JPH0883733A - Manufacture of layered ceramic electronic part - Google Patents

Manufacture of layered ceramic electronic part

Info

Publication number
JPH0883733A
JPH0883733A JP6242325A JP24232594A JPH0883733A JP H0883733 A JPH0883733 A JP H0883733A JP 6242325 A JP6242325 A JP 6242325A JP 24232594 A JP24232594 A JP 24232594A JP H0883733 A JPH0883733 A JP H0883733A
Authority
JP
Japan
Prior art keywords
heat treatment
ceramic electronic
electronic component
manufacturing
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6242325A
Other languages
Japanese (ja)
Inventor
Masaki Takagi
政樹 高木
Kenichi Mizuno
健一 水野
Shinichi Takakura
真一 高倉
Yasunobu Yoneda
康信 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6242325A priority Critical patent/JPH0883733A/en
Publication of JPH0883733A publication Critical patent/JPH0883733A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE: To realize a method of manufacturing a layered ceramic electronic part which prevents inner and outer defects such as delamination or cracking from occurring without using a specific conductive paste. CONSTITUTION: An unburned ceramic laminate where an inner electrode is provided is thermally treated (preheat treatment) in a reducing or non-oxidizing (neutral) atmosphere at temperatures above soot and then burned under prescribed conditions. Or, the laminate is thermally treated (preheat treatment) at temperatures of 600 to 800 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子部品の製造方法に
関し、詳しくは、積層セラミックコンデンサ、積層セラ
ミックフィルタ、セラミック多層基板などの積層セラミ
ック電子部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing electronic parts, and more particularly to a method for manufacturing monolithic ceramic electronic parts such as a monolithic ceramic capacitor, a monolithic ceramic filter and a ceramic multi-layer substrate.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】積層セ
ラミックコンデンサや積層セラミックフィルタなどの積
層セラミック電子部品を構成する内部電極としては、P
d単一系及びPdを含む混合系(例えば、Ag−Pd
系、あるいはAu−Pd系など)の材料を用いてなる内
部電極が一般的に使用されている。
2. Description of the Related Art As an internal electrode constituting a monolithic ceramic electronic component such as a monolithic ceramic capacitor or a monolithic ceramic filter, P
d single system and mixed system containing Pd (eg Ag-Pd
An internal electrode made of a material of a system or Au-Pd system, etc. is generally used.

【0003】しかしながら、Pdを含む混合系の材料を
用いた内部電極を有する薄層品(積層されるセラミック
層の薄い電子部品)や多層品(積層されるセラミック層
の積層数の多い電子部品)を製造する場合、積層体の熱
処理工程(通常400〜500℃の温度で行われる脱バ
インダー工程)でPdなどの酸化、還元が発生し、それ
に伴う膨張や収縮により、内部電極の剥離(デラミネー
ション)や素子表面及び内部のひび割れ(クラック)な
どが発生して特性が低下するという問題点がある。
However, a thin layer product (an electronic component having a thin ceramic layer to be laminated) or a multilayer product (an electronic component having a large number of laminated ceramic layers) having an internal electrode using a mixed material containing Pd. In the case of manufacturing, the internal electrode is peeled off (delamination) due to oxidation and reduction of Pd and the like occurring in the heat treatment step of the laminate (a debinding step usually performed at a temperature of 400 to 500 ° C.), which is accompanied by expansion and contraction. ) And cracks on the surface and inside of the device and the like, and the characteristics are deteriorated.

【0004】そこで、これらの問題点を解決するため
に、針状又は板状の酸化チタン粒子を添加した電極形成
用のペーストが提案されている(特開平4−33480
6号)。
Therefore, in order to solve these problems, a paste for electrode formation to which needle-shaped or plate-shaped titanium oxide particles are added has been proposed (Japanese Patent Laid-Open No. 4-33480).
No. 6).

【0005】しかし、電極形成用のペーストに上記のよ
うな形状の酸化物を含有させようとすると、その分散性
に著しく注意を要するため、製造工程が複雑になり積層
セラミック電子部品の製造コストを押し上げるという問
題点がある。
However, if an oxide having the above-mentioned shape is to be contained in the electrode forming paste, the dispersibility thereof needs to be remarkably paid, and the manufacturing process becomes complicated and the manufacturing cost of the monolithic ceramic electronic component is reduced. There is a problem of pushing it up.

【0006】本発明は、上記問題点を解決するものであ
り、特殊なペーストを必要とすることなく、デラミネー
ションやクラックのような内部欠陥や外部欠陥の発生を
抑制することが可能な積層セラミック電子部品の製造方
法を提供することを目的とする。
The present invention solves the above-mentioned problems, and it is possible to suppress the occurrence of internal defects and external defects such as delamination and cracks without requiring a special paste. It is an object to provide a method for manufacturing an electronic component.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の積層セラミック電子部品の製造方法は、内
部電極をセラミック中に配設してなる積層セラミック電
子部品の製造方法であって、内部電極がセラミック中に
配設された未焼結の積層体を、還元性又は非酸化性(中
性)の雰囲気中において500℃を越える温度で熱処理
(予備熱処理)した後、所定の条件下に焼成を行うこと
を特徴としている。
In order to achieve the above object, a method of manufacturing a monolithic ceramic electronic component according to the present invention is a method of manufacturing a monolithic ceramic electronic component in which internal electrodes are provided in a ceramic. After heat-treating (preliminary heat treatment) an unsintered laminated body in which internal electrodes are arranged in a ceramic in a reducing or non-oxidizing (neutral) atmosphere at a temperature exceeding 500 ° C. The feature is that firing is performed below.

【0008】また、積層体の熱処理(予備熱処理)を6
00〜800℃の温度で行うことを特徴としている。
Further, the heat treatment (preliminary heat treatment) of the laminate is 6
It is characterized in that it is performed at a temperature of 00 to 800 ° C.

【0009】さらに、内部電極がPd単一系又はPdを
含む混合系の内部電極であることを特徴としている。
Further, the internal electrode is characterized by being a Pd single system internal electrode or a mixed system internal electrode containing Pd.

【0010】[0010]

【作用】Pd単一系又はPdを含む混合系などの材料を
用いた内部電極がセラミック中に配設された積層体を、
一旦、還元性又は非酸化性(中性)の雰囲気中において
500℃を越える温度で熱処理(予備熱処理)すること
により、内部電極(内部電極ペースト)を構成するPd
単一系又はPdを含む混合物(例えば、AgとPdの混
合粉末やAuとPdの混合粉末など)などの金属材料が
酸化されることなく合金化したり、合金化とともに粒成
長する(Pdなどからなる単一系の金属材料の場合に
は、合金化せず粒成長のみが起こる)ため、その後に空
気中などの酸化性の雰囲気中で行われる焼成工程での酸
化物の生成が抑制される。
A laminated body in which internal electrodes made of a material such as a Pd single system or a Pd-containing mixed system is provided in a ceramic,
Pd forming the internal electrode (internal electrode paste) is once subjected to heat treatment (preheat treatment) at a temperature exceeding 500 ° C. in a reducing or non-oxidizing (neutral) atmosphere.
A metal material such as a single system or a mixture containing Pd (for example, a mixed powder of Ag and Pd, a mixed powder of Au and Pd, etc.) is alloyed without being oxidized, or grain growth is caused along with alloying (from Pd etc. In the case of a single-system metal material, only grain growth occurs without alloying), which suppresses the generation of oxides in the subsequent firing process performed in an oxidizing atmosphere such as air. .

【0011】したがって、焼成工程での内部電極の酸
化、還元に伴う膨張・収縮によってデラミネーションや
クラックなどの内部欠陥や外部欠陥が発生することを効
率よく防止することが可能になる。
Therefore, it is possible to efficiently prevent the generation of internal and external defects such as delamination and cracks due to expansion and contraction due to oxidation and reduction of the internal electrodes in the firing process.

【0012】図1は、一旦、還元性又は非酸化性(中
性)の雰囲気中において600℃で熱処理(予備熱処
理)してAgとPdとを一定の度合で合金化させるとと
もに粒成長させた内部電極と、300℃で熱処理した、
AgとPdとが合金化せず、しかも粒成長していない内
部電極を、空気中で焼成した場合の温度と重量の関係を
示す線図である。図1に示すように、600℃で熱処理
した(合金化及び粒成長させた)内部電極は、300℃
で熱処理した(合金化及び粒成長していない)内部電極
と比べて、昇温過程での重量の増減が少なくなっている
(すなわち、酸化、還元が起こる割合が少なくなってい
る)ことがわかる。
FIG. 1 shows that Ag and Pd are alloyed to a certain degree and grain-grown by once heat-treating (preheat-treating) at 600 ° C. in a reducing or non-oxidizing (neutral) atmosphere. Heat treated at 300 ° C with internal electrodes,
FIG. 3 is a diagram showing a relationship between temperature and weight when an internal electrode in which Ag and Pd are not alloyed and grain growth is not performed is fired in air. As shown in FIG. 1, the internal electrode heat-treated (alloyed and grain-grown) at 600 ° C. was 300 ° C.
It can be seen that the weight increase / decrease during the temperature rise process is smaller than that of the internal electrode that has been heat-treated (no alloying and grain growth) (that is, the ratio of oxidation and reduction is small). .

【0013】なお、本発明の積層セラミック電子部品の
製造方法においては、積層体を、一旦、還元性又は非酸
化性(中性)の雰囲気中において500℃を越える温度
で熱処理(予備熱処理)することにより、合金化や粒成
長などの特性向上の効果が認められるようになるが、よ
り好ましい熱処理温度の範囲は600〜800℃であ
る。
In the method for manufacturing a monolithic ceramic electronic component of the present invention, the laminated body is once subjected to a heat treatment (preliminary heat treatment) at a temperature exceeding 500 ° C. in a reducing or non-oxidizing (neutral) atmosphere. As a result, the effect of improving properties such as alloying and grain growth can be recognized, but the more preferable range of heat treatment temperature is 600 to 800 ° C.

【0014】これは、熱処理(予備熱処理)温度を60
0℃以上とすることによって、合金化や粒成長などがよ
り適切に促進されること、800℃を越えると焼結が進
みすぎ、内部電極としての機能を得にくくなる傾向があ
ることによる。
This is because the heat treatment (preliminary heat treatment) temperature is 60.
This is because by setting the temperature to 0 ° C. or higher, alloying, grain growth and the like are more appropriately promoted, and when the temperature exceeds 800 ° C., sintering tends to proceed too much, and the function as the internal electrode tends to be difficult to obtain.

【0015】[0015]

【実施例】以下、本発明の実施例を示してその特徴とす
るところをさらに詳しく説明する。
EXAMPLES Examples of the present invention will be shown below to explain the features thereof in more detail.

【0016】この実施例においては、まず、Ag:Pd
=3:7(重量比)の混合粉末を導電粉末とする内部電
極ペーストを厚み20μmのグリーンシートにスクリー
ン印刷することにより誘電体シートを形成した。それか
ら、この誘電体シートを80枚積み重ね、さらにその上
下両面側にダミーシートを積層した後、圧着して積層セ
ラミックコンデンサ用の積層体(圧着ブロック)を形成
した。
In this embodiment, first, Ag: Pd
A dielectric sheet was formed by screen-printing an internal electrode paste containing a mixed powder of 3: 7 (weight ratio) as a conductive powder on a green sheet having a thickness of 20 μm. Then, 80 sheets of this dielectric sheet were stacked, dummy sheets were further stacked on both upper and lower sides thereof, and then pressure bonding was performed to form a multilayer body (pressure bonding block) for a multilayer ceramic capacitor.

【0017】次に、この積層体を窒素雰囲気中で600
℃まで1.0℃/minの速度で昇温し、600℃で2時
間保持する熱処理(予備熱処理)を施した後、400℃
まで冷却した。それから、雰囲気を空気に切り換え、5
℃/minの速度で1300℃まで昇温し、2時間保持し
た後、冷却した(実施例1)。
Next, this laminated body is subjected to 600 nm in a nitrogen atmosphere.
400 ℃ after heat treatment (preheat treatment) of heating up to 600 ℃ at a rate of 1.0 ℃ / min and holding at 600 ℃ for 2 hours
Cooled down. Then, switch the atmosphere to air, 5
The temperature was raised to 1300 ° C. at a rate of ° C./min, held for 2 hours, and then cooled (Example 1).

【0018】また、比較のため、積層体を以下の条件で
熱処理(予備熱処理)した後、上記実施例と同様の条件
で焼成を行った。 窒素雰囲気中において400℃で2時間保持(比較例
1) 空気中において2時間保持(比較例2)
For comparison, the laminate was heat-treated (preliminary heat treatment) under the following conditions and then fired under the same conditions as in the above-mentioned examples. Hold at 400 ° C. for 2 hours in nitrogen atmosphere (Comparative Example 1) Hold in air for 2 hours (Comparative Example 2)

【0019】それから、上記実施例1及び比較例1,2
の方法により焼成を行った積層体について、デラミネー
ション(内部欠陥)及び表面のクラック(外部欠陥)の
発生率を調べた。その結果を表1に示す。但し、試料個
数はそれぞれ10000個(n=10000)である。
Then, the above-mentioned Example 1 and Comparative Examples 1 and 2 were used.
The occurrence rate of delamination (internal defects) and surface cracks (external defects) was examined for the laminate fired by the method described in 1. The results are shown in Table 1. However, the number of samples is 10,000 (n = 10000).

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示すように、実施例1においては、
デラミネーション(内部欠陥)及びクラック(外部欠
陥)の発生が全く認められなかったが、比較例1の場合
には、5%にデラミネーション(内部欠陥)、10%に
クラック(外部欠陥)が発生した。また、比較例2の場
合には、60%にデラミネーション(内部欠陥)、90
%にクラック(外部欠陥)が発生した。
As shown in Table 1, in Example 1,
Generation of delamination (internal defect) and crack (external defect) was not observed at all, but in the case of Comparative Example 1, delamination (internal defect) was generated in 5% and crack (external defect) was generated in 10%. did. Further, in the case of Comparative Example 2, 60% delamination (internal defect), 90%
A crack (external defect) occurred in%.

【0022】また、X線回折法により各試料の内部電極
の状態を解析したところ、実施例1の場合には、Agと
Pdが、Ag:Pd=3:7(重量比)の完全な合金と
なっていることが確認された。一方、比較例1の場合に
は、Ag:Pd=4:6(重量比)の合金とPdOが混
合した状態であり、また、比較例2の場合には、Ag:
Pd=5:5(重量比)の合金とPdOが混合した状態
であった。
The state of the internal electrodes of each sample was analyzed by the X-ray diffraction method. In the case of Example 1, Ag and Pd were completely alloyed with Ag: Pd = 3: 7 (weight ratio). Was confirmed. On the other hand, in the case of Comparative Example 1, the alloy of Ag: Pd = 4: 6 (weight ratio) and PdO were mixed, and in the case of Comparative Example 2, Ag: Pd = 4: 6 (weight ratio).
It was in a state where the alloy of Pd = 5: 5 (weight ratio) and PdO were mixed.

【0023】上記実施例より、積層体を窒素雰囲気中で
600℃まで昇温し、600℃で2時間保持する熱処理
(予備熱処理)を施すことにより(実施例1)、デラミ
ネーション(内部欠陥)及びクラック(外部欠陥)の発
生を抑制、防止できることが確認されたが、予備熱処理
の条件は上記実施例の条件に限られるものではなく、5
00℃を越える温度、好ましくは、600〜800℃の
条件で予備熱処理を行うことにより、上記実施例と同様
の効果を得ることができる。
According to the above example, the laminated body is heated to 600 ° C. in a nitrogen atmosphere and subjected to a heat treatment (preheat treatment) in which the temperature is kept at 600 ° C. for 2 hours (Example 1), whereby delamination (internal defects) is performed. It was confirmed that the occurrence of cracks and cracks (external defects) can be suppressed and prevented, but the conditions of the preliminary heat treatment are not limited to the conditions of the above-mentioned examples, and
By carrying out the preliminary heat treatment at a temperature of more than 00 ° C., preferably 600 to 800 ° C., the same effect as in the above embodiment can be obtained.

【0024】なお、上記実施例では、内部電極がAg:
Pd=3:7(重量比)の混合系の内部電極である場合
について説明したが、本発明においては、AgとPdの
組成比に特別の制約はない。すなわち、本発明によれ
ば、任意の組成比のAgとPdを合金化させたり、また
はそれと同時に粒成長させたりして、酸化物の生成を抑
制、防止することができる。また、本発明は、AgとP
dの混合系に限らず、Pdと他の金属の混合系(例えば
Au−Pd系)や、さらにPd単一系やその他の材料か
らなる単一系あるいは混合系の内部電極を有する積層セ
ラミック電子部品を製造する場合にも適用することが可
能である。また、本発明においては、混合系の金属材料
を用いる場合には、熱処理によって所定の合金化をさせ
ることが必要であるが、必ずしも粒成長を必要としな
い。一方、単一系の金属材料を用いる場合には、、必ず
熱処理によって所定の粒成長をさせておく必要がある。
In the above embodiment, the internal electrode is Ag:
The case where the internal electrode is a mixed system of Pd = 3: 7 (weight ratio) has been described, but in the present invention, there is no particular restriction on the composition ratio of Ag and Pd. That is, according to the present invention, it is possible to suppress or prevent the generation of oxides by alloying Ag and Pd having an arbitrary composition ratio or simultaneously growing grains. The present invention also provides Ag and P
Not only the mixed system of d, but also a mixed system of Pd and another metal (for example, Au-Pd system), and a monolithic ceramic electron having a Pd single system or a single system or mixed system internal electrode made of another material. It can also be applied when manufacturing parts. Further, in the present invention, when a mixed metal material is used, it is necessary to perform a predetermined alloying by heat treatment, but grain growth is not necessarily required. On the other hand, when a single metal material is used, it is necessary to grow the grains by heat treatment.

【0025】また、上記実施例では、積層セラミックコ
ンデンサを製造する場合を例にとって説明したが、本発
明は、積層セラミックコンデンサに限定されるものでは
なく、積層セラミックフィルタやセラミック多層基板な
どの種々の積層セラミック電子部品に適用することが可
能である。
In the above embodiments, the case of manufacturing a monolithic ceramic capacitor has been described as an example, but the present invention is not limited to a monolithic ceramic capacitor, and various monolithic ceramic filters, ceramic multi-layer substrates and the like can be used. It can be applied to a monolithic ceramic electronic component.

【0026】本発明は、さらにその他の点においても上
記実施例に限定されるものではなく、積層体の具体的な
構造、内部電極のパターンなどに関し、発明の要旨の範
囲内において種々の応用、変形を加えることが可能であ
る。
The present invention is not limited to the above-mentioned embodiments in other points as well, and relates to a specific structure of the laminate, a pattern of the internal electrodes and the like, and various applications within the scope of the gist of the invention. Modifications can be added.

【0027】[0027]

【発明の効果】上述のように、本発明の積層セラミック
電子部品の製造方法は、内部電極がセラミック中に配設
された積層体を、還元性又は非酸化性(中性)の雰囲気
中において500℃を越える温度で熱処理(予備熱処
理)した後、所定の条件下に焼成を行うようにしている
ので、その後の焼成工程におけるPdOなどの酸化物の
発生を抑制することが可能になる。
As described above, according to the method for producing a laminated ceramic electronic component of the present invention, the laminated body in which the internal electrodes are arranged in the ceramic is placed in a reducing or non-oxidizing (neutral) atmosphere. After the heat treatment (preliminary heat treatment) at a temperature higher than 500 ° C., the firing is performed under predetermined conditions, so that it is possible to suppress the generation of oxides such as PdO in the subsequent firing step.

【0028】したがって、製品の品質に致命的な影響を
与えるにもかかわらず、スクリーニングすることが難し
いデラミネーションやクラックなどの構造欠陥の発生を
抑制、防止して、製品の歩留りを向上させることができ
る。
Therefore, it is possible to suppress and prevent the occurrence of structural defects such as delamination and cracks, which are difficult to screen, though the product quality is fatally affected, and to improve the product yield. it can.

【0029】また、本発明の積層セラミック電子部品の
製造方法によれば、あらかじめ合金化させた合金粉末を
導電材料とする導電ペーストを使用する場合に比べて製
造コストを低減することができる。
Further, according to the method for manufacturing a monolithic ceramic electronic component of the present invention, the manufacturing cost can be reduced as compared with the case of using a conductive paste in which an alloy powder alloyed beforehand is used as a conductive material.

【0030】さらに、本発明の積層セラミック電子部品
の製造方法においては、積層体を、一旦、還元性又は非
酸化性(中性)の雰囲気中において600〜800℃で
熱処理(予備熱処理)することにより、内部電極の合金
化や粒成長などを効果的に促進し、その後の焼成によっ
て構造欠陥のない積層セラミック電子部品を確実に製造
することが可能になる。
Further, in the method for manufacturing a monolithic ceramic electronic component of the present invention, the laminated body is once subjected to heat treatment (preheat treatment) at 600 to 800 ° C. in a reducing or non-oxidizing (neutral) atmosphere. As a result, it is possible to effectively promote alloying and grain growth of the internal electrodes, and it is possible to reliably manufacture a multilayer ceramic electronic component without structural defects by subsequent firing.

【図面の簡単な説明】[Brief description of drawings]

【図1】600℃で熱処理(予備熱処理)を行ってAg
とPdとを、一定の度合で合金化させるとともに粒成長
させた内部電極と、300℃で熱処理したAgとPdが
合金化していない内部電極を、空気中で焼成した場合の
温度と重量の関係を示す線図である。
FIG. 1 is a result of heat treatment (preliminary heat treatment) at 600 ° C. and Ag.
And Pd are alloyed to a certain degree and grain-grown, and the relationship between temperature and weight when the internal electrode heat-treated at 300 ° C. and the internal electrode not alloyed with Ag and Pd are fired in air FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 康信 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasunobu Yoneda 2 26-10 Tenjin Tenjin, Nagaokakyo City, Kyoto Prefecture Murata Manufacturing Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部電極をセラミック中に配設してなる
積層セラミック電子部品の製造方法であって、 内部電極がセラミック中に配設された未焼結の積層体
を、還元性又は非酸化性(中性)の雰囲気中において5
00℃を越える温度で熱処理(予備熱処理)した後、所
定の条件下に焼成を行うことを特徴とする積層セラミッ
ク電子部品の製造方法。
1. A method for manufacturing a monolithic ceramic electronic component in which internal electrodes are arranged in a ceramic, wherein a non-sintered laminated body in which internal electrodes are arranged in a ceramic is reduced or non-oxidized. 5 in neutral (neutral) atmosphere
A method for manufacturing a laminated ceramic electronic component, comprising performing heat treatment (preliminary heat treatment) at a temperature higher than 00 ° C., and then performing firing under predetermined conditions.
【請求項2】 積層体の熱処理(予備熱処理)を600
〜800℃の温度で行うことを特徴とする請求項1記載
の積層セラミック電子部品の製造方法。
2. Heat treatment (preliminary heat treatment) of the laminate is 600.
The method for producing a monolithic ceramic electronic component according to claim 1, wherein the method is performed at a temperature of ˜800 ° C.
【請求項3】 内部電極が、Pd単一系又はPdを含む
混合系の内部電極であることを特徴とする請求項1又は
2記載の積層セラミック電子部品の製造方法。
3. The method for producing a monolithic ceramic electronic component according to claim 1, wherein the internal electrode is a Pd single system or a mixed system internal electrode containing Pd.
JP6242325A 1994-09-10 1994-09-10 Manufacture of layered ceramic electronic part Withdrawn JPH0883733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6242325A JPH0883733A (en) 1994-09-10 1994-09-10 Manufacture of layered ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6242325A JPH0883733A (en) 1994-09-10 1994-09-10 Manufacture of layered ceramic electronic part

Publications (1)

Publication Number Publication Date
JPH0883733A true JPH0883733A (en) 1996-03-26

Family

ID=17087531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6242325A Withdrawn JPH0883733A (en) 1994-09-10 1994-09-10 Manufacture of layered ceramic electronic part

Country Status (1)

Country Link
JP (1) JPH0883733A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118745A (en) * 1999-10-18 2001-04-27 Murata Mfg Co Ltd Peeling method and inspection method of laminated ceramic element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118745A (en) * 1999-10-18 2001-04-27 Murata Mfg Co Ltd Peeling method and inspection method of laminated ceramic element

Similar Documents

Publication Publication Date Title
JP4362079B2 (en) Multilayer chip capacitor and manufacturing method thereof
JPH06140279A (en) Burning method of laminated ceramic electronic part
JP2003068564A (en) Manufacturing method for laminated ceramic electronic component and laminated ceramic electronic component
JP4998222B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2007507865A (en) Ceramic multilayer component and method of manufacturing the same
US6964718B2 (en) Method of preparing multilayered piezoelectric ceramic material
JPWO2008072448A1 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JPH0883733A (en) Manufacture of layered ceramic electronic part
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP3150479B2 (en) Method of manufacturing multilayer wiring ceramic substrate
JP3239718B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4192523B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2000290077A (en) Production of multilayer ceramic electronic component
JP2970781B2 (en) Manufacturing method of multilayer capacitor
JPH0348415A (en) Paste composition and manufacture of laminated ceramic capacitor
JP3744427B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH07192528A (en) Conductive paste
JP2001101926A (en) Conductive paste, and laminated ceramic capacitor and method for manufacturing it
JP3780798B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4088428B2 (en) Manufacturing method of multilayer electronic component
JP4882779B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0697659A (en) Low temperature baked ceramics multi-layer substrate and its manufacture
JP3523399B2 (en) Manufacturing method of ceramic electronic components
JP3082532B2 (en) Manufacturing method of ceramic electronic components
JP2003124054A (en) Method of manufacturing laminated ceramic electronic part

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011120