JPH0885830A - Method for peeling plating from surface of copper or copper alloy - Google Patents
Method for peeling plating from surface of copper or copper alloyInfo
- Publication number
- JPH0885830A JPH0885830A JP22195794A JP22195794A JPH0885830A JP H0885830 A JPH0885830 A JP H0885830A JP 22195794 A JP22195794 A JP 22195794A JP 22195794 A JP22195794 A JP 22195794A JP H0885830 A JPH0885830 A JP H0885830A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- alloy
- base
- plating layer
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、表面にNi基もしくは
Ag基めっき層の形成された銅または銅合金回収品か
ら、Ni基もしくはAg基めっき層を簡単な処理で効率
よく剥離除去する方法に関するものである。FIELD OF THE INVENTION The present invention relates to a method for efficiently peeling and removing a Ni-based or Ag-based plating layer from a recovered copper or copper alloy product having a Ni-based or Ag-based plating layer formed on its surface by a simple treatment. It is about.
【0002】[0002]
【従来の技術】銅または銅基合金(以下、銅合金とい
う)、熱伝導性や電気伝導性に優れると共に加工性も良
好であるところから、熱交換器用の基材や電子部品材料
等として広く利用されているが、その埋蔵量は鉄に比べ
て極端に少なく、銅合金製品廃材の回収再利用は省資源
・省エネルギーの観点からも極めて重要となってくる。2. Description of the Related Art Copper or a copper-based alloy (hereinafter referred to as a copper alloy) is widely used as a base material for heat exchangers, electronic component materials, etc. because it has excellent heat conductivity and electric conductivity and good workability. Although they are used, their reserves are extremely small compared to iron, and the recovery and reuse of waste copper alloy products is extremely important from the viewpoint of resource and energy conservation.
【0003】ところで電子部品等に用いられる銅合金製
品には、様々の目的で各種の金属めっき処理が施される
ことがあるが、該めっき金属は銅合金回収品中に不純物
として混入して物性を著しく損なうことがあるので、可
及的に除去しなければならない。こうしためっき金属の
中でも代表的なものに、電子部品材料用として用いられ
る銅−鉄系合金製品表面に被覆されるNi基めっきが挙
げられれるが、この回収品をそのまま再溶解するとCu
−Fe−Ni系合金溶湯となり、元のCu−Fe系合金
として再利用することができなくなる。By the way, copper alloy products used for electronic parts and the like may be subjected to various metal plating treatments for various purposes. However, the plated metal is mixed as impurities in the recovered copper alloy product and has physical properties. Must be removed as much as possible because it may significantly damage the. Typical of such plated metals is Ni-based plating coated on the surface of copper-iron alloy products used for electronic component materials.
It becomes a -Fe-Ni alloy melt and cannot be reused as the original Cu-Fe alloy.
【0004】そこでこの再溶解品をCu−Fe系合金原
料として再使用するには、該溶湯からNiを除去するこ
とが必要となるが、この溶湯からNiのみをうまく除去
することは難しい。しかして、Feを含まない銅合金溶
湯中に含まれるNiを除去する方法としては、該溶湯中
に酸化鉄を投入し、Fe−Ni系複合酸化物として除去
する溶解精錬法が知られているが、この方法ではNiの
除去は効率よく行なえるものの、精錬工程で同時にFe
も酸化されるので溶湯のFe含有率も大幅に変化し、元
のCu−Fe系合金として再生することができない。従
って、上記の様な酸化精錬法を、例えばFeの様に酸素
との反応性の高い合金元素を含有する銅合金基材にNi
系めっきの施された回収品からのNi除去に適用するこ
とはできない。また、銅合金製品の用途によってはその
表面にAg系めっきが施されることもあり、この場合は
回収品の溶解物中に不純元素としてAgが含まれてくる
が、Agは銅よりも酸化に対して安定な元素であるた
め、酸化精錬法によって銅合金溶湯から除去することは
できない。Therefore, in order to reuse the remelted product as a Cu-Fe alloy raw material, it is necessary to remove Ni from the molten metal, but it is difficult to successfully remove only Ni from the molten metal. As a method for removing Ni contained in a copper alloy melt containing no Fe, there is known a melting and refining method in which iron oxide is added to the melt and the Fe-Ni-based complex oxide is removed. However, this method can remove Ni efficiently, but at the same time as Fe in the refining process,
Since it is also oxidized, the Fe content of the molten metal changes significantly, and it cannot be regenerated as the original Cu-Fe alloy. Therefore, the oxidative refining method as described above is applied to a copper alloy substrate containing an alloying element having a high reactivity with oxygen, such as Fe, for example.
It cannot be applied to remove Ni from a system-plated recovered product. In addition, depending on the use of the copper alloy product, its surface may be subjected to Ag-based plating. In this case, the dissolved substance of the recovered product contains Ag as an impure element, but Ag is more oxidized than copper. Since it is an element that is stable against, it cannot be removed from the copper alloy melt by the oxidation refining method.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上記の様な
従来技術の問題点に着目したなされたものであって、そ
の目的は、例えばFeの様に酸素との反応性の高い金属
を合金元素として含有する銅合金製品の表面にNi系あ
るいはAg系めっきの施された回収品から、NiやAg
を簡単な方法で効率よく除去することのできる方法を提
供しようとするものである。SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art as described above, and its purpose is to select a metal having a high reactivity with oxygen such as Fe. Ni or Ag is recovered from the recovered product in which the surface of the copper alloy product contained as an alloying element is plated with Ni or Ag.
The present invention is intended to provide a method capable of efficiently removing the above by a simple method.
【0006】[0006]
【課題を解決するための手段】上記の課題を解決するこ
とのできた本発明に係るめっき剥離法の構成は、表面に
Ni基もしくはAg基めっき層が形成された銅または銅
基合金を酸化性雰囲気中で加熱し、銅または銅基合金と
Ni基もしくはAg基めっき層との境界部に酸化銅より
なる脆弱層を形成してからNi基もしくはAg基めっき
層を剥離除去するところに要旨を有するものである。上
記加熱の好ましい条件は、700〜1000℃で3〜2
0分間の範囲であり、該加熱処理の後に冷却しつつ、も
しくは冷却してからNi基もしくはAg基めっき層の剥
離除去を行なうことにより、めっき層を殆んど完全に除
去することができる。The constitution of the plating stripping method according to the present invention which has been able to solve the above-mentioned problems is to oxidize copper or a copper-based alloy having a Ni-based or Ag-based plated layer formed on its surface. It is heated in an atmosphere to form a brittle layer of copper oxide at the boundary between the copper or copper-based alloy and the Ni-based or Ag-based plated layer, and then the Ni-based or Ag-based plated layer is peeled and removed. I have. The preferable conditions of the above heating are 700 to 1000 ° C. and 3 to 2
It is in the range of 0 minutes, and the plating layer can be almost completely removed by peeling and removing the Ni-based or Ag-based plated layer while cooling after the heat treatment or after cooling.
【0007】[0007]
【作用】上記の様に本発明では、表面にNi基もしくは
Ag基めっき層が形成された銅または銅基合金(以下、
再び銅合金という)を酸化性雰囲気中で加熱し、銅合金
基材とNi基もしくはAg基めっき層との境界部に酸化
銅よりなる脆弱層を形成してからNi基もしくはAg基
めっき層を、固体状態のままで効率よく剥離除去するも
のであり、こうした構成に想到した経緯を追って本発明
の構成を詳細に説明する。As described above, according to the present invention, copper or a copper-based alloy (hereinafter, referred to as
Again referred to as a copper alloy) in an oxidizing atmosphere to form a brittle layer of copper oxide at the boundary between the copper alloy substrate and the Ni-based or Ag-based plated layer, and then form the Ni-based or Ag-based plated layer. The structure of the present invention is to be removed efficiently by removing the solid state, and the structure of the present invention will be described in detail with reference to the circumstances that led to such a structure.
【0008】まず、銅の融点以下の温度である1000
℃の温度条件におけるNiと銅の各酸化物の標準生成自
由エネルギーを比較すると、酸化Niの標準生成自由エ
ネルギーは−124kJ/mol・O2 であるのに対
し、酸化Cuの標準生成自由エネルギーは−74kJ/
mol・O2 であり、NiはCuに比べて酸化力が強い
ので、表面にNi系めっきの施された銅合金を酸化性雰
囲気中で加熱すると、表面のNi系めっきの酸化が進行
すると共に、該めっき層を通して銅合金基材方向に拡散
移行する酸素によって銅の酸化が進行し、めっき層と銅
合金基材との界面に酸化銅が生成するが、この酸化銅は
非常に脆弱であり、この脆弱な銅酸化物の生成によっ
て、めっき層を銅合金基材から簡単に剥離除去し得るこ
とが確認された。First, 1000, which is a temperature below the melting point of copper
Comparing the standard free energy of formation of each oxide of Ni and copper under the temperature condition of C, the standard free energy of formation of Ni oxide is −124 kJ / mol · O 2 , whereas the standard free energy of formation of Cu oxide is -74kJ /
Since it is mol · O 2 and Ni has a stronger oxidizing power than Cu, when a copper alloy having Ni-based plating on the surface is heated in an oxidizing atmosphere, oxidation of the Ni-based plating on the surface proceeds. The oxidation of copper is promoted by oxygen that diffuses and migrates toward the copper alloy base material through the plating layer, and copper oxide is generated at the interface between the plating layer and the copper alloy base material, but this copper oxide is very fragile. It was confirmed that the formation of the brittle copper oxide allows the plating layer to be easily peeled and removed from the copper alloy substrate.
【0009】ちなみに図1は、上記の酸化現象を確認す
るため、1重量%のFeを含有する銅合金を基材とし、
その表面に0.8重量%のNiめっきを施した材料の熱
分析結果を示したグラフであり、この図からも明らかで
ある様に、NiめっきCu−Fe合金の酸化による重量
増加は約700℃を超えたあたりから始まり、温度が高
くなるにつれて重量増加量は増大しており、酸素の吸
収、即ち酸化の進行を確認することができる。そして、
この様にして酸化を行なった後、供試材表面のNiめっ
き層を剥離すると、該めっき層は基材から極めて簡単に
剥離することができ、該剥離面には脆弱な酸化銅が生成
していることが確認された。Incidentally, in order to confirm the above-mentioned oxidation phenomenon, FIG. 1 uses a copper alloy containing 1% by weight of Fe as a base material,
It is a graph showing the results of thermal analysis of a material whose surface is plated with 0.8% by weight of Ni, and as is clear from this figure, the weight increase due to the oxidation of the Ni-plated Cu-Fe alloy is about 700. Starting from around the temperature exceeding 0 ° C, the weight increase amount increases as the temperature rises, and it is possible to confirm the absorption of oxygen, that is, the progress of oxidation. And
When the Ni plating layer on the surface of the test material is peeled off after the oxidation is performed in this manner, the plating layer can be peeled off from the base material very easily, and brittle copper oxide is generated on the peeled surface. Was confirmed.
【0010】即ち本発明では、こうした現象を活用し、
Ni系めっきの施された銅合金材を酸素含有ガス雰囲気
中で加熱処理してNi系めっき層と基材との界面に酸化
銅よりなる脆弱層を形成し、次いで該脆弱層を境にして
Ni系めっき層の剥離除去を行なうところに特徴を有し
ている。従って、この加熱酸化工程では基材とNiめっ
き層との間に酸化銅を形成させることが必要であり、そ
のためには加熱温度を好ましくは700℃程度以上、加
熱時間は3分程度以上、より好ましくは5分程度以上に
設定するのがよい。但し、この加熱酸化が過度に進行す
ると、基材である銅合金の酸化による消耗量が多くなっ
て銅または銅合金の歩留が低下してくるので、加熱酸化
の時間は20分程度以下、より好ましくは15分以下に
抑えることが望まれる。また加熱処理温度の上限は、銅
合金基材が溶融することのない温度であるが、通常は1
000℃程度で酸化は充分に進行するので、作業性や熱
効率等を総合的に考えると1000℃程度以下、より好
ましくは900℃程度以下に抑えることが望ましい。That is, the present invention utilizes such a phenomenon,
A Ni-plated copper alloy material is heat-treated in an oxygen-containing gas atmosphere to form a brittle layer made of copper oxide at the interface between the Ni-plated layer and the base material, and then the brittle layer is used as a boundary. The feature is that the Ni-based plating layer is peeled and removed. Therefore, in this heating and oxidation step, it is necessary to form copper oxide between the base material and the Ni plating layer. For that purpose, the heating temperature is preferably about 700 ° C. or higher, the heating time is about 3 minutes or longer, and Preferably, it is set to about 5 minutes or more. However, if this heating and oxidization proceeds excessively, the amount of consumption of the copper alloy as the base material due to oxidation increases and the yield of copper or copper alloy decreases, so the heating and oxidation time is about 20 minutes or less, More preferably, it is desired to be suppressed to 15 minutes or less. The upper limit of the heat treatment temperature is a temperature at which the copper alloy base material does not melt, but is usually 1
Since oxidation proceeds sufficiently at about 000 ° C, it is desirable to suppress the temperature to about 1000 ° C or less, more preferably to about 900 ° C or less in consideration of workability and thermal efficiency.
【0011】ちなみに図2,3は、前記図1の実験で用
いたのと同じNiめっきCu−1%Fe合金を使用し、
図4に示す様な工程で加熱酸化とNiめっき層の剥離除
去を行ない、その後誘導溶解炉で加熱溶解する方法を採
用し、加熱酸化処理時における温度と時間を種々変えた
ときに得られる溶湯中のNi濃度を調べた結果を示した
グラフである。尚図4において、1は回転式抵抗加熱
炉、2は振動篩、3は誘導溶解炉を示し、供試材Aを大
気に解放された回転式抵抗加熱炉1に装入して所定温度
で所定時間加熱酸化した後、空冷機付きの振動篩2にか
けてNiめっき層を剥離除去した後、誘導溶解炉3で加
熱溶解する。そして、該溶湯を採取して残留Ni濃度を
定量した。By the way, FIGS. 2 and 3 use the same Ni-plated Cu-1% Fe alloy as that used in the experiment of FIG.
A molten metal obtained by heating and oxidizing the Ni plating layer in a process as shown in FIG. 4 and then removing the Ni plating layer by heating and melting in an induction melting furnace. It is a graph showing the result of examining the Ni concentration in the inside. In FIG. 4, 1 is a rotary resistance heating furnace, 2 is a vibrating sieve, 3 is an induction melting furnace, and the test material A is charged into the rotary resistance heating furnace 1 which is open to the atmosphere, and at a predetermined temperature. After heating and oxidizing for a predetermined time, the Ni plating layer is peeled and removed by passing through a vibrating screen 2 with an air cooler, and then heated and melted in an induction melting furnace 3. Then, the molten metal was sampled to quantify the residual Ni concentration.
【0012】図2,3からも明らかである様に、加熱酸
化処理の温度を700〜1000℃、加熱時間を5〜1
5分とすることによって、Niめっき層を効率よく剥離
除去し得ることが分かる。尚表1は、加熱温度と加熱時
間がCu歩留に与える影響を調べた結果を示したもので
あり、特に加熱温度が600℃を超える場合は、加熱時
間が20分を超えるとCu歩留の低下が顕著に現れ、ま
た加熱温度が900℃を超える場合もCu歩留の低下が
明らかに現れてくるので、加熱時間は20分以下、より
好ましくは15分以下、加熱温度は900℃程度以下に
抑えることが望まれる。As is apparent from FIGS. 2 and 3, the temperature of the heat oxidation treatment is 700 to 1000 ° C. and the heating time is 5 to 1
It can be seen that the Ni plating layer can be removed efficiently by removing the Ni plating layer for 5 minutes. Table 1 shows the results of examining the influence of the heating temperature and the heating time on the Cu yield. Particularly, when the heating temperature exceeds 600 ° C., the Cu yield increases when the heating time exceeds 20 minutes. Decrease significantly, and also when the heating temperature exceeds 900 ° C, the Cu yield obviously decreases, so the heating time is 20 minutes or less, more preferably 15 minutes or less, and the heating temperature is about 900 ° C. It is desirable to keep the amount below.
【0013】[0013]
【表1】 [Table 1]
【0014】ところで上記の様にして銅合金基材とNi
系めっき層との境界面に形成される酸化銅は、前述の如
く極めて脆弱なものであるから、加熱酸化処理の後軽く
衝撃等を加えることによってNiめっき層は簡単に剥離
されるが、加熱処理の後に水や冷風で急冷すると、熱膨
張係数の差によって酸化銅の部分で内部応力が生じ、N
iめっき層の剥離が一層容易に行なえる様になるので好
ましい。By the way, as described above, the copper alloy substrate and Ni
Since the copper oxide formed on the boundary surface with the system plating layer is extremely brittle as described above, the Ni plating layer is easily peeled off by applying a light shock after the heat oxidation treatment, If it is rapidly cooled with water or cold air after the treatment, internal stress is generated in the copper oxide part due to the difference in thermal expansion coefficient, and N
It is preferable because the i-plated layer can be peeled off more easily.
【0015】尚上記ではNiめっきの除去を主体にして
説明したが、Ag系めっきの場合でも基本的に同じであ
り、加熱酸化によりAgめっき層を通して銅合金基材方
向に拡散移行してきた酸素によって界面に脆弱な酸化銅
が形成され、Ag系めっき層も簡単に剥離除去できる。
また基材となる銅または銅合金の種類についても格別の
制限はなく、要は加熱酸化処理によりめっき層との界面
に酸化銅が形成されるための銅を含有するものであれ
ば、全ての銅合金に適用することが可能である。In the above description, the removal of the Ni plating was mainly described, but the same applies to the case of Ag-based plating, and the oxygen that has diffused and migrated toward the copper alloy base material through the Ag plating layer by thermal oxidation is used. A brittle copper oxide is formed at the interface, and the Ag-based plating layer can be easily removed.
There is also no particular limitation on the type of copper or copper alloy as the base material, as long as it contains copper for forming copper oxide at the interface with the plating layer by heat oxidation treatment It can be applied to copper alloys.
【0016】本発明は以上の様に構成されており、溶湯
精錬処理に比べて極めて簡単な乾式処理によってめっき
層を簡単にしかも効率よく除去することができ、しかも
極めて高い歩留で元の銅または銅合金原料として再生す
ることができる。The present invention is configured as described above, and the plating layer can be removed easily and efficiently by a dry process which is extremely simple as compared with the molten metal refining process, and the original copper can be obtained with an extremely high yield. Alternatively, it can be recycled as a copper alloy raw material.
【0017】[0017]
【実施例】以下実施例によって本発明を更に具体的に説
明するが、本発明はもとより下記実施例によって制限を
受けるものではなく、前・後記の趣旨を逸脱しない範囲
で変更実施することは全て本発明の技術的範囲に包含さ
れる。EXAMPLES The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples, and any changes or modifications may be made without departing from the spirit of the above and the following. It is included in the technical scope of the present invention.
【0018】実施例1 原料として、JIS H3100 C1100相当のF
e含有銅合金(Fe含有量:1重量%)の表面に0.8
重量%のNiめっきが施された回収品(10mm×50
mm×1.5mm)100kgを使用し、これを図4に
示した様に、大気に解放された回転式抵抗加熱炉1に装
入し10rpmで回転させながらて800℃で10分間
保持した後、これを空冷機付きの振動篩2へ送って急冷
すると共に振動を与えてNiめっき層を剥離除去し、次
いで誘導溶解炉3に送って1150℃で加熱溶解した。
得られた溶湯と、上記処理を全く施していない原料、お
よびこの原料を常法により酸化精錬(1150℃の溶湯
に0.01l/min・溶湯1kgの速度で15分間空
気を吹込んだ後、浮上する酸化物をレーキによって湯面
から除去する方法)して得た溶湯についてCu,Fe,
Niの各含有量を測定し、下記表2に示す結果を得た。
尚表2には、銅としての回収歩留も併記した。Example 1 As a raw material, F equivalent to JIS H3100 C1100
0.8 on the surface of e-containing copper alloy (Fe content: 1% by weight)
Recovered product (10mm × 50
(mm × 1.5 mm) 100 kg was used, and as shown in FIG. 4, after charging the rotary resistance heating furnace 1 open to the atmosphere and rotating at 10 rpm for 10 minutes at 800 ° C. Then, this was sent to a vibrating screen 2 equipped with an air cooler to be rapidly cooled and vibrated to remove the Ni plating layer by peeling, and then sent to an induction melting furnace 3 to be heated and melted at 1150 ° C.
The obtained molten metal, a raw material which was not subjected to the above treatment at all, and an oxidative refining of this raw material by a conventional method (after blowing air into the molten metal at 1150 ° C. at a rate of 0.01 l / min · molten metal for 15 minutes, Method of removing floating oxides from the surface of the molten metal by rake) Cu, Fe,
The respective contents of Ni were measured, and the results shown in Table 2 below were obtained.
Table 2 also shows the recovery yield of copper.
【0019】[0019]
【表2】 [Table 2]
【0020】表2からも明らかである様に、本発明法に
よればFeの除去を伴うことなくNiのみを可及的に除
去することができ、また非常に高い銅歩留を確保し得る
ことが分かる。As is clear from Table 2, according to the method of the present invention, Ni can be removed as much as possible without removing Fe, and a very high copper yield can be secured. I understand.
【0021】また上記と同様にして、Fe含有量が3重
量%、Ni系めっき付着量が0.8重量%の銅合金回収
品の再生を行なったところ、表2と同様にFe含有量を
殆んど低下させることなくNi含量の殆んどない銅合金
として銅歩留95.2重量%で再生することができた。
また、加熱酸化後の空冷に代えて冷水噴霧によって急冷
とめっき層の剥離除去を行なった場合も、同様に高い除
去率を得ることができた。尚加熱酸化処理時の昇温速度
を5℃/分と50℃/分に代えて同様の実験を行なった
ところ、Ni除去率に殆んど差異は認められなかった。In the same manner as above, a recovered copper alloy product having an Fe content of 3% by weight and a Ni-based plating deposition amount of 0.8% by weight was regenerated. It could be regenerated at a copper yield of 95.2% by weight as a copper alloy having almost no Ni content, with almost no decrease.
Also, when the rapid cooling and the peeling removal of the plating layer were carried out by spraying with cold water instead of the air cooling after the heating and oxidation, a high removal rate could be obtained similarly. When the same experiment was conducted by changing the temperature rising rate during the heat oxidation treatment to 5 ° C./min and 50 ° C./min, almost no difference was observed in the Ni removal rate.
【0022】更に、Agめっき付着量が0.8重量%の
Cu−1%Fe合金回収品について上記と同様のめっき
除去処理を行なったところ、Niめっき除去処理と殆ん
ど同じ結果が得られた。Further, when a Cu-1% Fe alloy recovered product having an Ag coating amount of 0.8% by weight was subjected to the same plating removal treatment as above, almost the same result as the Ni plating removal treatment was obtained. It was
【0023】[0023]
【発明の効果】本発明は以上の様に構成されており、溶
湯精錬処理に比べて極めて簡単な乾式処理によって銅ま
たは銅合金表面のNi系もしくはAg系めっき層を簡単
にしかも効率よく除去することができ、しかも極めて高
い歩留で元の銅または銅合金原料として再生することが
できる。The present invention is configured as described above, and can easily and efficiently remove the Ni-based or Ag-based plating layer on the surface of copper or copper alloy by a dry treatment which is extremely simple as compared with the molten metal refining treatment. In addition, it can be regenerated as the original copper or copper alloy raw material with an extremely high yield.
【図1】Niめっき銅合金の加熱酸化処理時における重
量増加を示す熱分析結果のグラフである。FIG. 1 is a graph of thermal analysis results showing an increase in weight of a Ni-plated copper alloy during a thermal oxidation treatment.
【図2】加熱酸化処理温度及び処理時間と溶解後の残留
Ni濃度との関係を示すグラフである。FIG. 2 is a graph showing a relationship between a heat oxidation treatment temperature and a treatment time and a residual Ni concentration after dissolution.
【図3】同じく、加熱酸化処理温度及び処理時間と溶解
後の残留Ni濃度との関係を示すグラフである。FIG. 3 is likewise a graph showing the relationship between the temperature and the treatment time of the heat oxidation treatment and the residual Ni concentration after dissolution.
【図4】本発明を利用した再生処理プロセスを示す概念
説明図である。FIG. 4 is a conceptual explanatory diagram showing a reproduction processing process using the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 隆吉 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 吉田 栄次 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 岡田 裕文 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 大賀 清正 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 新井 基浩 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takayoshi Ikeda 14-1 Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Kobe Steel Works, Ltd. Chofu Works (72) Inventor Eiji Yoshida 14-1 Chofu Minatomachi, Shimonoseki City, Yamaguchi Company Kobe Steel Works Chofu Factory (72) Inventor Hirofumi Okada 14-1 Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Kobe Steel Works Chofu Factory (72) Inventor Kiyomasa Oga 1-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture No. 5 Inside Kobe Research Institute of Kobe Steel, Ltd. (72) Inventor Motohiro Arai 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Inside Kobe Research Institute of Kobe Steel, Ltd.
Claims (3)
形成された銅または銅基合金を酸化性雰囲気中で加熱
し、銅または銅基合金とNi基もしくはAg基めっき層
との境界部に酸化銅よりなる脆弱層を形成してからNi
基もしくはAg基めっき層を剥離除去することを特徴と
する銅または銅合金表面のめっき剥離法。1. A copper or copper-based alloy having a Ni-based or Ag-based plated layer formed on its surface is heated in an oxidizing atmosphere to form a boundary between the copper or copper-based alloy and the Ni-based or Ag-based plated layer. Ni after forming a brittle layer of copper oxide
A method for stripping a copper or copper alloy surface by stripping and removing the base or Ag-based plating layer.
間行なう請求項1に記載のめっき剥離法。2. The plating stripping method according to claim 1, wherein heating is performed at 700 to 1000 ° C. for 3 to 20 minutes.
からNi基もしくはAg基めっき層の剥離除去を行なう
請求項1または2に記載のめっき剥離法。3. The plating stripping method according to claim 1, wherein the Ni-based or Ag-based plating layer is stripped and removed after cooling after heating or after cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22195794A JPH0885830A (en) | 1994-09-16 | 1994-09-16 | Method for peeling plating from surface of copper or copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22195794A JPH0885830A (en) | 1994-09-16 | 1994-09-16 | Method for peeling plating from surface of copper or copper alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0885830A true JPH0885830A (en) | 1996-04-02 |
Family
ID=16774815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22195794A Pending JPH0885830A (en) | 1994-09-16 | 1994-09-16 | Method for peeling plating from surface of copper or copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0885830A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023286711A1 (en) * | 2021-07-13 | 2023-01-19 | 国立研究開発法人物質・材料研究機構 | Method for separating copper-copper laminate, and copper-copper laminate |
WO2023167219A1 (en) * | 2022-03-02 | 2023-09-07 | 株式会社Uacj | Production method for aluminum alloy feedstock, production method for aluminum alloy ingot, production method for aluminum alloy sheet, production method for aluminum alloy substrate for plating, production method for aluminum alloy substrate for magnetic disk, production method for magnetic disk, and magnetic disk |
CN117181770A (en) * | 2023-09-08 | 2023-12-08 | 江苏省沙钢钢铁研究院有限公司 | System and method for recycling steel wire from copper-plated steel wire |
-
1994
- 1994-09-16 JP JP22195794A patent/JPH0885830A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023286711A1 (en) * | 2021-07-13 | 2023-01-19 | 国立研究開発法人物質・材料研究機構 | Method for separating copper-copper laminate, and copper-copper laminate |
WO2023167219A1 (en) * | 2022-03-02 | 2023-09-07 | 株式会社Uacj | Production method for aluminum alloy feedstock, production method for aluminum alloy ingot, production method for aluminum alloy sheet, production method for aluminum alloy substrate for plating, production method for aluminum alloy substrate for magnetic disk, production method for magnetic disk, and magnetic disk |
CN117181770A (en) * | 2023-09-08 | 2023-12-08 | 江苏省沙钢钢铁研究院有限公司 | System and method for recycling steel wire from copper-plated steel wire |
CN117181770B (en) * | 2023-09-08 | 2024-08-23 | 江苏省沙钢钢铁研究院有限公司 | System and method for recycling steel wire from copper-plated steel wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0978151A (en) | Recycle method of valuable metals from scraps | |
JPH0885830A (en) | Method for peeling plating from surface of copper or copper alloy | |
JP2010158720A (en) | Casting mold for use in directional solidification process and method of making | |
JP2000017412A (en) | Production of aluminum alloy sheet | |
JP2020076121A (en) | Pgm recovery metho | |
JPH04354831A (en) | Method for removing copper from steel scrap | |
JPH0885831A (en) | Method for removing tin type plating | |
CN105965174B (en) | A kind of Continuous Casting Rolls bottom surface resurfacing welding material | |
US1362381A (en) | Detinning | |
JP3877573B2 (en) | Method for melting aluminum coating material | |
KR102636188B1 (en) | Casting of ferro-titanium using continuous melting technology through temperature control | |
JPH07145431A (en) | Method for peeling sn plating from sn plated steel products | |
JPS62183950A (en) | Thermal spraying roll for hot casting slab | |
KR101311712B1 (en) | Removing method of coating layer from waste cemented carbide | |
JPH07305152A (en) | Apparatus for continuously heating metal wire rod | |
JPH1015740A (en) | Manufacture of electric discharge machining electrode wire | |
JPH08295960A (en) | Method for smelting aluminum or aluminum alloy | |
JP3023786B1 (en) | Manufacturing method of stainless steel with excellent corrosion resistance | |
JPH06299262A (en) | Treatment of molten metal of te-containing copper | |
JPS62270250A (en) | Graphite-made nozzle for continuous casting | |
Toombs | Salt bath heat treating of non-ferrous metals | |
TW593686B (en) | Aluminum-iron ingot for steel smelting and deoxidization and method for producing the same | |
JPH0352010B2 (en) | ||
JP3524350B2 (en) | How to reuse steel scrap | |
JPS5835585B2 (en) | Regenerated monel and its regeneration method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020625 |