JPH0886606A - Apparatus for recognizing underwater mark - Google Patents
Apparatus for recognizing underwater markInfo
- Publication number
- JPH0886606A JPH0886606A JP24491194A JP24491194A JPH0886606A JP H0886606 A JPH0886606 A JP H0886606A JP 24491194 A JP24491194 A JP 24491194A JP 24491194 A JP24491194 A JP 24491194A JP H0886606 A JPH0886606 A JP H0886606A
- Authority
- JP
- Japan
- Prior art keywords
- mark
- inspection
- underwater
- detection part
- inspection mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、船舶,海洋構造物等
の水中にある外板の板厚を計測測定して検査をする水中
検査ロボットに装備して、前記外板に溶接ビードなどで
盛り上げて形成された板厚計測箇所を示す検査マークを
認識する装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is equipped with an underwater inspection robot for measuring and inspecting the plate thickness of an underwater outer plate of a ship, a marine structure, etc. The present invention relates to a device for recognizing an inspection mark that indicates a plate thickness measurement portion that is formed by being raised.
【0002】[0002]
【従来の技術】図4は従来の水中検査ロボットが水中で
海洋構造物等の底外板の板厚を計測する状況を示し、
(A)は側面図、(B)は底面図、(C)は一部拡大側
面図である。海洋構造物等の検査対象構造物91の底外
板に溶接ビードで盛り上げて円環状に検査マーク92を
形成して板厚計測箇所が示されている。水中に入った水
中検査ロボット11は、検査対象構造物91の底外板に
沿って駆動輪14で移動する。水中検査ロボット11に
搭載されているビデオカメラ41は、外板面を撮影して
モニタテレビ42に表示する。制御装置31で操作して
水中検査ロボット11を移動させ、モニタテレビ42に
検査マーク92の映像が映写されると、板厚測定装置2
1が検査マーク92の中央部に対向する位置になるよう
に停止させ、該部の板厚を計測して制御装置31に送り
記録する。以上の動作を多数の計測箇所について行い、
外板の減耗状況などを調べる。2. Description of the Related Art FIG. 4 shows a situation in which a conventional underwater inspection robot measures the thickness of the bottom skin of a marine structure or the like underwater.
(A) is a side view, (B) is a bottom view, and (C) is a partially enlarged side view. A plate thickness measurement point is shown by forming an inspection mark 92 in an annular shape by swelling with a weld bead on the bottom outer plate of the structure 91 to be inspected such as a marine structure. The underwater inspection robot 11 that has entered the water moves by the drive wheels 14 along the bottom skin of the structure 91 to be inspected. The video camera 41 mounted on the underwater inspection robot 11 photographs the outer plate surface and displays it on the monitor television 42. When the underwater inspection robot 11 is moved by operating the control device 31 and the image of the inspection mark 92 is projected on the monitor TV 42, the plate thickness measuring device 2
1 is stopped so as to be at a position facing the center of the inspection mark 92, and the plate thickness of this portion is measured and sent to the control device 31 for recording. The above operation is performed for many measurement points,
Check the wear condition of the outer plate.
【0003】[0003]
【発明が解決しようとする課題】従来の水中検査ロボッ
トのマーク認識手段は、上記のようにビデオカメラ41
によっているが、数年を経過して板厚検査をすべき時に
は、図4(C)に示すように、海生物93が付着して検
査マーク92を覆い隠すようになり、ビデオカメラ41
では、検査マーク92を認識することが困難又は不可能
になり、板厚検査ができないというような課題があっ
た。The mark recognition means of the conventional underwater inspection robot is the video camera 41 as described above.
However, when it is necessary to inspect the plate thickness after several years, as shown in FIG. 4 (C), marine life 93 adheres to cover the inspection mark 92, and the video camera 41
Then, there is a problem that it becomes difficult or impossible to recognize the inspection mark 92, and the plate thickness inspection cannot be performed.
【0004】この発明は上記課題を解消するためになさ
れたもので、海生物93が付着して検査マーク92を覆
い隠しても、検査マーク92の位置、すなわち、板厚計
測箇所を認識することができる水中マーク認識装置を得
ることを目的とする。The present invention has been made in order to solve the above problems. Even if the marine life 93 adheres and covers the inspection mark 92, it is possible to recognize the position of the inspection mark 92, that is, the plate thickness measurement position. The object is to obtain an underwater mark recognition device capable of
【0005】[0005]
【課題を解決するための手段】この発明に係る水中マー
ク認識装置は、検査対象構造物までの対面距離の変化を
検出する電磁変位検出部と、水中検査ロボットの移動距
離を検出する移動距離検出部と、この移動距離検出部及
び前記電磁変位検出部からのデータを取得し蓄積するデ
ータ取得装置と、このデータ取得装置から前記データを
入力し演算処理して検査マークを判別する検査マーク判
別装置とを具備したものである。An underwater mark recognition apparatus according to the present invention includes an electromagnetic displacement detecting section for detecting a change in facing distance to a structure to be inspected and a moving distance detecting section for detecting a moving distance of an underwater inspection robot. Unit, a data acquisition device for acquiring and accumulating data from the moving distance detection unit and the electromagnetic displacement detection unit, and an inspection mark determination device for inputting the data from the data acquisition device and performing arithmetic processing to determine an inspection mark It is equipped with and.
【0006】[0006]
【作用】この発明における電磁変位検出部は、磁性材質
で突出形状である検査マークに対面すれば電磁誘導が大
きくなり電流又は電圧が変化するので、検査マークに対
面したことを検出する。また、移動距離検出部は水中検
査ロボットの移動距離すなわち位置を検出する。データ
取得装置は、移動距離検出部から出力される水中検査ロ
ボットの位置のデータと、電磁変位検出部から出力され
る電流又は電圧の変化すなわち検査マークに対面したか
否かのデータとを取得し蓄積する。検査マーク判別装置
は、データ取得装置からこれらのデータを入力し演算処
理して検査マークの存在及びその位置を判別する。The electromagnetic displacement detector of the present invention detects that the inspection mark is faced because the electromagnetic induction increases and the current or voltage changes when the inspection mark made of a magnetic material and having a protruding shape is faced. Further, the moving distance detecting unit detects the moving distance, that is, the position of the underwater inspection robot. The data acquisition device acquires the data of the position of the underwater inspection robot output from the movement distance detection unit and the data of the change in current or voltage output from the electromagnetic displacement detection unit, that is, the data indicating whether or not the inspection mark is faced. accumulate. The inspection mark determination device inputs these data from the data acquisition device and performs arithmetic processing to determine the existence and position of the inspection mark.
【0007】[0007]
【実施例】以下、この発明の一実施例を図について説明
する。図1はこの発明による水中マーク認識装置の一実
施例を示し、(A)は使用状態の側面図、(B)はその
底面図、(C)はブロック図である。図2は使用状態の
一部拡大側面図である。図1(A),(B)及び図2に
おいて、91は海洋構造物等の検査対象構造物であり、
検査対象構造物91の外板に指定された多数の所定検査
箇所には検査マーク92が着設されている。検査マーク
92は、検査箇所を中心として溶接ビードで環状に盛り
上げて形成されている。検査対象構造物91及び検査マ
ーク92は鉄鋼材質であり磁性体である。なお、93は
検査対象構造物91の水中部に付着生成するであろう海
生物を示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1A and 1B show an embodiment of an underwater mark recognition apparatus according to the present invention. FIG. 1A is a side view of a state of use, FIG. 1B is a bottom view thereof, and FIG. FIG. 2 is a partially enlarged side view of the usage state. In FIGS. 1 (A), 1 (B) and 2, 91 is a structure to be inspected such as a marine structure,
Inspection marks 92 are attached to a large number of predetermined inspection points designated on the outer plate of the inspection target structure 91. The inspection mark 92 is formed by swelling in an annular shape with a weld bead centering on the inspection point. The inspection target structure 91 and the inspection mark 92 are made of steel and are magnetic materials. Note that reference numeral 93 indicates a marine organism that is likely to be attached and generated in the underwater portion of the structure 91 to be inspected.
【0008】図1(A),(B)及び図2において、1
1は検査対象構造物91の水中にある外板の板厚を計測
測定をする水中検査ロボットである。水中検査ロボット
11は駆動輪14によって検査対象構造物91の底外板
に沿って移動可能である。水中検査ロボット11には、
板厚測定装置21及びビデオカメラ41の他に、この発
明によるマーク認識装置51が搭載されている。板厚測
定装置21は例えば超音波厚さ計などを用いればよい。
水中検査ロボット11は陸上に設置された制御装置31
にテザーケーブル(tether cable)33で接続されてい
る。テザーケーブル)33は、所要の引張り強度及び湾
曲柔軟性があり、動力用電線,信号用電線等が束ねて内
装されている。制御装置31にはモニタテレビ42が付
属して設けられている。In FIGS. 1A, 1B and 2, 1
Reference numeral 1 denotes an underwater inspection robot that measures and measures the plate thickness of the outer plate of the structure 91 to be inspected in water. The underwater inspection robot 11 is movable by the drive wheels 14 along the bottom skin of the structure 91 to be inspected. The underwater inspection robot 11 has
In addition to the plate thickness measuring device 21 and the video camera 41, the mark recognition device 51 according to the present invention is mounted. As the plate thickness measuring device 21, for example, an ultrasonic thickness gauge may be used.
The underwater inspection robot 11 is a control device 31 installed on land.
To a tether cable 33. The tether cable 33 has required tensile strength and bending flexibility, and is internally bundled with power wires, signal wires, and the like. A monitor television 42 is attached to the control device 31.
【0009】マーク認識装置51は、図1(C)に示す
ように、検出部52を構成する渦電流式変位検出部(電
磁変位検出部)54及び移動距離検出部55と、演算部
53を構成するデータ取得装置56及び検査マーク判別
回路57とからなる。渦電流式変位検出部54は、コイ
ルに通電して発生する磁界内にある磁性体の位置によっ
て電磁誘導や渦電流が変化することにより、磁性体の位
置の変化を検出するものである。検査マーク92は磁性
材質で突出しているので、渦電流式変位検出部54の電
圧又は電流の変化により検査マーク92に対面したこと
を検出することができるものである。移動距離検出部5
5は、駆動輪14の回転数を検出し積算することにより
水中検査ロボット11の移動距離又は位置を算出するも
のである。データ取得装置56は、渦電流式変位検出部
54から出力されるデータと移動距離検出部55から出
力されるデータとを取得し蓄積するものである。検査マ
ーク判別回路57は、データ取得装置56が取得し蓄積
したデータを入力し演算処理し判断して検査マーク92
の存在とその位置を算出するものである。As shown in FIG. 1C, the mark recognizing device 51 includes an eddy current type displacement detecting section (electromagnetic displacement detecting section) 54, a moving distance detecting section 55, and a computing section 53 which constitute a detecting section 52. It is composed of a data acquisition device 56 and an inspection mark discrimination circuit 57 which constitute the device. The eddy current displacement detection unit 54 detects a change in the position of the magnetic body by changing the electromagnetic induction or the eddy current depending on the position of the magnetic body in the magnetic field generated by energizing the coil. Since the inspection mark 92 is made of a magnetic material and protrudes, it is possible to detect that the inspection mark 92 is faced by a change in voltage or current of the eddy current displacement detection unit 54. Moving distance detector 5
5 is for calculating the moving distance or the position of the underwater inspection robot 11 by detecting and integrating the number of rotations of the drive wheels 14. The data acquisition device 56 acquires and stores the data output from the eddy current displacement detection unit 54 and the data output from the movement distance detection unit 55. The inspection mark determination circuit 57 inputs the data acquired and accumulated by the data acquisition device 56, performs arithmetic processing, and determines the inspection mark 92.
The existence of and the position of the.
【0010】なお、図1においては、マーク認識装置5
1は水中検査ロボット11に装備するように示したが、
マーク認識装置51のうちセンサ部は水中検査ロボット
11の所定部位に設けなければならないことは勿論であ
るが、センサ部以外の部品はテザーケーブルの信号用電
線で接続されて陸上に設置されている制御装置31内に
設けることができる。In FIG. 1, the mark recognition device 5
1 is shown to be equipped with the underwater inspection robot 11,
Of course, the sensor part of the mark recognition device 51 has to be provided at a predetermined portion of the underwater inspection robot 11, but the parts other than the sensor part are connected by signal wires of the tether cable and installed on land. It can be provided in the control device 31.
【0011】次に、図1に示す実施例の動作について説
明する。駆動輪14を上にして水中検査ロボット11を
水中に入れ、例えば水中検査ロボット11の浮力を利用
して検査対象構造物91の底外板に駆動輪14を接触さ
せる。制御装置31から指令して駆動輪14を回転駆動
させて水中検査ロボット11を検査対象構造物91の底
外板に沿って移動させながら、ビデオカメラ41で検査
対象構造物91の底外板を撮影してモニタテレビ42で
観察する。モニタテレビ42により検査マーク92を視
認すれば、それを観察しながら制御装置31で操作し
て、板厚測定装置21が検査マーク92の中央部に対面
するように水中検査ロボット11を移動させる。あるい
は、ビデオカメラ41と板厚測定装置21との関係位置
は決まっているので、ビデオカメラ41が検査マーク9
2に正対する位置から水中検査ロボット11を所定距離
だけ移動させればよい。それで板厚測定装置21により
板厚を計測する。以上の動作を検査マーク92毎に繰り
返す。Next, the operation of the embodiment shown in FIG. 1 will be described. The underwater inspection robot 11 is placed in water with the drive wheel 14 facing upward, and the drive wheel 14 is brought into contact with the bottom skin of the structure 91 to be inspected by using the buoyancy of the underwater inspection robot 11, for example. While instructing from the control device 31, the driving wheels 14 are rotationally driven to move the underwater inspection robot 11 along the bottom skin of the inspection target structure 91, the bottom skin of the inspection target structure 91 is moved by the video camera 41. The photograph is taken and observed on the monitor TV 42. When the inspection mark 92 is visually recognized on the monitor television 42, the control device 31 operates while observing the inspection mark 92 to move the underwater inspection robot 11 so that the plate thickness measuring device 21 faces the central portion of the inspection mark 92. Alternatively, since the relational position between the video camera 41 and the plate thickness measuring device 21 is determined, the video camera 41 displays the inspection mark 9
The underwater inspection robot 11 may be moved by a predetermined distance from the position directly facing 2. Then, the plate thickness measuring device 21 measures the plate thickness. The above operation is repeated for each inspection mark 92.
【0012】しかし、数年を経過して、板厚検査をすべ
き時には、図1(A)及び図2に示すように、検査対象
構造物91の底外板に海生物93が付着して検査マーク
92を覆い隠しているので、ビデオカメラ41による検
査マーク92の検出は困難又は不可能になる。そのと
き、マーク認識装置51の渦電流式変位検出部54は、
磁界を発生させることにより、磁性体でない海生物93
の有無や厚さなどに関係なく、磁性体であり検査対象構
造物91の表面から突出した形状である検査マーク92
に対面したことを、渦電流式変位検出部54のコイルに
流れる電流又は電圧の変化を検出して知ることができ
る。However, after several years have passed, when a thickness inspection is to be carried out, as shown in FIGS. 1 (A) and 2, marine life 93 adheres to the bottom skin of the structure 91 to be inspected. Since the inspection mark 92 is covered, the detection of the inspection mark 92 by the video camera 41 becomes difficult or impossible. At that time, the eddy current displacement detection unit 54 of the mark recognition device 51
By generating a magnetic field, marine organisms that are not magnetic materials 93
Irrespective of the presence or absence of thickness, thickness, etc., the inspection mark 92 that is a magnetic substance and has a shape protruding from the surface of the inspection target structure 91
It can be known by detecting the change in the current or voltage flowing through the coil of the eddy current displacement detection unit 54.
【0013】図1及び図2において、磁性体までの対面
距離に対応する渦電流式変位検出部54のコイルに流れ
る電流又は電圧のデータを検出しながら、移動距離検出
部55により水中検査ロボット11の移動距離又は位置
を検出して、各データをデータ取得装置56を介して検
査マーク判別回路57に送れば、検査マーク判別回路5
7は、図3に示すように、移動距離又は位置を横座標と
し、対面距離を縦座標として、所定秒時毎の各時点にお
ける点を連続的に示す。図示の下凸部P1が現れたら検
査マーク92の円環状の一箇所を越えたと推定され、そ
れから検査マーク92の直径以内の距離で下凸部P2が
現れたら検査マーク92の他の一箇所を越えたと推定さ
れる。要すれば、水中検査ロボット11の進行路を変え
て移動させて図3に示すような線図を作成させれば、検
査マーク92の位置を確認することができる。検査マー
ク92の位置を確認することができたら、検査マーク9
2の中心を通るように水中検査ロボット11を移動さ
せ、図3のP1とP2との中央であるP0の位置から、
渦電流式変位検出部54から板厚測定装置21までの方
向,距離だけ移動させて、板厚測定装置21を検査マー
ク92の中央部に対面させて板厚を計測する。以上の動
作を繰り返して各検査マーク92の中央部の板厚を計測
することにより、検査対象構造物91の水中にある外板
の板厚の状況を知ることができる。In FIG. 1 and FIG. 2, while detecting the data of the current or voltage flowing through the coil of the eddy current type displacement detecting section 54 corresponding to the facing distance to the magnetic body, the moving distance detecting section 55 detects the underwater inspection robot 11. Of the inspection mark discriminating circuit 57 by detecting the moving distance or position of the data and sending each data to the inspection mark discriminating circuit 57 through the data acquisition device 56.
As shown in FIG. 3, reference numeral 7 continuously indicates the points at each time point every predetermined second with the moving distance or position as the abscissa and the facing distance as the ordinate. If the lower convex portion P1 shown in the figure appears, it is estimated that it has exceeded one annular portion of the inspection mark 92, and if the lower convex portion P2 appears within a distance within the diameter of the inspection mark 92, another portion of the inspection mark 92 will appear. It is estimated to have exceeded. If necessary, the position of the inspection mark 92 can be confirmed by changing the traveling path of the underwater inspection robot 11 and moving the underwater inspection robot 11 to create a diagram as shown in FIG. If the position of the inspection mark 92 can be confirmed, the inspection mark 9
The underwater inspection robot 11 is moved so as to pass through the center of 2, and from the position of P0 which is the center of P1 and P2 in FIG.
The plate thickness measuring device 21 is moved toward the plate thickness measuring device 21 in the direction and distance from the eddy current displacement detector 54, and the plate thickness measuring device 21 is faced to the center of the inspection mark 92 to measure the plate thickness. By repeating the above operation and measuring the plate thickness of the central portion of each inspection mark 92, it is possible to know the condition of the plate thickness of the outer plate of the inspection target structure 91 in water.
【0014】なお、図1では、板厚測定装置21及びマ
ーク認識装置51は、水中検査ロボット11の先頭部に
設けるように示したが、検査対象構造物91に付着した
海生物93の表面は凹凸があるので、水中検査ロボット
11の移動にともなう板厚測定装置21及びマーク認識
装置51の対面距離の変化がなるべく少ないように、水
中検査ロボット11の中央部に設けることが望ましい。In FIG. 1, the plate thickness measuring device 21 and the mark recognizing device 51 are shown to be provided at the head of the underwater inspection robot 11, but the surface of the marine organism 93 attached to the structure 91 to be inspected is Since there is unevenness, it is desirable to provide it in the central portion of the underwater inspection robot 11 so that the face-to-face distance between the plate thickness measuring device 21 and the mark recognition device 51 changes with the movement of the underwater inspection robot 11 as little as possible.
【0015】[0015]
【発明の効果】以上のように、この発明によれば、水中
にある検査対象構造物に海生物が付着して検査マークを
覆い隠しても、電磁変位検出部,移動距離検出部,デー
タ取得装置及び検査マーク判別回路により、データの検
出,収集,演算処理をして検査マークの存在とその位置
を認識し、板厚を計測することができる。これにより、
海洋構造物等の板厚の検査を支障なく行うことができ
る。As described above, according to the present invention, the electromagnetic displacement detecting section, the moving distance detecting section, and the data acquisition even if the inspection mark is covered by the marine organisms attached to the structure to be inspected underwater. With the device and the inspection mark discriminating circuit, it is possible to detect the existence of the inspection mark and the position thereof by performing data detection, collection and arithmetic processing to measure the plate thickness. This allows
The thickness of offshore structures can be inspected without any problems.
【図1】この発明の一実施例による水中マーク認識装置
を示し、(A)は使用状態を示す側面図、(B)はその
底面図、(C)はブロック図である。FIG. 1 shows an underwater mark recognition apparatus according to an embodiment of the present invention, (A) is a side view showing a usage state, (B) is a bottom view thereof, and (C) is a block diagram.
【図2】この発明の一実施例による水中マーク認識装置
の使用状態を示す一部拡大側面図である。FIG. 2 is a partially enlarged side view showing a usage state of the underwater mark recognition apparatus according to the embodiment of the present invention.
【図3】この発明の一実施例による水中マーク認識装置
のマーク判別線図である。FIG. 3 is a mark discrimination diagram of the underwater mark recognition device according to the embodiment of the present invention.
【図4】従来の水中検査ロボットの(A)は側面図、
(B)は底面図、(C)は一部拡大側面図である。FIG. 4 (A) is a side view of a conventional underwater inspection robot,
(B) is a bottom view and (C) is a partially enlarged side view.
11:水中検査ロボット、 14:駆動輪、21:板厚
測定装置、31:制御装置、 33:テザーケーブル、
41:ビデオカメラ、 42:モニタテレビ、51:マ
ーク認識装置、54:渦電流式変位検出部、 55:移
動距離検出部、56:データ取得装置、 57:検査マ
ーク判別回路、91:検査対象構造物、 92:検査マ
ーク、93:海生物。11: Underwater inspection robot, 14: Drive wheel, 21: Plate thickness measuring device, 31: Control device, 33: Tether cable,
41: video camera, 42: monitor TV, 51: mark recognition device, 54: eddy current displacement detection unit, 55: moving distance detection unit, 56: data acquisition device, 57: inspection mark discrimination circuit, 91: inspection target structure Object, 92: inspection mark, 93: marine organism.
Claims (1)
造物に付着されている磁性材質の突出した検査マークを
認識する装置であって、対面する検査対象構造物までの
対面距離の変化を検出する電磁変位検出部と、前記水中
検査ロボットの移動距離を検出する移動距離検出部と、
この移動距離検出部及び前記電磁変位検出部からのデー
タを取得し蓄積するデータ取得装置と、このデータ取得
装置から前記データを入力し演算処理して検査マークを
判別する検査マーク判別装置とを具備したことを特徴と
する水中マーク認識装置。1. A device equipped on an underwater inspection robot for recognizing a protruding inspection mark made of a magnetic material attached to a structure to be inspected, and detecting a change in facing distance to the structure to be inspected. An electromagnetic displacement detecting unit, and a moving distance detecting unit that detects a moving distance of the underwater inspection robot,
A data acquisition device that acquires and stores data from the moving distance detection unit and the electromagnetic displacement detection unit, and an inspection mark determination device that inputs the data from the data acquisition device and performs arithmetic processing to determine an inspection mark. An underwater mark recognition device characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24491194A JPH0886606A (en) | 1994-09-14 | 1994-09-14 | Apparatus for recognizing underwater mark |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24491194A JPH0886606A (en) | 1994-09-14 | 1994-09-14 | Apparatus for recognizing underwater mark |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0886606A true JPH0886606A (en) | 1996-04-02 |
Family
ID=17125808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24491194A Withdrawn JPH0886606A (en) | 1994-09-14 | 1994-09-14 | Apparatus for recognizing underwater mark |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0886606A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024857A (en) * | 2005-04-13 | 2007-02-01 | Toshiba Corp | Work device and work method |
JP2007078558A (en) * | 2005-09-15 | 2007-03-29 | Toshiba Corp | Moving distance measuring device and moving distance measuring method |
US8325872B2 (en) | 2005-04-13 | 2012-12-04 | Kabushiki Kaisha Toshiba | Working device and working method |
-
1994
- 1994-09-14 JP JP24491194A patent/JPH0886606A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024857A (en) * | 2005-04-13 | 2007-02-01 | Toshiba Corp | Work device and work method |
US8325872B2 (en) | 2005-04-13 | 2012-12-04 | Kabushiki Kaisha Toshiba | Working device and working method |
JP2007078558A (en) * | 2005-09-15 | 2007-03-29 | Toshiba Corp | Moving distance measuring device and moving distance measuring method |
JP4542973B2 (en) * | 2005-09-15 | 2010-09-15 | 株式会社東芝 | Moving distance measuring device and moving distance measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10787234B2 (en) | Data capture device and system | |
US6104970A (en) | Crawler inspection vehicle with precise mapping capability | |
US6781369B2 (en) | Electromagnetic analysis of concrete tensioning wires | |
US4468619A (en) | Non-destructive detection of the surface properties of ferromagnetic materials | |
CN106645418B (en) | Crawler-type magnetoacoustic composite detection robot and detection method and device | |
US20090114025A1 (en) | Thickness measuring device for vessel steel plate | |
JP3035713B2 (en) | Transient electromagnetic inspection system with transient electromagnetic inspection method and movement sensor | |
CN113008154B (en) | Optical fiber sensing system for bridge safety monitoring | |
JPS61133856A (en) | Method and apparatus for diagnosing underground pipeline | |
JP6474070B2 (en) | Checking method for cable stayed bridges | |
EP3929689B1 (en) | Magnetic marker diagnostic system and diagnostic method | |
JPH0886606A (en) | Apparatus for recognizing underwater mark | |
JP3893074B2 (en) | Inspection device for work inner surface | |
CN111929356B (en) | Steel defect magnetic imaging device and method | |
JP6959585B2 (en) | Non-magnetic metal wall thickness measuring method and wall thickness measuring device | |
JP2000121411A (en) | Method and equipment for measurement of water level | |
JPH06258295A (en) | Welding seam inspection device | |
US4816760A (en) | Method and apparatus for detecting the position of an edge of a test piece | |
JPS6337256A (en) | Automatic tracking flaw detection of weld line of submerged structure | |
JP4004537B2 (en) | Sheet thickness measurement method | |
JPH02284897A (en) | Wall surface running robot | |
JP2007147645A (en) | Device for measuring thickness of vessel steel plate | |
JP2000046810A (en) | Ultrasonic flaw detection apparatus | |
JP2005351713A (en) | Wheel abrasion detector and detecting method | |
CN117063067A (en) | System and method for inspection of metal parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20011120 |