to the increase in speed in terms of air resistance and driving force of the driver. For example, when an optimal Glan-Thompson prism is used for the polarizer 11, the upper limit of the number of rotations is about 600 rotations per minute, and if the high speed rotation is continued for a long time, peeling of the adhesive layer due to centrifugal force will occur. May occur.

【0043】ところで、変調度測定器17において、直
線偏光状態を検出するには、ポラライザ11の回転によ
る光量の脈動がおよそ20〜30周期必要であり、図2
の直線偏光検出手段7では、この周期は1〜2秒に当た
り、これが応答時間の最小時間となる。
By the way, in order to detect the linearly polarized state in the modulation degree measuring device 17, the pulsation of the light quantity due to the rotation of the polarizer 11 requires about 20 to 30 cycles.
In the linearly polarized light detecting means 7 of No. 1, this cycle corresponds to 1 to 2 seconds, which is the minimum response time.

【0044】この応答時間をさらに短縮するために、本
実施例では、前述したように、ポラライザ11を固定
し、その前段に設けた二分の一波長板13を回転する構
成を取っている。本実施例のその他の部分の構成は、す
でに図1及び図2を参照して説明した第1の実施例と同
一なので、重複する説明は行なわない。
In order to further shorten the response time, in this embodiment, as described above, the polarizer 11 is fixed and the half-wave plate 13 provided in the preceding stage is rotated. The configuration of the other parts of this embodiment is the same as that of the first embodiment which has already been described with reference to FIGS. 1 and 2, and will not be described again.

【0045】このように、二分の一波長板13を回転す
ると、光学の原理から入射する楕円偏光及び直線偏光
は、その方位が2倍の回転速度で回転される。このため
に、ポラライザ11を透過した後の光量の脈動は、二分
の一波長板13の回転数の2倍の周期が得られ、応答時
間を短縮することが可能になる。また、二分の一波長板
13は軽量であり、さの接着面が回転軸に垂直なので、
遠心力の影響を受けず、極めて高い回転数での長時間の
回転に耐えることができる。
As described above, when the half-wave plate 13 is rotated, the elliptically polarized light and the linearly polarized light which are incident due to the principle of optics are rotated at twice the rotational speed in their directions. Therefore, the pulsation of the amount of light after passing through the polarizer 11 has a period twice that of the rotation speed of the half-wave plate 13, and the response time can be shortened. In addition, the half-wave plate 13 is lightweight, and since the adhesive surface of the sheath is perpendicular to the rotation axis,
It is not affected by centrifugal force and can withstand a long time rotation at an extremely high rotation speed.

【0046】本実施例によると、毎分5000回転程度
の回転数は実現でき、周期が2倍になることもあり、そ
の応答時間は第1の実施例の1/1000以下に短縮さ
れる。従って、測定時間を大幅に短縮させて、試料の高
精度の偏光解析を行なうことが可能になる。本実施例の
その他の動作及び効果は、すでに説明した第1の実施例
と同一なので、重複する説明は行なわない。
According to this embodiment, the number of rotations of about 5000 rpm can be realized and the cycle can be doubled, and the response time can be shortened to 1/1000 or less of that of the first embodiment. Therefore, it is possible to significantly reduce the measurement time and perform highly accurate polarization analysis of the sample. The other operations and effects of this embodiment are the same as those of the first embodiment already described, and therefore a duplicate description will not be given.

【0047】[第3の実施例]本発明の第3の実施例を
図4を参照して説明する。図4は本実施例の直線偏光検
出手段の構成を示す説明図である。
[Third Embodiment] A third embodiment of the present invention will be described with reference to FIG. FIG. 4 is an explanatory diagram showing the configuration of the linearly polarized light detecting means of this embodiment.

【0048】本実施例では、直線偏光検出手段7Bが、
図4に示すような構成を取り、ポラライザ11の端面に
反射鏡15が固定され、この反射鏡15に駆動器12の
回転軸16が固定され、駆動器12によってポラライザ
11が回転される構成を取っている。このポラライザ1
1の入射面側に、光量測定器10と変調度測定器17と
が配設されている。本実施例のその他の部分の構成は、
すでに説明した第1の実施例と同一なので、重複する説
明は行なわない。
In this embodiment, the linearly polarized light detecting means 7B is
The structure shown in FIG. 4 is adopted, and the reflecting mirror 15 is fixed to the end face of the polarizer 11, the rotary shaft 16 of the driver 12 is fixed to this reflecting mirror 15, and the polarizer 11 is rotated by the driver 12. taking it. This Polarizer 1
A light quantity measuring device 10 and a modulation degree measuring device 17 are arranged on the incident surface side of 1. The configuration of the other parts of this embodiment is
Since it is the same as the first embodiment already described, a duplicate description will not be given.

【0049】本実施例では、ポラライザ11の入射面側
に、光量測定器10と変調度測定器17とを配設する折
り返し光学系とすることにより、直線偏光検出手段7B
の光路長を変えずに直線偏光検出手段7Bの全長を短縮
して小型化が実現される。また、ポラライザ11の端面
の反射鏡15に回転軸16が固定でき、中空の回転軸や
連結機構が不要となり、直線偏光検出手段7Bの構成が
簡単となり、製造コストを削減することも可能になる。
本実施例の動作及びその他の効果は、すでに説明した第
1の実施例と同一なので、重複する説明は行なわない。
In the present embodiment, a linear polarization detecting means 7B is provided by providing a folding optical system in which the light quantity measuring device 10 and the modulation degree measuring device 17 are arranged on the incident surface side of the polarizer 11.
The overall length of the linearly polarized light detecting means 7B can be shortened without changing the optical path length, and downsizing can be realized. Further, the rotary shaft 16 can be fixed to the reflecting mirror 15 on the end face of the polarizer 11, a hollow rotary shaft and a connecting mechanism are not required, the structure of the linear polarization detecting means 7B is simplified, and the manufacturing cost can be reduced. .
The operation and other effects of this embodiment are the same as those of the first embodiment already described, and therefore a duplicate description will not be given.

【0050】[第4の実施例]本発明の第4の実施例を
図5を参照して説明する。図5は本実施例の直線偏光検
出手段の構成を示す説明図である。
[Fourth Embodiment] A fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is an explanatory diagram showing the configuration of the linearly polarized light detecting means of this embodiment.

【0051】本実施例では、直線偏光検出手段7Cが、
図5に示すような構成を取り、四分の一波長板14の端
面に反射鏡15が固定され、この反射鏡15に駆動器1
2の回転軸16が固定され、駆動器12によって四分の
一波長板14が回転される構成を取っている。この四分
の一波長板14の入射面側に、ポラライザ11、光量測
定器10及び変調度測定器17が配設されている。本実
施例のその他の部分の構成は、すでに説明した第2の実
施例と同一なので、重複する説明は行なわない。
In this embodiment, the linear polarization detecting means 7C is
The structure shown in FIG. 5 is adopted, and the reflecting mirror 15 is fixed to the end surface of the quarter-wave plate 14, and the driving unit 1 is attached to the reflecting mirror 15.
The second rotation shaft 16 is fixed, and the quarter wave plate 14 is rotated by the driver 12. A polarizer 11, a light quantity measuring device 10, and a modulation degree measuring device 17 are arranged on the incident surface side of the quarter-wave plate 14. The configuration of the other parts of the present embodiment is the same as that of the second embodiment already described, and therefore a duplicated description will not be given.

【0052】本実施例では、四分の一波長板14の入射
面側に、ポラライザ11、光量測定器10及び変調度測
定器17を配設する折り返し光学系とすることにより、
直線偏光検出手段7Cの光路長を変えずに直線偏光検出
手段7Cの全長を短縮して小型化が実現される。本実施
例の動作及びその他の効果は、すでに説明した第2の実
施例と同一なので、重複する説明は行なわない。
In this embodiment, the folding optical system is provided in which the polarizer 11, the light quantity measuring device 10 and the modulation degree measuring device 17 are arranged on the incident surface side of the quarter-wave plate 14.
Miniaturization is realized by shortening the total length of the linear polarization detecting means 7C without changing the optical path length of the linear polarization detecting means 7C. Since the operation and other effects of this embodiment are the same as those of the second embodiment already described, duplicate description will not be given.

【0053】[第5の実施例]本発明の第5の実施例を
説明する。本実施例は、すでに説明した第1の実施例に
対して、ビームスプリッタ6を全反射プリズムにより光
路を変更する形式にし、直線偏光手段の作動時に、制御
手段8の制御信号に基づいて、ビームスプリッタ6を光
路に挿入する挿入手段を、さらに設けた構成を取ってい
る。本実施例のその他の部分の構成は、すでに説明した
第1の実施例と同一なので、重複する説明は行なわな
い。
[Fifth Embodiment] A fifth embodiment of the present invention will be described. This embodiment is different from the first embodiment described above in that the beam splitter 6 is of a type in which the optical path is changed by a total reflection prism, and when the linear polarization means is activated, the beam is reflected based on the control signal from the control means 8. The insertion means for inserting the splitter 6 into the optical path is further provided. The configuration of the other parts of this embodiment is the same as that of the first embodiment already described, and therefore a duplicate description will not be given.

【0054】一般に、ビームスプリッタ6は、製作時の
ばらつきなどにより、完成品の特性は必ずしも完全でな
く、若干の偏光状態の変化を生じることがあり、その特
性を検査し、要求される測定精度に見合った特性のビー
ムスプリッタを選択して、偏光解析装置に組み込む必要
がある。このようにして組み込まれたビームスプリッタ
の不完全性は、非常に小さいので、通常の偏光解析には
何らの問題も生じない。ところが、原理上で達成できる
最高の精度が要求される解析を行なう場合には、ビーム
スプリッタの残留不完全性による透過光の偏光状態の変
化が無視できなくなる。
In general, the characteristics of the finished product of the beam splitter 6 are not always perfect due to variations in manufacturing and the like, and a slight change in polarization state may occur. It is necessary to select a beam splitter having characteristics suitable for the above and incorporate it into the ellipsometer. The imperfections of the beam splitter installed in this way are so small that they do not pose any problems for normal ellipsometry. However, when performing an analysis that requires the highest accuracy that can be achieved in principle, the change in the polarization state of the transmitted light due to the residual incompleteness of the beam splitter cannot be ignored.

【0055】本実施例は、この問題を解決するもので、
ビームスプリッタに分岐光の偏光状態を変化させない全
反射プリズムが使用され、偏光子2の方位角を消光状態
時の値のごく近傍に設定した後の消光操作時には、挿入
手段によって、ビームスプリッタが光路から除去される
ので、ビームスプリッタの不完全性による測定精度の低
下を生ずることなく、試料の高精度の偏光解析を行なう
ことが可能になる。本実施例のその他の動作及び効果
は、すでに説明した第1の実施例と同一なので、重複す
る説明は行なわない。
This embodiment solves this problem.
A total reflection prism that does not change the polarization state of the branched light is used for the beam splitter, and when the extinction operation is performed after the azimuth angle of the polarizer 2 is set to be very close to the value in the extinction state, the beam splitter causes the beam path to pass through the optical path. Therefore, it is possible to perform high-precision polarization analysis of the sample without degrading the measurement accuracy due to the incompleteness of the beam splitter. The other operations and effects of this embodiment are the same as those of the first embodiment already described, and therefore a duplicate description will not be given.

【0056】[第6の実施例]本発明の第6の実施例を
説明する。本実施例は、すでに説明した第1の実施例に
対して、ビームスプリッタ6を全反射鏡により光路を変
更する形式にし、直線偏光手段の作動時に、制御手段8
の制御信号に基づいて、ビームスプリッタ6を光路に挿
入する挿入手段と、全反射鏡により分岐された光路に配
置される波長板とを、さらに設けた構成を取っている。
本実施例のその他の部分の構成は、すでに説明した第1
の実施例と同一なので、重複する説明は行なわない。
[Sixth Embodiment] A sixth embodiment of the present invention will be described. This embodiment is different from the first embodiment described above in that the beam splitter 6 is of a type in which the optical path is changed by a total reflection mirror, and the control means 8 is activated when the linear polarization means is activated.
The insertion means for inserting the beam splitter 6 into the optical path based on the control signal and the wave plate arranged in the optical path branched by the total reflection mirror are further provided.
The configuration of the other parts of the present embodiment is the same as the first embodiment already described.
Since it is the same as the embodiment of FIG.

【0057】この種の偏光解析装置の測定時間を短縮す
るためには、ビームスプリッタとしては、全反射プリズ
ムよりも軽量な全反射鏡を使用するのが有利であるが、
全反射鏡は、反射時の偏光状態の変化が大きく、直線偏
光が入射しても分岐される反射光は、楕円偏光になって
しまう。本実施例は、この問題を解決し、分岐光路に配
置した波長板の位相差を、全反射鏡での反射により生じ
る偏光状態の変化量に等しく設定することにより、ビー
ムスプリッタとして軽量な全反射鏡を使用しても、高精
度の測定が可能になる。
In order to reduce the measurement time of this type of ellipsometer, it is advantageous to use a total reflection mirror that is lighter than the total reflection prism as the beam splitter.
The total reflection mirror has a large change in the polarization state at the time of reflection, and the reflected light branched even if linearly polarized light becomes elliptically polarized light. This embodiment solves this problem and sets the phase difference of the wave plate arranged in the branch optical path equal to the amount of change in the polarization state caused by the reflection by the total reflection mirror, so that the total reflection is light as a beam splitter. High precision measurement is possible even with a mirror.

【0058】従って、本実施例によると、第5の実施例
よりも測定時間をさらに短縮して、試料の高精度の偏光
解析を行なうことが可能になる。本実施例のその他の動
作及び効果は、すでに説明した第5の実施例と同一なの
で、重複する説明は行なわない。
Therefore, according to this embodiment, the measurement time can be further shortened as compared with the fifth embodiment, and highly accurate polarization analysis of the sample can be performed. The other operations and effects of this embodiment are the same as those of the fifth embodiment already described, and therefore, a duplicate description will not be given.

【0059】[第7の実施例]本発明の第7の実施例を
説明する。本実施例は、すでに説明した第1の実施例に
対して、回転する光学素子の方位角を検出する角度検出
手段と、該角度検出手段の検出角に基づいて、検光子の
方位角を、消光条件位置に設定する角度設定手段とがさ
らに設けられている。本実施例のその他の部分の構成
は、すでに説明した第1の実施例と同一なので、重複す
る説明は行なわない。
[Seventh Embodiment] A seventh embodiment of the present invention will be described. This embodiment is different from the above-described first embodiment in that the azimuth angle of the analyzer is detected based on the angle detection means for detecting the azimuth angle of the rotating optical element and the detection angle of the angle detection means. Angle setting means for setting the extinction condition position is further provided. The configuration of the other parts of this embodiment is the same as that of the first embodiment already described, and therefore a duplicate description will not be given.

【0060】第1の実施例では、直線偏光検出手段7に
よつて、偏光子2の方位角が消光状態での方位角にほぼ
等しい位置にセットされた後、検光子4を180°以下
の角度回転させる消光操作が必要である。
In the first embodiment, after the azimuth angle of the polarizer 2 is set to a position substantially equal to the azimuth angle in the extinction state by the linear polarization detecting means 7, the analyzer 4 is set to 180 ° or less. An extinguishing operation to rotate by an angle is required.

【0061】本実施例は、この消光操作の時間を大幅に
短縮するもので、例えば回転する光学素子がポラライザ
の場合、直線偏光状態でのポラライザの方位角が角度検
出手段により検出され、角度設定手段によって、検光子
4の方位角が消光条件角度に設定される。従って、本実
施例によると、検光子4の回転開始時点が早まり、測定
所要時間をさらに短縮して、試料の偏光解析を行なうこ
とが可能になる。本実施例のその他の動作及び効果は、
すでに説明した第1の実施例と同一なので、重複する説
明は行なわない。
In this embodiment, the time for this extinction operation is greatly shortened. For example, when the rotating optical element is a polarizer, the azimuth angle of the polarizer in the linearly polarized state is detected by the angle detecting means, and the angle setting is performed. By the means, the azimuth angle of the analyzer 4 is set to the extinction condition angle. Therefore, according to the present embodiment, the rotation start time of the analyzer 4 is advanced, the measurement required time is further shortened, and the polarization analysis of the sample can be performed. Other operations and effects of this embodiment are
Since it is the same as the first embodiment already described, a duplicate description will not be given.

【0062】なお、各実施例では試料からの反射光に基
づいた測定を行なう場合を説明したが、本発明はこれら
の実施例に限定されるものではなく、試料が透明な場合
には、試料の透過光に基づいた測定を行なうことも可能
である。さらに、各実施例では、試料とビームスプリッ
タ間にコンペンセータを配設した場合を説明したが、本
発明は、これらの実施例に限定されるものでなく、コン
ペンセータを、偏光子と試料間に配設することも可能で
ある。そして、第5の実施例ないし第7の実施例におい
ては、図2に示す直線偏光検出手段を有する場合を説明
したが、本発明は、各実施例に限定されるものでなく、
第5の実施例ないし第7の実施例において、図3ないし
図5に示す直線偏光検出手段を有する構成のものとする
ことも可能である。
In each of the examples, the case where the measurement was performed based on the reflected light from the sample was described, but the present invention is not limited to these examples, and when the sample is transparent, It is also possible to make measurements based on the transmitted light of. Further, in each of the embodiments, the case where the compensator is arranged between the sample and the beam splitter has been described, but the present invention is not limited to these embodiments, and the compensator is arranged between the polarizer and the sample. It is also possible to set. Then, in the fifth to seventh embodiments, the case where the linearly polarized light detecting means shown in FIG. 2 is provided has been described, but the present invention is not limited to each embodiment.
In the fifth to seventh embodiments, it is possible to adopt a configuration having the linearly polarized light detecting means shown in FIGS. 3 to 5.

【0063】[0063]

【発明の効果】請求項1ないし請求項3の何れかに記載
の発明によると、偏光子を通して所定の偏光状態に設定
された光源からの光束が、試料に照射され、試料からの
反射光或いは透過光が、検光子を介して受光センサに入
射され、検光子の前段に設けられたビームスプリッタに
よって、試料からの光束の一部が、直線偏光検出手段に
分岐されて分岐光束の楕円率が測定され、該測定に基づ
いて、偏光子の方位角が、分岐光束がほぼ直線偏光とな
る方位角に設定され、検光子による簡単な消光状態の設
定によって、試料により生じた偏光状態の変化量が検出
されるので、試料の物理特性の適確な測定を、簡単な操
作で、測定時間を短縮して行なうことが可能になる。請
求項4記載の発明によると、請求項1記載の発明で得ら
れる効果に加えて、ビームスプリッタにより分岐された
光束を、回転駆動される二分の一波長板を介して、ポラ
ライザに入射しているので、遠心力の影響が少ない状態
で、二分の一波長板を高速回転することができ、試料の
物理特性の適確な測定を、さらに測定時間を短縮して行
なうことが可能になる。請求項5または請求項6記載の
発明によると、請求項1記載の発明で得られる効果に加
えて、ビームスプリッタにより分岐された光束が、端面
に反射鏡部を設けたポラライザに入射されるので、折り
返し光学系が構成され、装置全体を大幅に小型化するこ
とが可能になる。請求項7記載の発明によると、請求項
1ないし請求項6の何れかに記載の発明で得られる効果
に加えて、消光操作時に、ビームスプリッタが光学系か
ら除かれるので、ビームスプリッタの特性に基づく、測
定精度の低下がなくなり、試料の物理特性のより適確な
測定を行なうことが可能になる。請求項8記載の発明に
よると、請求項7記載の発明で得られる効果に加えて、
ビームスプリッタが軽量化し、試料の物理特性の適確な
測定を、さらに測定時間を短縮して行なうことが可能に
なる。請求項9記載の発明によると、請求項1ないし請
求項8の何れかに記載の発明で得られる効果に加えて、
回転する光学素子の方位角が検出され、該検出角に基づ
いて、検光子の方位角が消光条件に設定されるので、さ
らに測定時間を短縮して試料の物理特性の適確な測定を
行なうことが可能になる。
According to the invention described in any one of claims 1 to 3, the light beam from the light source set to a predetermined polarization state through the polarizer irradiates the sample and the reflected light from the sample or The transmitted light is incident on the light receiving sensor via the analyzer, and a part of the light flux from the sample is branched to the linear polarization detection means by the beam splitter provided in the front stage of the analyzer, and the ellipticity of the branched light flux is increased. Measured, based on the measurement, the azimuth angle of the polarizer is set to an azimuth angle at which the branched light flux becomes almost linearly polarized light, and the amount of change in the polarization state caused by the sample is set by a simple extinction state setting by the analyzer. Is detected, it becomes possible to perform an accurate measurement of the physical properties of the sample with a simple operation while shortening the measurement time. According to the invention as set forth in claim 4, in addition to the effect obtained by the invention as set forth in claim 1, the light beam split by the beam splitter is incident on the polarizer through the half-wave plate which is rotationally driven. Therefore, the half-wave plate can be rotated at a high speed while the influence of centrifugal force is small, and accurate measurement of the physical properties of the sample can be performed while further shortening the measurement time. According to the invention of claim 5 or 6, in addition to the effect obtained by the invention of claim 1, since the light flux branched by the beam splitter is incident on the polarizer having the reflecting mirror portion on the end face. The folding optical system is configured, and it is possible to significantly reduce the size of the entire device. According to the invention described in claim 7, in addition to the effect obtained by the invention described in any one of claims 1 to 6, since the beam splitter is removed from the optical system during the extinction operation, the characteristics of the beam splitter are improved. Based on this, there is no decrease in measurement accuracy, and more accurate measurement of physical properties of the sample can be performed. According to the invention of claim 8, in addition to the effect obtained by the invention of claim 7,
The weight of the beam splitter is reduced, and accurate measurement of the physical properties of the sample can be performed while further shortening the measurement time. According to the invention of claim 9, in addition to the effect obtained by the invention of any one of claims 1 to 8,
The azimuth angle of the rotating optical element is detected, and the azimuth angle of the analyzer is set to the extinction condition based on the detected angle. Therefore, the measurement time is further shortened and the physical characteristics of the sample are accurately measured. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の全体構成を示す説明図
である。
FIG. 1 is an explanatory diagram showing an overall configuration of a first embodiment of the present invention.

【図2】同実施例の直線偏光検出手段の構成を示す説明
図である。
FIG. 2 is an explanatory diagram showing a configuration of linearly polarized light detection means of the same embodiment.

【図3】本発明の第2の実施例の直線偏光検出手段の構
成を示す説明図である。
FIG. 3 is an explanatory diagram showing a configuration of linearly polarized light detecting means according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の直線偏光検出手段の構
成を示す説明図である。
FIG. 4 is an explanatory diagram showing a configuration of linearly polarized light detecting means according to a third embodiment of the present invention.

【図5】本発明の第4の実施例の直線偏光検出手段の構
成を示す説明図である。
FIG. 5 is an explanatory diagram showing a configuration of a linearly polarized light detecting means according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 試料 2 偏光子 3 コンペンセータ 4 検光子 5 受光センサ 6 ビームスプリッタ 7、7A、7B、7C 直線偏光検出手段 8 制御手段 10 光量測定器 11 ポラライザ 12 駆動器 13 二分の一波長板 14 四分の一波長板 15 反射鏡 17 変調度測定器 1 sample 2 polarizer 3 compensator 4 analyzer 5 light receiving sensor 6 beam splitter 7, 7A, 7B, 7C linear polarization detecting means 8 control means 10 light quantity measuring device 11 polarizer 12 driver 13 half wave plate 14 quarter Wave plate 15 Reflector 17 Modulation degree measuring instrument

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光源からの光束を、偏光子を通して所定
の偏光状態に設定し、該光束を所定の入射角で試料に照
射し、前記試料からの反射光或いは透過光を、コンペン
セータと検光子とにより消光し、受光センサによって、
試料での透過或いは反射により生じた偏光状態の変化量
を検出することにより、前記試料の物理特性を測定する
偏光解析装置において、 前記コンペンセータと前記検光子との間に設けられ、前
記コンペンセータから出射される光束の一部を分岐する
ビームスプリッタと、 該ビームスプリッタにより分岐された光束の楕円率を測
定し、前記光束がほぼ直線偏光となる状態を検出する直
線偏光検出手段と、 該直線偏光検出手段の検出信号に基づき、前記偏光子の
方位角を、前記光束がほぼ直線偏光となる方位角に設定
する制御手段とを有することを特徴とする偏光解析装
置。
1. A light beam from a light source is set in a predetermined polarization state through a polarizer, and the light beam is applied to a sample at a predetermined incident angle, and reflected light or transmitted light from the sample is supplied to a compensator and an analyzer. The light is extinguished by and the light receiving sensor
In a polarization analyzer that measures the physical properties of the sample by detecting the amount of change in the polarization state caused by transmission or reflection in the sample, provided between the compensator and the analyzer, emitted from the compensator. A beam splitter for splitting a part of the luminous flux, a linear polarization detecting means for measuring the ellipticity of the luminous flux split by the beam splitter, and detecting a state where the luminous flux becomes substantially linear polarized light; A polarization analysis device, comprising: a control means for setting an azimuth angle of the polarizer to an azimuth angle at which the light flux becomes substantially linearly polarized light based on a detection signal of the means.
【請求項2】 光源からの光束を、偏光子とコンペンセ
ータとを通して所定の偏光状態に設定し、該光束を、所
定の入射角で試料に照射し、前記試料からの反射光或い
は透過光を、検光子により消光し、受光センサによっ
て、試料での透過或いは反射により生じた偏光状態の変
化量を検出することにより、前記試料の物理特性を測定
する偏光解析装置において、 前記試料と前記検光子との間に設けられ、前記コンペン
セータから出射される光束の一部を分岐するビームスプ
リッタと、 該ビームスプリッタにより分岐された光束の楕円率を測
定し、前記光束がほぼ直線偏光となる状態を検出する直
線偏光検出手段と、 該直線偏光検出手段の検出信号に基づき、前記偏光子の
方位角を、前記光束がほぼ直線偏光となる方位角に設定
する制御手段とを有することを特徴とする偏光解析装
置。
2. A light beam from a light source is set to a predetermined polarization state through a polarizer and a compensator, the sample is irradiated with the light beam at a predetermined incident angle, and reflected light or transmitted light from the sample is set. In the polarization analyzer for measuring the physical properties of the sample by detecting the amount of change in the polarization state caused by transmission or reflection in the sample by the light receiving sensor, quenching by the analyzer, the sample and the analyzer And a beam splitter that splits a part of the light beam emitted from the compensator, and the ellipticity of the light beam split by the beam splitter is measured to detect a state in which the light beam becomes substantially linearly polarized light. Linearly polarized light detection means, and control means for setting the azimuth angle of the polarizer to an azimuth angle at which the light flux becomes substantially linearly polarized light based on a detection signal of the linearly polarized light detection means. An ellipsometer comprising:
【請求項3】 前記直線偏光検出手段が、回転自在に保
持され、前記ビームスプリッタにより分岐された光束が
入射されるポラライザと、該ポラライザを回転駆動する
駆動器と、前記ポラライザの出射光の光量を測定する光
量測定器と、該光量測定器の出力信号の変動量を測定す
る変調度測定器とからなることを特徴とする請求項1ま
たは請求項2記載の偏光解析装置。
3. The linearly polarized light detecting means is rotatably held, a polarizer into which the light beam split by the beam splitter is incident, a driver for rotationally driving the polarizer, and a quantity of light emitted from the polarizer. 3. The polarization analyzer according to claim 1, further comprising a light quantity measuring device for measuring the light intensity and a modulation degree measuring device for measuring a variation amount of an output signal of the light quantity measuring device.
【請求項4】 前記直線偏光検出手段が、回転自在に保
持され、前記ビームスプリッタにより分岐された光束が
入射される二分の一波長板と、該二分の一波長板を回転
駆動する駆動器と、前記二分の一波長板の後段に配設さ
れるポラライザと、該ポラライザの出射光の光量を測定
する光量測定器と、該光量測定器の出力信号の変動量を
測定する変調度測定器とからなることを特徴とする請求
項1または請求項2記載の偏光解析装置。
4. A half-wave plate in which the linearly polarized light detecting means is rotatably held and receives a light beam split by the beam splitter, and a driver for rotationally driving the half-wave plate. A polarizer disposed after the half-wave plate, a light amount measuring device for measuring the light amount of the emitted light of the polarizer, and a modulation degree measuring device for measuring the fluctuation amount of the output signal of the light amount measuring device. The polarization analyzer according to claim 1 or 2, comprising:
【請求項5】 前記直線偏光検出手段が、端面に反射鏡
部が設けられ、回転自在に保持され、前記ビームスプリ
ッタにより分岐された光束が入射するポラライザと、該
ポラライザを回転駆動する駆動器と、前記端面での反射
光の光量を測定する光量測定器と、該光量測定器の出力
信号の変動量を測定する変調度測定器とからなることを
特徴とする請求項1または請求項2記載の偏光解析装
置。
5. A polarizer for rotatably holding the linearly polarized light detecting means provided with a reflecting mirror portion on an end face thereof, into which the light beam split by the beam splitter is incident, and a driver for rotationally driving the polarizer. 3. The light amount measuring device for measuring the light amount of the reflected light at the end face, and the modulation degree measuring device for measuring the variation amount of the output signal of the light amount measuring device. Polarization analyzer.
【請求項6】 前記直線偏光検出手段が、端面に反射鏡
部が設けられ、回転自在に保持され、前記ビームスプリ
ッタにより分岐された光束が入射する四分の一波長板
と、該四分の一波長板を回転駆動する駆動器と、前記端
面での反射光が透過するポラライザと、該ポラライザの
出射光の光量を測定する光量測定器と、該光量測定器の
出力信号の変動量を測定する変調度測定器とからなるこ
とを特徴とする請求項1または請求項2記載の偏光解析
装置。
6. A quarter-wave plate on which the linearly polarized light detecting means is provided with a reflecting mirror portion on an end face, is rotatably held, and on which the light beam split by the beam splitter is incident, and the quarter wave plate. A driver that rotationally drives a one-wave plate, a polarizer that transmits reflected light at the end face, a light amount measuring device that measures the light amount of the emitted light of the polarizer, and measures the fluctuation amount of the output signal of the light amount measuring device. The polarization analyzer according to claim 1 or 2, further comprising:
【請求項7】 前記ビームスプリッタが、全反射プリズ
ムにより光路を変更する形式であり、前記直線偏光検出
手段の作動時に、前記制御手段の制御信号に基づいて、
前記ビームスプリッタを光路に挿入する挿入手段をさら
に有することを特徴とする請求項1ないし請求項6の何
れかに記載の偏光解析装置。
7. The beam splitter is of a type in which an optical path is changed by a total reflection prism, and when the linearly polarized light detecting means is activated, based on a control signal from the control means,
The polarization analyzer according to any one of claims 1 to 6, further comprising insertion means for inserting the beam splitter into an optical path.
【請求項8】 前記ビームスプリッタが、全反射鏡によ
り光路を変更する形式であり、前記直線偏光検出手段の
作動時に、前記制御手段の制御信号に基づいて、前記ビ
ームスプリッタを光路に挿入する挿入手段と、前記全反
射鏡により分岐された光路に配置される波長板とをさら
に有することを特徴とする請求項1ないし請求項6の何
れかに記載の偏光解析装置。
8. The beam splitter is of a type in which the optical path is changed by a total reflection mirror, and the beam splitter is inserted into the optical path based on a control signal of the control means when the linear polarization detection means is activated. The polarization analyzer according to any one of claims 1 to 6, further comprising: means and a wave plate arranged in the optical path branched by the total reflection mirror.
【請求項9】 前記直線偏光検出手段が、回転する光学
素子の方位角を検出する角度検出手段と、該角度検出手
段の検出角に基づいて、前記検光子の方位角を消光条件
位置に設定する角度設定手段とをさらに有することを特
徴とする請求項1ないし請求項8の何れかに記載の偏光
解析装置。
9. The linearly polarized light detecting means detects an azimuth angle of a rotating optical element, and the azimuth angle of the analyzer is set to an extinction condition position based on the detected angle of the angle detecting means. 9. An ellipsometer according to claim 1, further comprising: an angle setting unit.
JP24891294A 1994-09-15 1994-09-15 Ellipsometer Expired - Fee Related JP3343795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24891294A JP3343795B2 (en) 1994-09-15 1994-09-15 Ellipsometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24891294A JP3343795B2 (en) 1994-09-15 1994-09-15 Ellipsometer

Publications (2)

Publication Number Publication Date
JPH0886743A true JPH0886743A (en) 1996-04-02
JP3343795B2 JP3343795B2 (en) 2002-11-11

Family

ID=17185276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24891294A Expired - Fee Related JP3343795B2 (en) 1994-09-15 1994-09-15 Ellipsometer

Country Status (1)

Country Link
JP (1) JP3343795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436172B1 (en) * 2005-11-15 2014-09-01 가부시키가이샤 니콘 Plane position detecting apparatus, exposure apparatus and device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101436172B1 (en) * 2005-11-15 2014-09-01 가부시키가이샤 니콘 Plane position detecting apparatus, exposure apparatus and device manufacturing method
US9594316B2 (en) 2005-11-15 2017-03-14 Nikon Corporation Surface positioning detecting apparatus, exposure apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP3343795B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
US4999014A (en) Method and apparatus for measuring thickness of thin films
US5335066A (en) Measuring method for ellipsometric parameter and ellipsometer
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
JPS60242308A (en) Method and device for measuring thickness of thin sample andmethod and device for measuring characteristic of thin sample
JPH054606B2 (en)
US6181421B1 (en) Ellipsometer and polarimeter with zero-order plate compensator
EP0396409B1 (en) High resolution ellipsometric apparatus
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
CA2293369A1 (en) Extended range interferometric refractometer
EP0737856B1 (en) A method of investigating samples by changing polarisation
JP2001272308A (en) Anisotropy multilayer thin film structure evaluation method and evaluation device thereof
JP3520379B2 (en) Optical constant measuring method and device
KR101936792B1 (en) Optical Meter for Measuring of Film Structures based on Ellipsometry and Interferometer
JP3343795B2 (en) Ellipsometer
JPH08201277A (en) Method and apparatus for measuring double refraction
JPS6231289B2 (en)
JP3181655B2 (en) Optical system and sample support in ellipsometer
JPH04127004A (en) Ellipsometer and its using method
JP2004279286A (en) Method and device for evaluating optically anisotropic thin film
JP2005283552A (en) Birefringence measurement device and birefringence measurement method
JP2712987B2 (en) Adjustment method of polarization measuring device
JPS63186130A (en) Ellipsometer
KR102045442B1 (en) Ellipsometer
JPH06100535B2 (en) Birefringence measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080830

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120830

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees