JPH0882676A - Synthetic-aperture radar apparatus - Google Patents

Synthetic-aperture radar apparatus

Info

Publication number
JPH0882676A
JPH0882676A JP6217525A JP21752594A JPH0882676A JP H0882676 A JPH0882676 A JP H0882676A JP 6217525 A JP6217525 A JP 6217525A JP 21752594 A JP21752594 A JP 21752594A JP H0882676 A JPH0882676 A JP H0882676A
Authority
JP
Japan
Prior art keywords
signal
reception
synthetic aperture
antenna
processing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6217525A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Shinonaga
充良 篠永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6217525A priority Critical patent/JPH0882676A/en
Publication of JPH0882676A publication Critical patent/JPH0882676A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a synthetic-aperture radar apparatus, for mounting on a satellite, whose resolution is maintained, in which an antenna size is expanded and whose electric power can be reduced. CONSTITUTION: On the side of a satellite, transmission pulses at continuous frequencies f1 , f2 are generated by a transmitter 123, they are radiated by an antenna part 11, their reflected waves are captured by the antenna part 11, the reflected waves are passed through BPFs(band-pass filters) 125, 126 whose band-pass regions are at the f1 , the f2 , the reflected waves are detected by receivers 127, 128 by means of respective high-frequency signals in a transmitting operation, and video signals are obtained. The video signals are digitized by A/D converters 132, 133, and digital signals are multiplexed by a multiplexer 134 so as to be sent out to a ground station through a communication-system antenna 14. In the ground station, a video multiplexed signal, from the satellite, which is received by a communication-system antenna 15 is separated into two video signals by a separator 16, the video signals are signal-processed by synthetic-aperture processing parts 171, 172, the signals are incoherent-added by an addition processing part 18, and their added result is image-displayed on a radar display device 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば人工衛星に搭
載して地上等を観測する合成開口レーダ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic aperture radar device mounted on, for example, an artificial satellite to observe the ground and the like.

【0002】[0002]

【従来の技術】周知のように、合成開口レーダ装置は航
空機に搭載され、機上から地上に向けてパルスを送信
し、その反射信号を受信してその周波数スペクトラム等
を分析することにより、地形や資源探査等のイメージン
グ処理を行うものである。近時、この合成開口レーダ装
置を周回衛星に搭載し、より広範囲なイメージング処理
を行うことが考えられている。
2. Description of the Related Art As is well known, a synthetic aperture radar device is mounted on an aircraft, transmits a pulse from the aircraft to the ground, receives a reflected signal of the pulse, and analyzes the frequency spectrum and the like of the terrain. And image processing such as resource exploration. Recently, it is considered that the synthetic aperture radar device is mounted on an orbiting satellite to perform a wider range of imaging processing.

【0003】ところが、合成開口レーダ装置を衛星に搭
載する場合、搭載衛星の移動速度が航空機と比較して極
めて速いために、原理的な制約条件が色々考えられる。
その最大のものが分解能及びスワス幅のトレードオフで
あり、詳細な観測のために分解能を向上させると、その
観測幅であるスワス幅が極端に減るという宿命を負って
いる。
However, when the synthetic aperture radar device is mounted on a satellite, various restrictions can be considered in principle because the traveling speed of the mounted satellite is extremely higher than that of an aircraft.
The largest of these is the trade-off between resolution and swath width, and if the resolution is improved for detailed observation, the swath width, which is the observation width, is extremely fatal.

【0004】すなわち、アンテナの横幅をLA 、光速度
をC、衛星速度をV、ルック数をNとすると、分解能δ
及びスワス幅Wは次式に示すようになる。 δ≧(LA /2)・N …(1) W≦(LA /2)・(C/2V) …(2) したがって、衛星速度Vが軌道によって一義的に定めら
れている以上、ルック数Nがシステム要求から決められ
ると、アンテナサイズにより分解能及びスワス幅が一意
に決まってしまうため、設計自由度がないという問題が
生じる。換言すれば、アンテナサイズを拡大して小電力
化を行おうとすれば、分解能を犠牲にせざるを得ないと
いう問題が生じる。
That is, if the width of the antenna is LA, the light velocity is C, the satellite velocity is V, and the number of looks is N, the resolution δ
And the swath width W is expressed by the following equation. δ ≧ (LA / 2) · N (1) W ≦ (LA / 2) · (C / 2V) (2) Therefore, as long as the satellite velocity V is uniquely determined by the orbit, the number of looks N Is determined from the system requirements, the resolution and swath width are uniquely determined by the antenna size, which causes a problem that there is no degree of freedom in design. In other words, if the antenna size is increased to reduce the power consumption, the resolution must be sacrificed.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、地
球上を移動する宇宙航行体に合成開口レーダ装置を搭載
する場合、ルック数がアンテナサイズ、分解能、スワス
幅に直接関係するため、ルック数がシステム要求によっ
て決められると、設計自由度がなくなり、もはや分解能
を維持したまま、アンテナサイズを拡大して小電力化を
図ることはできなかった。
As described above, when the synthetic aperture radar device is mounted on a spacecraft moving on the earth, the number of looks is directly related to the antenna size, the resolution and the swath width. Once the number was determined by the system requirements, there was no design freedom and it was not possible to increase the antenna size and reduce power consumption while maintaining resolution.

【0006】この発明は上記の課題を解決するためにな
されたもので、宇宙航行体搭載用として、システム要求
によるルック数をアンテナサイズ、分解能、スワス幅に
関係なく実現することができ、これによって分解能を維
持したまま、アンテナサイズを拡大して小電力化を図る
ことのできる合成開口レーダ装置を提供することを目的
とする。
The present invention has been made in order to solve the above-mentioned problems, and for mounting on a spacecraft, the number of looks required by the system can be realized regardless of the antenna size, resolution and swath width. An object of the present invention is to provide a synthetic aperture radar device capable of enlarging an antenna size and reducing power consumption while maintaining resolution.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係る合成開口レーダ装置は、(1)互いに
周波数の異なる複数の送信パルスを連続して送信する送
信系と、前記複数の送信パルスに対する反射信号を個別
に受信する複数の受信系と、前記複数の受信系の各受信
信号についてそれぞれ独立に合成開口処理を行ってイン
コヒーレント加算する信号処理部とを具備して構成さ
れ、(2)特に、前記送信系及び複数の受信系は地球上
を移動する宇宙航行体に搭載され、前記信号処理部は地
上局に配置され、前記複数の受信系の各受信信号を通信
回線を通じて前記宇宙航行体から地上局へ転送し前記信
号処理部に入力するようにしたことを特徴とする。
To achieve the above object, a synthetic aperture radar apparatus according to the present invention comprises (1) a transmission system for continuously transmitting a plurality of transmission pulses having different frequencies, and A plurality of reception systems that individually receive reflected signals for the transmission pulses, and a signal processing unit that performs incoherent addition by performing synthetic aperture processing independently for each reception signal of the plurality of reception systems, (2) In particular, the transmission system and the plurality of reception systems are mounted on a spacecraft that moves on the earth, the signal processing unit is arranged in a ground station, and each reception signal of the plurality of reception systems is transmitted through a communication line. It is characterized in that it is transferred from the spacecraft to a ground station and input to the signal processing unit.

【0008】または、(3)線形周波数変調信号をパル
ス化して送信する送信系と、前記送信パルスに対する反
射信号を受信する受信系と、この受信系の受信信号を複
数の周波数帯で分離し、それぞれ独立に合成開口処理を
行ってインコヒーレント加算する信号処理部とを具備し
て構成され、(4)特に、前記送信系及び受信系は地球
上を移動する宇宙航行体に搭載され、前記信号処理部は
地上局に配置され、前記複数の受信系の各受信信号を通
信回線を通じて前記宇宙航行体から地上局へ転送し前記
信号処理部に入力するようにしたことを特徴とする。
Alternatively, (3) a transmission system for converting a linear frequency modulation signal into a pulse and transmitting it, a reception system for receiving a reflection signal for the transmission pulse, and a reception signal of this reception system are separated into a plurality of frequency bands, And (4) In particular, the transmission system and the reception system are mounted on a spacecraft that moves on earth, and the signal processing unit performs the synthetic aperture processing independently and performs incoherent addition. The processing unit is arranged in the ground station, and each received signal of the plurality of receiving systems is transferred from the spacecraft to the ground station through a communication line and input to the signal processing unit.

【0009】[0009]

【作用】上記(1)の構成による合成開口レーダ装置で
は、互いに周波数の異なるn個の送信パルスを送信し、
それぞれの反射信号を個別に受信した後、それぞれ独立
に合成開口処理を行ってインコヒーレント加算すること
で、設計上のルック数を1/nとしても同等の処理後画
像を維持できるようにしている。
In the synthetic aperture radar device having the above configuration (1), n transmission pulses having different frequencies are transmitted,
After each reflection signal is individually received, synthetic aperture processing is performed independently and incoherent addition is performed, so that an equivalent post-processing image can be maintained even if the design look number is 1 / n. .

【0010】ここで、(2)の構成では、信号処理部を
地上局に配置することにより、宇宙航行体側の重量負担
を軽減している。また、(3)の構成による合成開口レ
ーダ装置では、線形周波数変調信号をパルス化して送信
し、その反射信号を受信した後、n個の周波数帯で分離
することで、(1)の構成のように周波数の異なるn個
の送信パルスを送信する場合と等価な送受信処理を行
い、分離された受信信号をそれぞれ独立に合成開口処理
を行ってインコヒーレント加算することで、設計上のル
ック数を1/nとしても同等の処理後画像を維持できる
ようにしている。ここで、(4)の構成でも、信号処理
部を地上局に配置することにより、宇宙航行体側の重量
負担を軽減している。
In the configuration of (2), the signal processing unit is arranged at the ground station to reduce the weight burden on the side of the spacecraft. Further, in the synthetic aperture radar device having the configuration of (3), the linear frequency modulation signal is pulsed and transmitted, and the reflected signal thereof is received, and then separated in n frequency bands. As described above, by performing a transmission / reception process equivalent to the case of transmitting n transmission pulses with different frequencies, and performing incoherent addition by performing synthetic aperture processing on each of the separated reception signals independently, Even if it is 1 / n, the same processed image can be maintained. Here, also in the configuration of (4), by placing the signal processing unit in the ground station, the weight burden on the side of the spacecraft is reduced.

【0011】[0011]

【実施例】以下、図面を参照してこの発明の一実施例を
詳細に説明する。図1はこの発明に係る合成回路レーダ
装置の構成を示すもので、衛星搭載側はアンテナ部1
1、送受信部12、信号処理部13で構成される。信号
処理部13はモード制御部131を備え、このモード制
御部131により制御データ及び移相器データに応じて
アンテナ部11の指向方向、送受信部12の送信パルス
繰返し周期等を制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows the structure of a synthetic circuit radar device according to the present invention.
1, a transceiver 12, and a signal processor 13. The signal processing unit 13 includes a mode control unit 131, and the mode control unit 131 controls the pointing direction of the antenna unit 11, the transmission pulse repetition period of the transmission / reception unit 12, and the like according to the control data and the phase shifter data.

【0012】送受信部12は互いに周波数の異なる高周
波信号を生成する高周波発振器121,122を備え
る。各高周波発振器121,122で生成された高周波
信号(周波数f1,f2)は送信機123に送られる。
この送信機123は、タイミング制御部124からのタ
イミング信号に応じた周期で2つの高周波信号を所定幅
の送信パルス信号に変換し、時分割にアンテナ部11に
供給する。
The transmitter / receiver 12 includes high frequency oscillators 121 and 122 for generating high frequency signals having different frequencies. The high frequency signals (frequency f1, f2) generated by the respective high frequency oscillators 121, 122 are sent to the transmitter 123.
The transmitter 123 converts the two high frequency signals into transmission pulse signals having a predetermined width at a cycle according to the timing signal from the timing control unit 124, and supplies the transmission pulse signal to the antenna unit 11 in a time division manner.

【0013】アンテナ部11は指定された方向(地表
面)に向けて入力した送信パルス信号を空間に放射し、
地表面からの反射波を捕捉して送受信部12に伝送す
る。送受信部12はアンテナ部11からの反射信号をそ
れぞれ送信周波数f1,f2の帯域を通過させる帯域通
過フィルタ(BPF)125,126に通し、受信機1
27,128に入力する。
The antenna section 11 radiates a transmission pulse signal input in a designated direction (ground surface) into space,
The reflected wave from the ground surface is captured and transmitted to the transmission / reception unit 12. The transmission / reception unit 12 passes the reflection signals from the antenna unit 11 through band pass filters (BPF) 125 and 126 that pass the bands of the transmission frequencies f1 and f2, respectively, and the receiver 1
Input to 27,128.

【0014】各受信機127,128は、それぞれ高周
波発振器121,122から送信周波数の高周波信号を
入力して帯域通過フィルタ125,126からの反射信
号をその高周波信号で検波し、これによって地表面によ
る偏移成分であるビデオ信号を得る。それぞれのビデオ
信号は信号処理部13のアナログ/デジタル変換器(A
/D)132,133でデジタルデータに変換された
後、多重器134で多重され、通信系アンテナ14を通
じて地上局に送出される。
Each of the receivers 127 and 128 receives the high frequency signals of the transmission frequency from the high frequency oscillators 121 and 122, respectively, and detects the reflected signals from the band pass filters 125 and 126 with the high frequency signals, whereby the ground surface causes Obtain a video signal that is a shift component. Each video signal is an analog / digital converter (A
/ D) 132, 133, after being converted into digital data, the signal is multiplexed by the multiplexer 134 and transmitted to the ground station through the communication system antenna 14.

【0015】地上局において、通信系アンテナ15で受
けた衛星からのビデオ多重信号は分離器16で2つのビ
デオ信号に分離され、それぞれ合成開口処理部171,
172で信号処理された後、加算処理部18でインコヒ
ーレント加算される。その加算結果はレーダ表示器19
に送られ、所定の解析処理により画像表示される。
In the ground station, the video multiplex signal from the satellite received by the communication antenna 15 is separated into two video signals by the separator 16, and the synthetic aperture processing units 171 and 171, respectively.
After signal processing at 172, addition processing unit 18 performs incoherent addition. The addition result is the radar display 19
The image is displayed by a predetermined analysis process.

【0016】上記構成において、以下にその処理動作を
説明する。いま、図2に示すように、地表面のグランド
トラックから所定高度にある衛星軌道上で飛翔する周回
衛星Aに上記の合成開口レーダを搭載したとする。アン
テナは長手方向が衛星軌道に平行となるように取り付け
られる。このため、アンテナの長手方向の長さをアジマ
スアンテナ長、幅方向の長さをエレベーションアンテナ
長と称される。
The processing operation of the above configuration will be described below. Now, as shown in FIG. 2, it is assumed that the above synthetic aperture radar is mounted on an orbiting satellite A that flies in a satellite orbit at a predetermined altitude from a ground track on the ground surface. The antenna is mounted so that its longitudinal direction is parallel to the satellite orbit. Therefore, the length in the longitudinal direction of the antenna is called the azimuth antenna length, and the length in the width direction is called the elevation antenna length.

【0017】衛星Aから地表面に下ろした垂線とアンテ
ナビームの指向方向とのなす角はオフナディア角と称さ
れる。また、グランドトラックからアンテナ実ビーム照
射範囲の中心までの距離はグランドレンジと呼ばれる。
衛星Aの移動によりビームによって刈り取られる範囲が
観測範囲であり、その幅はスワス幅と称される。
The angle formed by the vertical line from the satellite A to the ground surface and the direction of the antenna beam is called the off-nadir angle. The distance from the ground track to the center of the actual beam irradiation range of the antenna is called the ground range.
The range clipped by the beam due to the movement of the satellite A is the observation range, and its width is called the swath width.

【0018】上記の使用環境下で、送信時は図3(a)
に示すように送信パルス繰返し周期PRI内で、周波数
f1,f2の2つの送信パルス(図ではパルス幅50μ
s)を連続して時分割に放射する。
Under the above-mentioned usage environment, when transmitting, FIG.
As shown in Figure 2, within the transmission pulse repetition period PRI, two transmission pulses of frequency f1 and f2 (pulse width 50 μm in the figure
s) is radiated continuously in a time division manner.

【0019】一方、受信系において、それぞれ図3
(b)に示すように互いに異なる周波数通過帯域(帯域
幅30MHz)を有する2つの帯域通過フィルタ12
5,126を用いて、上記送信パルスに対する反射信号
からf1±15MHz内の成分とf2±15MHz内の
成分を抽出する。そして、受信機127,128でf
1,f2の高周波信号により検波することでそれぞれの
地表面による偏移成分を抽出し、ビデオ信号に変換す
る。
On the other hand, in the receiving system, FIG.
Two band pass filters 12 having different frequency pass bands (bandwidth 30 MHz) as shown in (b).
5, 126 are used to extract the component within f1 ± 15 MHz and the component within f2 ± 15 MHz from the reflection signal for the transmission pulse. Then, at the receivers 127 and 128, f
By detecting the high-frequency signals 1 and f2, the shift components due to the respective ground surfaces are extracted and converted into video signals.

【0020】このようにして得られた2つのビデオ信号
は、多重されて、通信回線を通じて地上局に送られ、再
び分離された後、インコヒーレント加算される。すなわ
ち、2つのビデオ信号は共に同一地表面における反射偏
移成分であるから、両者をインコヒーレント加算処理す
ることでノイズ成分を抑圧することができる。このた
め、合成開口レーダ設計上のアジマスルック数を1/2
としても、従来方式の場合のルック数と同等の画質を有
するイメージ画像が得られる。
The two video signals thus obtained are multiplexed, sent to the ground station through the communication line, separated again, and incoherently added. That is, since the two video signals are both reflection shift components on the same ground surface, noise components can be suppressed by performing incoherent addition processing on both. Therefore, the azimuth look number in the synthetic aperture radar design is halved.
Even in this case, an image image having an image quality equivalent to the number of looks in the conventional method can be obtained.

【0021】このように、レーダ設計上のアジマスルッ
ク数を1/2とすれば、従来方式で設計されたレーダよ
り2倍のアジマス幅のアンテナを用いて同等の分解能を
得ることができる。このとき、(1)、(2)式から同
一分解能のもとで約2倍のスワス幅が得られ、設計上の
トレードオフからのがれることができる。表1に、従来
のアジマス2ルック1パルス方式と上記実施例のアジマ
ス1ルック2パルス方式との作用効果の違いを示す。
In this way, if the azimuth look number in the radar design is halved, it is possible to obtain the same resolution by using an antenna having a azimuth width twice that of the radar designed by the conventional method. At this time, from equations (1) and (2), a swath width of about twice can be obtained under the same resolution, and the design trade-off can be avoided. Table 1 shows the difference in action and effect between the conventional azimuth 2-look 1-pulse system and the azimuth 1-look 2-pulse system of the above embodiment.

【0022】[0022]

【表1】 [Table 1]

【0023】評価の欄に示すように、従来方式では、ア
ンテナサイズが小さいため、送信電力でカバーする必要
があり、所要電力が大きいという問題があり、機器の効
率向上及び電力供給能力の向上が要求されるのに対し、
実施例の方式では、アンテナサイズが大きくなるため軽
量化が必要であるが、所要電力は1/2でよいという効
果が得られる。但し、周波数の取得、受信系の小型化及
び軽量化が要求される。
As shown in the evaluation column, in the conventional method, since the antenna size is small, it is necessary to cover with the transmission power, and there is a problem that the required power is large. Therefore, the efficiency of the device and the power supply capability are improved. While required,
In the method of the embodiment, the antenna size is large, so that it is necessary to reduce the weight, but the required power is ½. However, it is required to obtain the frequency and reduce the size and weight of the receiving system.

【0024】尚、上記実施例では2パルスの場合で説明
したが、さらに多数のパルスを送信するようにしても同
様に処理することができ、さらにイメージ画像の画質向
上を図ることができる。また、電力についてもアンテナ
として大きなものを使用できるため、必要な送信電力を
小さくできるといった2次的なメリットもある。
In the above embodiment, the case of two pulses has been described, but the same processing can be performed by transmitting a larger number of pulses, and the image quality of the image image can be further improved. In addition, since a large antenna can be used for power, there is a secondary merit that required transmission power can be reduced.

【0025】ところで、上記実施例では互いに周波数の
異なる2つの送信パルスを放射するようにしたが、周波
数が連続的に変化する1つのチャープ信号(すなわち線
形周波数変調信号)をパルス化して送信し、受信側で2
つの周波数帯に分離し、インコヒーレント加算すること
で、上記実施例と同様の作用効果を得ることができる。
これは、いわばレンジ方向のルック加算として実現して
いる。勿論、受信側での分離数は2に限らず、ルック数
に応じて変更可能である。その他、この発明の要旨を逸
脱することなく種々変形しても、同様に実施可能である
ことはいうまでもない。
By the way, in the above embodiment, two transmission pulses having different frequencies are radiated, but one chirp signal (that is, a linear frequency modulation signal) whose frequency continuously changes is pulsed and transmitted, 2 on the receiving side
By separating into two frequency bands and performing incoherent addition, it is possible to obtain the same effect as the above embodiment.
This is realized as a so-called look addition in the range direction. Of course, the number of separations on the receiving side is not limited to 2, and can be changed according to the number of looks. Needless to say, various modifications can be made without departing from the scope of the present invention.

【0026】[0026]

【発明の効果】以上のようにこの発明によれば、宇宙航
行体搭載用として、システム要求によるルック数をアン
テナサイズ、分解能、スワス幅に関係なく実現すること
ができ、これによって分解能を維持したまま、アンテナ
サイズを拡大して小電力化を図ることのできる合成開口
レーダ装置を提供することができる。
As described above, according to the present invention, it is possible to realize the number of looks required by the system for mounting on a spacecraft regardless of the antenna size, the resolution and the swath width, thereby maintaining the resolution. As it is, it is possible to provide a synthetic aperture radar device capable of enlarging the antenna size and reducing power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る合成開口レーダ装置の一実施例
の構成を示すブロック回路図である。
FIG. 1 is a block circuit diagram showing a configuration of an embodiment of a synthetic aperture radar device according to the present invention.

【図2】上記合成開口レーダ装置が搭載される周回衛星
における各種パラメータを説明するための図である。
FIG. 2 is a diagram for explaining various parameters in an orbiting satellite equipped with the synthetic aperture radar device.

【図3】上記実施例の送信パルス波形及び帯域通過フィ
ルタ特性を説明するための図である。
FIG. 3 is a diagram for explaining a transmission pulse waveform and bandpass filter characteristics of the above-described embodiment.

【符号の説明】[Explanation of symbols]

11…アンテナ部、12…送受信部、121,122…
高周波発振器、123…送信機、124…タイミング制
御部、125,126…帯域通過フィルタ(BPF)、
127,128…受信機、13…信号処理部、131…
モード制御器、132,133…アナログ/デジタル変
換器(A/D)、134…多重器、14…通信系アンテ
ナ、15…通信系アンテナ、16…分離器、171,1
72…合成開口処理部、18…加算処理部、19…レー
ダ表示器。
11 ... Antenna part, 12 ... Transmitting / receiving part, 121, 122 ...
High frequency oscillator, 123 ... Transmitter, 124 ... Timing control unit, 125, 126 ... Band pass filter (BPF),
127, 128 ... Receiver, 13 ... Signal processing unit, 131 ...
Mode controller, 132, 133 ... Analog / digital converter (A / D), 134 ... Multiplexer, 14 ... Communication antenna, 15 ... Communication antenna, 16 ... Separator, 171, 1
72 ... Synthetic aperture processing unit, 18 ... Addition processing unit, 19 ... Radar display.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 互いに周波数の異なる複数の送信パルス
を連続して送信する送信系と、 前記複数の送信パルスに対する反射信号を個別に受信す
る複数の受信系と、 前記複数の受信系の各受信信号についてそれぞれ独立に
合成開口処理を行ってインコヒーレント加算する信号処
理部とを具備する合成開口レーダ装置。
1. A transmission system for continuously transmitting a plurality of transmission pulses having different frequencies, a plurality of reception systems for individually receiving reflected signals corresponding to the plurality of transmission pulses, and respective receptions of the plurality of reception systems. A synthetic aperture radar apparatus comprising: a signal processing unit that performs synthetic aperture processing on signals independently and performs incoherent addition.
【請求項2】 前記送信系及び複数の受信系は地球上を
移動する宇宙航行体に搭載され、前記信号処理部は地上
局に配置され、前記複数の受信系の各受信信号を通信回
線を通じて前記宇宙航行体から地上局へ転送し前記信号
処理部に入力するようにしたことを特徴とする請求項1
記載の合成開口レーダ装置。
2. The transmission system and the plurality of reception systems are mounted on a spacecraft that moves on the earth, the signal processing unit is arranged in a ground station, and each reception signal of the plurality of reception systems is transmitted through a communication line. 2. The signal is transferred from the spacecraft to a ground station and input to the signal processing unit.
The synthetic aperture radar device described.
【請求項3】 線形周波数変調信号をパルス化して送信
する送信系と、 前記送信パルスに対する反射信号を受信する受信系と、 この受信系の受信信号を複数の周波数帯で分離し、それ
ぞれ独立に合成開口処理を行ってインコヒーレント加算
する信号処理部とを具備する合成開口レーダ装置。
3. A transmission system for converting a linear frequency modulation signal into a pulse and transmitting the same, a reception system for receiving a reflection signal corresponding to the transmission pulse, and a reception signal of the reception system separated into a plurality of frequency bands, each of which is independent. A synthetic aperture radar device comprising: a signal processing unit that performs synthetic aperture processing and performs incoherent addition.
【請求項4】 前記送信系及び受信系は地球上を移動す
る宇宙航行体に搭載され、前記信号処理部は地上局に配
置され、前記複数の受信系の各受信信号を通信回線を通
じて前記宇宙航行体から地上局へ転送し前記信号処理部
に入力するようにしたことを特徴とする請求項3記載の
合成開口レーダ装置。
4. The transmission system and the reception system are mounted on a spacecraft that moves on the earth, the signal processing unit is arranged in a ground station, and each reception signal of the plurality of reception systems is transmitted through a communication line to the space. The synthetic aperture radar device according to claim 3, wherein the synthetic aperture radar device is configured to be transferred from a navigation body to a ground station and input to the signal processing unit.
JP6217525A 1994-09-12 1994-09-12 Synthetic-aperture radar apparatus Pending JPH0882676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6217525A JPH0882676A (en) 1994-09-12 1994-09-12 Synthetic-aperture radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6217525A JPH0882676A (en) 1994-09-12 1994-09-12 Synthetic-aperture radar apparatus

Publications (1)

Publication Number Publication Date
JPH0882676A true JPH0882676A (en) 1996-03-26

Family

ID=16705616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6217525A Pending JPH0882676A (en) 1994-09-12 1994-09-12 Synthetic-aperture radar apparatus

Country Status (1)

Country Link
JP (1) JPH0882676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519561A (en) * 2012-05-08 2015-07-09 イギリス国The Secretary Of State For Defence In Her Britannic Majesty’S Government Of The Uneted Kingdom Of Great Britain And Northern Ireland Synthetic aperture radar system
KR20160072358A (en) * 2014-12-12 2016-06-23 한국항공우주연구원 Multi-band sweep radar system and beam irradiation method for reflector therof
JP2021181941A (en) * 2020-05-19 2021-11-25 三菱電機株式会社 Synthetic aperture radar system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015519561A (en) * 2012-05-08 2015-07-09 イギリス国The Secretary Of State For Defence In Her Britannic Majesty’S Government Of The Uneted Kingdom Of Great Britain And Northern Ireland Synthetic aperture radar system
KR20160072358A (en) * 2014-12-12 2016-06-23 한국항공우주연구원 Multi-band sweep radar system and beam irradiation method for reflector therof
JP2021181941A (en) * 2020-05-19 2021-11-25 三菱電機株式会社 Synthetic aperture radar system

Similar Documents

Publication Publication Date Title
US5059966A (en) Synthetic aperture radar system
JP4665590B2 (en) Interferometric radar
US7394422B2 (en) Interferometer-type radar
CA2634506A1 (en) High-resolution synthetic aperture radar device and antenna for a high-resolution synthetic aperture radar device
US4885590A (en) Blind speed elimination for dual displaced phase center antenna radar processor mounted on a moving platform
JP2001108744A (en) Synthetic aperture radar system for aircraft or spacecraft
JPH06118166A (en) Synthetic aperture radar
RU2496120C2 (en) Multifunctional multirange scalable radar system for aircraft
JP2000009833A (en) Collision prevention radar apparatus for automobile
RU2429990C1 (en) Multifunction high-resolution radar with active phase-aerial for manned aircraft and drones
JP2751901B2 (en) Satellite-based synthetic aperture radar
JPH0882676A (en) Synthetic-aperture radar apparatus
EP2901174B1 (en) Frequency modulated continuous waveform (fmcw) radar
JPS63131090A (en) Synthetic aperture radar for moving target
JPS60170777A (en) Synthetic aperture radar
JPH01314984A (en) Radar
IL295072A (en) Radio system with multiple antenna arrays and adaptive waveforms
KR102212468B1 (en) Apparatus for generating drone ISAR image and method for generating micro-Doppler compensated image
KR102598887B1 (en) Receiver for space surveillance radar, and method for processing received signal
JPH0429992B2 (en)
JPH06186321A (en) Multi-beam radar device
CN116299451A (en) Forward-downward-looking three-dimensional terrain imaging radar system and method
RU2234720C1 (en) Radar system with retuning of carrier frequency in mode of moving target selection
JP2001194456A (en) Composite aperture radar
JPH0410996B2 (en)