JPH088468A - Superconducting device having artificial laminar structure - Google Patents
Superconducting device having artificial laminar structureInfo
- Publication number
- JPH088468A JPH088468A JP6187654A JP18765494A JPH088468A JP H088468 A JPH088468 A JP H088468A JP 6187654 A JP6187654 A JP 6187654A JP 18765494 A JP18765494 A JP 18765494A JP H088468 A JPH088468 A JP H088468A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- metal
- electrons
- critical temperature
- superconducting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 5
- 239000000956 alloy Substances 0.000 claims abstract description 5
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 3
- 229910052755 nonmetal Inorganic materials 0.000 claims abstract 3
- 239000004020 conductor Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 17
- 239000000126 substance Substances 0.000 abstract description 6
- 230000008569 process Effects 0.000 abstract description 2
- 150000002736 metal compounds Chemical class 0.000 abstract 1
- 239000000463 material Substances 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 10
- 230000005291 magnetic effect Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 230000003993 interaction Effects 0.000 description 6
- 239000010409 thin film Substances 0.000 description 5
- 238000004870 electrical engineering Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000005551 mechanical alloying Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000005285 chemical preparation method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】電気工学分野においては、電力の
発生、伝送、変換、および蓄積などに関わる装置への利
用が挙げられる。電子工学分野においては、超伝導現象
を利用し高速で動作する論理素子、記憶素子、伝達媒体
変換素子(電子波素子、単一電子素子を含む)、また、
それらを結びつける情報伝送装置(電子波素子、電子波
伝送装置を含む)への利用が期待できる。また、応用物
理学分野においては、計測・評価に用いられる高能率電
子放射源としての利用が期待できる。[Industrial field of application] In the field of electrical engineering, use in devices related to the generation, transmission, conversion, and storage of electric power can be mentioned. In the field of electronics, logic elements, storage elements, transmission medium conversion elements (including electron wave elements and single electronic elements) that operate at high speed by utilizing superconductivity,
It can be expected to be used for an information transmission device (including an electronic wave element and an electronic wave transmission device) that connects them. Further, in the field of applied physics, it can be expected to be used as a highly efficient electron emission source used for measurement and evaluation.
【0002】[0002]
【従来の技術】従来、金属、金属間化合物、金属酸化
物、あるいは、有機物などによって超伝導装置が発見さ
れ利用されてきたが、いずれの装置の場合も天然に存在
する結晶構造を利用し、部分的に人為的な加工を施した
ものに過ぎなかった。一般的に超伝導装置を電気工学分
野および電子工学分野において利用しようとした場合、
その超伝導臨界温度、臨界電流密度、臨界磁場などの条
件を満たす装置を選択しなければならない。しかし多く
の分野において利用されるための条件としては、前述の
条件の臨界温度、臨界電流密度、臨界磁場ともに高い値
を有さなければならない。現存する超伝導装置では、こ
れらの条件をすべて満たすものは無い。金属超伝導装置
の場合は、臨界温度が低く、酸化物超伝導装置では、臨
界電流密度および臨界磁場を大きくとれないという難点
があり、その他、臨界温度が高い酸化物超伝導装置に
は、加工性が低く、微細加工の際の構造の再現性が悪
い、などという欠点があった。そこで、産業界の要請と
して高い臨界温度を有し、臨界電流密度、臨界磁場が高
く、装置の大きさに依存しない高い加工性と構造再現性
を有する超伝導装置の存在が嘱望されていた。2. Description of the Related Art Conventionally, a superconducting device has been found and used by using a metal, an intermetallic compound, a metal oxide, or an organic substance. In any of the devices, a naturally existing crystal structure is used. It was only partially artificial. Generally, when trying to use a superconducting device in the fields of electrical engineering and electronic engineering,
Devices that satisfy the conditions such as the superconducting critical temperature, critical current density, and critical magnetic field must be selected. However, as conditions to be used in many fields, the critical temperature, the critical current density, and the critical magnetic field of the above conditions must have high values. No existing superconducting device meets all of these requirements. In the case of a metal superconducting device, the critical temperature is low, and in the oxide superconducting device, there is a drawback that the critical current density and the critical magnetic field cannot be made large. However, there are drawbacks such as poor reproducibility and poor reproducibility of the structure during microfabrication. Therefore, there is a strong demand for a superconducting device that has a high critical temperature, a high critical current density, a high critical magnetic field, high processability that does not depend on the size of the device, and structure reproducibility, as required by the industry.
【0003】[0003]
【発明が解決しようとする課題】本発明が解決しようと
する課題は、高い臨界温度を有していながら、臨界電流
密度および臨界磁場など超伝導装置を応用した装置を作
成する場合に必要な条件を有しており、加工性が高く線
材などの加工がしやすく、薄膜などの微細構造を作製す
る場合でも構造の再現性が得やすい超伝導装置を作製す
ることである。そのためには、超伝導の機構を考慮し、
その機構の最適条件を満足する構造を人工的に作製する
ことで、理想的な超伝導装置を設計、および作製するこ
とが可能になると考えた。The problem to be solved by the present invention is to meet the conditions necessary for producing a device to which a superconducting device is applied, such as a critical current density and a critical magnetic field, while having a high critical temperature. Therefore, it is to produce a superconducting device which has high workability, is easy to process a wire or the like, and can easily obtain reproducibility of the structure even when producing a fine structure such as a thin film. To do so, consider the mechanism of superconductivity,
We thought that it would be possible to design and fabricate an ideal superconducting device by artificially fabricating a structure that satisfies the optimum conditions of the mechanism.
【0004】[0004]
【課題を解決するための手段】本発明により、 (1)高い超伝導臨界温度を有し、高度な冷却を必要と
しない。 (2)高い臨界電流密度、臨界磁場を有し超伝導装置の
応用範囲(電力の発生、伝送、変換、蓄積に関係する分
野)を広げるもの。 (3)超伝導現象における電子の軌道とスピンの相互作
用、および、電子と格子振動(フォノン)の相互作用を
利用した超伝導素子(情報の高速論理処理、高速記憶、
高速変換、高速伝送および高能率電子放射など)を可能
にする。 (4)材料として高い加工性を有し、変形を行って線材
などの二次的な装置を作製しやすい。 (5)薄膜などの微細構造を作製する場合でも、その構
造を再現性よく制御して作製することができる。 などの条件を満足する超伝導装置を作成できる。本発明
は、人工的に作製した層状構造を有した超伝導装置を指
すが、この装置を変形させて作製した層状構造でないも
のを含む。また、特殊な形状の超伝導装置の場合には、
内部の人工構造は層状でなくともよく、このような変則
的な人工構造を含む。本発明によって、前述した条件を
満足した安価な超伝導装置を作製することができるう
え、それを利用した工業製品の製作を促すことになると
考えられる。本発明の装置の作成方法は、以下に示す方
法を含む。 (1)メカニカルアロイング法による層状構造作製法。 (2)機械的な変形を原理とした加工法による層状構造
作製法(鍛造法、圧延法などを含む) (3)凝固組織の制御による層状構造作製法(急冷凝固
法などを含む) (4)薄膜作製法(気相、液相、および固相中における
物理的作製法、化学的作製法を含む) (5)化学的操作による層状構造作製法。 (6)自然界に存在する構造の周期性を利用した層状構
造作製法。According to the present invention, (1) it has a high superconducting critical temperature and does not require a high degree of cooling. (2) It has a high critical current density and a critical magnetic field, and expands the application range (fields related to power generation, transmission, conversion, and storage) of superconducting devices. (3) Superconducting devices (high-speed logical processing of information, high-speed memory, high-speed storage of information, interaction between electrons' orbits and spins in superconductivity, and interactions between electrons and lattice vibrations (phonons)
High speed conversion, high speed transmission and high efficiency electron emission etc.). (4) It has high workability as a material and is easily deformed to fabricate a secondary device such as a wire rod. (5) Even when a fine structure such as a thin film is manufactured, the structure can be controlled with good reproducibility. A superconducting device that satisfies the above conditions can be created. The present invention refers to an artificially manufactured superconducting device having a layered structure, but includes a non-layered structure manufactured by deforming the device. Also, in the case of a specially shaped superconducting device,
The internal artificial structure does not have to be layered, and includes such an irregular artificial structure. According to the present invention, it is considered that an inexpensive superconducting device satisfying the above-mentioned conditions can be manufactured, and at the same time, manufacturing of an industrial product using the device can be promoted. The method for producing the device of the present invention includes the following methods. (1) A method for producing a layered structure by a mechanical alloying method. (2) Layered structure manufacturing method (including forging method, rolling method, etc.) by processing method based on mechanical deformation (3) Layered structure manufacturing method by control of solidification structure (including rapid solidification method) (4) ) Thin film preparation method (including physical preparation method and chemical preparation method in gas phase, liquid phase, and solid phase) (5) Layered structure preparation method by chemical operation. (6) A method for producing a layered structure utilizing the periodicity of the structure existing in nature.
【0005】[0005]
【作用】本発明によって予想される結果は以下の通りで
ある。電気伝導性の高い数種類の物質を層状にすること
によって、層内での電子伝導が低次元化されるうえ、各
層における電子のスピンの方向が強磁性的配列に従うよ
うになる。低次元化された2次元面内(1次元線上)の
電気伝導は、フェルミ準位近傍の電子と、格子振動(フ
ォノン)の協調によって増幅されると考えられる。しか
し、格子振動による電子の非弾性散乱は温度の関数とし
て増加するため、この電気伝導は電子エネルギーバンド
構造の低次元化と、フォノンによる熱散乱によって制約
を受けることになる。この二つの条件によって超伝導臨
界温度が決定される。層状構造の人工的な制御の結果、
各層内におけるバンド構造が制御され、フォノンによる
熱散乱の影響が無視できる状態を創り出せるため、高温
での超伝導現象が確認されると予想できる。The expected results of the present invention are as follows. By layering several kinds of substances having high electric conductivity, electron conduction in the layers is reduced, and the spin directions of electrons in each layer follow a ferromagnetic arrangement. It is considered that the reduced two-dimensional in-plane (one-dimensional line) electrical conduction is amplified by the coordination of the lattice vibration (phonon) with the electrons near the Fermi level. However, since the inelastic scattering of electrons due to lattice vibrations increases as a function of temperature, this electrical conduction is restricted by the reduction of the electron energy band structure and thermal scattering by phonons. The superconducting critical temperature is determined by these two conditions. The result of artificial control of the layered structure,
Since the band structure in each layer is controlled and a state in which the influence of heat scattering due to phonons can be neglected, it can be expected that superconducting phenomena at high temperatures will be confirmed.
【0006】[0006]
(1)数種類の金属を用いてメカニカルアロイング法に
より作製された層状構造で超伝導性を有することが予想
される。元素の組み合わせと、層状構造の周期性や層厚
を制御することによって、超伝導臨界温度の高い超伝導
装置ができると予想される。この方法で作成されるもの
には金属以外のものも含まれる。 (2)機械的な変形を原理とした加工法による層状構造
作製法(鍛造法、圧延法などを含む)において、元素の
組み合わせと層状構造の周期性や層厚を制御することに
よって超伝導臨界温度の高い超伝導装置ができると予想
される。この方法で作成されるものには金属以外のもの
も含まれる。 (3)凝固組織の制御によって数種類の金属による層状
構造が得られる。元素の組み合わせと層状構造の周期性
や層厚を制御することによって超伝導臨界温度の高い超
伝導装置ができると予想される。この方法で作成される
ものには、金属以外のものも含まれる。 (4)層状構造を薄膜作製法によって基板上に作製した
場合において、元素の組み合わせと層状構造の周期性や
層厚を制御することによって超伝導臨界温度の高い超伝
導装置ができると予想される。この方法で作成されるも
のには金属以外のものも含まれる。 (5)化学的な操作によって作製された層状構造につい
ても、元素の組み合わせと層状構造の周期性や層厚を制
御することによって超伝導臨界温度の高い超伝導装置が
できると予想される。この方法で作成されるものには金
属以外のものも含まれる。 (6)自然界に存在する層状物質、層間化合物、規則化
合金などの周期性を利用して、層状構造の周期性や層厚
を制御することによって超伝導臨界温度の高い超伝導装
置ができると予想される。 (7)(1)〜(6)の方法、あるいは、その組み合わ
せによって任意の形状の超伝導装置が作成可能であると
考えられる。その装置には、装置の低抵抗性を利用した
ものばかりでなく、超伝導現象における電子の軌道とス
ピンの相互作用、および電子と格子振動(フォノン)と
の相互作用を利用した超伝導素子(情報の高速論理処
理、高速記憶、高速変換、高速伝送、および高能率電子
放射を可能にする)を含む、(1) It is expected that a layered structure produced by a mechanical alloying method using several kinds of metals has superconductivity. It is expected that a superconducting device with a high superconducting critical temperature can be produced by controlling the combination of elements and the periodicity and layer thickness of the layered structure. The materials produced by this method include materials other than metals. (2) In a layered structure manufacturing method (including forging method, rolling method, etc.) based on a mechanical deformation principle, a superconducting criticality is obtained by controlling the combination of elements and the periodicity and layer thickness of the layered structure. It is expected that high temperature superconducting devices will be created. The materials produced by this method include materials other than metals. (3) A layered structure of several kinds of metals can be obtained by controlling the solidification structure. It is expected that a superconducting device having a high superconducting critical temperature can be produced by controlling the combination of elements and the periodicity of the layered structure and the layer thickness. The materials produced by this method include materials other than metals. (4) When a layered structure is formed on a substrate by a thin film forming method, it is expected that a superconducting device having a high superconducting critical temperature can be obtained by controlling the combination of elements and the periodicity and layer thickness of the layered structure. . The materials produced by this method include materials other than metals. (5) With respect to the layered structure produced by a chemical operation, it is expected that a superconducting device having a high superconducting critical temperature can be obtained by controlling the combination of elements and the periodicity and layer thickness of the layered structure. The materials produced by this method include materials other than metals. (6) A superconducting device having a high superconducting critical temperature can be obtained by controlling the periodicity and layer thickness of a layered structure by utilizing the periodicity of layered substances, intercalation compounds, ordered alloys and the like existing in nature. is expected. (7) It is considered that a superconducting device having an arbitrary shape can be produced by the methods (1) to (6) or a combination thereof. Not only the device that utilizes the low resistance of the device, but also the superconducting device that utilizes the interaction between electron orbit and spin in superconducting phenomenon and the interaction between electron and lattice vibration (phonon) ( Enable high-speed logical processing of information, high-speed storage, high-speed conversion, high-speed transmission, and high-efficiency electron emission)
【0007】[0007]
【発明の効果】産業界の要請として、高い臨界温度を有
し、臨界電流密度、臨界磁場が高く、装置の大きさに依
存しない高い加工性と構造再現性を有する超伝導装置の
存在が嘱望されていた。本発明により、 (イ)高い超伝導臨界温度を有し、高度な冷却を必要と
しない。 (ロ)高い臨界電流密度、臨界磁場を有し、超伝導装置
の応用範囲(電力の発生、伝送、変換、蓄積に関係する
分野)を広げるもの。 (ハ)超伝導現象における電子の軌道とスピンの相互作
用、および電子と格子振動(フォノン)との相互作用を
利用した超伝導素子(情報の高速論理処理、高速記憶、
高速変換、高速伝送、および高能率電子放射など)を可
能にする。 (ニ)材料として高い加工性を有し、変形を行って線材
などの2次的な装置を作成しやすい。 (ホ)薄膜などの微細構造を作製する場合でも、その構
造を再現性よく制御して作製することができる。などの
条件を満足する超伝導装置を作成できる。近い将来、こ
の超伝導装置が室温に近い非常に高い超伝導臨界温度を
有するようになると考えられる。超伝導が非常に高温で
発現することは、高度な冷媒を必要としない高効率エネ
ルギー利用、超高速情報処理、超高速情報伝達など、電
気工学分野、および電子工学分野に計り知れない寄依を
及ぼすことは明白である。As a requirement of the industry, it is desired that a superconducting device having a high critical temperature, a high critical current density and a high critical magnetic field, and high workability and structure reproducibility independent of the size of the device be present. It had been. According to the present invention, (a) it has a high superconducting critical temperature and does not require a high degree of cooling. (B) It has a high critical current density and a critical magnetic field, and expands the application range of superconducting devices (fields related to power generation, transmission, conversion, and storage). (C) Superconducting devices that utilize the interaction between electron orbits and spins in superconducting phenomena, and the interaction between electrons and lattice vibrations (phonons) (high-speed logical processing of information, high-speed storage,
High speed conversion, high speed transmission, and high efficiency electron emission etc.). (D) It has high workability as a material, and is easily deformed to form a secondary device such as a wire rod. (E) Even when a fine structure such as a thin film is manufactured, the structure can be controlled with good reproducibility. A superconducting device that satisfies the above conditions can be created. It is expected that in the near future, this superconducting device will have a very high superconducting critical temperature close to room temperature. The manifestation of superconductivity at extremely high temperatures has immeasurable contributions to the fields of electrical engineering and electronics, such as high-efficiency energy use that does not require sophisticated refrigerants, ultra-high-speed information processing, and ultra-high-speed information transmission. The effect is obvious.
【図1】 本装置の斜視図である。FIG. 1 is a perspective view of the device.
【図2】 本装置の断面図である。FIG. 2 is a sectional view of the device.
【図3】 本装置の2次的な形状に加工した場合(線
材)の斜視図である。FIG. 3 is a perspective view of a case (wire) processed into a secondary shape of the device.
【図4】 本装置の2次的な形状に加工した場合(線
材)の断面図である。この場合装置全体が均一な層状構
造(イ)になる必要はなく、一次元電導体に近い構造
(ロ)、または層状構造の集合体(ハ)でもよい。FIG. 4 is a cross-sectional view of a case (wire) processed into a secondary shape of the device. In this case, the entire device does not need to have a uniform layered structure (a), but may have a structure close to a one-dimensional conductor (b) or an aggregate of layered structures (c).
【図5】 本装置を基板上に作成した場合の斜視図であ
る。FIG. 5 is a perspective view of a case where the device is formed on a substrate.
Claims (1)
に積層した装置。 (ロ)電気伝導体としては、金属(半金属を含む)、非
金属、あるいはそれらを組み合わせた合金、金属間化合
物、化合物を含む。 (ハ)ある部分における層群の厚さは、その両側に配置
された層の間での電子の交換が可能な程度に薄い。1. A device in which several kinds of electric conductors are artificially alternately laminated. (B) The electric conductor includes a metal (including a semimetal), a nonmetal, an alloy in which they are combined, an intermetallic compound, and a compound. (C) The thickness of the layer group in a certain portion is thin enough to allow the exchange of electrons between the layers arranged on both sides of the layer group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6187654A JPH088468A (en) | 1994-06-21 | 1994-06-21 | Superconducting device having artificial laminar structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6187654A JPH088468A (en) | 1994-06-21 | 1994-06-21 | Superconducting device having artificial laminar structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH088468A true JPH088468A (en) | 1996-01-12 |
Family
ID=16209877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6187654A Pending JPH088468A (en) | 1994-06-21 | 1994-06-21 | Superconducting device having artificial laminar structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH088468A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017175155A (en) * | 2011-03-30 | 2017-09-28 | アンバチュア インコーポレイテッド | Electrical device, mechanical device, computer device, and/or other device formed of extremely low resistance material |
JP2017533572A (en) * | 2011-03-30 | 2017-11-09 | アンバチュア インコーポレイテッドAMBATURE Inc. | Electrical devices, mechanical devices, computer devices, and / or other devices formed of very low resistance materials |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63241810A (en) * | 1987-03-28 | 1988-10-07 | Sumitomo Electric Ind Ltd | Superconducting laminated material |
-
1994
- 1994-06-21 JP JP6187654A patent/JPH088468A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63241810A (en) * | 1987-03-28 | 1988-10-07 | Sumitomo Electric Ind Ltd | Superconducting laminated material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017175155A (en) * | 2011-03-30 | 2017-09-28 | アンバチュア インコーポレイテッド | Electrical device, mechanical device, computer device, and/or other device formed of extremely low resistance material |
JP2017533572A (en) * | 2011-03-30 | 2017-11-09 | アンバチュア インコーポレイテッドAMBATURE Inc. | Electrical devices, mechanical devices, computer devices, and / or other devices formed of very low resistance materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Defects engineering with multiple dimensions in thermoelectric materials | |
US6710238B1 (en) | Thermoelectric material and method for manufacturing the same | |
Xu et al. | Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators | |
Terasaki | 1.09 thermal conductivity and thermoelectric power of semiconductors | |
JP5663422B2 (en) | Thermoelectric conversion element | |
Lv et al. | Optimized thermoelectric performance of Bi 2 Te 3 nanowires | |
US20120186621A1 (en) | Thermoelectric material including nanoinclusions, thermoelectric module and thermoelectric apparatus including the same | |
JP6350817B2 (en) | Module group consisting of a combination of a thermoelectric conversion element and a π-type module group consisting of a thermoelectric material, a thermoelectric conversion element and a thermoelectric material. | |
Satyala et al. | Nano bulk thermoelectrics: Concepts, techniques, and modeling | |
Glowacki | Niobium aluminide as a source of high-current superconductors | |
JPS5840286B2 (en) | Method for manufacturing high tensile strength aluminum stabilized superconducting wire | |
Dar | Investigation of electronic, magnetic, elastic, mechanical, thermodynamic, and thermoelectronic properties of Mn2PtV Heusler alloy: ab initio study | |
Ali et al. | Spin-based transport properties of Cs2WX6 (X= Cl, Br) ferromagnets for spin-injected thermoelectric current | |
Henadeera et al. | Ultra-low thermal conductivity of nanoparticle chains: A nanoparticle based structure for thermoelectric applications | |
US3239697A (en) | Electric generator | |
JPH088468A (en) | Superconducting device having artificial laminar structure | |
Zhang et al. | The investigation of thermal properties on multilayer Sb2Te3/Au thermoelectric material system with ultra-thin Au interlayers | |
Sinduja et al. | Investigations on morphology and thermoelectric transport properties of Cu+ ion implanted bismuth telluride thin film | |
US3421330A (en) | Thermomagnetic transfer of heat through a superconductor | |
Zhao et al. | Ultralow in-plane thermal conductivity in 2D magnetic mosaic superlattices for enhanced thermoelectric performance | |
Limbu et al. | Enhanced electronic and thermoelectric properties of p-type doped filled skutterudites RFe4Sb12 (R= Pr, Nd) | |
US3616530A (en) | Method of fabricating a superconducting composite | |
WO2018131532A1 (en) | Thermoelectric conversion element and method for manufacturing same | |
Kodaira et al. | Design and power generation of tilted Cu/Fe2V (Al0. 9Si0. 1) multilayers via the transverse thermoelectric effect | |
Rana et al. | Theoretical study of Cr2X3S3 (X= Br, I) monolayers for thermoelectric and spin caloritronics properties |