JPH0883621A - Function recovery liquid and function recovery method for lead-acid battery - Google Patents

Function recovery liquid and function recovery method for lead-acid battery

Info

Publication number
JPH0883621A
JPH0883621A JP6215719A JP21571994A JPH0883621A JP H0883621 A JPH0883621 A JP H0883621A JP 6215719 A JP6215719 A JP 6215719A JP 21571994 A JP21571994 A JP 21571994A JP H0883621 A JPH0883621 A JP H0883621A
Authority
JP
Japan
Prior art keywords
lead
storage battery
lead storage
function recovery
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215719A
Other languages
Japanese (ja)
Inventor
Toyomi Sawara
豊美 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Riken Corp
Original Assignee
Toyo Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Riken Corp filed Critical Toyo Riken Corp
Priority to JP6215719A priority Critical patent/JPH0883621A/en
Publication of JPH0883621A publication Critical patent/JPH0883621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To quickly recover the capability of a lead-acid battery having a function reduction and prolong the operating life by containing a surface active agent in an electrolyte, and using a perfluoroalkyl ethylene oxide addition product as the surface active agent. CONSTITUTION: A surface active agent is contained in the electrolyte of a lead- acid battery having a function reduction, and the boundary tension between the electrolyte and an electrode plate is reduced to 10-40-dyn/cm in particular by the infiltrating action of the surface active agent. When the surface active agent is used to reduce the boundary tension of the electrolyte, hydrogen bubbles are hardly stuck to the surface of an electrode, stuck bubbles are easily separated, the polarization by the hydrogen on the electrode is reduced, and a hydrogen trouble is reduced. When a perfluoroalkyl ethylene oxide addition product is used as the surface active agent, the capability of the lead-acid battery having a function reduction is quickly recovered, and the operating life can be sharply prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機能低下した鉛蓄電池
の能力を急速に回復させ、鉛蓄電池の使用寿命を大幅に
延長する鉛蓄電池用機能回復液、及び機能低下した鉛蓄
電池の機能回復方法に関するものである。さらに詳細に
述べると、鉛蓄電池の電解液に添加することにより、鉛
蓄電池のサルフェーションや水素障害を防いで、機能低
下した鉛蓄電池の能力を急速に回復させ、鉛蓄電池の使
用寿命を大幅に延長することができる鉛蓄電池の機能回
復液及び機能回復方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a lead-acid battery functional recovery liquid for rapidly recovering the function of a lead-acid battery whose function has deteriorated and greatly extending the service life of the lead-acid battery, and a function recovery of a lead-acid battery whose function has deteriorated. It is about the method. More specifically, by adding it to the electrolyte of a lead acid battery, it prevents sulfation and hydrogen damage of the lead acid battery, recovers the capacity of the lead acid battery that has deteriorated rapidly, and significantly extends the service life of the lead acid battery. The present invention relates to a function recovery liquid and a function recovery method for a lead storage battery that can be used.

【0002】[0002]

【従来の技術】蓄電池は、通常、陰極、陽極及び電解液
から構成され、電気分解による酸化還元反応を利用し
て、電気エネルギーを化学エネルギーに変えて蓄積し、
この化学エネルギーから電流を作り出す。例えば、鉛蓄
電池は、充電されると、陰極は鉛に、陽極は酸化鉛に、
電解液は希硫酸になり、放電を行うと、陰極の酸化鉛は
硫酸鉛(PbSO4)に、陽極の酸化鉛も硫酸鉛となり、電解
液の硫酸は電気分解されて水に変わる。そして、この化
学変化に伴い、放電状態では電流は陽極から陰極に、充
電状態では陰極から陽極に流れる。したがって、原理的
には鉛蓄電池は無限に使用できるはずである。しかし、
このような酸化還元反応及び電気の流れに伴い、好まし
くない副反応や生成物が発生し、鉛蓄電池の機能が低下
する。例えば、放電に伴い陰極及び陽極の酸化鉛が、硫
酸鉛からなる白色斑点の不導体の結晶を形成するサルフ
ェーションを起こし、この極板部分が充電による化学エ
ネルギーを蓄えられなくなり、鉛蓄電池の起電力が低下
する。また、鉛蓄電池に充電する際、陰極で発生する水
素が気泡となって陽極に付着して分極現象を起こし絶縁
状態になる、水素障害が起こる。この水素障害は、鉛蓄
電池の充電を妨げ、特に過充電状態になると、水素の気
泡が極板の表面に完全に付着し電流が全く流れなくなっ
てしまう。さらに、自己放電で発生した水素が、気泡と
なって陽極に付着して分極現象を起こし、そこで形成さ
れる半電池がさらに放電を促進する。
2. Description of the Related Art A storage battery is usually composed of a cathode, an anode and an electrolytic solution, and uses an oxidation-reduction reaction by electrolysis to convert electric energy into chemical energy and store it.
An electric current is produced from this chemical energy. For example, when a lead-acid battery is charged, the cathode becomes lead, the anode becomes lead oxide,
The electrolyte becomes dilute sulfuric acid, and when discharged, the lead oxide at the cathode becomes lead sulfate (PbSO 4 ), and the lead oxide at the anode also becomes lead sulfate, and the sulfuric acid in the electrolyte is electrolyzed into water. Along with this chemical change, current flows from the anode to the cathode in the discharged state, and from the cathode to the anode in the charged state. Therefore, in principle, lead acid batteries should be used indefinitely. But,
With such a redox reaction and the flow of electricity, undesired side reactions and products are generated, which deteriorates the function of the lead storage battery. For example, lead oxide of the cathode and anode with discharge causes sulfation to form non-conducting crystals of white spots made of lead sulfate, and this electrode plate part can no longer store chemical energy due to charging, resulting in electromotive force of lead acid battery. Is reduced. In addition, when the lead storage battery is charged, hydrogen generated at the cathode becomes bubbles and adheres to the anode to cause a polarization phenomenon and become an insulating state, resulting in hydrogen failure. This hydrogen damage hinders the charging of the lead storage battery, and particularly when the battery is overcharged, hydrogen bubbles completely adhere to the surface of the electrode plate and no current flows. Furthermore, the hydrogen generated by self-discharge becomes bubbles and adheres to the anode to cause a polarization phenomenon, and the half-cell formed there promotes further discharge.

【0003】したがって、このような水素障害、サルフ
ェーション及び自己放電による電気化学的な機能低下を
防止することができれば、鉛蓄電池の能力を回復させ、
鉛蓄電池の使用寿命を延長することが可能である。従
来、鉛蓄電池の機能回復方法及び機能回復液としては、
特開昭51−55932号公報、及び特開昭59−19
4367号公報に開示されている、ビス−β−エチルカ
ルボン酸シリコン・セスキオキサイド(SiCH2 ・CH2
COOH)2O3、ビス−β−エチルカルボン酸ゲルマニウム・
セスキオキサイド(GeCH2 ・CH2 ・COOH)2O3等の有機半
導体を使用するものがあった。そして、前記公報には、
これらの有機半導体により、電極内の酸化還元作用が促
進され、同時に、該半導体の働きにより分極が小さくな
り、充電時間が短縮され、かつ放電時間が延長されると
記載されている。しかしながら、このような鉛蓄電池の
機能回復方法及び機能回復液では、過充電時の際に発生
する水素の気泡による水素障害を克服することはでき
ず、さらに、鉛蓄電池の機能を効果的、かつ速やかに回
復することが望まれていた。
Therefore, if it is possible to prevent such electrochemical damage due to hydrogen damage, sulfation and self-discharge, the capacity of the lead storage battery is restored,
It is possible to extend the service life of lead acid batteries. Conventionally, as a function recovery method and a function recovery liquid of a lead storage battery,
JP-A-51-55932 and JP-A-59-19
Japanese Patent No. 4367 discloses bis-β-ethylcarboxylic acid silicon sesquioxide (SiCH 2 · CH 2 ·
COOH) 2 O 3 , germanium bis-β-ethylcarboxylate
Some have used organic semiconductors such as sesquioxide (GeCH 2 , CH 2 , COOH) 2 O 3 . And in the publication,
It is described that these organic semiconductors promote the redox action in the electrode, and at the same time, the action of the semiconductor reduces the polarization, thereby shortening the charging time and extending the discharging time. However, such a lead storage battery function recovery method and a function recovery liquid cannot overcome hydrogen damage due to hydrogen bubbles generated at the time of overcharging, and further, the lead storage battery function is effectively, and It was desired to recover quickly.

【0004】[0004]

【発明が解決しようとする課題】本発明は、機能低下し
た鉛蓄電池の能力を急速に回復させ、鉛蓄電池の使用寿
命を大幅に延長する鉛蓄電池用機能回復液、及び機能低
下した鉛蓄電池の機能回復方法を提供することを目的と
する。
DISCLOSURE OF THE INVENTION The present invention provides a function recovery liquid for a lead storage battery, which rapidly recovers the performance of a lead storage battery having a deteriorated function and greatly extends the service life of the lead storage battery, and a lead storage battery having a deteriorated function. The purpose is to provide a function recovery method.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
に研究を行った結果、本発明者らは、界面活性剤の浸透
作用により電解液と極板間の界面張力を小さく、特に、
界面張力を10〜40dyn /cmにすることにより、鉛蓄
電池の機能が、効果的かつ速やかに回復するという知見
を得た。したがって、本発明は、界面活性剤を含むこと
を特徴とする鉛蓄電池用機能回復液、及び界面活性剤の
浸透作用により電解液と極板間の界面張力を小さく、特
に10〜40dyn /cmにすることを特徴とする、鉛蓄電
池の機能回復方法を提供する。さらに、本発明は、前記
鉛蓄電池用機能回復液、及び電解液の界面張力が10〜
40dyn /cmであることを特徴とする鉛蓄電池を提供す
る。
As a result of research for solving the above-mentioned problems, the present inventors have found that the interfacial action of a surfactant reduces the interfacial tension between the electrolyte and the electrode plate,
It was found that the function of the lead storage battery is effectively and promptly restored by setting the interfacial tension to 10 to 40 dyn / cm. Therefore, the present invention provides a function recovery liquid for a lead storage battery, which is characterized by containing a surfactant, and a small interfacial tension between the electrolytic solution and the electrode plate due to the osmotic action of the surfactant, particularly 10 to 40 dyn / cm. A method for recovering the function of a lead storage battery is provided. Furthermore, in the present invention, the interfacial tension of the lead acid storage function recovery liquid and the electrolytic solution is 10 to 10.
Provided is a lead acid battery having a content of 40 dyn / cm.

【0006】本発明で、界面活性剤を用いて電解液の界
面張力を低下させるのは、蓄電池の電極やセパレータ
が、電解液に良くなじむ、すなわち十分に濡れるように
するためである。この濡れが充分でなければ電解液中の
イオンが電極やセパレータに接触することができず、セ
パレータや電極の電気抵抗を増大させたり、電極の有効
反応面積をせばめたりして、電池の放電電圧を下げ、エ
ネルギー効率が低くなる。これに対し、電解液に界面活
性剤を加えて電解液の界面張力を下げると、濡れ性の悪
い硫酸鉛の結晶間に電解液が入り込んで、充電時の電流
密度が小さくなり、また過放電放置後の充電受入性が向
上する。さらに、界面活性剤を使用して、電解液の界面
張力を低下させると、電極表面に水素の気泡が付着し難
くなり、また付着しても容易に離れるので、電極上の水
素による分極が少なくなり、いわゆる水素障害が大幅に
低下する。
In the present invention, the surfactant is used to reduce the interfacial tension of the electrolytic solution so that the electrodes and the separator of the storage battery are well adapted to the electrolytic solution, that is, sufficiently wetted. If this wetting is not sufficient, the ions in the electrolyte cannot contact the electrodes and separators, increasing the electrical resistance of the separators and electrodes, and narrowing the effective reaction area of the electrodes, resulting in battery discharge voltage. Lower energy efficiency. On the other hand, if a surfactant is added to the electrolytic solution to lower the interfacial tension of the electrolytic solution, the electrolytic solution will enter between the crystals of lead sulfate, which has poor wettability, and the current density during charging will decrease, and overdischarge will also occur. Charge acceptability after leaving is improved. Furthermore, if a surfactant is used to reduce the interfacial tension of the electrolyte, hydrogen bubbles will not easily adhere to the electrode surface, and even if they adhere, they will easily separate, so there will be less polarization due to hydrogen on the electrode. And so-called hydrogen damage is greatly reduced.

【0007】本発明で用いる界面活性剤は、電解液で分
解されず、界面活性作用を発揮できるものであれば、特
に制限なく使用することができる。例えば、本発明の界
面活性剤の例を具体的に挙げると、リグニンスルフォン
酸塩、アルキル硫酸エステル塩、アルキルベンゼンスル
フォン酸塩、アルキルナフタレンスルフォン酸塩、アル
キルスルホコハク酸塩、アルキルジフェニルエーテルジ
スルフォン酸塩、アルキルリン酸塩、ポリオキシエチレ
ンアルキル又はアルキルアリル硫酸エステル塩などの脂
肪酸塩、ナフタレンスルフォン酸ホルマリン縮合物など
の陰イオン性界面活性剤、ポリオキシエチレンアルキル
エーテル、ポリオキシエチレンアルキルアリルエーテ
ル、ポリオキシエチレン誘導体、ポリオキシエチレン・
オキシプロピレンブロックコポリマー、ソルビタン脂肪
酸エステル、ポリオキシエチレンソルビタン脂肪酸エス
テル、ポリオキシエチレンソルビトール脂肪酸エステ
ル、グリセリン脂肪酸エステル、ポリオキシエチレン脂
肪酸エステル、ポリオキシエチレンアルキルアミンなど
の特殊ポリカルボン酸型高分子界面活性剤、アルキルベ
タインなどの非イオン性界面活性剤、さらに陽イオン性
界面活性剤及び両性界面活性剤などがあり、これらの界
面活性剤を単独で、又は組み合わせて使用することがで
きる。
The surfactant used in the present invention can be used without particular limitation as long as it is not decomposed by an electrolytic solution and can exert a surfactant effect. For example, specific examples of the surfactant of the present invention include lignin sulfonate, alkyl sulfate ester salt, alkylbenzene sulfonate, alkyl naphthalene sulfonate, alkyl sulfosuccinate, alkyl diphenyl ether disulfonate, Alkyl phosphates, fatty acid salts such as polyoxyethylene alkyl or alkylallyl sulfate ester salts, anionic surfactants such as naphthalene sulfonic acid formalin condensates, polyoxyethylene alkyl ethers, polyoxyethylene alkyl allyl ethers, polyoxy Ethylene derivative, polyoxyethylene
Specialty polycarboxylic acid type polymer surfactants such as oxypropylene block copolymer, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine , Nonionic surfactants such as alkylbetaine, and also cationic surfactants and amphoteric surfactants, and these surfactants can be used alone or in combination.

【0008】これらの界面活性剤のうち、好ましいのは
リグニンスルフォン酸塩、パーフルオロアルキルカルボ
ン酸塩、あるいはパーフルオロアルキルエチレンオキサ
イド付加物などであり、特に好ましいのは、パーフルオ
ロアルキルエチレンオキシド付加物である。
Of these surfactants, preferred are lignin sulfonates, perfluoroalkylcarboxylic acid salts, and perfluoroalkylethylene oxide adducts, and particularly preferred are perfluoroalkylethylene oxide adducts. is there.

【0009】本発明の鉛蓄電池用機能回復液では、前記
界面活性剤とともに、有機ゲルマニウムを組み合わせて
使用することができる。この有機ゲルマニウムを組み合
わせる理由は、界面活性剤の浸透作用と有機ゲルマニウ
ムの半導体的な作用によって不活性部分(板状硫酸鉛で
覆われた電極部分)にも少しづつ電流が流れるようにな
り、その結果鉛蓄電池の起動力を元の状態近くまで回復
させることが出来るためである。この有機ゲルマニウム
のうち、好ましいものは、特開昭59−194367号
公報に開示されている、ビス−β−エチルカルボン酸シ
リコン・セスキオキサイド(SiCH2 ・CH2 ・COOH)2O3
及びビス−β−エチルカルボン酸ゲルマニウム・セスキ
オキサイド(GeCH2 ・CH2 ・COOH)2O3である。さらに界
面活性剤としては表面張力が小さく、消泡性を有する消
泡剤あるいは界面活性剤などを必要に応じて使用するこ
とができる。特に、電極における水素及び酸素の気泡の
発生を防いだり、一旦発生した気泡を消すため、該機能
回復液に消泡性を有する界面活性剤を使用することが好
ましい。一般に有機ゲルマニウム100重量部に対し
て、加える界面活性剤あるいは消泡剤の量はその種類に
よって大きく異なり、例えばパーフルオロアルキルエチ
レンオキサイド付加物の場合は300〜100重量部、
好ましくは200〜250重量部である。
In the lead-acid battery function recovery liquid of the present invention, organic germanium can be used in combination with the above-mentioned surfactant. The reason for combining this organic germanium is that the permeation of the surfactant and the semiconductor-like action of the organic germanium cause a current to flow little by little to the inactive part (the electrode part covered with the plate-shaped lead sulfate). As a result, the starting power of the lead storage battery can be restored to near the original state. Among these organic germanium, preferable ones are bis-β-ethylcarboxylic acid silicon sesquioxide (SiCH 2 · CH 2 · COOH) 2 O 3 , which is disclosed in JP-A-59-194367.
And bis-β-ethylcarboxylic acid germanium sesquioxide (GeCH 2 · CH 2 · COOH) 2 O 3 . Further, as the surface active agent, an antifoaming agent or a surface active agent having a low surface tension and having an antifoaming property can be used if necessary. In particular, in order to prevent the generation of bubbles of hydrogen and oxygen in the electrode and to eliminate the bubbles once generated, it is preferable to use a surfactant having a defoaming property in the function recovery liquid. Generally, the amount of the surfactant or defoaming agent to be added to 100 parts by weight of organic germanium varies greatly depending on the type, and for example, in the case of perfluoroalkylethylene oxide adduct, 300 to 100 parts by weight,
It is preferably 200 to 250 parts by weight.

【0010】本発明の鉛蓄電池用機能回復液の組成は、
必要に応じて自由に変えることができる。また、本発明
の鉛蓄電池用機能回復液を、鉛蓄電池の電解液に添加す
る場合、界面活性剤の量は電解液の界面張力が15〜4
0dyn /cm、好ましくは20〜30dyn /cmとなるよう
にするのが適当である。界面張力が15dyn /cmよりも
低くなると、鉛蓄電池の急速充電時に電解液が鉛蓄電池
よりオーバーフローし、充電終了時に電解液の水位が標
準より低下する(新しく電解液を補充する必要があ
る。) 一方、界面張力が40dyn /cmよりも高くなると、消泡
性が低下し、一般市販品と差がなくなり好ましくない。
一般に、本発明の界面活性剤の量は界面活性剤の種類に
よって大きく異なり、特にパーフルオロアルキルエチレ
ンオキシド付加物を用いる場合、その濃度は、電解液の
重量を基準として0.0001〜0.1重量%、特に0.00
03〜0.01重量%とするのが好ましい。
The composition of the functional recovery liquid for lead-acid battery of the present invention is
You can freely change it as needed. Further, when the function recovery liquid for lead acid battery of the present invention is added to the electrolytic solution of the lead acid battery, the amount of the surfactant is such that the interfacial tension of the electrolytic solution is 15 to 4
It is suitable to set it to 0 dyn / cm, preferably 20 to 30 dyn / cm. When the interfacial tension is lower than 15 dyn / cm, the electrolytic solution overflows from the lead storage battery when the lead storage battery is rapidly charged, and the water level of the electrolyte drops below the standard at the end of charging (it is necessary to replenish the electrolyte newly). On the other hand, when the interfacial tension is higher than 40 dyn / cm, the defoaming property is deteriorated and there is no difference from general commercial products, which is not preferable.
Generally, the amount of the surfactant of the present invention varies greatly depending on the kind of the surfactant, and particularly when a perfluoroalkylethylene oxide adduct is used, the concentration thereof is 0.0001 to 0.1% by weight based on the weight of the electrolytic solution. %, Especially 0.00
It is preferably from 03 to 0.01% by weight.

【0011】[0011]

【発明の効果】本発明の鉛蓄電池用機能回復液により、
機能低下した鉛蓄電池の能力を急速に回復させ、鉛蓄電
池の使用寿命を大幅に延長することができる。さらに、
本発明の鉛蓄電池用機能回復液を含む鉛蓄電池は、機能
低下が起こり難く、使用寿命が長い。特に、パーフルオ
ロアルキルエチレンオキシド付加物の界面活性剤を含
む、本発明の鉛蓄電池は、鉛蓄電池の過放電放置後の充
電受入性が大幅に向上した。このため本発明の鉛蓄電池
は、過放電放置された場合でも、放電直後と同じ充電時
間で充電を完了することが出来る。次に、本発明の鉛蓄
電池の機能回復方法及び機能回復液を、実施例により詳
細に説明する。
EFFECTS OF THE INVENTION With the function recovery liquid for lead acid battery of the present invention,
It is possible to rapidly recover the capacity of a lead-acid battery whose function has deteriorated, and to prolong the service life of the lead-acid battery significantly. further,
The lead storage battery containing the function recovery liquid for lead storage batteries of the present invention is less likely to have a decline in function and has a long service life. In particular, the lead-acid battery of the present invention containing the surfactant of perfluoroalkylethylene oxide adduct has significantly improved the charge acceptability of the lead-acid battery after being left over-discharged. Therefore, the lead-acid battery of the present invention can be completely charged in the same charging time as immediately after discharging, even if it is left overdischarged. Next, the function recovery method and function recovery solution for a lead storage battery of the present invention will be described in detail with reference to examples.

【0012】[0012]

【実施例】【Example】

〔実施例1及び2、比較例1〜7〕まず、本発明によ
る、鉛蓄電池の機能回復の効果を説明する。 (鉛蓄電池)本実施例では下記の12V鉛蓄電池を使用
した。 中古A:古河電池 LOT.22FILV 中古B:HITACHI LOT.XD825CR 中古C:HITACHI LOT.XA110N 次に、表1に示すように、鉛蓄電池及び添加剤を使用し
て、実施例1、2及び比較例1〜7の実験を行った。添
加剤としては、有機ゲルマニウム化合物、有機金属化合
物、無機化合物、界面活性剤を使用した。特にこの界面
活性剤としては、パーフルオロアルキルエチレンオキシ
ド付加物を用いた。これらの添加剤は、次のように加え
た。各鉛蓄電池のセルから電解液を433.3ml/セル
(2600ml÷6セル=433.3ml/セル)ずつ取り出
し、取り出した電解液の中に、必要とする添加剤10ml
/セル(10ml/セル×6セル=60ml)を加えた。添
加剤が完全に溶解した後、電解液を元の各セルに戻し、
約3時間位放置して均一化した。なお、添加剤を蒸留水
ではなく、電解液に溶かして元のセルに戻した理由は、
蒸留水による電解液の希釈の影響をなくす為である。
[Examples 1 and 2, Comparative Examples 1 to 7] First, the effect of functional recovery of the lead storage battery according to the present invention will be described. (Lead storage battery) In this embodiment, the following 12V lead storage battery was used. Used A: Furukawa Battery LOT. 22FILV Used B: HITACHI LOT. XD825CR Used C: HITACHI LOT. XA110N Next, as shown in Table 1, the experiments of Examples 1 and 2 and Comparative Examples 1 to 7 were performed using a lead storage battery and an additive. As the additive, an organic germanium compound, an organic metal compound, an inorganic compound, or a surfactant was used. In particular, a perfluoroalkylethylene oxide adduct was used as this surfactant. These additives were added as follows. The electrolytic solution was taken out from each lead-acid battery cell by 433.3 ml / cell (2600 ml / 6 cells = 433.3 ml / cell), and 10 ml of the required additive was added to the taken out electrolytic solution.
/ Cell (10 ml / cell × 6 cells = 60 ml) was added. After the additive is completely dissolved, return the electrolyte to each original cell,
It was left for about 3 hours to homogenize. The reason why the additive was dissolved in the electrolytic solution instead of distilled water and returned to the original cell was
This is to eliminate the effect of diluting the electrolytic solution with distilled water.

【0013】(鉛蓄電池の充電と放電条件)このように
準備した鉛蓄電池で下記の条件で充電と放電を行った。
バッテリー充電器として、スタンレー電機(株)のRU
SH−3を、電圧電流測定器として、三和電気計器
(株)の Digital Multilester CD−710Cを使用
した。前記の各鉛蓄電池に12Vの電荷をかけて16時
間充電した。次に、12V/100Wの電球1個で負荷
を加え、鉛蓄電池の電圧が10.5V(セルモーター回転
限界)になるまで放電し、放電時間を測定した。尚、放
充電中、鉛蓄電池電解液の温度変化を防止する為、鉛蓄
電池を恒温水槽(池本理化工業のオートマチック電子恒
温水槽)に浸漬し、室温で20℃に保った。
(Charging and Discharging Conditions of Lead Acid Battery) The lead acid battery thus prepared was charged and discharged under the following conditions.
RU of Stanley Electric Co., Ltd. as a battery charger
As SH-3, Digital Multilester CD-710C manufactured by Sanwa Electric Instruments Co., Ltd. was used as a voltage / current measuring device. A charge of 12 V was applied to each of the lead acid batteries described above and charged for 16 hours. Next, a load was applied with one 12V / 100W light bulb, and the lead storage battery was discharged until the voltage reached 10.5V (cell motor rotation limit), and the discharge time was measured. In order to prevent the temperature change of the lead storage battery electrolyte during discharge, the lead storage battery was immersed in a constant temperature water tank (Automatic electronic constant temperature water tank of Ikemoto Rika Kogyo) and kept at 20 ° C. at room temperature.

【0014】(判定基準)鉛蓄電池の電圧が12.5Vか
ら10.5Vになるまでの各比較例、実施例で調製した鉛
蓄電池で放電を行い、その時間を測定した。添加剤を加
えなかった鉛蓄電池の放電時間を100として、各比較
例及び実施例の放電時間の割合を求め、各鉛蓄電池の性
能を比較した。得られた結果を表1に示した。比較判定
した性能評価と、界面張力の測定結果の関係は次のとお
りである。表1の記載から明らかなように、実施例1及
び2では、界面活性剤の添加により、界面張力は27、
28dyne/cmと、明らかに低くなっており、放電時間も
明らかに長くなっている。したがって、本発明の効果が
顕著であることは明らかである。これに対し、従来の鉛
蓄電池の劣化防止方法及び劣化防止液を用いた比較例2
〜6では、比較の対称とした比較例1及び3で得た鉛蓄
電池と、放電に要する時間に、ほとんど差が見られず、
逆にマイナス効果さえ見られた。
(Criteria for Judgment) The lead storage batteries prepared in Comparative Examples and Examples from which the voltage of the lead storage battery was changed from 12.5 V to 10.5 V were discharged, and the time was measured. With the discharge time of the lead-acid battery without addition of the additive as 100, the ratio of the discharge time of each comparative example and the example was obtained, and the performance of each lead-acid battery was compared. The obtained results are shown in Table 1. The relationship between the comparatively evaluated performance evaluation and the measurement result of the interfacial tension is as follows. As is clear from the description in Table 1, in Examples 1 and 2, the addition of the surfactant resulted in an interfacial tension of 27,
It is 28 dyne / cm, which is clearly low, and the discharge time is obviously long. Therefore, it is clear that the effect of the present invention is remarkable. On the other hand, Comparative Example 2 using a conventional lead storage battery deterioration prevention method and deterioration prevention liquid
In ~ 6, there is almost no difference in the time required for discharging from the lead storage batteries obtained in Comparative Examples 1 and 3 which are symmetrical to each other,
On the contrary, even a negative effect was seen.

【0015】[0015]

【表1】 表 1 比較例 実施例 1 2 3 4 5 6 7 1 2 添加剤の添加量 1.有機半導体(mg) エチル・カルボキシ・ - 180 360 - 360 360 - - 90 ゲルマニウム・ セスキ・オキサイド (Ge CH2 COOH)2O3 2.有機金属化合物(mg) ナーセム・マグネシウム1) 10 ナーセム・アルミニウム2) 13 3.無機化合物(mg) CoSO4・7H2O(酸化剤) 11 MgSO4・7H2O(酸化剤) 10 Al2(SO4)3・14〜18H2O (還元剤) 25 4.界面活性剤(mg) パーフルオロアルキル - - - - - - - - 260 エチレンオキシド付加物 リグニンスルフォン - - - - - - - 260 - 酸ソーダ 鉛蓄電池の種類 A A A B B B C C C 放電時間(分) 219 214 212 83 82 73 170 186 188 放電時間の割合(%) 100 98 97 100 99 88 100 109 111 性能評価 - ナシ ナシ - ナシ マイナス - 効果 効果 効果 大 大界面張力(dyn /cm) 72 77 76 72 77 75 72 28 27 [Table 1] Table 1 Comparative Example Example 1 2 3 4 5 6 7 1 2 Amount of additive 1. Organic semiconductor (mg) ethyl carboxy-180 360-360 360--90 germanium sesquioxide (Ge CH 2 COOH) 2 O 3 2.Organometallic compound (mg) Nasem / magnesium 1) 10 Nasem / aluminum 2) 13 3.Inorganic compound (mg) CoSO 4 / 7H 2 O (oxidizer) 11 MgSO 4 / 7H 2 O (oxidizer) 10 Al 2 (SO 4 ) 3・ 14-18H 2 O (reducing agent) 25 4. Surfactant (mg) Perfluoroalkyl--------260 Ethylene oxide adduct Lignin sulfone------ -260- Acid soda Lead acid battery type AAABBBCCC Discharge time (min) 219 214 212 83 82 73 170 186 188 Discharge time ratio (%) 100 98 97 100 99 88 100 109 111 Performance evaluation-None-None-Effect Effect Effect Large Large Large Interfacial tension (dyn / cm) 72 77 76 72 77 75 72 28 27

【0016】[0016]

【化1】 Embedded image

【0017】〔実施例3〕本発明の機能回復液を、継続
して使用する場合の界面活性剤の影響を調べた。実施例
1と同じ12Vの中古鉛蓄電池を使用し、界面活性剤と
してパーフルオロアルキルエチレンオキシド付加物を使
用した。また、界面活性剤の濃度は表2のとおりとし、
6個の鉛蓄電池を使用した。先ず、添加剤を加えないで
鉛蓄電池の充電と放電を繰り返し、セル液面周辺の泡立
ちの状態を観察した。次いで、鉛蓄電池の充電と放電を
繰り返しながら、一定の間隔で界面活性剤を加えてセル
液面周辺の泡立ちの状態を観察した。評価の基準として
は、泡が全くなければ充電の性能としては不十分であ
り、泡がたち過ぎて電解液を溢れだす場合は、界面活性
剤が過剰であると判断した。その結果、界面活性剤の濃
度が0.0001重量%を下回ると、セル液面周辺に泡が
全く立たず、充電の性能としては不十分であり、逆に0.
1重量%を越えると泡がたち過ぎて電解液が溢れた。こ
れに対し、界面活性剤の濃度を0.0003〜0.01重量
%にすると、最善の状態で充電するということが確認出
来た。なお、界面活性剤を加えないで、鉛蓄電池の充電
と放電を繰り返すと、充電の性能が低下し、後から一定
の間隔で界面活性剤を加えると、再び、充電の性能が回
復するということも確認出来た。
[Example 3] The effect of a surfactant when the function recovery liquid of the present invention was continuously used was examined. The same 12V used lead-acid battery as in Example 1 was used, and a perfluoroalkylethylene oxide adduct was used as a surfactant. The concentration of the surfactant is as shown in Table 2,
Six lead acid batteries were used. First, charging and discharging of a lead storage battery were repeated without adding an additive, and the state of foaming around the cell liquid surface was observed. Then, while repeating charging and discharging of the lead storage battery, a surfactant was added at regular intervals and the state of foaming around the cell liquid surface was observed. As a criterion for evaluation, if no bubbles were present, the charging performance was insufficient, and if bubbles were too large to overflow the electrolytic solution, it was determined that the surfactant was excessive. As a result, when the concentration of the surfactant was less than 0.0001% by weight, no bubbles were formed around the cell liquid surface, which was insufficient as charging performance, and conversely, it was less than 0.
When it exceeded 1% by weight, bubbles were too much and the electrolyte overflowed. On the other hand, it was confirmed that when the concentration of the surfactant was 0.0003 to 0.01% by weight, the battery was charged in the best condition. It should be noted that if charging and discharging the lead-acid battery is repeated without adding a surfactant, the charging performance will decrease, and if a surfactant is added at a fixed interval later, the charging performance will be restored again. I was able to confirm.

【0018】以上の説明から明らかなように、本発明に
よる、鉛蓄電池の機能回復方法及び機能回復液を使用す
ることにより次の効果が得られた。第1に、劣化した鉛
蓄電池の起電力を元の状態にもどった。第2に、鉛蓄電
池内の化学反応を活発にし、電池の老化が抑制された。
第3に、従来品の機能回復剤に比べ、本発明の機能回復
剤を使用すると界面張力が小さくなるため、サルフェー
ションや水素障害を抑制し、自己放電が少なくなった。
第4に、寒い日の始動性が良くなり、第5に、充電時
間が短縮され充電力が高まった。
As is clear from the above description, the following effects are obtained by using the function recovery method and the function recovery solution for a lead storage battery according to the present invention. First, the electromotive force of the deteriorated lead storage battery was returned to the original state. Second, the chemical reaction in the lead acid battery was activated, and the aging of the battery was suppressed.
Third, as compared with the conventional function recovering agent, when the function recovering agent of the present invention is used, the interfacial tension becomes smaller, so sulfation and hydrogen damage are suppressed, and self-discharge is reduced.
Fourthly, the startability on cold days was improved, and fifthly, the charging time was shortened and the charging power was increased.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 界面活性剤を含むことを特徴とする鉛蓄
電池用機能回復液。
1. A function recovery liquid for a lead storage battery, which contains a surfactant.
【請求項2】 界面活性剤が、フッ素系界面活性剤であ
る請求項1記載の鉛蓄電池用機能回復液。
2. The lead-acid battery function recovery liquid according to claim 1, wherein the surfactant is a fluorine-based surfactant.
【請求項3】 界面活性剤が、パーフルオロアルキルエ
チレンオキシド付加物である請求項2記載の鉛蓄電池の
機能回復液。
3. The function recovery liquid for a lead storage battery according to claim 2, wherein the surfactant is a perfluoroalkylethylene oxide adduct.
【請求項4】 さらに有機ゲルマニウムを含む、請求項
1〜3のいずれか1項記載の鉛蓄電池用機能回復液。
4. The lead-battery function recovery liquid according to claim 1, further comprising organic germanium.
【請求項5】 界面活性剤の浸透作用により電解液と極
板間の界面張力を小さくすることを特徴とする、鉛蓄電
池の機能回復方法。
5. A method for recovering the function of a lead storage battery, which comprises reducing the interfacial tension between the electrolytic solution and the electrode plate by the permeation action of a surfactant.
【請求項6】 請求項1〜4項のいずれか1項記載の鉛
蓄電池用機能回復液を、鉛蓄電池の電解液に添加するこ
とを特徴とする、鉛蓄電池の機能回復方法。
6. A method for recovering the function of a lead storage battery, which comprises adding the function recovery solution for a lead storage battery according to claim 1 to an electrolytic solution of the lead storage battery.
【請求項7】 請求項3項記載の鉛蓄電池用機能回復液
を、鉛蓄電池の電解液に添加することを特徴とする鉛蓄
電池の機能回復方法であって、電解液の重量を基準とし
て、パーフルオロアルキルエチレンオキシド付加物が0.
0001〜0.1重量%の濃度になるように鉛蓄電池用機
能回復液を加えることを特徴とする鉛蓄電池の機能回復
方法。
7. A function recovery method for a lead storage battery, comprising adding the lead storage battery function recovery solution according to claim 3 to an electrolyte solution for a lead storage battery, wherein the weight of the electrolyte solution is used as a reference. Perfluoroalkyl ethylene oxide adduct is 0.
A method for recovering the function of a lead storage battery, which comprises adding a function recovery solution for a lead storage battery to a concentration of 0001 to 0.1% by weight.
【請求項8】 電解液の界面張力を10〜40dyn /cm
にすることを特徴とする請求項5〜7項のいずれか1項
記載の鉛蓄電池の機能回復方法。
8. The interfacial tension of the electrolyte is 10-40 dyn / cm.
The method for recovering the function of a lead storage battery according to any one of claims 5 to 7, wherein:
【請求項9】 電解液の界面張力が10〜40dyn /cm
であることを特徴とする鉛蓄電池。
9. The interfacial tension of the electrolyte is 10 to 40 dyn / cm.
Lead acid battery characterized by being.
【請求項10】 電解液が、請求項1〜4項のいずれか
1項記載の鉛蓄電池用機能回復液を含むことを特徴とす
る鉛蓄電池。
10. A lead storage battery, wherein the electrolytic solution contains the function recovery liquid for lead storage battery according to any one of claims 1 to 4.
【請求項11】 電解液が、パーフルオロアルキルエチ
レンオキシド付加物を0.0001〜0.1重量%含む、請
求項10記載の鉛蓄電池。
11. The lead acid battery according to claim 10, wherein the electrolytic solution contains 0.0001 to 0.1% by weight of a perfluoroalkylethylene oxide adduct.
JP6215719A 1994-09-09 1994-09-09 Function recovery liquid and function recovery method for lead-acid battery Pending JPH0883621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215719A JPH0883621A (en) 1994-09-09 1994-09-09 Function recovery liquid and function recovery method for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215719A JPH0883621A (en) 1994-09-09 1994-09-09 Function recovery liquid and function recovery method for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0883621A true JPH0883621A (en) 1996-03-26

Family

ID=16677051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215719A Pending JPH0883621A (en) 1994-09-09 1994-09-09 Function recovery liquid and function recovery method for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0883621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068281A1 (en) * 2014-10-30 2016-05-06 スペースリンク株式会社 Lead battery recovery agent
WO2020241883A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Lead storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068281A1 (en) * 2014-10-30 2016-05-06 スペースリンク株式会社 Lead battery recovery agent
JP2016091662A (en) * 2014-10-30 2016-05-23 スペースリンク株式会社 Lead storage battery restorative
WO2020241883A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Lead storage battery
GB2597869A (en) * 2019-05-31 2022-02-09 Gs Yuasa Int Ltd Lead-acid battery
GB2597869B (en) * 2019-05-31 2023-05-17 Gs Yuasa Int Ltd Lead-acid battery
US11735742B2 (en) 2019-05-31 2023-08-22 Gs Yuasa International Ltd. Lead-acid battery

Similar Documents

Publication Publication Date Title
US20200176198A1 (en) Electrolyte additives for zinc metal electrodes
Ishikawa et al. In situ scanning vibrating electrode technique for the characterization of interface between lithium electrode and electrolytes containing additives
US9293796B2 (en) Metal-air battery with dual electrode anode
EP1516376B1 (en) Zinc air battery with acid electrolyte
KR910009390B1 (en) Secondary battery
JP2005531902A (en) Battery with carbon foam current collector
JP4573594B2 (en) Secondary battery
KR20190108316A (en) Method for a porous electrode current collector for lithium metal battery using hydrogen bubble as a template and electrode current collector manufactured thereby
JPH0883621A (en) Function recovery liquid and function recovery method for lead-acid battery
JPH06196200A (en) Function recovering method and function recovering liquid for lead-acid battery
JPS62206770A (en) Metal-halogen electrochemical battery
US20140023917A1 (en) High Performance Lead Acid Battery with Advanced Electrolyte System
US20040018427A1 (en) Battery life extender additives
KR102085499B1 (en) Method for a porous electrode current collector for lithium metal battery using hydrogen bubble as a template and electrode current collector manufactured thereby
Pugolovkin et al. Cathodically deposited birnessite as the electrode material
EP0109223B1 (en) Electrolyte for zinc-bromine storage batteries
US20150180088A1 (en) Electrochemical lead battery including a specific additive
US3447971A (en) Neutral secondary battery
JP2010015964A (en) Negative electrode active material for secondary battery, and secondary battery using this
CN114865110B (en) Mixed water system zinc ion battery electrolyte with stable pH value and application
Wagner Investigation on copper corrosion in thin films of sulfuric acid
KR102244179B1 (en) Redox flow cell comprising cellulose
JP2008084804A (en) Life extension agent for lead storage battery, life extension method of lead storage battery, electrolyte of lead storage battery and lead storage battery
JPH0679493B2 (en) Lead-acid battery function recovery agent and lead-acid battery function recovery method
JP2977600B2 (en) Lead storage battery