JPH08851B2 - Phthalocyanine derivative polymerized containing a doping agent and MSM or MIS type device having the same as a semiconductor layer - Google Patents

Phthalocyanine derivative polymerized containing a doping agent and MSM or MIS type device having the same as a semiconductor layer

Info

Publication number
JPH08851B2
JPH08851B2 JP60047297A JP4729785A JPH08851B2 JP H08851 B2 JPH08851 B2 JP H08851B2 JP 60047297 A JP60047297 A JP 60047297A JP 4729785 A JP4729785 A JP 4729785A JP H08851 B2 JPH08851 B2 JP H08851B2
Authority
JP
Japan
Prior art keywords
phthalocyanine derivative
type element
doping agent
msm
mis type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60047297A
Other languages
Japanese (ja)
Other versions
JPS61207461A (en
Inventor
瑛 山田
義仁 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP60047297A priority Critical patent/JPH08851B2/en
Publication of JPS61207461A publication Critical patent/JPS61207461A/en
Publication of JPH08851B2 publication Critical patent/JPH08851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)
  • Polyethers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、新規な重合化フタロシアニン誘導体薄膜な
らびに、仕事関数の大きい導電性材料層、半導体層およ
び仕事関数の小さい導電性材料層をこの順に積層してな
るMSM型素子、仕事関数の大きい導電性材料層、半導体
層、絶縁層および仕事関数の小さい導電性材料層をこの
順に積層してなるMIS型素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention provides a novel polymerized phthalocyanine derivative thin film, a conductive material layer having a large work function, a semiconductor layer and a conductive material layer having a small work function in this order. The present invention relates to an MIS type element formed by laminating a stacked MSM type element, a conductive material layer having a large work function, a semiconductor layer, an insulating layer, and a conductive material layer having a small work function in this order.

〔従来の技術〕[Conventional technology]

仕事関数の大きい金属(MA)と仕事関数の小さい金属
(MB)の間にポリ(アセチレン)、ポリ(ジアセチレ
ン)、ポリ(ピロール)、ポリ(チエニレン)等の有機
半導体(S)の薄層をはさんで成るMSM型、あるいはさ
らにSとMB間に絶縁体(I)の薄層を組み入れたMIS型
の素子は、多数考案されている。〔“フィズィックス・
オブ・セミコンダクタ・デバイス”第2版、S.M.スツ
ェ、ジョン・ウィリィ・アンド・サン、ニューヨーク
(1981)“Physics of Seimconductor Devices"2nd E
d.,S.M.Sze,John Wiley&Sons,N.Y.(1981)、“合成金
属(化学増刊87)”白川ほか、化学同人(1980)、R.C.
ウェスト、N.J.アストル編“CRCハンドブック・オブ・
ケミストリィ・アンド・フィズィックス CRCプレス,
クリーブランド(1979)、第59版、E-81:R.C.West,N.J.
Astle Ed.,“CRC Handbook of Cheimstry and Physics"
CRC Press,Cleaveland(1979)、59th Ed.,E-81,M.オザ
キ他、アプライド・フィズィックス・レターズ:M.Ozaki
他、Appl.Phys.Lett35 3(1979)〕。しかし、これらは
一般に、S層の構造及び素子作成法に起因する不確定要
素が著しく、いずれも実用化されるに到っていない。例
えば、これらS層は、通常MA基板上での気相重合、固相
重合あるいは電解酸化重合等により作成されるが、重合
時の伸縮あるいは電解質イオンの流出入等の理由により
その微細構造はフィブリルや山/谷の多いへき解状を成
しており、一般に多孔質であると言える。従って、S層
厚が大きくなければ、蒸着やスパッタリング等でMB層を
固定する際に、MB粒子がその微細孔へもぐり込み、MA
MBが直接導通して素子としての機能を失いやすい。ま
た、これら有機半導体は、化学ドーピング、電気科学ド
ーピング等の処理を施した時は、例えばポリ(アセチレ
ン)/ヨウ素ドープで約102S/cm、ポリ(ピロール)/
ヨウ素ドープで約102S/cm、のごとく高電導性を与える
が、脱ドープ状態では電導性が極めて低い。しかもドー
ピング処理を施したS層をMA、MBと組み合わせると、ド
ーピング剤により、MA、/S及びMB/S、特にMB/S界面で腐
食が進行し、経時安定性が著しく乏しくなる。それがた
め、一般にこれらS層は電導性の低い脱ドープ状態で用
いられるが、既述したMB粒子のもぐり込みを防ぐためS
層を厚くすると素子内抵抗が著しく高くなり、実用に供
せるほどの電流を通じることができない。さらに、上述
のS層は既述したごとく膜表面の凹凸が激しい。従っ
て、MSM型素子では、ショットキー接合を形成する重要
なS/MB界面に不純物準位を生じやすく、結果的に素子の
整流比、ダイオード特性等を著しく損う。例えば、ポリ
(アセチレン)に関するダイオードパラメータはたかだ
か1.9でしか無く、他もほぼ同様の値であり、理想状態
の1.0からはほど遠いと言える。なお、MIS型素子では、
I層厚を、トンネル効果が期待できる位(約20Å)薄く
する必要があるので、S層表面の凹凸が激しければI層
が著しく乱れ、上述したMSM型と同様の理由で素子の特
性が損われる。
An organic semiconductor (S) such as poly (acetylene), poly (diacetylene), poly (pyrrole), poly (thienylene), etc., between a metal having a high work function (M A ) and a metal having a low work function (M B ). Many devices of MSM type sandwiching thin layers, or MIS type devices in which a thin layer of an insulator (I) is further incorporated between S and M B have been devised. ["Fixics
Of Semiconductor Devices "2nd Edition, SM Suze, John Willy & Sun, New York (1981)" Physics of Seimconductor Devices "2nd E
d., SMSze, John Wiley & Sons, NY (1981), “Synthetic Metals (Chemical Special Issue 87)” Shirakawa et al., Kagaku Dojin (1980), RC
West, NJ Astor, “CRC Handbook of
Chemistry and Physics CRC Press,
Cleveland (1979), 59th edition, E-81: RCWest, NJ
Astle Ed., “CRC Handbook of Cheimstry and Physics”
CRC Press, Cleaveland (1979), 59th Ed., E-81, M. Ozaki and others, Applied Physics Letters: M. Ozaki
Appl. Phys. Lett 35 3 (1979)]. However, in general, uncertainties due to the structure of the S layer and the method of manufacturing the device are remarkable, and none of them has been put to practical use. For example, these S layer, gas-phase polymerization in the normal M A substrate, but is prepared by solid phase polymerization or electrolytic oxidation polymerization, the microstructure because of inflow and outflow, etc. during polymerization of the telescopic or an electrolyte ion It is in the form of a fibril with many fibrils and peaks / valleys, and is generally porous. Therefore, if the S layer thickness is not large, when fixing the M B layer by vapor deposition, sputtering, etc., the M B particles will dig into the fine pores and become M A.
It is easy for M B to directly conduct and lose its function as an element. In addition, when these organic semiconductors are subjected to treatments such as chemical doping and electrochemical doping, for example, poly (acetylene) / iodine-doped approximately 10 2 S / cm, poly (pyrrole) /
It has a high conductivity of about 10 2 S / cm when doped with iodine, but has a very low conductivity in the undoped state. Moreover, if the doped S layer is combined with M A and M B , the doping agent causes corrosion at M A , / S and M B / S, especially at the M B / S interface, resulting in remarkable stability over time. Get scarce. Therefore, these S layers are generally used in a dedoped state with low electrical conductivity, but in order to prevent the above-mentioned penetration of M B particles, S layers are used.
If the layer is thickened, the resistance inside the element becomes extremely high, and it is impossible to pass a current sufficient for practical use. Furthermore, the above-mentioned S layer has severe irregularities on the film surface as described above. Accordingly, the MSM element, prone to impurity level critical S / M B interface forming a Schottky junction, rectification ratio as a result, the device, intends significantly impair the diode characteristics. For example, the diode parameter for poly (acetylene) is at most 1.9, and other values are almost the same, which is far from the ideal state of 1.0. In the MIS type element,
Since it is necessary to reduce the thickness of the I layer to the extent that a tunnel effect can be expected (about 20Å), if the irregularities on the surface of the S layer are severe, the I layer will be significantly disturbed, and for the same reason as the MSM type described above, the device characteristics will be Be damaged.

S層の抵抗が大きく、しかも凹凸の激しい場合、換言
すれば局所的な膜厚が一定しない場合は、電流を通じた
時に最もS層厚の小さい部位で局所的な大電流が流れる
ことになる。従って、このような場合、薄膜の不可逆的
な破壊が起こりやすい欠点がある。
When the resistance of the S layer is large and the unevenness is severe, in other words, when the local film thickness is not constant, a local large current flows in a portion having the smallest S layer thickness when a current is passed. Therefore, in such a case, there is a drawback that irreversible destruction of the thin film is likely to occur.

フタロシアニン誘導体は、可視部〜近赤外部にかけて
巾広い極大吸収を有する有機系p−型半導体であり、化
学的にも安定なため電子材料として好適である。しかし
ながら、一般の(金属)フタロシアニンは濃硫酸、熱DM
F等にわずかに溶けるのみであり、薄膜形成は熱蒸着等
に依らざるを得ない。従ってその微細構造は、多結晶状
であり、やはり膜表面の凹凸が激しいため、ショットキ
ー接合等を施したとき、前述と同様の理由により良好な
素子特性が得られない。リチウムフタロシアニンを特殊
な多元系溶剤に溶解し、それをラングミュア・ブロジェ
ット法に適用して気/水界面に薄膜を形成させ、さらに
基板上に移し取って素子化した例はあるが(例えばS.ベ
イカー他、スィン・ソリッド・フィルムス:S.Baker他、
Thin Solid Films,99 53(1983)など)、薄膜表面の状
態に関しては明確でなく、またこの方法ではリチウムフ
タロシアニンが水界面に接触する際に加水分解されるた
め、結果的に金属を含まないフタロシアニンの薄膜が得
られるのみである。
The phthalocyanine derivative is an organic p-type semiconductor having a wide maximum absorption in the visible region to the near infrared region, and is chemically stable, and thus is suitable as an electronic material. However, general (metal) phthalocyanine is concentrated sulfuric acid, heat DM
It only slightly dissolves in F etc., and the thin film formation must rely on thermal evaporation or the like. Therefore, since the fine structure is polycrystalline and the surface of the film is highly uneven, good element characteristics cannot be obtained when the Schottky junction or the like is performed for the same reason as described above. There is an example of dissolving lithium phthalocyanine in a special multi-component solvent, applying it to the Langmuir-Blodgett method to form a thin film at the air / water interface, and then transferring it to a substrate to form an element (eg S .Baker et al., Thin Solid Films: S.Baker et al.
Thin Solid Films, 99 53 (1983)), the state of the thin film surface is not clear, and in this method lithium phthalocyanine is hydrolyzed when it contacts the water interface, resulting in metal-free phthalocyanine. Only a thin film of is obtained.

以上に述べた有機系のS層薄膜は、その製造方法のい
かんにかかわらず化学的強度に乏しい欠点がある。従っ
て、MBをその表面に蒸着、高周波スパッタリング、イオ
ンビームスパッタリング等で被覆してMSM型素子等を作
成する際、高い運動エネルギーを有する金属原子、金属
イオンあるいは金属微粒子の衝突によりS/MB界面に凹凸
が生じやすく、はなはだしい場合はMBが原子状ないし微
粒子状でS層内に埋め込まれる。このような界面の乱れ
は、既述したように素子の整流特性、ダイオード特性を
著しく損い、かつ印加可能な電圧の範囲が狭くなるだけ
でなく、非可逆的な破壊が起こりやすくなる。
The organic S-layer thin film described above has a drawback that it has poor chemical strength regardless of the manufacturing method. Thus, deposition of M B on its surface, when the high-frequency sputtering, by coating with an ion beam sputtering or the like to create a MSM type device or the like, a high metal atom having kinetic energy, S / M B due to the collision of the metal ions or metal particles Concavities and convexities are likely to occur at the interface, and in the extreme case, M B is embedded in the S layer in the form of atoms or fine particles. As described above, such an interface disorder not only impairs the rectification characteristics and diode characteristics of the element, narrows the range of voltage that can be applied, but also causes irreversible breakdown.

〔発明の目的〕[Object of the Invention]

したがって本発明の目的は、半導体特性のすぐれた新
規な重合化フタロシアニン誘導体薄膜を提供することで
ある。本発明のもう1つの目的は従来のMSMまたはMIS型
素子の欠点をもたない、新規なMSMまたはMIS型素子を提
供することである。
Therefore, an object of the present invention is to provide a novel polymerized phthalocyanine derivative thin film having excellent semiconductor properties. Another object of the present invention is to provide a new MSM or MIS type device that does not have the drawbacks of conventional MSM or MIS type devices.

(発明の構成〕 本発明の目的は、特定のフタロシアニン誘導体及び特
定のドーピング化剤の混合蒸気に高周波を照射して生成
する活性種を自然重合させて得られる、ドーピング化剤
を含んで重合化されたフタロシアニン誘導体薄膜により
達成される。
(Structure of the Invention) An object of the present invention is to obtain a polymerization product containing a doping agent, which is obtained by spontaneously polymerizing an active species generated by irradiating a mixed vapor of a specific phthalocyanine derivative and a specific doping agent with a high frequency. Phthalocyanine derivative thin film.

本発明は、式(1)で示されるフタロシアニン誘導体
と、ヨウ素、SO3、AsF5、BF3、SbF5、NbF5、TaF5、PF5
より選ばれるドーピング化剤の混合蒸気に高周波を照射
して得られる、ドーピング化剤を含んで重合化されたフ
タロシアニン誘導体薄膜を提供するものであり、この誘
導体は下記の式(2)を有するものと推定される。
The present invention relates to a phthalocyanine derivative represented by the formula (1) and iodine, SO 3 , AsF 5 , BF 3 , SbF 5 , NbF 5 , TaF 5 , and PF 5.
The present invention provides a polymerized phthalocyanine derivative thin film containing a doping agent, which is obtained by irradiating a mixed vapor of a doping agent selected from the above with high frequency, and the derivative has the following formula (2): It is estimated to be.

但しRは水素、ハロゲン、炭素数5以下の直鎖ないし枝
分れ炭化水素のアルコキシ基を示し、MeはH2、マグネシ
ウムまたは遷移金属イオンを示し、Rの置換位置は上式
のイソインドリン基において5−位または6−位であ
る。
However, R represents hydrogen, halogen, a straight-chain or branched hydrocarbon alkoxy group having 5 or less carbon atoms, Me represents H 2 , magnesium or a transition metal ion, and the substitution position of R is the isoindoline group of the above formula. In the 5-position or the 6-position.

但し は式(1)においてRを除いたフタロシアニン基、Zは
既述のドーピング化剤、xとyはそれぞれフタロシアニ
ン基とZの存在割合を表わす百分率でx+y=100、y
≦50である。
However Is a phthalocyanine group excluding R in the formula (1), Z is the above-mentioned doping agent, and x and y are percentages representing the existing ratios of the phthalocyanine group and Z, respectively, x + y = 100, y
≦ 50.

本発明はまた、仕事関数の大きい導電性材料層、半導
体層および仕事関数の小さい導電性材料層をこの順に積
層してなるMSM型素子、または、仕事関数の大きい導電
性材料層、半導体層、絶縁層および仕事関数の小さい導
電性材料層をこの順に積層してなるMIS型素子におい
て、上記半導体層として、上記推定構造式(2)で表さ
れるドーピング化剤を含んで重合化されたフタロシアニ
ン誘導体の薄膜を使用したことを特徴とするMSMまたはM
IS型素子を提供するものである。
The present invention is also a conductive material layer having a large work function, a semiconductor layer and an MSM element formed by laminating a conductive material layer having a small work function in this order, or a conductive material layer having a large work function, a semiconductor layer, In a MIS type element formed by stacking an insulating layer and a conductive material layer having a small work function in this order, a phthalocyanine polymerized as a semiconductor layer containing a doping agent represented by the estimated structural formula (2). MSM or M characterized by using a thin film of derivative
It is intended to provide an IS type element.

式(1)で示されるフタロシアニン誘導体及び既述の
ドーピング化剤の混合蒸気に高周波を照射して生成する
活性種を平滑な基板平面に導き、自然重合させて得られ
る薄膜は表面が平滑で欠陥が無く極めて強じんである。
従って、ショットキー接合ヘテロ接合等によりMSMない
しMIS型素子を形成する際、既述した既存の技術ないし
既存の有機半導体層における界面の乱れ等の無い、良好
な電流特性、ダイオード特性を有する材料系を与えるこ
とができる。また、重合の際に、基板にMAを用いればも
ちろんそのままMSMないしMIS型素子を形成できる。また
例えば、便宜的に平滑ガラス表面に重合膜を形成させ、
リフトオフ等適当な手法で表面よりはく離して両側より
MAとMBを蒸着、スパッタ等で積層化してMSM素子とす
る、あるいはガラス基板上のままMA(またはMB)を積層
化してはく離し、しかる後にMB(またはMA)を裏面に積
層化してMSM素子とする、等の手法が可能になる。これ
によれば、高価なMAないしMBの使用量を減ずることがで
きるだけでは無く、全体厚が数百μm以下の積層化薄膜
状のMSMないしMIS型素子が作成でき、それらは適当な大
きさに切って、例えば導電性接着剤でプリント基板上に
固定するだけで任意の回路を設計できる。
A thin film obtained by introducing active species generated by irradiating a mixed vapor of the phthalocyanine derivative represented by the formula (1) and the above-mentioned doping agent with a high frequency to a smooth substrate plane and spontaneously polymerizing the film has a smooth surface and defects. There is no and is extremely strong.
Therefore, when forming an MSM or MIS type element by a Schottky junction heterojunction or the like, a material system having good current characteristics and diode characteristics without existing interface technologies in existing technologies or existing organic semiconductor layers described above. Can be given. In addition, when M A is used for the substrate during polymerization, it is of course possible to directly form an MSM or MIS type element. For example, for convenience, a polymer film is formed on a smooth glass surface,
Peel off from the surface by a suitable method such as lift-off and from both sides
M A and M B are laminated by vapor deposition, sputtering, etc. to form an MSM element, or M A (or M B ) is laminated on the glass substrate and peeled off, and then M B (or M A ) is placed on the back surface. It is possible to use a method such as stacking on the above to form an MSM element. According to this, not only the amount of expensive M A or M B used can be reduced, but also a laminated thin film MSM or MIS type element having an overall thickness of several hundred μm or less can be produced, and they can be appropriately sized. Any circuit can be designed simply by cutting it and fixing it on a printed circuit board with, for example, a conductive adhesive.

さらに、本来有機化合物の半導体は、適当なルイス酸
をドーピング化剤として共存させておいた方が導電性が
高く、またp−型半導体としての特性にも秀れている。
(ドーピング及びそれらドープした有機半導体のMSM、M
IS型素子に関しては、例えば“フィズィック・オブ・セ
ミコンダクタ・デバイス、第2版:S.M.ズツェ,ジョン
・ウィリィ・アンド・サンズ,ニューヨーク:Physics o
f Semiconductor Devices 2nd Ed.,"S.M.Sze,John Wile
y&Sons,NY(1981);“合成金属(化学増刊87)”、白
川ほか、化学同人(1980))。しかしながら、これらド
ーピング化剤は、通常有機半導体中を、あるいはさらに
I層中を拡散できるので、MB界面に到達してMBを腐食し
素子の特性が著しく損われる。特に経時安定性に全く乏
しい。しかし本発明の半導体層は、ドーピング化剤を強
固に包埋しており、その拡散が起らないため上述のよう
な劣化が無く、ドーピングによる利点、すなわち導電性
の向上とP−型特性の改善が期待される特色がある。
Furthermore, in the case of an organic compound semiconductor, when a suitable Lewis acid is allowed to coexist as a doping agent, the conductivity is higher and the p-type semiconductor is excellent.
(Doping and MSM of these doped organic semiconductors, M
Regarding the IS type element, for example, “Fizick of Semiconductor Device, 2nd Edition: SM Zutse, John Willie and Sons, New York: Physics o
f Semiconductor Devices 2nd Ed., "SMSze, John Wile
y & Sons, NY (1981); “Synthetic metals (Chemical special edition 87)”, Shirakawa et al., Kagaku Dojin (1980)). However, these doping agents are the during normal organic semiconductor, or so can be further diffused I layer, characteristics of the device to corrode M B reaches the M B interface is cracked significantly damaged. In particular, it has very poor stability over time. However, the semiconductor layer of the present invention has the doping agent firmly embedded therein, and the diffusion thereof does not occur, so that the above-mentioned deterioration does not occur, and the advantage of the doping, that is, the improvement in conductivity and the P-type characteristic, is achieved. There are features that are expected to improve.

本発明のドーピング化剤を含んで重合化されたフタロ
シアニン誘導体薄膜は式(3)に示す4−ニトロフタロ
ニトリルとR′‐OH(R′は炭素数5以下の直鎖状ある
いは枝分れアルキル基)の反応により相当する4−アル
コキシフタロニトリルを得て、さらに脱水メタノール中
ナトリウムメトキシドを触媒としてアンモニアガスと反
応させてジイミノイソインドリン中間体(式(4))を
経て、マグネシウムまたは遷移金属の塩の存在下または
無存在下に2−ジメチルアミノエタノール中で沸点還流
下に閉環縮合して得られるフタロシアニン誘導体(式
(5))、あるいは式(1)においてR=ハロゲンある
いは水素の市販のフタロシアニン誘導体を、減圧下に加
熱して生成する蒸気と、ヨウ素、SO3、AsF5、BF3、 SbF5、NbF5、TaF5、PF5より選ばれるドーピング化剤の
混合蒸気に高周波を照射して発生する活性種を平滑な基
板上に導き、自然重合させることにより得られる。
The polymerized phthalocyanine derivative thin film containing the doping agent according to the present invention is represented by the formula (3): 4-nitrophthalonitrile and R'-OH (R 'is a linear or branched alkyl group having 5 or less carbon atoms. Group) to obtain the corresponding 4-alkoxyphthalonitrile, and further reacts with ammonia gas using sodium methoxide in dehydrated methanol as a catalyst to give magnesium or transition via diiminoisoindoline intermediate (formula (4)). Phthalocyanine derivative (formula (5)) obtained by ring-closing condensation in 2-dimethylaminoethanol under boiling point reflux in the presence or absence of a metal salt, or R = halogen or hydrogen in formula (1) commercially available the phthalocyanine derivative, and steam generated by heating under reduced pressure, iodine, SO 3, AsF 5, BF 3, SbF 5, NbF 5, TaF 5, PF 5 Leads to active species generated by irradiating a high frequency in a mixed vapor of doping agent chosen on a smooth substrate obtained by spontaneous polymerization.

このようにして得られる厚さ20Å〜100μmのドーピ
ング化剤を含んで重合化されたフタロシアニン誘導体の
半導性薄膜(以下「S」と略す。)を半導体層として用
いたものが本発明のMSMまたはMIS型素子である。
The MSM of the present invention is obtained by using a semiconductive thin film (hereinafter abbreviated as "S") of a phthalocyanine derivative polymerized with a doping agent having a thickness of 20Å to 100 µm thus obtained as a semiconductor layer. Alternatively, it is a MIS type element.

このとき、基板の材質が、シート抵抗30Ω/sq以下の
酸化インジウムスズ、あるいはグラファイト、グラッシ
ーカーボン、ヒ素、パラジウム、テルル、レニウム、イ
リジウム、白金、金、ロジウム、ルテニウム、セレン、
ゲルマニウムのような仕事関数の大きい導電性材料
(MA)のいずれかであるときは、S層の上にベリリウ
ム、アルミニウム、スカンジウム、チタン、マンガン、
ジルコニウム、アンチモン、ランタニド類、タリウム、
鉛より選ばれる仕事関数の小さい導電性材料(MB)を通
常の熱蒸着あるいはスタッタリング等により被覆すれ
ば、MSM型の素子が得られる。
At this time, the substrate material is indium tin oxide having a sheet resistance of 30 Ω / sq or less, or graphite, glassy carbon, arsenic, palladium, tellurium, rhenium, iridium, platinum, gold, rhodium, ruthenium, selenium,
When either of the larger conductive material work function, such as germanium (M A) are beryllium on the S layer, aluminum, scandium, titanium, manganese,
Zirconium, antimony, lanthanides, thallium,
An MSM type element can be obtained by coating a conductive material (M B ) selected from lead having a small work function by ordinary thermal evaporation or stuttering.

また、SとMBの間に、炭素数16〜22の直鎖飽和脂肪酸
の金属塩、好ましくはカドミウム塩、水銀塩またはアル
カリ土類金属塩の単分子絶縁層(以下Iと略)を形成さ
せておけば、MIS型素子が得られる。S層形成の標準的
な条件は、式(1)のフタロシアニン誘導体1〜500mg
と、それと等モル量〜1/10モル量の既述のドーピング化
剤の混合物を、300〜400℃、1〜3torr、加熱された混
合物から基板までの距離1〜5cm、高周波出力1〜100
W、重合時間3秒〜7分であり、使用するフタロシアニ
ン誘導体の種類、ドーピング化剤の種類、形成しようと
するS層厚、設定しようとするxとyにより条件が決定
される。たとえば、R=既述のアルコキシ基のフタロシ
アニン誘導体、ドーピング化剤ヨウ素を用いてS層厚約
100Å、x=60%、y=40%の薄膜をガラス基板上に形
成するときは、試料量約30mg+等モル量のヨウ素、300
〜350℃、2torr、距離2-3cm、高周波出力10〜30W、重合
時間30秒〜1分であり、R=Hのときのフタロシアニン
誘導体及びAsF5を用いてS層厚約500Å、x=80%、y
=20%の薄膜をガラス基板上に形成するときにはフタロ
シアニン誘導体+AsF5の等モル混合物を100mg、300〜32
0℃、0.9〜1.5torr、距離2〜4cm、高周波出力5〜15
W、重合時間1〜2分が適当であり、R=ハロゲンのフ
タロシアニン誘導体及びSO3を用いてS層厚約200Å、x
=90%、y=10%の薄膜をガラス基板上に作成するとき
は、フタロシアニン誘導体+SO3の3/1モル比混合物70mg
を、320〜340℃、1.5〜3torr、距離3〜4cm、高周波出
力30〜50W、重合時間30秒〜1分が適当である。
Further, formed between the S and M B, metal salts of straight-chain saturated fatty acid of 16 to 22 carbon atoms, preferably a cadmium salt, a monomolecular insulating layer of mercury salts or alkaline earth metal salt (hereinafter I substantially) If this is done, a MIS type element can be obtained. The standard condition for forming the S layer is 1 to 500 mg of the phthalocyanine derivative of the formula (1).
And a mixture of the above-mentioned doping agent in an equimolar amount to 1/10 molar amount thereof, 300 to 400 ° C., 1 to 3 torr, distance from heated mixture to substrate 1 to 5 cm, high frequency output 1 to 100
W, polymerization time is 3 seconds to 7 minutes, and the conditions are determined by the type of phthalocyanine derivative used, the type of doping agent, the S layer thickness to be formed, and x and y to be set. For example, R = phthalocyanine derivative of an alkoxy group as described above, using the doping agent iodine, the S layer thickness of about
When forming a thin film of 100Å, x = 60%, y = 40% on a glass substrate, the sample amount is about 30 mg + equimolar amount of iodine, 300
To 350 ° C., 2 torr, the distance 2-3 cm, high frequency output 10~30W, polymerization is the time 30 seconds to 1 minute, S thickness of about 500Å using a phthalocyanine derivative and AsF 5 in the case of R = H, x = 80 %, Y
= 20% of the thin film to an equimolar mixture of phthalocyanine derivatives + AsF 5 when formed on a glass substrate 100 mg, 300 to 32
0 ℃, 0.9-1.5torr, distance 2-4cm, high frequency output 5-15
W, polymerization time of 1 to 2 minutes is suitable, and R = halogen phthalocyanine derivative and SO 3 are used to form S layer thickness of about 200Å, x
= 90%, y = 10% thin film on a glass substrate, a phthalocyanine derivative + SO 3 3/1 molar ratio mixture 70 mg
The suitable temperature is 320 to 340 ° C., 1.5 to 3 torr, distance 3 to 4 cm, high frequency output 30 to 50 W, and polymerization time 30 seconds to 1 minute.

このようにして作成されたS層の厚さが約0.1μmを
超えるときにはリフトオフ等の方式により平滑基板上よ
りはく離できる。例えば、はく離したS層の両面に各々
MAとMB(又はI/MB)を積層すれば、MA及びMB層はたかだ
か150Å程度あれば充分であるので全体厚数百μm以下
の積層化薄膜状のMSMないしMIS型の素子が作成できる。
また、基板上のS層の上にMA(あるいはMBないしI/MB
薄膜を形成してからはく離し、しかる後に反対側の面に
MBないしI/MB(あるいはMA)薄膜を形成させても良い。
When the thickness of the S layer thus formed exceeds about 0.1 μm, it can be peeled off from the surface of the smooth substrate by a method such as lift-off. For example, on both sides of the peeled S layer,
If M A and M B (or I / M B ) are laminated, it is sufficient for the M A and M B layers to be at most 150 Å. Therefore, the total thickness of the laminated thin-film MSM or MIS type is several hundred μm or less. Elements can be created.
Also, M A (or M B or I / M B ) on the S layer on the substrate
After forming a thin film, peel it off, and then on the opposite surface
An M B or I / M B (or M A ) thin film may be formed.

〔発明の効果〕〔The invention's effect〕

本発明のドーピング化剤を含んで重合化されたフタロ
シアニン誘導体薄膜はすぐれた半導体特性を有し、これ
を半導体層として用いた本発明のMSMないしMIS型素子
は、整流特性、ダイオード特性に優れ、数百mA/cm2以上
の大電流ないし電圧印加±10Vの範囲でも破壊されな
い。従ってダイオード等の整流素子、電界効果トランジ
スタ等に利用できる。また、推定構造式(2)に示した
ように半導体層がフタロシアニン骨核を有しており緑〜
青緑色を呈し、可視部〜近赤外部に巾広い吸収帯を有す
る。従って、太陽電池として利用できる。また、既述し
たように、全体厚が数百μm以下の積層化薄膜を形成で
き、使用時に必要とする特性に見合った任意の大きさに
切って利用できる。
The phthalocyanine derivative thin film polymerized containing the doping agent of the present invention has excellent semiconductor characteristics, and the MSM or MIS type element of the present invention using this as a semiconductor layer has excellent rectification characteristics and diode characteristics, It is not destroyed even in the range of large current or voltage of ± 10V of several hundred mA / cm 2 or more. Therefore, it can be used as a rectifying element such as a diode or a field effect transistor. In addition, as shown in the estimated structural formula (2), the semiconductor layer has a phthalocyanine bone nucleus,
It has a blue-green color and has a wide absorption band in the visible to near infrared region. Therefore, it can be used as a solar cell. In addition, as described above, a laminated thin film having a total thickness of several hundreds of μm or less can be formed, and the thin film can be cut into any size suitable for the characteristics required at the time of use.

〔実施例〕〔Example〕

次に本発明を実施例および参考例によりさらに詳細に
説明する。
Next, the present invention will be described in more detail with reference to Examples and Reference Examples.

参考例1 4−ニトロ−1,2−フタロニトリル(NPNと略)50g
(0.29モル)、メタノール11.21g(0.35モル)を100ml
の脱水DMFに溶解し、CaCl2乾燥管付き還流管、窒素導入
管を備えた300ml4ツ口フラスコに入れ、撹拌しながら窒
素雰囲気下に1,8−ジアザビシクロ〔5,4,0〕ウンデセン
−(7)(DBUと略)を43.07ml(0.29モル)加え、60℃
にて10時間反応させた。冷却後40℃以下にて減圧濃縮
し、適量のクロロホルムを加えて600mlの氷冷6N-HCl中
に投じ、クロロホルム相を分離する。水相を100ml×3
回のクロロホルムで抽出して先のクロロホルム相と合わ
せ、無水硫酸ナトリウムで乾燥、濾過、活性炭脱色し、
減圧濃縮する。冷却後析出する黄色結晶(未反応のNP
N)を取り除き、母液をさらに濃縮して再結晶し、白色
結晶42.7g(93.1%)を得た。分析の結果、目的の4−
メトキシ1,2−フタロニトリルであることがわかった。
Reference example 1 4-nitro-1,2-phthalonitrile (abbreviated as NPN) 50g
(0.29 mol), 11.21 g of methanol (0.35 mol) in 100 ml
Dissolved in dehydrated DMF, put into a 300 ml 4-necked flask equipped with a reflux tube with CaCl 2 drying tube and a nitrogen introduction tube, and stirred under nitrogen atmosphere under 1,8-diazabicyclo [5,4,0] undecene- ( 7) Add 43.07ml (0.29mol) of (abbreviated as DBU), 60 ℃
Was reacted for 10 hours. After cooling, concentrate under reduced pressure at 40 ° C or lower, add an appropriate amount of chloroform and pour into 600 ml of ice-cooled 6N-HCl to separate the chloroform phase. 100 ml of water phase x 3
Extracted with chloroform twice, combined with the chloroform phase, dried over anhydrous sodium sulfate, filtered, decolorized with activated carbon,
Concentrate under reduced pressure. Yellow crystals that precipitate after cooling (unreacted NP
N) was removed, and the mother liquor was further concentrated and recrystallized to obtain 42.7 g (93.1%) of white crystals. As a result of the analysis,
It was found to be methoxy 1,2-phthalonitrile.

4−メトキシ−1,2−フタロニトリル NMR(CDCl3,δppm):Ha7.1、7.2(1H)、Hb7.2(1H)、
Hc7.65、7.7(1H)、CH33.9(3H)IR(KBr錠剤、c
m-1):νφH3100、3050、3000、νCH32950、2850、ν
N2250、νring1610 このものを全量を既述と同様の装置に入れ、脱水メタ
ノール200ml中、ナトリウムメトキシド2gを加え、乾燥
アンモニアガスを激しく通じながら常温で2時間、沸点
還流下に1時間反応させた。冷却後生じる白色沈澱を濾
集し、真空乾燥して5−メトキシジイミノイソインドリ
ン43.1g(91.1%)を得た。このものは強吸湿性であ
り、IR(KBr錠剤、cm-1)よりνNH3400、δNH1640の出
現及びν N2250の消失により構造を確認した。
4-methoxy-1,2-phthalonitrile NMR (CDCl 3 , δppm): Ha7.1, 7.2 (1H), Hb7.2 (1H),
Hc 7.65, 7.7 (1H), CH 3 3.9 (3H) IR (KBr tablets, c
m -1 ): νφ H 3100, 3050, 3000, ν CH3 2950, 2850, ν
C N 2250, νring 1610 Put the whole amount in the same device as above, add 2 g of sodium methoxide in 200 ml of dehydrated methanol, and let dry ammonia gas vigorously pass through it for 2 hours at room temperature and for 1 hour under boiling point reflux. It was made to react. The white precipitate formed after cooling was collected by filtration and dried in vacuum to obtain 53.1 g (91.1%) of 5-methoxydiiminoisoindoline. This material is a strong hygroscopic, IR (KBr tablet, cm -1) than [nu NH 3400, confirmed the structure by the disappearance of the appearance and ν C N 2250 of [delta] NH 1640.

参考例2〜7 参考例1と同様の装置にて、第1表に記載の仕込みで
反応を行い、相当する4−アルコキシ−1,2−フタロニ
トリルを得た。但し、炭素数4以上のものは油状であ
り、再結晶の替りにφ10×30cmのシリカゲルカラム(10
0〜200メッシュ)を用い、クロロホルムを展開溶媒と
し、第1表に記載のRf値の主流出部を分取して溶媒を減
圧留去して得た。
Reference Examples 2 to 7 The same apparatus as in Reference Example 1 was used to carry out the reaction described in Table 1 to obtain the corresponding 4-alkoxy-1,2-phthalonitrile. However, those with 4 or more carbons are oily, and instead of recrystallization, a silica gel column (10 x 30 cm) (10
(0 to 200 mesh), chloroform was used as a developing solvent, the main outflow portion of Rf value shown in Table 1 was fractionated, and the solvent was distilled off under reduced pressure.

参考例8〜13 参考例2〜7で得た4−アルコキシフタロニトリル類
の各々全量を参考例1の後段と全く同様に処理し、IRに
より同様に構造を確認し、各々相当する5−エトキシジ
イミノイソインドリン49.2g(96.3%)、5−(n−プ
ロポキシ)ジイミノイソインドリン51.8g(96.2%)、
5−(n−ブトキシ)ジイミノイソインドリン57.6g(9
6.4%)、5−(tert−ブトキシ)ジイミノイソインド
リン59.8g(98.2%)、5−(n−ペントキシ)ジイミ
ノイソインドリン59.0g(98.1%)、5−(1−メチル
ブトキシ)ジイミノイソインドリン60.1g(97.4)を得
た。
Reference Examples 8 to 13 All the 4-alkoxyphthalonitriles obtained in Reference Examples 2 to 7 were treated in exactly the same manner as in the latter stage of Reference Example 1, and the structure was similarly confirmed by IR. Diiminoisoindoline 49.2 g (96.3%), 5- (n-propoxy) diiminoisoindoline 51.8 g (96.2%),
5- (n-butoxy) diiminoisoindoline 57.6 g (9
6.4%), 5- (tert-butoxy) diiminoisoindoline 59.8 g (98.2%), 5- (n-pentoxy) diiminoisoindoline 59.0 g (98.1%), 5- (1-methylbutoxy) diimino 60.1 g (97.4) of isoindoline was obtained.

参考例14 参考例1の5−メトキシジイミノイソインドリン17.5
g(0.1モル)を50mlの脱水2−ジメチルアミノエタノー
ルに分散し、CaCl2乾燥管付還流管を備えた200ml三角フ
ラスコ中で撹拌しながら5時間沸点還流する。内容を1
の温メタノール中に撹拌しながら投じ、生成する緑色
沈澱を濾集、乾燥して、式(1)においてR=メトキ
シ、Me=H2のフタロシアニン誘導体12.1g(76.3%)を
得た。このものはクロロホルムに10-5モル/l程度溶解す
る他は、殆んど全ての有機溶剤に不溶である。
Reference Example 14 5-methoxydiiminoisoindoline 17.5 of Reference Example 1
g (0.1 mol) is dispersed in 50 ml of dehydrated 2-dimethylaminoethanol, and the mixture is refluxed at boiling point for 5 hours while stirring in a 200 ml Erlenmeyer flask equipped with a reflux tube with a CaCl 2 drying tube. Content 1
The resulting green precipitate was collected by filtration and dried to obtain 12.1 g (76.3%) of a phthalocyanine derivative of R = methoxy and Me = H 2 in the formula (1). It is insoluble in almost all organic solvents except that it dissolves in chloroform at about 10 -5 mol / l.

元素分析(wt%、カッコ内計算値):C68.15(68.13)、
H4.17(4.13)、N17.70(17.66) 可視吸収スペクトル(クロロホルム、nm、カッコ内log
ε):702(4.96)、664(4.88)、642(4.53)、605.
5(4.30) 参考例15〜20 参考例14と同様に、但し第2表に示す5−アルコキシ
ジイミノイソインドリンを用い、第2表に示すR=アル
コキシ、Me=H2のフタロシアニン誘導体を得た。
Elemental analysis (wt%, calculated value in parentheses): C68.15 (68.13),
H4.17 (4.13), N17.70 (17.66) Visible absorption spectrum (chloroform, nm, parenthesized log
ε): 702 (4.96), 664 (4.88), 642 (4.53), 605.
5 (4.30) Reference Examples 15 to 20 In the same manner as in Reference Example 14, but using 5-alkoxydiiminoisoindoline shown in Table 2 , phthalocyanine derivatives of R = alkoxy and Me = H 2 shown in Table 2 were obtained. It was

参考例21 参考例14と同様に、但し塩化第一銅14.9g(0.15モ
ル)を加えて反応を行い、粗生成物を20%塩酸−メタノ
ール1中に投じ、生じる沈澱を濾集、メタノールで洗
浄をくり返し、減圧乾燥して、式(1)においてR=メ
トキシ、Me=銅(II)のフタロシアニン誘導体12.3g(7
0.7%)を得た。
Reference Example 21 In the same manner as in Reference Example 14, except that 14.9 g (0.15 mol) of cuprous chloride was added and the reaction was carried out, the crude product was thrown into 20% hydrochloric acid-methanol 1, and the resulting precipitate was collected by filtration and methanol was added. The washing was repeated and dried under reduced pressure to obtain 12.3 g (7%) of the phthalocyanine derivative of R = methoxy and Me = copper (II) in the formula (1).
0.7%) was obtained.

元素分析(wt%、カッコ内計算値):C62.07(62.11)、
H3.44(3.47)、N16.16(16.10) 可視吸収スペクトル(クロロホルム、nm、カッコ内log
ε):680(5.04)、615(4.60)、567sh、381(4.4
0) 参考例22〜27 参考例21と同様に、但し第3表に示す仕込で反応さ
せ、同様に処理して相当するテトラアルコキシ金属フタ
ロシアニン誘導体を得た。但し、Me=マグネシウム(I
I)、亜鉛(II)のときは酸性メタノールの替りに温メ
タノールを用いて再沈澱操作を行った。
Elemental analysis (wt%, calculated value in parentheses): C62.07 (62.11),
H3.44 (3.47), N16.16 (16.10) Visible absorption spectrum (chloroform, nm, log in parentheses)
ε): 680 (5.04), 615 (4.60), 567sh, 381 (4.4
0) Reference Examples 22 to 27 In the same manner as in Reference Example 21, except that the charges shown in Table 3 were reacted and treated in the same manner, corresponding tetraalkoxy metal phthalocyanine derivatives were obtained. However, Me = magnesium (I
In the case of I) and zinc (II), warm methanol was used instead of acidic methanol for reprecipitation.

以上のように、4−ニトロ−1,2−フタロニトリルを
出発物質として塩基触媒存在下にアルコールと反応させ
て4−アルコキシ−1,2−フタロニトリルを得、さらに
アンモニアガスと反応させて5−アルコキシジイミノイ
ソインドリン中間体を経て、金属塩の無存在下ないし存
在下に環化反応を行うと相当するテトラアルコキシ(金
属)フタロシアニン誘導体が得られる。なお、本参考例
では金属塩化物を用いたが、一般に酸化力を持たない対
アニオン(例えばClO4 -、ClO3、ClO-、NO3 -、▲SO2- 4
などを除く)の金属塩であれば良く、例えば酢酸塩など
が好適であり、また配位の結果総電荷数が0となるアセ
チルアセトナト錯体なども好ましい。
As described above, 4-nitro-1,2-phthalonitrile was used as a starting material to react with alcohol in the presence of a base catalyst to obtain 4-alkoxy-1,2-phthalonitrile, which was further reacted with ammonia gas to give 5 The corresponding tetraalkoxy (metal) phthalocyanine derivative is obtained by carrying out the cyclization reaction in the absence or presence of a metal salt via an alkoxydiiminoisoindoline intermediate. Although this reference example using metal chlorides, generally no oxidizing power counter anion (e.g. ClO 4 -, ClO 3, ClO -, NO 3 -, ▲ SO 2- 4 ▼
(Excluding the above), for example, acetate is preferable, and acetylacetonato complex in which the total number of charges is 0 as a result of coordination is also preferable.

実施例1 参考例14のテトラメトキシフタロシアニン10mgと4mg
のヨウ素をクロロホルム1mlに分散させ添付図面に示す
6のボート部に入れ、自然乾燥する。この操作により、
電荷移動錯体が形成され、ヨウ素の昇華性が殆んど無視
できるようになる。半導体層作成用基板として市販のIT
Oネサガラス(2.5×5cm、厚さ1mm、図中では3で表示)
を6の真上1cmに設置し、図において2は2'より4.5cm離
し、4は3と6の中間に位置させた。7で表示される排
気管より排気して10-1torrとし、一旦排気を中断して8
で表示される吸気管よりアルゴンガスを注入、この排気
−注入操作を3回くり返した後、真空度を1torrに保
ち、6に電流を通じて加熱して300℃とした。4で表示
されるシャッター板の表面に試料が付着しはじめたのを
確認して後、2-2′間に10W13.56MHzの高周波を発生する
ように電流を通じ、約3秒経過後シャッター板を3と6
の中間の位置から側方にずらし、20秒間この状態を保っ
て後シャッター板を元の位置に戻した。直ちに高周波及
び加熱用源を断って放冷した。装置内にアルゴンを注入
して常圧に戻し、基板を取出して10-3torr以下の高真空
に一昼夜置いた。基板を通常の熱蒸着装置に設置し、ア
ムミニウムを基板上に3.5×5mmスリット状に厚さ150Å
になるように熱蒸着した。この後半導体層の一部をけず
り取って元素分析を行い、またその結果露出したITO面
と、アルミニウム層の各々にリード線を設置してMSMの
素子とし直流電導度測定装置に接続した。暗下で、ある
いは白色光照射下で2mV/秒の速度で電圧掃引し、そのと
きの電流値を計測して電圧−電流特性を求め、各種のパ
ラメータを決定してMSM型素子としての特性評価を行っ
た。また、アルミニウムが蒸着されていない部分に関し
可視吸収スペクトル測定を行った。さらに触針式表面粗
さ計により半導体層厚を求めた。
Example 1 Tetramethoxyphthalocyanine of Reference Example 14 10 mg and 4 mg
Iodine was dispersed in 1 ml of chloroform and placed in a boat part 6 shown in the attached drawing, and naturally dried. By this operation,
A charge transfer complex is formed and the sublimability of iodine becomes almost negligible. Commercially available IT as a substrate for semiconductor layer formation
O Nesa glass (2.5 x 5 cm, thickness 1 mm, indicated by 3 in the figure)
Was placed 1 cm above 6 and 2 was 4.5 cm apart from 2'in the figure, and 4 was positioned between 3 and 6. Evacuate from the exhaust pipe indicated by 7 to 10 -1 torr, interrupt the exhaustion once, and 8
Argon gas was injected from the intake pipe indicated by, and this evacuation-injection operation was repeated three times, and then the degree of vacuum was maintained at 1 torr, and a current was supplied to 6 to heat to 300 ° C. After confirming that the sample has begun to adhere to the surface of the shutter plate indicated by 4, the current is passed so that a high frequency of 10W 13.56MHz is generated between 2-2 ', and after about 3 seconds the shutter plate is removed. 3 and 6
The position was shifted to the side from the middle position, and this state was maintained for 20 seconds, and the rear shutter plate was returned to the original position. Immediately, the high frequency wave and the heating source were cut off and the mixture was allowed to cool. Argon was injected into the apparatus to return to normal pressure, the substrate was taken out and placed in a high vacuum of 10 −3 torr or less for one day. Place the substrate in a normal thermal evaporation system and deposit Amminium on the substrate in a 3.5 × 5 mm slit shape with a thickness of 150Å
Was vapor-deposited. After that, a part of the semiconductor layer was scraped off for elemental analysis, and a lead wire was placed on each of the exposed ITO surface and the aluminum layer to form an MSM element, which was connected to a DC conductivity measuring device. The voltage is swept at a rate of 2 mV / sec in the dark or under the irradiation of white light, the current value at that time is measured to obtain the voltage-current characteristics, various parameters are determined, and the characteristics of the MSM element are evaluated. went. Further, visible absorption spectrum measurement was performed on a portion where aluminum was not vapor-deposited. Further, the thickness of the semiconductor layer was determined with a stylus type surface roughness meter.

半導体層の元素分析(wt%):C59.03、H3.07、N16.46、
I17.92 参考1 フタロシアニンの理論値: C74.99、H3.15、N21.86 参考2 テトラメトキシフタロシアニンの理論値 C68.35、H3.82、17.71 可視吸収スペクトル:950nm以下巾広く特徴の無い吸収帯
(黒黄金色) 素子特性:暗下:R.R.(1Vでの値、以下同じ)1.78.1
03、D.P.1.55、Voc0.82V、ISC0.92nA/cm2 明下:Voc0.77V、ISC1860nA/cm2ff0.35、η4.
5・10-2% 半導体層厚:185Å 但し、R.R.、D.P.、Voc、Isc、ff、ηはそれぞれ整流
比、ダイオードパラメータ、開放電圧、閉路電流、フィ
ルフアクター、光電変換効率である。
Elemental analysis of semiconductor layers (wt%): C59.03, H3.07, N16.46,
I17.92 Reference 1 Theoretical value of phthalocyanine: C74.99, H3.15, N21.86 Reference 2 Theoretical value of tetramethoxyphthalocyanine C68.35, H3.82, 17.71 Visible absorption spectrum: 950 nm or less Wide and featureless absorption Band (black-golden) Device characteristics: Dark: RR (value at 1V, the same applies below) 1.78.1
0 3 , DP1.55, Voc0.82V, I SC 0.92nA / cm 2 Bright: Voc 0.77V, I SC 1860nA / cm 2 ff0.35, η4.
5 ・ 10 -2 % Semiconductor layer thickness: 185Å However, RR, DP, Voc, Isc, ff and η are rectification ratio, diode parameter, open circuit voltage, closed current, filactor and photoelectric conversion efficiency, respectively.

以上よりこのMSM型素子は良好な特性を有し整流素
子、ダイオード、フォトダイオード等に利用できること
がわかった。また、この素子は±20Vの範囲内の電圧印
加、1.2A/cm2の電流を通じても破壊されない。これらの
特性は乾燥空気下30日を経過しても±5%の範囲内で変
動が無かった。
From the above, it was found that this MSM type element has good characteristics and can be used as a rectifying element, a diode, a photodiode and the like. In addition, this device is not destroyed even when a voltage of ± 20 V is applied and a current of 1.2 A / cm 2 is applied. These characteristics did not change within ± 5% even after 30 days in dry air.

次に素子全体を温クロロホルムに浸し、ドーピング化
剤であるヨウ素を完全に抽出して元素分析スペクトル測
定を行った。
Next, the entire element was immersed in warm chloroform to completely extract iodine as a doping agent, and elemental analysis spectrum measurement was performed.

半導体層の元素分析(wt%):C72.35、H3.44、N20.11、
I0.03 可視吸収スペクトル(nm):700、666、640、602、555 これにより包埋されているヨウ素はフタロシアニン骨核
と共有係合しているものは殆んど無く、電荷移動錯体の
形成ないし物理的に強固な包埋状態であることがわか
る。また、元素分析、スペクトル測定の結果から、重合
化されたフタロシアニンは、R基を約2.5個失ってその
部位で結合して重合しており、半導体層はそのフタロシ
アニン骨核とヨウ素分子の割合がそれぞれx=52%、y
=48%の指定構造式(2)に類似の構造と思われる。
Elemental analysis of semiconductor layer (wt%): C72.35, H3.44, N20.11,
I0.03 Visible absorption spectrum (nm): 700, 666, 640, 602, 555 Almost no iodine embedded in the phthalocyanine bone nucleus is covalently engaged with it, and a charge transfer complex is formed. It can be seen that it is a physically strong embedded state. Also, from the results of elemental analysis and spectrum measurement, the polymerized phthalocyanine has lost about 2.5 R groups and is bonded and polymerized at the site, and the semiconductor layer has a ratio of the phthalocyanine skeleton and iodine molecules. X = 52%, y respectively
= 48% It seems that the structure is similar to the designated structural formula (2).

(実施例1の製造法、MSM素子の新規性を示す反証例
1) 参考例14のテトラメトキシフタロシアニンを実施例1
と同じITOネサガラスに熱蒸着し、その層厚が170Åにな
るようにした。これをヨウ素2gとともに10-3torrの減圧
にした容器に入れ、一日放置した。生成した黒みかかっ
た黄金色の蒸着膜−ITOネサガラスを再び蒸着装置に入
れ、アルミニウムの蒸着を行うため10-5torrになるまで
減圧にした。その間、黒黄金色は薄れて行き、明らかな
ヨウ素昇華が観察された。この後実施例1と同様にアル
ミニウムを蒸着し(約150Å厚)MSM素子とし、各種パラ
メータを求めた。
(False example 1 showing the novelty of the manufacturing method and MSM element of Example 1) The tetramethoxyphthalocyanine of Reference Example 14 was used in Example 1
It was thermally vapor-deposited on the same ITO Nesa glass as above, and the layer thickness was set to 170Å. This was put together with 2 g of iodine in a container having a reduced pressure of 10 −3 torr and left for one day. The produced blackish golden vapor-deposited film-ITO NES glass was put into the vapor deposition apparatus again, and the pressure was reduced to 10 −5 torr for vapor deposition of aluminum. Meanwhile, the black-gold color faded, and a clear iodine sublimation was observed. Then, aluminum was vapor-deposited (about 150Å thickness) in the same manner as in Example 1 to obtain an MSM element, and various parameters were obtained.

半導体層の元素分析(wt%):C71.46、H3.32、N20.03、
I2.44 可視吸収スペクトル(nm):713(巾広)、670(巾
広)、640sh、605、560 参考 ヨウ素ドープ前のスペクトル:702、668、642、60
3、558 素子特性:暗下:R.R.2.0・101、D.P.2.7、Voc0.63V、Is
c15.6nA/cm2 明下:Voc0.55V、Isc230nA/cm2ff0.18、η未
測定(但し10-3%以下であることは確認) (実施例1の製造法、MSM素子の新規性を示す反証例
2) 反証例1と同様に、但し半導体層の作成を参考例14の
テトラメトキシフタロシアニンとヨウ素の等量混合物の
蒸着により行った(約160Å厚)。
Elemental analysis of semiconductor layers (wt%): C71.46, H3.32, N20.03,
I2.44 Visible absorption spectrum (nm): 713 (wide), 670 (wide), 640sh, 605, 560 Reference Spectra before iodine doping: 702, 668, 642, 60
3,558 Device characteristics: Dark: RR2.0 ・ 10 1 , DP2.7, Voc0.63V, Is
c15.6nA / cm 2 light: Voc0.55V, Isc230nA / cm 2 ff0.18, η unmeasured (however, it was confirmed that it was 10 −3 % or less) (production method of Example 1, novelty of MSM element) Example 2) showing the same as Example 1 except that the semiconductor layer was formed by vapor deposition of an equimolar mixture of tetramethoxyphthalocyanine and iodine of Reference Example 14 (about 160Å thickness).

作成した黒黄金色の蒸着膜−ITOネサガラスを反証例1
と同様にアルミニウムの蒸着(約150Å厚)を行った
が、その間黒黄金色は薄れて行き、明らかなヨウ素昇華
が観察された。
Example 1 of falsified black-golden vapor-deposited film-ITO Nesa glass
Aluminum was vapor-deposited (about 150Å thickness) in the same manner as in, but during that time, the black gold color faded, and a clear iodine sublimation was observed.

半導体層の元素分析(wt%):C70.27、H3.08、N19.91、
I4.67 可視吸収スペクトル(nm):720(巾広)、675(巾
広)、643sh、606、560 素子特性:暗下:R.R.4.5、D.P.5以上 Voc0.31V、ISC35.6nA/cm2 明下:Voc0.31V、ISC140nA/cm2ff0.11、η10
-5%以下 これらの特性は素子作成後1時間以内の測定によるも
のであり、約3時間放置後、あるいは直流電圧1V印加後
1.5時間で完全に整流性を失い、オーミックとなった。
Elemental analysis of semiconductor layer (wt%): C70.27, H3.08, N19.91,
I4.67 Visible absorption spectrum (nm): 720 (wide), 675 (wide), 643sh, 606, 560 Device characteristics: Dark: RR4.5, DP5 or more Voc0.31V, I SC 35.6nA / cm 2 bright Bottom: Voc 0.31V, I SC 140nA / cm 2 ff0.11, η10
-5 % or less These characteristics are measured within 1 hour after making the device, and after leaving for about 3 hours or after applying DC voltage 1V
After 1.5 hours, it completely lost its rectifying property and became ohmic.

実施例2〜23 実施例1と同様に、但し第4表に示す条件でS層を作
成、しかる後にMBを熱蒸着あるいは高周波スパッタリン
グしてMSM素子とし、第5表に示す特性を得た。また、
第4表に示す条件で作成されたS層の上に垂直浸漬法な
いし水平付着法により気/水界面上の直鎖飽和脂肪酸金
属塩単層膜を移し取り、同様にMB層をさらに形成させて
MIS型電子とし、第6表に示す特性を得た。但し第4表
中に記載の加熱法とは、添付図面において試料の加熱を
6で表示されているボートで直接加熱するか、5で表示
されるヒーターで傍熱するか、の違いを表わす。
In the same manner as in Example 2-23 Example 1, except create S layer under the conditions shown in Table 4, the MSM element by thermal evaporation or high-frequency sputtering M B thereafter, give the properties shown in Table 5 . Also,
Take transferred straight chain saturated fatty acid metal salt monolayer film on the air / water interface by the vertical dipping method or a horizontal deposition method on the S layer created under the conditions shown in Table 4, similarly further form M B layer Let me
The characteristics shown in Table 6 were obtained as MIS type electrons. However, the heating method described in Table 4 represents the difference between heating the sample directly in the boat indicated by 6 in the accompanying drawings and by indirectly heating it by the heater indicated by 5.

第5表の元素分析値により、半導体層の構成は第7表
のように推定される。
From the elemental analysis values in Table 5, the constitution of the semiconductor layer is estimated as in Table 7.

第5表の結果よりこれらのMSM型素子は優秀な特性を
有し、整流素子、ダイオード、フォトダイオード等に利
用できることがわかる。また第6表より、一般にMIS型
素子ではVoc、ffが改善され、同様に優秀な特性を示し
ていることがわかる。これらの特性は、少くとも1週間
乾燥窒素下に室温で放置しても何ら変化が認められなか
った。
From the results in Table 5, it can be seen that these MSM type devices have excellent characteristics and can be used as rectifying devices, diodes, photodiodes and the like. Further, from Table 6, it is understood that Voc and ff are generally improved in the MIS type element, and similarly excellent characteristics are exhibited. No changes in these properties were observed when left at room temperature under dry nitrogen for at least one week.

実施例24 参考例25のコバルト(II)テトラ(tert−ブトキシ)
フタロシアニン500mgとヨウ素300mgとを3mlのクロロホ
ルム中で実施例1と同様に処理し、実施例1と同様に、
但し10分間重合化させた。ポリビニルアルコールを表面
が平滑な紙の上に濃厚水溶液から厚く(約1/10mm)展開
し、生がわきのうちに作成した半導体層上に接着した。
乾燥後、半導体層ごとはく離し、水中に投じてポリビニ
ルアルコールを溶解して半導体層を紙面より離し、充分
水中において洗浄した。表面粗さ計及び可視吸収スペク
トルの測定を行った後、片面に白金を高周波スパッタリ
ングで、反対面にアルミニウムを熱蒸着で薄膜形成さ
せ、三層構造のMSM型素子とし、その電気特性を測定し
て次の結果を得た。
Example 24 Cobalt (II) tetra (tert-butoxy) of Reference Example 25
Phthalocyanine (500 mg) and iodine (300 mg) were treated in 3 ml of chloroform in the same manner as in Example 1 and then treated as in Example 1.
However, it was polymerized for 10 minutes. Polyvinyl alcohol was spread thickly (about 1/10 mm) from a concentrated aqueous solution on a paper with a smooth surface, and was adhered onto the semiconductor layer that was made aside.
After drying, the semiconductor layer was peeled off, poured into water to dissolve the polyvinyl alcohol, and the semiconductor layer was separated from the paper surface, and thoroughly washed in water. After measuring the surface roughness meter and visible absorption spectrum, platinum was formed on one side by high-frequency sputtering, and aluminum was formed on the opposite side by thermal evaporation to form a thin film to form a three-layer MSM type element, and its electrical characteristics were measured. The following results were obtained.

半導体層の元素分析(wt%):C54.62、H2.15、N16.93、
Co7.53、I16.92 可視吸収スペクトル:950nm以下巾広い特徴の無い吸収帯
(黒黄金色) 素子特性 暗下:Voc 0.85V、Isc 0.32nA/cm2、R.R.2.5
・103、D.P.1.5 明下:Voc 0.77V、Isc 1310nA/cm2 ff0.33、η3.6・10-2% 層厚:MA(Pt)510Å S 85.6μm MB(Al)160Å なお、元素分析よりこの半導体層はRが3個失われて
その部位で重合化され、フタロシアニン骨核とドーピン
グ化剤の比率が66/34と推定された。この元素は全体厚
が100μm以下の薄膜状であり、任意の面積に切り取っ
て素子として使用できる特徴を有する。
Elemental analysis of semiconductor layers (wt%): C54.62, H2.15, N16.93,
Co7.53, I16.92 Visible absorption spectrum: 950 nm or less Wide absorption band without features (black golden color) Device characteristics Dark: Voc 0.85V, Isc 0.32nA / cm 2 , RR2.5
・ 10 3 , under DP1.5: Voc 0.77V, Isc 1310nA / cm 2 ff0.33, η3.6 ・ 10 -2 % Layer thickness: M A (Pt) 510Å S 85.6 μm M B (Al) 160Å From the elemental analysis, it was estimated that this semiconductor layer lost 3 R and was polymerized at that site, and the ratio of the phthalocyanine bone nucleus to the doping agent was 66/34. This element is in the form of a thin film having a total thickness of 100 μm or less, and has a feature that it can be cut into an arbitrary area and used as an element.

実施例25 参考例27のルテニウム(II)テトラ(1−メチルブト
キシ)フタロシアニン500mgを用い他は実施例24と同様
に半導体層を作成し、さらに白金を通常の高周波スパッ
タリングで表面被覆して後、MA+S層を同様にはく離垂
直浸漬法によりアラキン酸カドミニウム塩の単層膜を20
dyn/cmで気/水界面から移し取り、さらにアルミニウム
を熱蒸着してMIS型素子とした。
Example 25 A semiconductor layer was prepared in the same manner as in Example 24 except that 500 mg of ruthenium (II) tetra (1-methylbutoxy) phthalocyanine of Reference Example 27 was used, and platinum was further surface-coated by ordinary high frequency sputtering, A single layer of cadmium arachidate was prepared by the same vertical peeling method as the M A + S layer.
It was transferred from the air / water interface at dyn / cm, and aluminum was further thermally vapor deposited to obtain a MIS type device.

半導体層の元素分析(wt%):C55.16、H2.02、N14.33、
Ru12.5、I16.5 可視吸収スペクトル:950nm以下巾広の特徴の無い吸収帯
(黒黄金色) 素子特性 暗下:Voc 0.85、Isc 0.23nA/cm2、R.R.4.2・
103、D.P.1.5 明下:Voc 0.79V、Isc 920nA/cm2 ff0.36、η4.6・10-2% 層厚:MA(Pt)730Å S 92.5μm MB(Al)140Å
Elemental analysis of semiconductor layers (wt%): C55.16, H2.02, N14.33,
Ru12.5, I16.5 Visible absorption spectrum: 950 nm or less Wide characteristic absorption band (black golden color) Device characteristics Dark: Voc 0.85, Isc 0.23nA / cm 2 , RR4.2
10 3 , under DP1.5: Voc 0.79V, Isc 920nA / cm 2 ff0.36, η4.6 ・ 10 -2 % Layer thickness: M A (Pt) 730Å S 92.5μm M B (Al) 140Å

【図面の簡単な説明】[Brief description of drawings]

添付図面は、本発明のドーピング剤を含んで重合化され
たフタロシアニン誘導体の薄膜から成る半導体を作成す
るための装置の一例を示す概略側断面図である。 (図面番号の説明) 1……25φ×30cm程度のベルジャー(肉厚ガラス製) 2及び2′……高周波発生用電極板及びその対電極板
(円板状φ10×0.3cm) 3……半導体層を表面に作成する基板 4……シャッター(φ10×0.3cm) 5……タングステンヒーター(図では6の真上に書いて
あるが、実際は垂直線より60°の角度で6の斜め上約0.
5cmの所に設置される。) 6……タングステンないしタンタル製ボート(試料を内
部に設置し、ヒーターも兼ねる2′の中心線に沿ってそ
の真上0.5cmの位置に設置) 7……真空系へ接続される排気管 8……アルゴンボンベへ接続される吸気管 9……テフロン系ゴム製Oリング 10……基盤 11……2及び2′、5、6に電源を供給するリード線
The accompanying drawings are schematic side sectional views showing an example of an apparatus for producing a semiconductor comprising a thin film of a phthalocyanine derivative polymerized with a doping agent according to the present invention. (Explanation of drawing numbers) 1 …… Bell jar (made of thick glass) of about 25φ × 30cm 2 and 2 ′ …… High-frequency generating electrode plate and its counter electrode plate (disc-shaped φ10 × 0.3cm) 3 …… Semiconductor Substrate on which layers are created 4 …… Shutter (φ10 × 0.3cm) 5 …… Tungsten heater (It is written right above 6 in the figure, but actually it is diagonally above 6 at an angle of 60 ° from the vertical line. .
It will be installed at 5 cm. 6) Tungsten or tantalum boat (with the sample installed inside and 0.5 cm above the center line of 2'which also functions as a heater) 7 ... Exhaust pipe connected to the vacuum system 8 ...... Intake pipe connected to argon cylinder 9 ...... Teflon rubber O-ring 10 ...... Base 11 ...... Lead wires for supplying power to 2 and 2 ', 5 and 6

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 49/00 51/00 H01L 31/04 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location H01L 31/04 49/00 51/00 H01L 31/04 D

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】下記の式(1)で示される特定のフタロシ
アニン誘導体と、ヨウ素、SO3、AsF5、BF3、SbF5、Nb
F5、TaF5及びPF5からなる群から選ばれる、前記フタロ
シアニン誘導体と等モル量〜1/10モル量の、ドーピング
化剤との混合蒸気に高周波を照射して生成する活性種を
平滑な基板表面に導き、自然重合させて得られる、ドー
ピング化剤を含んで重合化された、厚さ20Å〜100μm
のフタロシアニン誘導体薄膜。 但しRは水素、ハロゲン、炭素数5以下の直鎖又は枝分
れ炭化水素のアルコキシ基を示し、MeはH2、マグネシウ
ム又は遷移金属イオンを示し、Rの置換位置は上式のイ
ソインドリン基において5−位又は6−位である。
1. A specific phthalocyanine derivative represented by the following formula (1), iodine, SO 3 , AsF 5 , BF 3 , SbF 5 , and Nb.
F 5 , TaF 5 and PF 5 selected from the group consisting of phthalocyanine derivative, equimolar amount to 1/10 molar amount of the active species generated by irradiating the mixed vapor with the doping agent with high frequency is smoothed. Polymerized with a doping agent, obtained by spontaneous polymerization on the substrate surface, thickness 20Å ~ 100μm
Phthalocyanine derivative thin film. However, R represents hydrogen, halogen, an alkoxy group of a straight chain or branched hydrocarbon having 5 or less carbon atoms, Me represents H 2 , magnesium or a transition metal ion, and the substitution position of R is the isoindoline group of the above formula. In the 5-position or the 6-position.
【請求項2】式(1)のフタロシアニン誘導体とドーピ
ング化剤の混合物を、300〜400℃、0.9〜3torr、高周波
出力1〜100W、重合時間3秒〜7分で重合して得られる
特許請求の範囲第(1)項記載のフタロシアニン誘導体
薄膜。
2. A compound obtained by polymerizing a mixture of a phthalocyanine derivative of formula (1) and a doping agent at 300 to 400 ° C., 0.9 to 3 torr, high frequency output of 1 to 100 W, and polymerization time of 3 seconds to 7 minutes. A phthalocyanine derivative thin film according to item (1).
【請求項3】仕事関数の大きい導電性材料層、半導体層
及び仕事関数の小さい導電性材料層をこの順に積層して
なるMSM型素子、又は、仕事関数の大きい導電性材料
層、半導体層、絶縁層及び仕事関数の小さい導電性材料
層をこの順に積層してなるMIS型素子において、 上記半導体層として、下記の式(1)で示される特定の
フタロシアニン誘導体と、ヨウ素、SO3、AsF5、BF3、Sb
F5、NbF5、TaF5及びPF5からなる群から選ばれる、前記
フタロシアニン誘導体と等モル量〜1/10モル量の、ドー
ピング化剤との混合蒸気に高周波を照射して生成する活
性種を平滑な基板表面に導き、自然重合させて得られ
る、ドーピング化剤を含んで重合化された、厚さ20Å〜
100μmのフタロシアニン誘導体薄膜を使用したことを
特徴とするMSM型素子又はMIS型素子。 但しRは水素、ハロゲン、炭素数5以下の直鎖又は枝分
かれ炭化水素のアルコキシ基を示し、MeはH2、マグネシ
ウム又は遷移金属イオンを示し、Rの置換位置は上式の
イソインドリン基において5−位又は6−位である。
3. An MSM type element formed by laminating a conductive material layer having a large work function, a semiconductor layer and a conductive material layer having a small work function in this order, or a conductive material layer having a large work function, a semiconductor layer, In a MIS type element formed by laminating an insulating layer and a conductive material layer having a small work function in this order, a specific phthalocyanine derivative represented by the following formula (1), iodine, SO 3 , and AsF 5 are used as the semiconductor layer. , BF 3 , Sb
F 5 , NbF 5 , TaF 5 and PF 5 , selected from the group consisting of phthalocyanine derivative, equimolar amount to 1/10 molar amount, active species generated by irradiating a mixed vapor with a doping agent with high frequency. To a smooth substrate surface and obtained by spontaneous polymerization, polymerized with a doping agent, thickness 20Å ~
An MSM type element or a MIS type element characterized by using a phthalocyanine derivative thin film of 100 μm. However, R represents hydrogen, halogen, an alkoxy group of a straight chain or branched hydrocarbon having 5 or less carbon atoms, Me represents H 2 , magnesium or a transition metal ion, and the substitution position of R is 5 in the isoindoline group of the above formula. -Position or 6-position.
【請求項4】フタロシアニン誘導体薄膜が、式(1)の
フタロシアニン誘導体とドーピング化剤の混合物を、30
0〜400℃、0.9〜3torr、高周波出力1〜100W、重合時間
3秒〜7分で重合して得られるものである特許請求の範
囲第(3)項記載のMSM型素子又はMIS型素子。
4. A phthalocyanine derivative thin film comprising a mixture of a phthalocyanine derivative of formula (1) and a doping agent.
The MSM type element or the MIS type element according to claim (3), which is obtained by polymerization at 0 to 400 ° C., 0.9 to 3 torr, high frequency output of 1 to 100 W, and polymerization time of 3 seconds to 7 minutes.
【請求項5】ドーピング化剤を含んで重合化されたフタ
ロシアニン誘導体薄膜が、式(1)のフタロシアニン誘
導体を減圧下に加熱気化させ、その蒸気と気体状にした
ドーピング化剤の混合蒸気に高周波を照射して生成する
活性種を平滑な基板表面に導き、自然重合させて得られ
たものであることを特徴とする特許請求の範囲第(3)
項に記載のMSM型素子又はMIS型素子。
5. A phthalocyanine derivative thin film polymerized containing a doping agent, wherein the phthalocyanine derivative of the formula (1) is vaporized by heating under reduced pressure, and the vapor and a vapor of the doping agent are mixed in a high frequency wave. The active species produced by irradiating the surface of the substrate are introduced to a smooth surface of the substrate and spontaneously polymerized to obtain the active species.
The MSM type element or the MIS type element described in the item.
【請求項6】仕事関数の大きい導電性材料が、シート抵
抗30Ω/sq以下の酸化インジウムスズ、グラファイト、
グラッシーカーボン、ヒ素、セレン、ゲルマニウム、パ
ラジウム、テルル、レニウム、イリジウム、白金、金、
ロジウム及びルテニウムからなる群から選ばれることを
特徴とする特許請求の範囲第(3)項に記載のMSM型素
子又はMIS型素子。
6. A conductive material having a large work function is indium tin oxide having a sheet resistance of 30 Ω / sq or less, graphite,
Glassy carbon, arsenic, selenium, germanium, palladium, tellurium, rhenium, iridium, platinum, gold,
The MSM type element or the MIS type element according to claim (3), which is selected from the group consisting of rhodium and ruthenium.
【請求項7】仕事関数の小さい導電性材料が、ベリリウ
ム、アルミニウム、スカンジウム、チタン、マンガン、
ジルコニウム、アンチモン、ランタニド類、タリウム及
び鉛からなる群から選ばれることを特徴とする特許請求
の範囲第(3)項に記載のMSM型素子又はMIS型素子。
7. A conductive material having a low work function is beryllium, aluminum, scandium, titanium, manganese,
The MSM type element or MIS type element according to claim (3), which is selected from the group consisting of zirconium, antimony, lanthanides, thallium and lead.
【請求項8】絶縁層が炭素数16〜22の直鎖飽和脂肪酸の
金属塩から成る特許請求の範囲第(3)項に記載のMIS
型素子。
8. The MIS according to claim 3, wherein the insulating layer comprises a metal salt of a linear saturated fatty acid having 16 to 22 carbon atoms.
Mold element.
【請求項9】金属塩が、カドミウム塩、水銀塩、又はア
ルカリ土類金属塩である特許請求の範囲第(3)項に記
載のMIS型素子。
9. The MIS type element according to claim 3, wherein the metal salt is a cadmium salt, a mercury salt, or an alkaline earth metal salt.
【請求項10】直鎖脂肪酸金属塩より成る絶縁層が、そ
れを気/水界面上に単分子膜形成させて垂直浸漬法又は
水平付着法によた半導体層上に移し取って作成されたも
のである特許請求の範囲第(3)項に記載のMIS型素
子。
10. An insulating layer made of a straight-chain fatty acid metal salt is formed by forming a monomolecular film on an air / water interface and transferring it onto a semiconductor layer by a vertical dipping method or a horizontal deposition method. The MIS type element according to claim (3).
JP60047297A 1985-03-09 1985-03-09 Phthalocyanine derivative polymerized containing a doping agent and MSM or MIS type device having the same as a semiconductor layer Expired - Lifetime JPH08851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047297A JPH08851B2 (en) 1985-03-09 1985-03-09 Phthalocyanine derivative polymerized containing a doping agent and MSM or MIS type device having the same as a semiconductor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047297A JPH08851B2 (en) 1985-03-09 1985-03-09 Phthalocyanine derivative polymerized containing a doping agent and MSM or MIS type device having the same as a semiconductor layer

Publications (2)

Publication Number Publication Date
JPS61207461A JPS61207461A (en) 1986-09-13
JPH08851B2 true JPH08851B2 (en) 1996-01-10

Family

ID=12771344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047297A Expired - Lifetime JPH08851B2 (en) 1985-03-09 1985-03-09 Phthalocyanine derivative polymerized containing a doping agent and MSM or MIS type device having the same as a semiconductor layer

Country Status (1)

Country Link
JP (1) JPH08851B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210680A (en) * 1985-03-15 1986-09-18 Mitsubishi Petrochem Co Ltd Manufacture of organic semiconductive thin film
EP1564826A1 (en) * 2004-02-10 2005-08-17 Université Libre De Bruxelles Phthalocyanine derivative layer in electronic multilayer devices and method for the manufacturing thereof
CN109897047A (en) * 2019-02-28 2019-06-18 兰州大学 A kind of soluble copper phthalocyanine and its preparation method and application

Also Published As

Publication number Publication date
JPS61207461A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
US10157710B2 (en) Process of forming a photoactive layer of an optoelectronic device
EP1696053B1 (en) Nano-array electrode manufacturing method and photoelectric converter using same
Song et al. Colloidal synthesis of Y-doped SnO2 nanocrystals for efficient and slight hysteresis planar perovskite solar cells
US6653701B1 (en) Semiconductor device and production method thereof
JP4121148B2 (en) Photocell
CN109411607B (en) Solar cell, preparation method thereof and method for improving transmission characteristic of perovskite layer
EP3565015A1 (en) Solar cell, light-absorbing layer, and method for forming light-absorbing layer
US7943848B2 (en) Photoelectric conversion element, method of manufacturing the same and solar cell
US20090235971A1 (en) Photoactive device with organic layers
CN107112420B (en) Solar cell and method for manufacturing solar cell
KR20010110117A (en) Hole transporting agents and photoelectric conversion device comprising the same
TW200908405A (en) Organic photosensitive optoelectronic devices with nonplanar porphyrins
JP2007180190A (en) Organic solar cell
Zhou et al. Colloidal SnO2‐Assisted CdS Electron Transport Layer Enables Efficient Electron Extraction for Planar Perovskite Solar Cells
Hu et al. Antimony potassium tartrate stabilizes wide-bandgap perovskites for inverted 4-T all-perovskite tandem solar cells with efficiencies over 26%
JP2001168359A (en) Photoelectric transfer element and photoelectric cell
JP2004319873A (en) Oxide semiconductor electrode for photoelectric conversion and dye-sensitized photoelectric conversion device
JPH08851B2 (en) Phthalocyanine derivative polymerized containing a doping agent and MSM or MIS type device having the same as a semiconductor layer
WO2004030029A2 (en) Conducting polymer devices for inter-converting light and electricity
JPH067589B2 (en) MSM or MIS type element using phthalocyanine derivative thin film as semiconductor layer and method for manufacturing the same
JPH067590B2 (en) Polymerized phthalocyanine derivative and MSM or MIS type device using the same as a semiconductor layer
JPH0521824A (en) Photoelectric conversion element
JPH07106613A (en) Organic n-type semiconductor and organic solar cell
JP3283973B2 (en) Organic photovoltaic device
JPH04181783A (en) Solar cell having photo-conduction layer containing polysilane and organic semiconductor compound