JPH06299262A - Treatment of molten metal of te-containing copper - Google Patents

Treatment of molten metal of te-containing copper

Info

Publication number
JPH06299262A
JPH06299262A JP8483993A JP8483993A JPH06299262A JP H06299262 A JPH06299262 A JP H06299262A JP 8483993 A JP8483993 A JP 8483993A JP 8483993 A JP8483993 A JP 8483993A JP H06299262 A JPH06299262 A JP H06299262A
Authority
JP
Japan
Prior art keywords
molten metal
copper
furnace
refractory
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8483993A
Other languages
Japanese (ja)
Inventor
Takashi Nakamura
崇 中村
Kenji Osumi
研治 大隅
Kiyomasa Oga
清正 大賀
Motohiro Arai
基浩 新井
Ryukichi Ikeda
隆吉 池田
Eiji Yoshida
栄次 吉田
Hirofumi Okada
裕文 岡田
Ryusuke Hamanaka
龍介 浜中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8483993A priority Critical patent/JPH06299262A/en
Publication of JPH06299262A publication Critical patent/JPH06299262A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To suppress erosion of lining refractories satisfying requirements and to obtain a high Te removal rate by using such refractories at the time of removing Te from molten metal of a Te-contg. copper system by using Na2CO3 and/or K2CO3 as a refining agent. CONSTITUTION:The Al2O3 refractory material which contains >=5wt.% SiC and is limited in SiO2 content to <=2wt.% is used as the lining material for a molten metal treatment furnace at the time of adding the Na2CO3 and/or K2CO3 as the refining agent to the molten metal of the copper system contg. the Te and slagging off and removing the Te as the composite compd. thereof. As a result, the erosion of the refractories is prevented and an excellent Te removing effect is assured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不純物としてTeを含
む銅系金属溶湯から、処理炉内張り耐火材の溶損を防止
しつつTeを効率良く除去できる様に工夫されたTe含
有銅系金属溶湯の処理方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a Te-containing copper-based metal which is devised so that Te can be efficiently removed from a molten copper-based metal containing Te as an impurity while preventing melting damage of a refractory lining in a processing furnace. The present invention relates to a method for treating molten metal.

【0002】[0002]

【従来の技術】銅および銅合金は優れた伝熱性や導電性
を有していると共に、耐食性や加工性においても優れた
ものであるから、従来より電気・電子分野や熱交換器分
野をはじめとして多分野に亘って広く活用されている。
しかし銅は鉄鋼材料に比べて原料鉱石の埋蔵量が少なく
高価であるので、資源保護の観点からもスクラップの回
収再利用が重要な課題となっている。
2. Description of the Related Art Copper and copper alloys have excellent heat conductivity and conductivity as well as excellent corrosion resistance and workability. It is widely used in various fields.
However, since copper has less reserves of raw material ore than steel materials and is expensive, recovery and reuse of scrap has become an important issue from the viewpoint of resource conservation.

【0003】しかし、前述の如く銅または銅合金の応用
分野が拡大し、且つ用途に応じて様々の機能改善が加え
られるにつれて、屑銅等として回収されるスクラップ中
に含まれる不純物も多岐に亘り、従来例ではあまり混入
することのなかった様々の不純物が混入し、回収再生品
の物性等に悪影響を及ぼす。
However, as the application fields of copper or copper alloys are expanded and various functional improvements are added depending on the applications as mentioned above, impurities contained in scraps recovered as scrap copper and the like are also diversified. However, various impurities, which are not mixed in the conventional example, are mixed, which adversely affects the physical properties of the recovered recycled product.

【0004】これら不純物元素のうちTeは銅に比べて
低融点であるため、銅または銅合金の回収再生品にその
まま不純物として残存すると、結晶粒界に偏析して加工
割れや表面欠陥の原因になるので、溶製段階で極力除去
しておく必要がある。そこでTeを溶製段階で除去する
方法についても研究が進められ、その一つとして溶製段
階でNa2 Co3 を添加し、銅系金属溶湯中のTeをN
2 CO3 により捕捉し滓化させて浮上分離させる方法
が提案されている。
Of these impurity elements, Te has a lower melting point than copper, so if it remains as an impurity in a recovered product of copper or a copper alloy, it segregates at the grain boundaries and causes work cracks and surface defects. Therefore, it is necessary to remove as much as possible at the melting stage. Therefore, research is also progressing on a method of removing Te in the melting stage, and one of them is to add Na 2 Co 3 in the melting stage to remove Te in the molten copper-based metal from N
A method has been proposed in which a 2 CO 3 is used to capture and slag to float and separate.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の方
法は実験室的には有効な方法であると思われるが、反射
炉や誘導炉を用いた実用規模の溶製段階でのTe除去に
適用してみると、Teを全く除去することができず、し
かも溶製炉の内張り耐火物が著しく溶損されることを知
った。本発明はこの様な事情に着目してなされたもので
あって、その目的は、溶製炉内張り耐火物の溶損を抑制
しつつ、Te含有銅系金属溶湯からTeを効率良く除去
することのできる技術を確立しようとするものである。
However, although the above-mentioned method seems to be an effective method in a laboratory, it is applied to Te removal in a melting stage of a practical scale using a reverberatory furnace or an induction furnace. It turned out that Te could not be removed at all and that the refractory lining in the smelting furnace was significantly damaged. The present invention has been made in view of such circumstances, and an object thereof is to efficiently remove Te from a Te-containing copper-based metal molten metal while suppressing melting loss of a refractory lining refractory material. It aims to establish a technology that can do it.

【0006】[0006]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る溶湯処理方法の構成は、Teを含
有する銅系金属溶湯に精錬剤としてNa2 CO3 および
/またはK2 CO3 を添加し、Teをこれらの複合化合
物として滓化し除去するに当たり、溶湯処理炉の内張り
材として、5重量%以上のSiCを含み且つSiO2
量が2重量%以下に制限されたAl23 系耐火材を使
用するところに要旨を有するものである。そしてこの方
法を実施するに当たっては、処理炉として反射炉もしく
は誘導炉を使用し、Te含有銅系金属溶湯中のO2 濃度
を1000ppm以上に高めることによって、Teを一
層効率良く除去することができる。
Means for Solving the Problems The configuration of the melt processing method according to the present invention that has solved the above problems, Na as refining agent in the copper-based metal melt containing Te 2 CO 3 and / or K 2 CO In adding 3 to remove Te as a complex compound thereof, Al 2 O containing 5 wt% or more of SiC and having a SiO 2 content of 2 wt% or less was used as a lining material for the molten metal treatment furnace. The point is to use 3 series refractory materials. In carrying out this method, a reverberatory furnace or an induction furnace is used as a processing furnace, and the O 2 concentration in the Te-containing copper-based metal melt is increased to 1000 ppm or more, whereby Te can be removed more efficiently. .

【0007】[0007]

【作用】本発明者らは、前述の如く実験室レベルでのT
e除去は可能であるが、反射炉や誘導炉等を用いた実操
業規模の溶製段階ではTeを除去することができず、ま
た溶製段階で精錬剤としてNa2 Co3 を添加すると内
張り耐火物が著しく溶損される、という確認結果から、
Te除去のために添加するNa2 CO3 が内張り耐火物
成分と何らかの反応を起こし、この反応により耐火物が
溶損されると共に、Na2 CO3 が変質してTe除去効
果を失うのではないかと考えた。
[Function] As described above, the present inventors
Although it is possible to remove e, Te cannot be removed in the actual production scale smelting stage using a reverberatory furnace or an induction furnace, and if Na 2 Co 3 is added as a refining agent in the smelting stage, it is lined. From the confirmation result that the refractory is significantly melted,
Na 2 CO 3 added for Te removal causes some reaction with the refractory lining components, and this reaction not only melts the refractory but also deteriorates Na 2 CO 3 and does not lose the Te removal effect. I thought.

【0008】即ち銅系金属溶湯の精錬処理に通常用いら
れる反射炉や誘導炉の内張り耐火物としては、Al2
3 を主体とし10〜40%程度のSiO2 を含む複合酸
化物が使用されている。従ってこれらの耐火物成分の一
部がNa2 CO3 と反応して溶損されると共に、Te除
去に悪影響を及ぼしているものと考えられる。
That is, Al 2 O is used as a refractory lining for a reverberatory furnace or an induction furnace which is usually used for refining a molten copper metal.
A composite oxide mainly composed of 3 and containing 10 to 40% of SiO 2 is used. Therefore, it is considered that a part of these refractory components reacts with Na 2 CO 3 to be melted and damaged, and adversely affects Te removal.

【0009】そこでAl23 /SiO2 比を種々変え
た実験用るつぼを使用し、約100ppmのTeを含む
純銅系金属溶湯(1200℃)にNa2 CO3 を溶湯重
量に対して1%添加してTe除去を行なった場合のTe
除去率を調べた。その結果、下記表1に示す如く、るつ
ぼ耐火物中のSiO2 含量が多くなるにつれてTe除去
率は著しく低下し、特にSiO2 含量が15%以上のA
23 /SiO2 系耐火物によって作製したるつぼを
使用すると、Teを全く除去できなくなることを知っ
た。
Therefore, using experimental crucibles having various Al 2 O 3 / SiO 2 ratios, Na 2 CO 3 was added to a pure copper metal melt (1200 ° C.) containing about 100 ppm Te in an amount of 1% based on the weight of the melt. Te when Te is added to remove Te
The removal rate was investigated. As a result, as shown in Table 1 below, as the SiO 2 content in the crucible refractory increases, the Te removal rate decreases remarkably, and especially when the SiO 2 content is 15% or more,
It has been found that Te cannot be removed at all when using a crucible made of l 2 O 3 / SiO 2 based refractory.

【0010】[0010]

【表1】 [Table 1]

【0011】表1からも明らかである様に、Na2 CO
3 によるTe除去率を十分に高めるには、SiO2 含量
が10%以下のAl23 /SiO2 系耐火物を使用す
る必要がある。しかしSiO2 含量が10%以下のもの
であっても、るつぼの溶損はかなり進行することが確認
された。
As is clear from Table 1, Na 2 CO
In order to sufficiently increase the Te removal rate by 3 , it is necessary to use an Al 2 O 3 / SiO 2 refractory having a SiO 2 content of 10% or less. However, it was confirmed that even if the SiO 2 content was 10% or less, the melting loss of the crucible proceeded considerably.

【0012】そこで耐溶損性を改善する為、銅系金属溶
湯とNa2 CO3 の双方に対して耐食性改善効果を有す
るSiCとの複合を試みた。即ち図1に示すような実験
用装置(図中、1は黒鉛るつぼ、2は供試耐火物片:5
0mm×200mm×30mm)を使用し、1200℃の銅系
金属溶湯にNa2 CO3 を溶湯重量に対して1%添加し
て溶製処理を行なう際に、SiC含有率を種々変えたA
23 /SiC系耐火物を供試耐火物片2として溶湯
内に浸漬しておき、供試耐火物片2の溶損状態を比較し
た。
Therefore, in order to improve the corrosion resistance, an attempt was made to combine the molten copper-based metal with SiC which has the effect of improving the corrosion resistance of both Na 2 CO 3 . That is, an experimental apparatus as shown in FIG. 1 (in the figure, 1 is a graphite crucible, 2 is a test refractory piece: 5
0 mm × 200 mm × 30 mm), and when the melting process was performed by adding 1% of Na 2 CO 3 to the weight of the molten copper-based metal at 1200 ° C.
The 1 2 O 3 / SiC-based refractory material was immersed in the molten metal as the test refractory material 2 and the melting states of the test refractory material 2 were compared.

【0013】結果は表2に示す通りであり、Al23
に対して5%以上、より好ましくは5〜10%のSiC
を複合したAl23 /SiC系耐火物は、耐溶損性に
おいて優れた効果を示すことが分かる。
The results are shown in Table 2, and Al 2 O 3
5% or more, more preferably 5 to 10% of SiC
It can be seen that the Al 2 O 3 / SiC-based refractory material in which the above-mentioned compounds are combined has an excellent effect on the melting resistance.

【0014】[0014]

【表2】 [Table 2]

【0015】また表3は、SiC含量を2〜10%に設
定し、これに0%,2%および5%のSiO2 を複合し
てなるAl23 /SiC/SiO2 系耐火物につい
て、上記と同様にして耐溶損性を調べた結果を示したも
のである。
Further, Table 3 shows Al 2 O 3 / SiC / SiO 2 refractories in which the SiC content is set to 2 to 10% and 0%, 2% and 5% of SiO 2 is compounded. The results of examination of the melting resistance are shown in the same manner as above.

【0016】[0016]

【表3】 [Table 3]

【0017】表3からも明らかである様に、Al23
に相当量のSiCを複合したものであっても、SiO2
含量が2%を超えると耐溶損性は明らかに悪化してい
る。そしてこの表3および前掲の表1,2の結果を総合
して、Te含有銅系金属溶湯にNa2 CO3 を添加して
Te除去を行なう際の好ましい内張り耐火物組成は、5
%以上より好ましくは5〜10%のSiCを含み、且つ
SiO2 含量を2%以下に抑えたAl23 系耐火物で
あることを確認できる。
As is clear from Table 3, Al 2 O 3
Be those of equivalent amounts of SiC conjugated to be, SiO 2
When the content exceeds 2%, the melting resistance is obviously deteriorated. Then, by combining the results of Table 3 and Tables 1 and 2 above, the preferable lining refractory composition when Te 2 is removed by adding Na 2 CO 3 to the Te-containing copper-based metal melt is 5
% Or more, more preferably 5 to 10% of SiC, and it can be confirmed that it is an Al 2 O 3 -based refractory having a SiO 2 content of 2% or less.

【0018】また下記表4は、Al23 −6%SiC
−1%SiO2 よりなる組成の耐火物を内張りした溶製
炉を使用し、Te含量100ppmの純銅系金属溶湯に
1%のNa2 CO3 を加え、約1200℃でTe除去処
理を行なうに際し、上吹き空気量を種々変更して溶湯中
のO2 濃度を10〜10000ppmの範囲で変えた場
合について、溶湯中のO2 濃度とTe除去量の関係を調
べた結果を示したものである。
Table 4 below shows Al 2 O 3 -6% SiC.
When using a smelting furnace lined with a refractory having a composition of -1% SiO 2 , 1% Na 2 CO 3 was added to a pure copper metal melt having a Te content of 100 ppm, and Te removal treatment was performed at about 1200 ° C. shows the results for the case where the O 2 concentration in the melt with various changes of the over fire air amount was varied in the range of 10 to 10,000 ppm, which was examined O 2 concentration and the Te removal of relationship in the melt .

【0019】[0019]

【表4】 [Table 4]

【0020】この結果からも明らかである様に、Na2
CO3 を用いてTe除去を行なう際には、前述の如くN
2 CO3 と耐火物成分との反応を阻止することも重要
であるが、それに加えて溶湯中のO2 濃度を1000p
pm以上、より好ましくは2000ppm以上高めるべ
きであることが分かる。
As is clear from this result, Na 2
When Te is removed using CO 3 , as described above, N
It is important to prevent the reaction between a 2 CO 3 and the refractory component, but in addition to that, the O 2 concentration in the molten metal should be 1000 p
It can be seen that it should be increased above pm, more preferably above 2000 ppm.

【0021】尚これまでの説明では、Na2 CO3 を用
いてTe除去を行なう場合について説明してきたが、N
2 CO3 に代えてK2 CO3 を使用した場合も殆ど同
様の結果が得られることを確認している。またこのTe
除去処理は、上記の様に酸化性雰囲気で行なうのが好ま
しく、従って溶製炉としては反射炉もしくは誘導炉を使
用し、Al23 −SiC(5%以上)−SiO2 (2
%以下)の成分組成を満たす耐火物を内張りしたものが
好ましい。
In the above description, the case of Te removal using Na 2 CO 3 has been described.
It has been confirmed that almost the same results are obtained when K 2 CO 3 is used instead of a 2 CO 3 . Also this Te
The removal treatment is preferably performed in an oxidizing atmosphere as described above. Therefore, a reverberatory furnace or an induction furnace is used as a melting furnace, and Al 2 O 3 —SiC (5% or more) —SiO 2 (2
% Or less) is preferably lined with a refractory material satisfying the component composition.

【0022】[0022]

【実施例】次に実施例を挙げて本発明の構成及び作用効
果をより具体的に説明するが、本発明はもとより下記実
施例によって制限を受けるものではなく、前・後記の趣
旨に適合し得る範囲で変更して実施することも可能であ
り、それらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Next, the constitution and operational effects of the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, and conforms to the spirit of the preceding and the following. It is also possible to carry out the invention by changing it within the range to be obtained, and all of them are included in the technical scope of the present invention.

【0023】実施例1 下記の条件でTe含有純銅系屑溶湯からのTe除去処理
を行ない、Te除去率と内張り耐火物の溶損状態を調べ
た。 溶製炉:20トン重油焚き反射炉 内張り耐火材:Al23(93%)/SiC(6%)/
SiO2(1%) 溶製原料:タフピッチ銅を用いた電線スクラップ(Cu
−0.010 %Te) 溶製条件:温度(1200℃)、大気溶解(溶湯中O2
度:6000ppm )、Na2CO3(溶湯重量に対し2%添加) その結果、溶湯中のTe含量は100ppmから50p
pmに低減し、且つ内張り耐火物の溶損も殆ど認められ
なかった。 実施例2 下記の条件でTe含有銅合金屑溶湯からTeの除去処理
を行ない、Te除去率と内張り耐火物の溶損状態を調べ
た。
Example 1 Te removal treatment from a Te-containing pure copper-based scrap molten metal was carried out under the following conditions to examine the Te removal rate and the melting state of the refractory lining. Melting furnace: 20 tons heavy oil fired reverberatory furnace Refractory lining: Al 2 O 3 (93%) / SiC (6%) /
SiO 2 (1%) Melting raw material: Electric wire scrap using tough pitch copper (Cu
-0.010% Te) Melting conditions: temperature (1200 ° C), atmospheric melting (O 2 concentration in molten metal: 6000 ppm), Na 2 CO 3 (2% added to molten metal weight) As a result, Te content in molten metal is 100 ppm From 50p
pm, and almost no melting loss of the refractory lining was observed. Example 2 Te was removed from the Te-containing copper alloy scrap molten metal under the following conditions, and the Te removal rate and the melting state of the lining refractory were examined.

【0024】溶製炉:5トン重油焚き反射炉 内張り耐火材:Al23(92%)/SiC(7%)/
SiO2(2%) 溶製原料:Cu−Ni系合金屑(Cu−1%Ni−0.01
2 %Te) 溶製条件:温度(1250℃)、大気溶解(溶湯中O2
度:5000ppm )、Na2CO3(溶湯重量に対し2%添加) その結果、溶湯中のTe含量は120ppmから55p
pmに低減し、且つ内張り耐火物の溶損も殆ど認められ
なかった。
Smelting furnace: 5-ton heavy oil-fired reverberatory furnace Refractory lining: Al 2 O 3 (92%) / SiC (7%) /
SiO 2 (2%) Melting raw material: Cu-Ni alloy scrap (Cu-1% Ni-0.01)
2% Te) Melting conditions: temperature (1250 ° C.), atmospheric melting (O 2 concentration in molten metal: 5000 ppm), Na 2 CO 3 (2% addition to molten metal weight) As a result, Te content in molten metal is 120 ppm 55p
pm, and almost no melting loss of the refractory lining was observed.

【0025】[0025]

【発明の効果】本発明は以上のように構成されており、
Te含有銅系金属溶湯に精錬剤としてNa2 CO3 及び
/又はK2 CO3 を加えてTe除去を行なうに際し、溶
製炉の内張り耐火材として適量のSiCを含み且つSi
2 含量の制限された耐火材を使用することによって、
内張り耐火材の溶損を防止しつつ優れたTe除去効果を
確保し得ることになった。
The present invention is configured as described above,
When Te 2 is removed by adding Na 2 CO 3 and / or K 2 CO 3 as a refining agent to a Te-containing molten copper metal, it contains an appropriate amount of SiC as a refractory lining for a melting furnace and contains Si.
By using refractory materials with a limited O 2 content,
It has become possible to secure an excellent Te removal effect while preventing melting damage of the refractory lining material.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶製実験で用いた装置を示す説明図である。FIG. 1 is an explanatory diagram showing an apparatus used in a melting experiment.

【符号の説明】[Explanation of symbols]

1 るつぼ 2 供試耐火物片 1 Crucible 2 Test refractory piece

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新井 基浩 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 池田 隆吉 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 吉田 栄次 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 岡田 裕文 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 浜中 龍介 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motohiro Arai 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Institute of Technology, Kobe Steel Co., Ltd. No. 14-1 Kobe Steel Works, Ltd. Chofu Factory (72) Inventor Eiji Yoshida Chofu Minato-cho, Shimonoseki City, Yamaguchi Prefecture 14-1 Kobe Steel Works Ltd. Chofu Factory (72) Inventor, Hirofumi Okada No. 14-1 Kobe Steel Works, Ltd. Chofu Works (72) Inventor Ryusuke Hamanaka 14-1 Chofu Minatomachi, Shimonoseki City, Yamaguchi Prefecture Kobe Steel Works Chofu Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Teを含有する銅系金属溶湯に精錬剤と
してNa2 CO3 および/またはK2 CO3 を添加し、
Teをこれらの複合化合物として滓化し除去するに当た
り、溶湯処理炉の内張り材として、5重量%以上のSi
Cを含み且つSiO2 含量が2重量%以下に制限された
Al23 系耐火材を使用することを特徴とするTe含
有銅系金属溶湯の処理方法。
1. Na 2 CO 3 and / or K 2 CO 3 as a refining agent is added to a copper-based metal melt containing Te,
When slagging and removing Te as these complex compounds, 5 wt% or more of Si is used as a lining material for the molten metal treatment furnace.
A method for treating a Te-containing copper-based metal melt, comprising using an Al 2 O 3 -based refractory material containing C and having a SiO 2 content limited to 2% by weight or less.
【請求項2】 TeをNa2 CO3 および/またはK2
CO3 との複合化合物として滓化・除去する際に、銅系
金属溶湯中のO2 濃度を1000ppm以上に高める請
求項1記載の処理方法。
2. Te as Na 2 CO 3 and / or K 2
The treatment method according to claim 1, wherein the concentration of O 2 in the molten copper-based metal is increased to 1000 ppm or more when the slag is removed and removed as a complex compound with CO 3 .
【請求項3】 溶湯処理炉として反射炉もしくは誘導炉
を使用する請求項1または2記載の処理方法。
3. The processing method according to claim 1, wherein a reverberation furnace or an induction furnace is used as the molten metal processing furnace.
JP8483993A 1993-04-12 1993-04-12 Treatment of molten metal of te-containing copper Withdrawn JPH06299262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8483993A JPH06299262A (en) 1993-04-12 1993-04-12 Treatment of molten metal of te-containing copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8483993A JPH06299262A (en) 1993-04-12 1993-04-12 Treatment of molten metal of te-containing copper

Publications (1)

Publication Number Publication Date
JPH06299262A true JPH06299262A (en) 1994-10-25

Family

ID=13841968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8483993A Withdrawn JPH06299262A (en) 1993-04-12 1993-04-12 Treatment of molten metal of te-containing copper

Country Status (1)

Country Link
JP (1) JPH06299262A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311033B2 (en) 2003-08-13 2007-12-25 Thyssenkrupp Presta Steertec Gmbh Retroactive device
CN102605193A (en) * 2012-03-21 2012-07-25 南昌大学 Refining agent for copper and copper alloy smelting
CN104195363A (en) * 2014-09-25 2014-12-10 江苏鑫成铜业有限公司 Purple miscellaneous copper recovery refining agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311033B2 (en) 2003-08-13 2007-12-25 Thyssenkrupp Presta Steertec Gmbh Retroactive device
CN102605193A (en) * 2012-03-21 2012-07-25 南昌大学 Refining agent for copper and copper alloy smelting
CN104195363A (en) * 2014-09-25 2014-12-10 江苏鑫成铜业有限公司 Purple miscellaneous copper recovery refining agent

Similar Documents

Publication Publication Date Title
JP4470888B2 (en) Slag fuming method
JP6516264B2 (en) Method of treating copper smelting slag
JPH06299262A (en) Treatment of molten metal of te-containing copper
JP2015124095A (en) Manufacturing method of slug
JP2009209405A (en) Method for smelting copper-containing dross
JP6542560B2 (en) Method of treating non-ferrous smelting slag
JP4525453B2 (en) Slag fuming method
JP2009167469A (en) Method for treating copper-containing dross
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
JP2000144270A (en) Method for melting and removing impurity element in iron
JP4274067B2 (en) Method for removing impurity metal from copper alloy and slag fuming method using the same
JP2947972B2 (en) Refractory for Al-Li alloy smelting furnace
KR100566895B1 (en) Method for removing impurities in copper alloy melt
JP3935251B2 (en) Treatment method for waste containing hexavalent chromium
JPH10140254A (en) Method for removing lead in brass
JP2001279339A (en) Method for melting and removing impurity element in iron
JPS6049701B2 (en) Method for removing arsenic and/or copper in molten metal
JP3023786B1 (en) Manufacturing method of stainless steel with excellent corrosion resistance
SU749927A1 (en) Iron-based alloy
SU931776A1 (en) Method for producing aluminium-silicon alloys
JP2006057156A (en) Slag fuming process
Cao et al. Effect of Al and MgO on the simultaneous alloying of diamond wire saw silicon waste and Ti-bearing blast furnace slag
JPH10121164A (en) Method for deoxidizing metal scandium
JP2003253349A (en) Process for operating copper converter
RU2100458C1 (en) Method of processing zinc precipitates containing precious metals

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000704