JPH0884009A - Production of coaxial dielectric resonator - Google Patents

Production of coaxial dielectric resonator

Info

Publication number
JPH0884009A
JPH0884009A JP21843494A JP21843494A JPH0884009A JP H0884009 A JPH0884009 A JP H0884009A JP 21843494 A JP21843494 A JP 21843494A JP 21843494 A JP21843494 A JP 21843494A JP H0884009 A JPH0884009 A JP H0884009A
Authority
JP
Japan
Prior art keywords
film
plating
dielectric resonator
electroless
coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21843494A
Other languages
Japanese (ja)
Inventor
Okikuni Takahata
興邦 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP21843494A priority Critical patent/JPH0884009A/en
Publication of JPH0884009A publication Critical patent/JPH0884009A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE: To provide a resonator which has a high plating film adhesive strength and a small dielectric loss by specifying the film thickness of an Ni-P film formed on high frequency dielectric ceramics by electroless plating. CONSTITUTION: The Ni-P film is formed on high frequency dielectric ceramics by electroless plating, and a Cu or Ag film is formed on this Ni-P film as an electrode by electroless plating. The film thickness of this Ni-P film is set to 0.01 to 1.50μm. Thus, the plating film adhesive strength is about 1.0kg/nm<2> with respect to perpendicular tensile stress, and the resonator of high Q is obtained. It is good that they are subjected to heat treatment in the atmosphere of inert gas at <=5500 deg.C after formation of the electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、移動体通信等に実装さ
れる高周波フィルタ、高周波発振器等に用いられる同軸
型誘電体共振器の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a coaxial dielectric resonator used for a high frequency filter, a high frequency oscillator, etc., which is mounted in mobile communication or the like.

【0002】[0002]

【従来の技術】近年移動体通信等の開発が進み、PHS
(Personal Handy phone Sys
tem)等の試験も盛んに行われている。この移動体通
信等は、高周波帯域で様々な業者が参入するため、業者
間の周波数の分別は、今後益々重要な問題となることが
予想される。
2. Description of the Related Art In recent years, the development of mobile communication has advanced, and PHS
(Personal Handy phone Sys
Tests such as tem) are also actively conducted. Since various vendors participate in this mobile communication and the like in the high frequency band, it is expected that segregation of frequencies among the vendors will become an increasingly important issue in the future.

【0003】このことに対して誘電体セラミックを用い
た同軸型誘電体共振器は、共振器自体の長さによって共
振周波数を自由に設定できる、1GHz程度以上の高周
波帯域にも対応できる等の利点があり、今後需要拡大が
顕著となることが、予想される。
On the other hand, the coaxial dielectric resonator using the dielectric ceramic has an advantage that the resonance frequency can be freely set according to the length of the resonator itself and can be applied to a high frequency band of about 1 GHz or more. Therefore, it is expected that demand will increase significantly in the future.

【0004】同軸型誘電体共振器は、一般的に図1のよ
うな構成になっている。図1において、1は、BaO−
Nd2 3 −TiO2 を主成分とし、焼結性の促進、誘
電率の向上の目的でBi2 3 を添加した材料等からな
る誘電体セラミックであり、中央に円筒状の貫通穴2を
有する直方体形状に焼結される。3は、電極層であり、
従来法では、外導体4、内導体5及び短絡端6が、Ag
ペースト法等による、塗布、焼付けまたは無電解メッキ
等により形成されていた。なお、7は、開放端である。
The coaxial dielectric resonator is generally constructed as shown in FIG. In FIG. 1, 1 is BaO-
A dielectric ceramic made of a material containing Nd 2 O 3 —TiO 2 as a main component and Bi 2 O 3 added for the purpose of promoting sinterability and improving the dielectric constant, and has a cylindrical through hole 2 in the center. Is sintered into a rectangular parallelepiped shape. 3 is an electrode layer,
In the conventional method, the outer conductor 4, the inner conductor 5, and the short-circuited end 6 are Ag.
It was formed by coating, baking, electroless plating, or the like by a paste method or the like. In addition, 7 is an open end.

【0005】[0005]

【発明が解決しようとする課題】Agペースト法は、一
般にAgペーストの製品への塗布、浸漬、製品の乾燥ま
たは焼成の工程で行われるが、その際Agペーストの粘
度調整が必要となる。しかし、粘度調整過程における粘
度のばらつきは、セラミック表面の膜厚のばらつきを引
き起こし、連続的に塗布または浸漬処理をする際には、
溶剤の蒸発による粘度の変化等多くの製造上の問題があ
った。また、Agペースト法における焼成工程では、A
g粒子の焼成が行われるため、Ag電極層は、多孔性の
焼結体となり、緻密な金属層が得られず、量産上または
電気特性等の品質上多くの問題があった。
The Ag paste method is generally carried out in the steps of applying Ag paste to a product, dipping, drying or baking the product, in which case the viscosity of the Ag paste must be adjusted. However, variations in viscosity in the viscosity adjustment process cause variations in the film thickness on the ceramic surface, and when continuously applying or dipping treatment,
There have been many manufacturing problems such as changes in viscosity due to evaporation of the solvent. In the firing process in the Ag paste method, A
Since the g particles are fired, the Ag electrode layer becomes a porous sintered body, a dense metal layer cannot be obtained, and there are many problems in mass production or in quality such as electrical characteristics.

【0006】この問題を解決するため、誘電体セラミッ
ク表面に無電解Cuメッキ層を形成することが、提案さ
れている(特開昭63−13504号等々)。
In order to solve this problem, it has been proposed to form an electroless Cu plating layer on the surface of the dielectric ceramic (Japanese Patent Laid-Open No. 63-13504, etc.).

【0007】ところで、高周波用誘電体共振器には、高
いQが要求される。一般に、誘電体共振器の無負荷のQ
をQU 、誘電体セラミック材料の誘電損失によるQをQ
M 、電極の導電損失によるQをQC とすると、QU は、
下記の数式1で与えられる。
A high Q is required for a high frequency dielectric resonator. Generally, the unloaded Q of the dielectric resonator
Q U and Q due to the dielectric loss of the dielectric ceramic material
If M and Q due to conduction loss of the electrode are Q C , then Q U is
It is given by Equation 1 below.

【0008】[0008]

【数1】 [Equation 1]

【0009】通常QM は4,000〜200,000程
度(1GHz換算)であり、QC は200〜1,000
程度であるため、QU にはQC が大きく影響する。ここ
で、QC は、下記の数式2に表されるように、電極を形
成する金属の導電率σに比例して高くなる。
[0009] usually Q M is about 4,000~200,000 (1GHz equivalent), Q C is 200 to 1,000
Since it is a degree, Q C has a great influence on Q U. Here, Q C increases in proportion to the conductivity σ of the metal forming the electrode, as expressed by the following mathematical formula 2.

【0010】[0010]

【数2】 [Equation 2]

【0011】ここでω=2πfθ(fθ:共振周波
数)、μθ=4π×10-7[H/m](μθ:真空中の
透磁率)、A,B,Lはそれぞれ円筒状の場合の誘電体
共振器の内径、外径、高さである。
Here, ω = 2πf θ (f θ : resonance frequency), μ θ = 4π × 10 −7 [H / m] (μ θ : magnetic permeability in vacuum), and A, B and L are cylindrical. In the case of, it is the inner diameter, outer diameter, and height of the dielectric resonator.

【0012】このことに対して電極として無電解Cuメ
ッキを行った場合、Cuの導電率が高いためQC が大き
くQU は十分実用域であるが、セラミック表面をエッチ
ング等によって大きく荒されない限りメッキ膜垂直引張
り強度が1.0kg/mm2程度であり、実用には耐え
ない。また逆に、セラミック表面を荒すことにより電極
金属の実効的な導電率が低下し、QC を劣化させるとい
う欠点がある。
On the other hand, when electroless Cu plating is performed as an electrode, Cu has a high electric conductivity and Q C is large, and Q U is in a sufficiently practical range. However, unless the ceramic surface is greatly roughened by etching or the like. The vertical tensile strength of the plated film is about 1.0 kg / mm 2 , which is not practical. Conversely, the effective conductivity of the electrode metal is reduced by roughening the ceramic surface, there is a drawback of deteriorating the Q C.

【0013】誘電体共振器が移動体通信器等に実装され
た場合、移動体通信器自体の落下衝撃等によってメッキ
膜の剥離が生じると、誘電体共振器の性能が実質的に損
なわれるため、メッキ膜付着強度は高いことが要求され
る。この際、メッキ膜付着強度は、垂直引張り応力で
2.0kg/mm2 程度以上であることが要求される。
When the dielectric resonator is mounted on a mobile communication device or the like, the performance of the dielectric resonator is substantially impaired if the plating film peels off due to a drop impact of the mobile communication device itself. The plating film adhesion strength is required to be high. At this time, the plating film adhesion strength is required to be about 2.0 kg / mm 2 or more in vertical tensile stress.

【0014】この問題を解決するため、Cuメッキ下地
として誘電体セラミック表面に無電解Ni−Pメッキを
行うという方法が考えられる。無電解Ni−Pメッキの
析出機構は、無電解Cuメッキのそれとは異なり、セラ
ミックに対する付着強度はNi−Pメッキの方が高いこ
とが、知られている(例えば、逢坂、田村等:表面技
術、Vol.40、No.7(1989)、835〜3
9)。しかし、Niの導電率は、Cuよりも低いため、
C が劣化するという問題が生じる。
In order to solve this problem, a method of performing electroless Ni-P plating on the surface of the dielectric ceramic as a Cu plating base can be considered. It is known that the deposition mechanism of electroless Ni-P plating is different from that of electroless Cu plating, and that the adhesion strength to ceramics is higher in Ni-P plating (for example, Osaka, Tamura et al .: Surface Technology). , Vol. 40, No. 7 (1989), 835-3.
9). However, since the conductivity of Ni is lower than that of Cu,
A problem that Q C is deteriorated occurs.

【0015】そこで、本発明の技術的課題は、同軸型誘
電体共振器において、誘電体セラミック表面に下地層と
してNi−Pメッキ膜を形成し、メッキ膜付着強度が垂
直引張り応力で2.0kg/mm2 であり、かつ、実用
上十分大きいQU が得られる同軸型誘電体共振器の製造
方法を提供することにある。
Therefore, a technical object of the present invention is to form a Ni-P plating film as a base layer on the surface of the dielectric ceramic in the coaxial type dielectric resonator, and the adhesion strength of the plating film is 2.0 kg in vertical tensile stress. / mm 2, and is to provide a method for producing a practically sufficient large coaxial Q U is obtained dielectric resonator.

【0016】[0016]

【課題を解決するための手段】本発明によれば、(1)
高周波誘電体セラミック上に無電解メッキによりNi−
P膜を形成し、その上に更にCu膜もしくはAg膜、ま
たは、その双方を無電解もしくは電解メッキにより電極
として形成してなる同軸型誘電体共振器において、Ni
−P膜厚を0.01〜1.50μmとすること、(2)
また、前記同軸型誘電体共振器において、高周波誘電体
セラミック上に無電解メッキによりNi−P膜を形成
し、その上に更にCu膜もしくはAg膜、または、その
双方を無電解もしくは電解メッキにより電極として形成
した後、500℃以下の不活性ガス雰囲気中熱処理を加
えることで、2kg/mm2 以上の垂直引張り強度を有
し、かつ、実用上十分大きいQU を有する同軸型誘電体
共振器の製造方法が得られる。
According to the present invention, (1)
Ni-on high frequency dielectric ceramic by electroless plating
In a coaxial dielectric resonator formed by forming a P film and further forming a Cu film or an Ag film, or both of them as electrodes by electroless or electrolytic plating, Ni is used.
-P film thickness is 0.01 to 1.50 μm, (2)
In the coaxial dielectric resonator, a Ni-P film is formed on the high frequency dielectric ceramic by electroless plating, and a Cu film or an Ag film, or both of them are electrolessly or electrolytically plated. A coaxial dielectric resonator having a vertical tensile strength of 2 kg / mm 2 or more and a sufficiently large Q U for practical use by applying heat treatment in an inert gas atmosphere at 500 ° C. or less after being formed as an electrode. Can be obtained.

【0017】[0017]

【作用】以下、本発明の作用を具体的に説明する。The function of the present invention will be specifically described below.

【0018】前述のように、同軸型誘電体共振器におい
て無電解Ni−Pメッキを誘電体セラミック表面に行っ
た場合、メッキ膜付着強度は2.0kg/mm2 以上と
なるが、そのメッキ膜が厚すぎると、Ni−P導電率が
低いためにQU が劣化する。
As described above, when electroless Ni-P plating is applied to the surface of the dielectric ceramic in the coaxial type dielectric resonator, the adhesion strength of the plating film is 2.0 kg / mm 2 or more. Is too thick, the Q U deteriorates because the Ni-P conductivity is low.

【0019】そこで本発明者等は、電極層Ni−Pメッ
キ膜厚を種々変化させ、更に電極に実用的な導電性を持
たせるためNi−Pメッキ膜の上にCu膜もしくはAg
膜、または、その双方を無電解もしくは電解メッキによ
り電極として形成した。その結果、Ni−Pメッキ膜厚
を0.01〜1.50μmとすること、また、Ni+P
+Cuメッキ膜厚、またはNi−P+Cu+Agメッキ
膜厚の合計を5.0μm程度とすることで、メッキ膜付
着強度が、垂直引張り応力で2.0kg/mm2 以上と
なり、かつ、実用上十分大きいQU が得らることを見出
した。
Therefore, the inventors of the present invention have variously changed the Ni-P plating film thickness of the electrode layer, and further have a Cu film or an Ag film on the Ni-P plating film in order to give the electrode practical conductivity.
The film, or both, was formed as an electrode by electroless or electrolytic plating. As a result, the Ni-P plating film thickness is set to 0.01 to 1.50 μm, and Ni + P
+ Cu plating film thickness or Ni-P + Cu + Ag plating film thickness is about 5.0 μm, the adhesion strength of the plating film is 2.0 kg / mm 2 or more in vertical tensile stress, and is sufficiently large for practical use. I found that U can get.

【0020】また、Ni−P+Cuメッキ膜、または、
Ni−P+Cu+Agメッキ膜厚を形成した後、不活性
ガス雰囲気中で熱処理を加えることでメッキ膜付着強度
が向上し、かつ、実用上十分大きいQU が得られる温度
範囲が存在することを見出した。
Further, a Ni-P + Cu plated film, or
It has been found that there is a temperature range in which the adhesion of the plating film is improved by forming a Ni-P + Cu + Ag plating film thickness and then performing a heat treatment in an inert gas atmosphere, and a sufficiently large Q U can be obtained in practical use. .

【0021】[0021]

【実施例】以下に添付表等を参照して、本発明における
実施例を説明する。
EXAMPLES Examples of the present invention will be described below with reference to the attached tables and the like.

【0022】まず、BaO−Nd2 3 −TiO2 系誘
電体セラミックを中心に円孔を有する3mm×3mm×
10mmの直方体に成形後、1200〜1400℃の温
度で2時間以上焼結した。次に、誘電体セラミック表面
をフッ硝酸、リン酸等を用いてエッチングした後、誘電
体セラミック上に無電解Ni−Pメッキにより種々の厚
さのNi−Pメッキ層を形成した。次に、Ni−Pメッ
キ層の上に電解メッキによりCuメッキ層を形成し、更
にそのCuメッキ層の上に電解メッキにより、0.1μ
mのAgメッキ層を形成した。このとき、Ni−P+C
u+Agメッキ膜厚は、合計で5μmとした。
First, 3 mm × 3 mm × having a circular hole centered on a BaO—Nd 2 O 3 —TiO 2 system dielectric ceramic.
After forming into a 10 mm rectangular parallelepiped, it was sintered at a temperature of 1200 to 1400 ° C. for 2 hours or more. Next, after the surface of the dielectric ceramic was etched using hydrofluoric nitric acid, phosphoric acid, etc., Ni-P plated layers of various thicknesses were formed on the dielectric ceramic by electroless Ni-P plating. Then, a Cu plating layer is formed on the Ni-P plating layer by electrolytic plating, and further 0.1 μ is formed on the Cu plating layer by electrolytic plating.
m Ag plated layer was formed. At this time, Ni-P + C
The u + Ag plating film thickness was 5 μm in total.

【0023】また、このようにして作製した同軸型誘電
体共振器に対してメッキ膜付着強度向上の目的で200
〜600℃の温度でN2 、Ar等の不活性ガス雰囲気中
で1時間程度の熱処理を行った。
Further, in order to improve the adhesion strength of the plated film to the coaxial type dielectric resonator thus produced,
Heat treatment was performed at a temperature of up to 600 ° C. for about 1 hour in an atmosphere of an inert gas such as N 2 or Ar.

【0024】以上のようにして作製した同軸型誘電体共
振器の各熱処理温度におけるメッキ膜付着強度を下記の
表1に示した。
The adhesion strength of the plated film at each heat treatment temperature of the coaxial dielectric resonator manufactured as described above is shown in Table 1 below.

【0025】[0025]

【表1】 [Table 1]

【0026】表1において、メッキ膜付着強度とは、同
軸型誘電体共振器をメッキ膜が断面2×2mm、また、
厚さが1.0μmを持つように切り出し、そのメッキ膜
上にφ0.5mmのワイヤーを半田付けし、もう一方の
セラミック断面を接着剤等により固定し、ワイヤーを垂
直に引張ってメッキ膜が剥離したときの応力を示す。
In Table 1, the plating film adhesion strength means that the coaxial dielectric resonator has a plating film having a cross section of 2 × 2 mm, and
Cut out to have a thickness of 1.0 μm, solder a wire of φ0.5 mm on the plated film, fix the other ceramic cross section with an adhesive, etc., pull the wire vertically and peel the plated film Indicates the stress when

【0027】また、表1と同様にして作製した同軸型誘
電体共振器のQU 値を下記の表2に示した。
The Q U value of the coaxial dielectric resonator manufactured in the same manner as in Table 1 is shown in Table 2 below.

【0028】[0028]

【表2】 [Table 2]

【0029】表1から分かるようにメッキ上がりの同軸
型誘電体共振器のメッキ膜付着強度は、Ni−P膜厚が
0.01μm〜0.05μmで徐々に向上し、0.05
μm以上でほぼ一定となる。このときNi−P膜厚が
0.01μm以上であれば、付着強度の目標値である
2.0kg/mm2 を上回る(No.2〜14)。ま
た、Ni−P膜厚が0.01μm以上の同軸型誘電体共
振器に500℃以下の不活性ガス雰囲気中で熱処理を加
えた場合、メッキ膜付着強度が向上し全て2.0kg/
mm2 を上回っている。以上より、Ni−P膜厚は、
0.01μm以上であればよく、0.05μm以上であ
れば、付着強度の観点からは更に望ましいと評価するこ
とができる。
As can be seen from Table 1, the adhesion strength of the plated film of the coaxial dielectric resonator after the plating is gradually improved at a Ni-P film thickness of 0.01 μm to 0.05 μm, and is 0.05.
It becomes almost constant above μm. At this time, if the Ni-P film thickness is 0.01 μm or more, it exceeds the target value of the adhesion strength of 2.0 kg / mm 2 (Nos. 2 to 14). In addition, when heat treatment is applied to a coaxial dielectric resonator having a Ni-P film thickness of 0.01 μm or more in an inert gas atmosphere of 500 ° C. or less, the plating film adhesion strength is improved and 2.0 kg /
It exceeds mm 2 . From the above, the Ni-P film thickness is
It may be 0.01 μm or more, and if it is 0.05 μm or more, it can be evaluated as more desirable from the viewpoint of adhesion strength.

【0030】ところで、誘電体共振器は、数式2に示さ
れるようにその寸法によって要求されるQU 値が異な
り、今回作成した3mm×3mm×10mmの形状の同
軸型誘電体共振器の場合、概ねQU ≧250であること
が要求される。
By the way, the dielectric resonator has a required Q U value depending on its size as shown in Equation 2, and in the case of the coaxial dielectric resonator of 3 mm × 3 mm × 10 mm shape prepared this time, It is generally required that Q U ≧ 250.

【0031】このことに対して、表2から判明するよう
に、メッキ上がりの同軸型誘電体共振器のQU 値は、N
i−P膜厚が1.50μm以下では250以上である
が、1.50μmを超えると250を下回る(No.1
2〜14)。また、Ni−P膜厚が1.50μm以下の
同軸型誘電体共振器に500℃以下の不活性ガス雰囲気
中で熱処理を加えた場合でも、QU は250を上回って
いるが(No.1〜11)、Ni−P膜厚が1.50μ
mを超えると、QU は250を下回る(No.12〜1
4)。以上より、Ni−P膜厚は1.50μm以下であ
ればよい。
On the other hand, as is clear from Table 2, the Q U value of the coaxial dielectric resonator after plating is N
When the i-P film thickness is 1.50 μm or less, it is 250 or more, but when it exceeds 1.50 μm, it is less than 250 (No. 1).
2-14). Further, even when the coaxial dielectric resonator having a Ni-P film thickness of 1.50 μm or less is subjected to heat treatment in an inert gas atmosphere of 500 ° C. or less, Q U exceeds 250 (No. 1). ~ 11), Ni-P film thickness is 1.50μ
When it exceeds m, Q U falls below 250 (No. 12 to 1)
4). From the above, the Ni-P film thickness may be 1.50 μm or less.

【0032】また表1から判明するように、Ni−P膜
厚が0.01μm以上の同軸型誘電体共振器に500℃
を超える不活性ガス雰囲気中で熱処理(550,600
℃)を加えると、全てのNi−P膜厚の同軸型誘電体共
振器に関してQU が低下し、250を下回る。このこと
から、不活性ガス雰囲気中で熱処理は、500℃以下で
あり、QU 値の観点からは400℃以下であれば更に好
ましいと評価することができる。
As can be seen from Table 1, a coaxial dielectric resonator having a Ni-P film thickness of 0.01 μm or more has a temperature of 500 ° C.
Heat treatment (550,600
C) is added, the Q U decreases to below 250 for all coaxial dielectric resonators of Ni-P thickness. From this, it can be evaluated that the heat treatment in the inert gas atmosphere is 500 ° C. or lower, and from the viewpoint of the Q U value, 400 ° C. or lower is more preferable.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
高周波誘電体セラミック上に無電解メッキによりNi−
P膜を形成し、その上に更にCu膜もしくはAg膜、ま
たは、その双方を無電解もしくは電解メッキにより電極
として形成してなる同軸型誘電体共振器において、Ni
−P膜厚を0.01〜1.50μmとすること、また、
前記同軸型誘電体共振器において、高周波誘電体セラミ
ック上に無電解メッキによりNi−P膜を形成し、その
上に更にCu膜もしくはAg膜、または、その双方を無
電解もしくは電解メッキにより電極として形成した後、
500℃以下の不活性ガス雰囲気中で熱処理を加えるこ
とで、2kg/mm2 以上の垂直引張り強度を有し、か
つ、実用上十分大きいQU を有する同軸型誘電体共振器
の製造方法が得られ、工業的利用価値は、大である。
As described above, according to the present invention,
Ni-on high frequency dielectric ceramic by electroless plating
In a coaxial dielectric resonator formed by forming a P film and further forming a Cu film or an Ag film, or both of them as electrodes by electroless or electrolytic plating, Ni is used.
-P film thickness is 0.01 to 1.50 μm, and
In the coaxial dielectric resonator, a Ni-P film is formed on the high frequency dielectric ceramic by electroless plating, and a Cu film or an Ag film, or both of them are used as electrodes by electroless or electrolytic plating. After forming
A heat treatment is applied in an inert gas atmosphere at 500 ° C. or less to obtain a method for manufacturing a coaxial dielectric resonator having a vertical tensile strength of 2 kg / mm 2 or more and a Q U that is sufficiently large for practical use. The industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の対象となる同軸型誘電体共振器の一部
を断面で示す斜視図である。
FIG. 1 is a perspective view showing a cross-section of a part of a coaxial dielectric resonator which is an object of the present invention.

【符号の説明】[Explanation of symbols]

1 BaO−Nd2 3 −TiO2 系誘電体セラミッ
ク 2 円筒状の貫通穴 3 電極層 4 外導体 5 内導体 6 短絡端 7 開放端
1 BaO-Nd 2 O 3 -TiO 2 based dielectric ceramic 2 cylindrical through holes 3 electrode layer 4 outer conductor 5 within the conductor 6 short-circuited end 7 open end

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高周波誘電体セラミック上に無電解メッ
キによりNi−P膜を形成し、その上に更にCu膜もし
くはAg膜、または、その双方を無電解もしくは電解メ
ッキにより電極として形成してなる同軸型誘電体共振器
において、Ni−P膜厚を0.01〜1.50μmとす
ることを特徴とする同軸型誘電体共振器の製造方法。
1. A Ni-P film is formed on a high frequency dielectric ceramic by electroless plating, and a Cu film, an Ag film, or both are formed as electrodes by electroless or electrolytic plating on the Ni-P film. A coaxial dielectric resonator, wherein the Ni-P film thickness is 0.01 to 1.50 μm, wherein the coaxial dielectric resonator is manufactured.
【請求項2】 高周波誘電体セラミック上に無電解メッ
キによりNi−P膜を形成し、その上に更にCu膜もし
くはAg膜、または、その双方を無電解もしくは電解メ
ッキにより電極として形成した後、500℃以下の不活
性ガス雰囲気中で熱処理を加えることを特徴とする請求
項1記載の同軸型誘電体共振器の製造方法。
2. A Ni-P film is formed on the high-frequency dielectric ceramic by electroless plating, and a Cu film or an Ag film, or both are formed as electrodes by electroless or electrolytic plating, The method of manufacturing a coaxial dielectric resonator according to claim 1, wherein the heat treatment is applied in an inert gas atmosphere at 500 ° C or less.
JP21843494A 1994-09-13 1994-09-13 Production of coaxial dielectric resonator Withdrawn JPH0884009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21843494A JPH0884009A (en) 1994-09-13 1994-09-13 Production of coaxial dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21843494A JPH0884009A (en) 1994-09-13 1994-09-13 Production of coaxial dielectric resonator

Publications (1)

Publication Number Publication Date
JPH0884009A true JPH0884009A (en) 1996-03-26

Family

ID=16719857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21843494A Withdrawn JPH0884009A (en) 1994-09-13 1994-09-13 Production of coaxial dielectric resonator

Country Status (1)

Country Link
JP (1) JPH0884009A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003094280A1 (en) * 2002-04-30 2003-11-13 Cts Corporation Dielectric block signal filters with cost-effective conductive coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003094280A1 (en) * 2002-04-30 2003-11-13 Cts Corporation Dielectric block signal filters with cost-effective conductive coatings
US6809612B2 (en) 2002-04-30 2004-10-26 Cts Corporation Dielectric block signal filters with cost-effective conductive coatings

Similar Documents

Publication Publication Date Title
EP0591198B1 (en) Method for coating a dielectric ceramic piece
US4668925A (en) Dielectric resonator and method for making
JP6252393B2 (en) Ceramic electronic component and manufacturing method thereof
US5254137A (en) Method of producing chip-type solid-electrolyte capacitor
JP3563832B2 (en) Method for metallizing ferrite using surface reduction
JP4239534B2 (en) Insulating glass ceramic and laminated electronic component using the same
JPH04185103A (en) Dielectric resonator and its manufacture
JPH0884009A (en) Production of coaxial dielectric resonator
JP2006013219A (en) Chip-type electronic component and method for manufacturing the same
JPH0329307A (en) Manufacture of laminated ceramic chip capacitor
JPH08335810A (en) Coaxial dielectric resonator and its production
JP2004253997A (en) Method for manufacturing electronic parts, electronic parts, resonator, and filter
JPH05315821A (en) Manufacture of coaxial dielectric resonator
JP2003243249A (en) Laminated ceramic capacitor and its manufacturing method
JPS58166806A (en) Method for forming electrode on dielectric ceramic for high frequency
JP2002309395A (en) Method of manufacturing electronic part for high frequency wave
JP2620672B2 (en) Manufacturing method of coaxial dielectric resonator
RU2815518C1 (en) Method for galvanic gold coating of semiconductor device housings
JP2776023B2 (en) Manufacturing method of dielectric resonator
JP4186808B2 (en) Manufacturing method of ceramic electronic component
JPH02232914A (en) Chip capacitor
JPH11340713A (en) Dielectric resonance member
JP4348587B2 (en) Method for adjusting electrical characteristics of ceramic dielectric parts
JP3453853B2 (en) Method of manufacturing dielectric and coaxial dielectric resonator manufactured by the method
JPH1065294A (en) Ceramic wiring board and manufacture thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120