JPH0882633A - Near field microscope - Google Patents

Near field microscope

Info

Publication number
JPH0882633A
JPH0882633A JP21867594A JP21867594A JPH0882633A JP H0882633 A JPH0882633 A JP H0882633A JP 21867594 A JP21867594 A JP 21867594A JP 21867594 A JP21867594 A JP 21867594A JP H0882633 A JPH0882633 A JP H0882633A
Authority
JP
Japan
Prior art keywords
waveguide
observed
light
opening
field microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21867594A
Other languages
Japanese (ja)
Other versions
JP3189244B2 (en
Inventor
Kenji Fukuzawa
健二 福澤
Akamine Shinya
アカミネ シンヤ
Hiroki Kuwano
博喜 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21867594A priority Critical patent/JP3189244B2/en
Publication of JPH0882633A publication Critical patent/JPH0882633A/en
Application granted granted Critical
Publication of JP3189244B2 publication Critical patent/JP3189244B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

PURPOSE: To increase a degree of freedom of measurement by a method wherein a light from a light source is introduced by a plate-shaped waveguide existing on a specimen table to emit on an object to be observed via an opening on an under face of a tip thereof and relative positions of the waveguide and a photodetector with respect to the specimen table is varied by means of a scanning mechanism. CONSTITUTION: A waveguide 15 is placed above a specimen table 2 by being inclined and the upper end section thereof is supported by a scanning mechanism 16 that is constituted of an assembly of piezoelectric elements and is capable of controlling the movement of the waveguide in the triaxial directions with respect to the specimen table 2. The piezoelectric elements scan the waveguide 15 with the accuracy of nm in accordance with voltages. End faces of a core 15a and a clad 15b are exposed in an upper end section of the waveguide 15 and a laser light 3 from a light source 5 is incident thereto via a lens 20. The light 3 passes through the core 15b and a part thereof emits on an object 1 to be observed via an opening 9 in an under face of the other end section as an evanescent light 3a. An intensity of the reflection light 3c on the surface is measured by means of a photodetector 4. In the above constitution, it is possible to freely set a position and a shape of the opening 9 so that the incident angle to the object 1 to be observed can be freely set.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は汎用的でかつ解像度の高
い光学顕微鏡に係わり、特に近接視野顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a general-purpose and high-resolution optical microscope, and more particularly to a near-field microscope.

【0002】[0002]

【従来の技術】通常の光学顕微鏡において、空間分解能
は光の回折限界で制限され、一般に分解能は、おおよそ
(光の波長)/(レンズの開口数)で与えられ、波長
(λ)のオーダであることは良く知られている。この限
界を打破する手段として、近接視野顕微鏡がある。
2. Description of the Related Art In an ordinary optical microscope, the spatial resolution is limited by the diffraction limit of light, and the resolution is generally given by (wavelength of light) / (numerical aperture of lens), and is on the order of wavelength (λ). It is well known that there is. A near-field microscope is available as a means for overcoming this limitation.

【0003】従来の近接視野顕微鏡は、図5に示される
ような光透過型構造となっている。図5は近接視野顕微
鏡の要部を示す模式図である。同図に示すように、被観
測物体1は試料台2に載置される構造となる。前記試料
台2の下方には前記被観測物体1および試料台2を透過
した透過光3bを検出する光検出器4が配設されてい
る。また、前記試料台2の上方には光源5から発光され
た光3を前記被観測物体1に案内する光ファイバ6が配
設されている。前記光ファイバ6は、光ファイバ6と被
観測物体1の相対的位置関係を変化させる走査機構のア
ーム7に支持されている。前記試料台2に対峙する光フ
ァイバ6の先端は先鋭化されているとともに、先端を除
く先鋭部分を被覆する金属からなる被覆体8で覆われて
いる。
A conventional near-field microscope has a light transmission type structure as shown in FIG. FIG. 5 is a schematic view showing a main part of the near-field microscope. As shown in the figure, the observed object 1 has a structure to be mounted on the sample table 2. Below the sample table 2, a photodetector 4 for detecting the transmitted light 3b transmitted through the observed object 1 and the sample table 2 is arranged. An optical fiber 6 for guiding the light 3 emitted from the light source 5 to the observed object 1 is arranged above the sample table 2. The optical fiber 6 is supported by an arm 7 of a scanning mechanism that changes the relative positional relationship between the optical fiber 6 and the observed object 1. The tip of the optical fiber 6 facing the sample table 2 is sharpened, and is covered with a coating 8 made of metal that covers the sharpened portion excluding the tip.

【0004】前記被覆体8で覆われない光ファイバ6の
先端部分は開口9を形成するが、この開口9は前記光源
5の中心波長(λ)以下の開口径を有するようになって
いる。これによって、前記開口9から光3が被観測物体
1に対して射出されることになる。
The tip portion of the optical fiber 6 which is not covered with the covering 8 forms an opening 9, which has a diameter not larger than the central wavelength (λ) of the light source 5. As a result, the light 3 is emitted from the opening 9 to the observed object 1.

【0005】また、前記被観測物体1と開口9との間隔
(a)は、前記λ以下の間隔に設定されて近接視野像を
得るように構成される。
The distance (a) between the object 1 to be observed and the aperture 9 is set to be equal to or less than λ so as to obtain a near field image.

【0006】このような近接視野顕微鏡においては、前
記光源5から発光された光3は光ファイバ6に案内(導
波)され、前記開口9からエバネッセント光3aとして
被観測物体1に射出される。光検出器4においては、被
観測物体1の光学的性質によって変調された透過光3b
の光強度を検出する。
In such a near-field microscope, the light 3 emitted from the light source 5 is guided (guided) to the optical fiber 6 and emitted from the opening 9 as the evanescent light 3a to the observed object 1. In the photodetector 4, the transmitted light 3b modulated by the optical properties of the observed object 1
Detect the light intensity of.

【0007】走査機構によって前記アーム7に支持され
た光ファイバ6は、被観測物体1に対して2次元的に走
査されることから、図示しない制御装置によって被観測
物体1の2次元像(近接視野像)が得られる。
Since the optical fiber 6 supported by the arm 7 by the scanning mechanism is two-dimensionally scanned with respect to the observed object 1, a two-dimensional image of the observed object 1 (proximity A visual field image) is obtained.

【0008】前記近接視野顕微鏡においては、分解能は
前記開口9の径にほぼ等しいので、回折限界を打破する
分解能が得られることで、近年注目を集めている。この
例では、光源に微小開口を利用したが、試料台2の下方
の光検出器4を光源とし、光ファイバ6に接続される光
源5を光検出器とした微小光検出器の構成も同様の効果
があることが知られている。これらの技術については、
Science,(1992),Vol.257,p189 に記載されている。
In the near-field microscope, the resolution is almost equal to the diameter of the aperture 9, so that the resolution that can overcome the diffraction limit can be obtained, and thus has been attracting attention in recent years. In this example, the minute aperture is used as the light source, but the configuration of the minute photodetector in which the photodetector 4 below the sample table 2 is the light source and the light source 5 connected to the optical fiber 6 is the photodetector is also the same. Is known to have an effect. For these technologies,
Science, (1992), Vol.257, p189.

【0009】一方、被観測物体の表面を観察する技術と
して原子間力顕微鏡が知られている。たとえば、電子情
報通信学会発行「電子情報通信学会技術研究報告」Vol.
93 No.327 、p31 〜p36 には、原子間力顕微鏡によって
半導体表面を溶液中で観察する技術が記載されている。
On the other hand, an atomic force microscope is known as a technique for observing the surface of an object to be observed. For example, the Institute of Electronics, Information and Communication Engineers Technical Report, Vol.
93 No.327, p31 to p36 describes a technique for observing a semiconductor surface in a solution by an atomic force microscope.

【0010】また、移動物体の測距技術として、移動物
体にレーザ光を照射するとともに、反射光のレーザスポ
ットの位置を位置検出素子(2分割形フォトダイオー
ド)で検出して、移動物体の移動距離を検出する「光て
こ法」と呼ばれる測距法が、J.Vac.Sci.(1990),Vol.A8
(4),p3386に記載されている。この「光てこ法」によれ
ば、nm以下の精度で測距が可能である。
As a distance measuring technique for a moving object, the moving object is moved by irradiating the moving object with laser light and detecting the position of the laser spot of the reflected light with a position detecting element (two-division photodiode). A distance measuring method called "optical lever method" for detecting distance is J. Vac. Sci. (1990), Vol. A8.
(4), p3386. According to this "optical lever method", distance measurement can be performed with an accuracy of nm or less.

【0011】[0011]

【発明が解決しようとする課題】前記のような従来の近
接視野顕微鏡では以下のような問題点があった。前記光
ファイバの先端は、光ファイバを引き延ばすかあるいは
化学エッチングするかによって先鋭化しているが、これ
らの方法では、先端形状形成の制御性が乏しく、得られ
る形状の自由度が低くなり、原理的に軸対称のものしか
得られないことになる。光ファイバは円柱体であると言
う幾何学的制約から、光ファイバの中心軸は被観測物体
の面に対して垂直に近い方向しか取ることができず、入
射角を大きく変化させることができなかった。すなわ
ち、従来の近接視野顕微鏡では、被観測物体の透過光を
検出する配置しかとることができない故に被観測物体は
透明なものである必要があり、汎用性に乏しかった。
The conventional near-field microscope as described above has the following problems. The tip of the optical fiber is sharpened depending on whether the optical fiber is stretched or chemically etched. However, in these methods, the controllability of the tip shape formation is poor, the degree of freedom of the obtained shape is low, and in principle, Only axisymmetric ones can be obtained. Due to the geometrical constraint that the optical fiber is a cylindrical body, the central axis of the optical fiber can only take a direction close to perpendicular to the surface of the observed object, and the incident angle cannot be changed greatly. It was That is, in the conventional near-field microscope, the observed object needs to be transparent because it can only be arranged to detect the transmitted light of the observed object, and thus it has poor versatility.

【0012】また、前記光ファイバと被観測物体の距離
をλ以下と精密に制御する必要があるが、現在提案され
ているものはトンネル電流によるものである。しかし、
トンネル電流によるものでは、被観測物体として導電体
でなければならず、光学的観察のニーズは誘電体あるい
は生体といった不導体が多く、近接視野顕微鏡の制御に
は向いていない。
Further, it is necessary to precisely control the distance between the optical fiber and the object to be observed to be λ or less, but the one that is currently proposed is due to the tunnel current. But,
In the case of the tunnel current, the object to be observed must be a conductor, and there are many nonconductors such as a dielectric or a living body for optical observation, which is not suitable for controlling a near-field microscope.

【0013】そこで、被観測物体と光ファイバの間に働
く原子間力を利用する試みがあるが、原子間力による光
ファイバのたわみの測定には、光ファイバを曲げなけれ
ばならず、光ファイバの曲げ損失が生じ、SN比がさら
に悪くなってしまうため、実用に至っていない。
Therefore, there is an attempt to utilize the atomic force acting between the object to be observed and the optical fiber. However, in order to measure the deflection of the optical fiber due to the atomic force, the optical fiber must be bent. Bending loss occurs and the SN ratio is further deteriorated, which is not practical.

【0014】本発明の目的は、近接視野顕微鏡の測定の
自由度を増大できる近接視野顕微鏡を提供することにあ
る。
An object of the present invention is to provide a near field microscope capable of increasing the degree of freedom of measurement of the near field microscope.

【0015】また、本発明の他の目的は、被観測物体の
表面とエバネッセント光を射出する開口との距離を原子
間力を利用して制御できるSN比の高い近接視野顕微鏡
を提供することにある。
Another object of the present invention is to provide a near-field microscope having a high SN ratio, which can control the distance between the surface of the object to be observed and the opening for emitting the evanescent light by utilizing the atomic force. is there.

【0016】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述及び添付図面によって明らか
にする。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0017】[0017]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば、下
記のとおりである。すなわち、本発明の近接視野顕微鏡
は、被観測物体を載置する試料台と、前記試料台の上方
に傾斜して延在するとともに光源からの光を導き先端下
面側の開口から前記被観測物体に対して光を射出する導
波体と、前記被観測物体からの光の強度を検出する光検
出器と、前記試料台に対して前記導波体や光検出器から
なる光強度を測定する手段の相対的な位置関係を変える
走査機構と、前記導波体の移動距離を測定して前記被観
測物体と前記開口との距離を検出する測距機構とを有す
るとともに、前記開口の開口径は前記光の波長以下に形
成され、かつ前記被観測物体と前記開口の距離が前記光
の波長以下に設定されるように構成されている。また、
前記導波体は平板形の導波体となるとともに光導波路が
設けられている。
The outline of the representative ones of the inventions disclosed in the present application will be briefly described as follows. That is, the near-field microscope of the present invention includes a sample table on which an object to be observed is placed, and an object to be observed from an opening on the lower surface side of the tip that extends obliquely above the sample table and guides light from a light source. A waveguide that emits light, a photodetector that detects the intensity of light from the object to be observed, and a sample stage that measures the light intensity of the waveguide and the photodetector. A scanning mechanism for changing the relative positional relationship of the means, and a distance measuring mechanism for measuring the moving distance of the waveguide to detect the distance between the object to be observed and the opening, and the opening diameter of the opening. Is formed to be equal to or less than the wavelength of the light, and the distance between the object to be observed and the opening is set to be equal to or less than the wavelength of the light. Also,
The waveguide is a plate-shaped waveguide and an optical waveguide is provided.

【0018】本発明の他の実施例による近接視野顕微鏡
は、前記導波体と被観測物体間に電場を印加する手段
と、前記導波体と被観測物体間に流れるトンネル電流を
測定する手段を有する構造となっている。
A near field microscope according to another embodiment of the present invention comprises means for applying an electric field between the waveguide and the object to be observed, and means for measuring a tunnel current flowing between the waveguide and the object to be observed. It has a structure having.

【0019】本発明の他の実施例による近接視野顕微鏡
は、前記導波体と被観測物体間に働く原子間力を測定す
る手段を有する構造となっている。
A near-field microscope according to another embodiment of the present invention has a structure having means for measuring the atomic force acting between the waveguide and the object to be observed.

【0020】[0020]

【作用】上記した手段によれば、本発明の近接視野顕微
鏡においては、平板形の導波体の先端下面に部分的に開
口を形成した構造となっていることから、開口の形状を
自由に設定できる。
According to the above-mentioned means, the near-field microscope of the present invention has a structure in which an opening is partially formed on the lower surface of the tip of a plate-shaped waveguide, so that the shape of the opening can be freely set. Can be set.

【0021】また、本発明の近接視野顕微鏡において
は、前記導波体は傾斜した片持梁構造となるとともに、
走査機構によってその位置度を自由に設定できるため、
被観測物体に対して自由な入射角を得ることができる。
Further, in the near-field microscope of the present invention, the waveguide has an inclined cantilever structure, and
Since the position degree can be freely set by the scanning mechanism,
It is possible to obtain a free incident angle with respect to the observed object.

【0022】また、本発明の近接視野顕微鏡において
は、前記導波体は傾斜した片持梁構造となるとともに、
走査機構によって導波体の位置制御を行っても、導波体
の変形はなく信号強度の損失を来さなくなる。
Further, in the near-field microscope of the present invention, the waveguide has an inclined cantilever structure, and
Even if the position of the waveguide is controlled by the scanning mechanism, the waveguide is not deformed and the signal strength is not lost.

【0023】また、本発明の近接視野顕微鏡は、前記の
ように被観測物体に対して自由な入射角を設定できるこ
とから、光を被観測物体に透過する以外に反射させるこ
とができるため被観測物体は透明体以外のものの観測も
可能となる。
In the near-field microscope of the present invention, since the incident angle can be freely set with respect to the object to be observed as described above, light can be reflected in addition to being transmitted to the object to be observed. Objects other than transparent objects can be observed.

【0024】また、本発明の近接視野顕微鏡は、被観測
物体と開口との間隔を光てこ法によってnmオーダで制
御でき、安定した近接視野像を得ることができる。ま
た、光てこ法では、導波体の変位を測定するとともに、
片持ち梁のバネ定数をk、変位をdとするとF≒kdの
関係を用いて片持ち梁と被観測物体に働く原子間力Fが
得られる。前記導波体と被観測物体間の原子間力が一定
となるように制御しながら走査することにより、被観測
物体の凹凸像も同時に得られる。
Further, the near-field microscope of the present invention can control the distance between the object to be observed and the aperture on the order of nm by the optical lever method, and can obtain a stable near-field image. In the optical lever method, the displacement of the waveguide is measured,
If the spring constant of the cantilever is k and the displacement is d, the atomic force F acting on the cantilever and the object to be observed can be obtained using the relationship of F≈kd. By scanning while controlling so that the interatomic force between the waveguide and the object to be observed becomes constant, a concavo-convex image of the object to be observed can also be obtained at the same time.

【0025】本発明の他の実施例による近接視野顕微鏡
は、前記導波体と被観測物体間に電場を印加する手段
と、前記導波体と被観測物体間に流れるトンネル電流を
測定する手段を有する構造となっていることから、トン
ネル電流の強度を一定に制御することにより、前記導波
体と被観測物体間の距離をnmオーダで制御できかつ制
御信号から被観測物体の凹凸像も同じく得られる。
A near-field microscope according to another embodiment of the present invention comprises means for applying an electric field between the waveguide and the object to be observed, and means for measuring a tunnel current flowing between the waveguide and the object to be observed. Therefore, by controlling the intensity of the tunnel current to be constant, the distance between the waveguide and the object to be observed can be controlled in the nm order, and the unevenness image of the object to be observed can also be obtained from the control signal. Also obtained.

【0026】[0026]

【実施例】以下図面を参照して本発明の一実施例につい
て説明する。図1は本発明の一実施例による近接視野顕
微鏡の要部を示す模式図である。以下、実施例を説明す
るための全図において、同一機能を有するものは同一符
号を付け、その繰り返しの説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a main part of a near-field microscope according to an embodiment of the present invention. In all the drawings for explaining the embodiments, the same reference numerals are given to those having the same functions, and the repeated description thereof will be omitted.

【0027】本発明の近接視野顕微鏡は、被観測物体1
の表面で反射する反射光を検出構造となっている。同図
において、2は上面(主面)に被観測物体1を載置する
試料台である。被観測物体1は、導体,不導体,生体の
一部等である。
The near-field microscope of the present invention comprises an object 1 to be observed.
It has a structure for detecting the reflected light reflected on the surface of the. In the figure, 2 is a sample table on which the observed object 1 is placed on the upper surface (main surface). The observed object 1 is a conductor, a nonconductor, a part of a living body, or the like.

【0028】試料台2の上方には、傾斜して延在する平
板形の導波体15が延在している。この導波体15の上
端部分、すなわち、同図の右端部分は、前記試料台2に
対して3軸方向に移動制御可能な走査機構16によって
支持されている。前記走査機構16はピエゾ素子を組み
込んでなる走査機構であって、前記試料台2の面に沿う
平面(XY方向)方向および接近離反するZ方向にnm
オーダで移動制御が可能となっている。走査機構16
は、具体的には下記のような構造となっている。走査機
構は、たとえば、図3に示すように、3つのピエゾ素子
16a,16b,16cを、XYZ方向に組み合わせる
構造となるとともに、その駆動用の電源とからなってい
る。ピエゾ素子は電圧によってnmの精度で導波体15
を走査させることが可能である。
A flat plate-shaped waveguide 15 extending obliquely extends above the sample table 2. The upper end portion of the waveguide 15, that is, the right end portion in the figure, is supported by a scanning mechanism 16 capable of movement control in three axial directions with respect to the sample table 2. The scanning mechanism 16 is a scanning mechanism that incorporates a piezo element, and nm in the plane (XY direction) direction along the surface of the sample table 2 and in the Z direction approaching and separating.
Movement control is possible on the order. Scanning mechanism 16
Has the following specific structure. The scanning mechanism has, for example, as shown in FIG. 3, a structure in which three piezo elements 16a, 16b, and 16c are combined in the XYZ directions, and a power supply for driving the piezo elements. The piezo element is a waveguide 15 with voltage accuracy of nm.
Can be scanned.

【0029】前記導波体15は、厚さ約1μmのSiO
Nからなるコア15aと、このコア15aの表面の上面
を覆うように設けられた厚さ約0.45μmのSiO2
膜からなるクラッド15bとからなっている。また、前
記導波体15の下端部分、すなわち同図の左端部分は、
光を透過しないように厚さ50nm程度のアルミニウム
等からなる金属膜17が設けられている。また、前記導
波体15の先端下面の一部は、集束イオンビーム処理に
よって部分的に研磨され、図2に示すように、導波体1
5の先端下面には、部分的にコア15aが露出し、光3
を被観測物体1に対して射出するための開口9が設けら
れている。前記コア15aは光を案内する導波路を形成
している。
The waveguide 15 is made of SiO 2 having a thickness of about 1 μm.
A core 15a made of N and SiO2 having a thickness of about 0.45 .mu.m provided so as to cover the upper surface of the surface of the core 15a.
And a clad 15b made of a film. Further, the lower end portion of the waveguide 15, that is, the left end portion in the figure, is
A metal film 17 made of aluminum or the like having a thickness of about 50 nm is provided so as not to transmit light. Further, a part of the lower surface of the tip of the waveguide 15 is partially polished by the focused ion beam treatment, and as shown in FIG.
5, the core 15a is partially exposed on the lower surface of the tip of
There is provided an opening 9 for emitting the light to the observed object 1. The core 15a forms a waveguide for guiding light.

【0030】一方、前記導波体15の上端は、コア15
aおよびクラッド15bの端面が露出している。そし
て、前記コア15aの端面には、結合用レンズ20を介
して、レーザ光からなる光源5から発光される光3が集
束されるように構成されている。前記コア15aの端か
らコア15a内に入射した光3は、コア15aによって
形成された導波路を通り、一部の光3は開口9から被観
測物体1の表面に射出される。前記開口9は、光源5の
波長(λ)以下に設定されている。これによって、前記
開口9からは、空間的に開口径のオーダで急激に減衰す
るエバネッセント光3aが射出されるようになる。
On the other hand, the upper end of the waveguide 15 has a core 15
The end faces of a and the clad 15b are exposed. The light 3 emitted from the light source 5 made of laser light is focused on the end surface of the core 15a via the coupling lens 20. The light 3 incident on the inside of the core 15a from the end of the core 15a passes through the waveguide formed by the core 15a, and a part of the light 3 is emitted from the opening 9 to the surface of the observed object 1. The opening 9 is set to a wavelength (λ) of the light source 5 or less. As a result, the evanescent light 3a that is abruptly attenuated spatially on the order of the opening diameter is emitted from the opening 9.

【0031】また、前記導波体15は傾斜しているこ
と、また、前記走査機構16によって制御されているこ
とから、走査機構16による導波体15の制御によって
前記エバネッセント光3aの入射角は所望の角度とする
ことができる。
Since the waveguide 15 is inclined and is controlled by the scanning mechanism 16, the incident angle of the evanescent light 3a is controlled by controlling the waveguide 15 by the scanning mechanism 16. It can be at any desired angle.

【0032】また、前記エバネッセント光3aは、被観
測物体1の表面で反射し、一部の反射光3cは、図1に
示すように、光検出器(光強度測定器)4に到達し、そ
の光強度を測定されることになる。
The evanescent light 3a is reflected on the surface of the object 1 to be observed, and a part of the reflected light 3c reaches a photodetector (light intensity measuring device) 4, as shown in FIG. The light intensity will be measured.

【0033】近接視野顕微鏡においては、被観測物体1
と前記開口9との距離(a)は、前記λ以下の間隔に設
定されて近接視野像を得るように構成される。このた
め、前記導波体15の測距機構の精度はnm程度と高い
ものが要求される。そこで、本実施例では、前記光てこ
法を採用している。すなわち、前記導波体15の平坦な
面に、レーザ光源30から発光されるレーザ光31を照
射するとともに、反射光32を位置検出素子33で検出
する。位置検出素子33としては、特に限定はされない
が、2分割フォトダイオードが使用される。これによっ
て、被観測物体1と開口9との距離の変化をnmオーダ
で検出することが可能となる。
In the near-field microscope, the observed object 1
The distance (a) between the aperture 9 and the aperture 9 is set to be equal to or less than λ so as to obtain a near-field image. Therefore, the accuracy of the distance measuring mechanism of the waveguide 15 is required to be as high as nm. Therefore, in this embodiment, the optical lever method is adopted. That is, the flat surface of the waveguide 15 is irradiated with the laser light 31 emitted from the laser light source 30, and the reflected light 32 is detected by the position detecting element 33. The position detecting element 33 is not particularly limited, but a two-divided photodiode is used. This makes it possible to detect a change in the distance between the object 1 to be observed and the aperture 9 on the order of nm.

【0034】なお、前記光源5および結合用レンズ20
等からなる光源光学系は、前記導波体15に一体的に接
続されている。また、光てこ法を構成する各部や光検出
器4も前記走査機構16と一定の関係を維持するような
連係構造となっている。
Incidentally, the light source 5 and the coupling lens 20.
The light source optical system including the above is integrally connected to the waveguide 15. Further, each part constituting the optical lever method and the photodetector 4 also have a linkage structure which maintains a constant relationship with the scanning mechanism 16.

【0035】以上のことから、前記走査機構16によっ
て、前記試料台2に対して前記導波体15や光強度測定
器からなるなる光強度を測定する手段の相対的な位置関
係を自由に変えることができる。
From the above, the relative position of the means for measuring the light intensity, which is composed of the waveguide 15 and the light intensity measuring device, is freely changed with respect to the sample stage 2 by the scanning mechanism 16. be able to.

【0036】このような近接視野顕微鏡においては、前
記被観測物体1と前記開口9の距離を前記光3の波長以
下に設定しながら近接視野像を得る。
In such a near-field microscope, a near-field image is obtained while setting the distance between the object to be observed 1 and the opening 9 to be the wavelength of the light 3 or less.

【0037】このような近接視野顕微鏡によれば、以下
の効果を奏する。
According to such a near field microscope, the following effects can be obtained.

【0038】(1)本発明の近接視野顕微鏡において
は、平板形の導波体の先端下面に部分的に開口を形成し
た構造となっていることから、従来の円柱状の光ファイ
バの先端を先鋭化したものによる開口に比較して、開口
の位置,形状を自由に設定できるという効果が得られ
る。
(1) Since the near-field microscope of the present invention has a structure in which an opening is partially formed on the lower surface of the tip of a plate-shaped waveguide, the tip of a conventional cylindrical optical fiber is Compared to the sharpened opening, the position and shape of the opening can be freely set.

【0039】(2)本発明の近接視野顕微鏡において
は、前記導波体は傾斜した片持梁構造となるとともに、
走査機構によってその位置度を自由に制御できるため、
被観測物体に対して自由な入射角を得ることができると
いう効果が得られる。
(2) In the near field microscope of the present invention, the waveguide has an inclined cantilever structure, and
Since the position degree can be freely controlled by the scanning mechanism,
The effect that a free incident angle can be obtained with respect to the observed object is obtained.

【0040】(3)本発明の近接視野顕微鏡において
は、前記導波体は傾斜した片持梁構造となるとともに、
走査機構によって導波体の位置制御を行っても、導波体
の変形はなく、信号強度の損失を来さなくなるという効
果が得られる。
(3) In the near field microscope of the present invention, the waveguide has an inclined cantilever structure, and
Even if the position of the waveguide is controlled by the scanning mechanism, the waveguide is not deformed, and the effect of preventing the loss of signal strength can be obtained.

【0041】(4)本発明の近接視野顕微鏡は、前記の
ように被観測物体に対して自由な入射角を設定できるこ
とから、光を被観測物体に透過する以外に反射させるこ
とができるため、被観測物体は透明体以外のものでも良
く、汎用性に富んだものとなるという効果が得られる。
(4) Since the near-field microscope of the present invention can set a free incident angle to the object to be observed as described above, it can reflect light in addition to transmitting it to the object to be observed. The object to be observed may be something other than a transparent body, and the effect of becoming versatile is obtained.

【0042】(5)本発明の近接視野顕微鏡は、被観測
物体と開口との間隔を光てこ法によってnmオーダで制
御できるため、安定した近接視野像を得ることができる
という効果が得られる。
(5) In the near-field microscope of the present invention, the distance between the object to be observed and the aperture can be controlled on the order of nm by the optical lever method, so that a stable near-field image can be obtained.

【0043】(6)本発明の近接視野顕微鏡は、光てこ
法により導波体と被観測物体に働く原子間力を測定する
ことにより、近接視野像と同時に原子間力像を得ること
ができ、両者の比較によってより高精度な被観測物体の
表面状態を検出することができるという効果が得られ
る。
(6) The near-field microscope of the present invention can obtain an atomic force image simultaneously with a near-field image by measuring the atomic force acting on the waveguide and the object to be observed by the optical lever method. The effect of being able to detect the surface state of the observed object with higher accuracy can be obtained by comparing the two.

【0044】以上、本発明者によってなされた発明を、
前記実施例に基づき具体的に説明したが、本発明は、前
記実施例に限定されるものではなく、その要旨を逸脱し
ない範囲において種々変更可能であることは勿論であ
る。
As described above, the invention made by the present inventor is
Although the present invention has been specifically described based on the above-mentioned embodiments, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention.

【0045】たとえば、図4は、光てこ法を用いること
なく、前記導波体15と被観測物体1間に電場を印加す
る手段(電圧印加手段41)と、前記導波体15と被観
測物体1間に流れるトンネル電流を測定する手段(電流
計42)を有する構成となり、前記導波体15と被観測
物体1間の間隔の精密な制御とともに、被観測物体お凹
凸像も得られると言う効果を有する。
For example, in FIG. 4, means (voltage applying means 41) for applying an electric field between the waveguide 15 and the object to be observed 1 without using the optical lever method, the waveguide 15 and the object to be observed. It is configured to have a means (ammeter 42) for measuring a tunnel current flowing between the objects 1, and it is possible to precisely control the distance between the waveguide 15 and the object 1 to be observed and obtain an uneven image of the object to be observed. Has the effect of saying.

【0046】なお、本発明による前記実施例の場合に
は、いずれも被観測物体の表面で光が反射する構造につ
いて説明したが、被観測物体を透過する光の強度を検出
して近接視野像を得る構造にも適用できることは勿論の
ことである。
In each of the above-mentioned embodiments according to the present invention, the structure in which light is reflected on the surface of the object to be observed has been described. However, the intensity of light transmitted through the object to be observed is detected to obtain a near-field image. Of course, it can be applied to the structure for obtaining.

【0047】[0047]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。本発明の近接視野顕微鏡は、被観測
物体に対面する光を導波する探針を平板形導波体とし、
かつ斜めに延在させて片持梁構造としてあることから、
被観測物体に対する光の入射角を自由に設定でき、所望
の近接視野像を得ることができる。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows. The near-field microscope of the present invention uses a flat waveguide as a probe for guiding light that faces an object to be observed,
And because it has a cantilever structure that extends diagonally,
The incident angle of light with respect to the observed object can be freely set, and a desired near-field image can be obtained.

【0048】また、本発明の近接視野顕微鏡は、反射光
を検出して被観測物体の表面を検出するため、光を透過
しない物質をも被観測物体とすることができ、汎用性に
優れたものとなる。
Further, since the near-field microscope of the present invention detects the reflected light to detect the surface of the object to be observed, a substance that does not transmit light can be used as the object to be observed, and is excellent in versatility. Will be things.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による近接視野顕微鏡の要部
を示す模式図である。
FIG. 1 is a schematic diagram showing a main part of a near-field microscope according to an embodiment of the present invention.

【図2】本実施例による近接視野顕微鏡における導波体
の要部を示す模式図である。
FIG. 2 is a schematic diagram showing a main part of a waveguide in the near-field microscope according to the present embodiment.

【図3】本実施例による走査機構の要部を示す模式図で
ある。
FIG. 3 is a schematic view showing a main part of a scanning mechanism according to this embodiment.

【図4】本発明の他の実施例による近接視野顕微鏡の要
部を示す模式図である。
FIG. 4 is a schematic view showing a main part of a near-field microscope according to another embodiment of the present invention.

【図5】従来の近接視野顕微鏡の要部を示す模式図であ
る。
FIG. 5 is a schematic diagram showing a main part of a conventional near-field microscope.

【符号の説明】[Explanation of symbols]

1…被観測物体、2…試料台、3…光、3a…エバネッ
セント光、3b…透過光、4…光検出器、5…光源、6
…光ファイバ、7…アーム、8…被覆体、9…開口、1
5…導波体、15a…コア、15b…クラッド、16…
走査機構、16a,16b,16c…ピエゾ素子、17
…金属膜、20…結合用レンズ、30…レーザ光源、3
1…レーザ光、32…反射光、33…位置検出素子。
1 ... Observed object, 2 ... Sample stage, 3 ... Light, 3a ... Evanescent light, 3b ... Transmitted light, 4 ... Photodetector, 5 ... Light source, 6
... optical fiber, 7 ... arm, 8 ... coating, 9 ... aperture, 1
5 ... Waveguide, 15a ... Core, 15b ... Clad, 16 ...
Scanning mechanism, 16a, 16b, 16c ... Piezo element, 17
... metal film, 20 ... coupling lens, 30 ... laser light source, 3
1 ... Laser light, 32 ... Reflected light, 33 ... Position detection element.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被観測物体を載置する試料台と、前記試
料台の上方に傾斜して延在するとともに光源からの光を
導き下面側の開口から前記被観測物体に対して光を射出
する導波体と、前記被観測物体からの光の強度を検出す
る光検出器と、前記試料台に対して前記導波体や光検出
器からなるなる光強度を測定する手段の相対的な位置関
係を変える走査機構と、前記導波体の移動距離を測定し
て前記被観測物体と前記開口との距離を検出する測距機
構とを有するとともに、前記開口の開口径は前記光の波
長以下に形成され、かつ前記被観測物体と前記開口の距
離が前記光の波長以下に設定されるように構成されてな
ることを特徴とする近接視野顕微鏡。
1. A sample table on which an object to be observed is placed, and a sample table that extends obliquely above the sample table and guides light from a light source and emits the light to the object to be observed from an opening on the lower surface side. A waveguide, a photodetector for detecting the intensity of light from the object to be observed, and a means for measuring the light intensity of the waveguide and the photodetector relative to the sample stage. It has a scanning mechanism that changes the positional relationship and a distance measuring mechanism that measures the moving distance of the waveguide to detect the distance between the object to be observed and the opening, and the opening diameter of the opening is the wavelength of the light. A near-field microscope, which is formed below and is configured such that a distance between the object to be observed and the opening is set to be equal to or less than the wavelength of the light.
【請求項2】 前記導波体は平板形の導波体となるとと
もに光導波路が設けられていることを特徴とする請求項
1記載の近接視野顕微鏡。
2. The near-field microscope according to claim 1, wherein the waveguide is a plate-shaped waveguide and an optical waveguide is provided.
【請求項3】 前記導波体と被観測物体間に電場を印加
する手段と、前記導波体と被観測物体間に流れるトンネ
ル電流を測定する手段を有することを特徴とする請求項
1記載の近接視野顕微鏡。
3. The apparatus according to claim 1, further comprising means for applying an electric field between the waveguide and the object to be observed, and means for measuring a tunnel current flowing between the waveguide and the object to be observed. Near-field microscope.
【請求項4】 前記導波体と被観測物体間に働く原子間
力を測定する手段を有することを特徴とする請求項1記
載の近接視野顕微鏡。
4. The near-field microscope according to claim 1, further comprising means for measuring an interatomic force acting between the waveguide and the object to be observed.
JP21867594A 1994-09-13 1994-09-13 Near field microscope Expired - Lifetime JP3189244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21867594A JP3189244B2 (en) 1994-09-13 1994-09-13 Near field microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21867594A JP3189244B2 (en) 1994-09-13 1994-09-13 Near field microscope

Publications (2)

Publication Number Publication Date
JPH0882633A true JPH0882633A (en) 1996-03-26
JP3189244B2 JP3189244B2 (en) 2001-07-16

Family

ID=16723665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21867594A Expired - Lifetime JP3189244B2 (en) 1994-09-13 1994-09-13 Near field microscope

Country Status (1)

Country Link
JP (1) JP3189244B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049462A1 (en) * 1998-03-24 1999-09-30 Seiko Instruments Inc. Near-field optical head
WO1999049463A1 (en) * 1998-03-24 1999-09-30 Seiko Instruments Inc. Near-field optical head
WO2000072076A1 (en) * 1999-05-21 2000-11-30 Brugger Juergen Probe tip that is transparent to light and method for producing the same
JP2007139466A (en) * 2005-11-15 2007-06-07 Tokyo Institute Of Technology Near-field light microscope, near-field light imaging method, near-field light imaging device, and program for making computer execute near-field light imaging method, recording medium, and high-density recording information media reading device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049462A1 (en) * 1998-03-24 1999-09-30 Seiko Instruments Inc. Near-field optical head
WO1999049463A1 (en) * 1998-03-24 1999-09-30 Seiko Instruments Inc. Near-field optical head
US6625109B1 (en) * 1998-03-24 2003-09-23 Seiko Instruments Inc. Near-field optical head and head support assembly having near-field optical head
WO2000072076A1 (en) * 1999-05-21 2000-11-30 Brugger Juergen Probe tip that is transparent to light and method for producing the same
JP2007139466A (en) * 2005-11-15 2007-06-07 Tokyo Institute Of Technology Near-field light microscope, near-field light imaging method, near-field light imaging device, and program for making computer execute near-field light imaging method, recording medium, and high-density recording information media reading device

Also Published As

Publication number Publication date
JP3189244B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
RU2049327C1 (en) Method for determining surface properties of near-zone light field in specimen region
US5763767A (en) Atomic force microscope employing beam-tracking
EP0701102B1 (en) Combined scanning near-field optical and atomic-force microscope with observing function in liquid
US5739527A (en) Near-field optical microscope for angle resolved measurements
US7586084B2 (en) Optical fiber probe, optical detection device, and optical detection method
US7247842B1 (en) Method and system for scanning apertureless fluorescence mircroscope
JP2005535878A (en) Improved method and system for a scanning apertureless fluorescence microscope
US5677978A (en) Bent probe microscopy
US6642517B1 (en) Method and apparatus for atomic force microscopy
CN106501551B (en) A kind of atomic force microscope probe and atomic force microscopy system based on optical fiber
US7274012B2 (en) Optical fiber probe, light detection device, and light detection method
JP3497734B2 (en) Scanning probe microscope
JPH0882633A (en) Near field microscope
EP0652414B1 (en) Scanning near-field optic/atomic force microscope
EP0712533B1 (en) Probe microscopy
Tiribilli et al. Fibre‐top atomic force microscope probe with optical near‐field detection capabilities
JP2003149120A (en) Probe head for device utilizing near field light and its utilizing device
US20070012873A1 (en) Scanning-type probe microscope
JP2007322159A (en) Optical fiber probe, photodetector, and photodetection method
JPH074953A (en) Scanner for scanning probe microscope and scanning probe microscope provided with the scanning probe microscope
JPH06160719A (en) Interatomic force microscope integral type photon scanning type tunnel microscope
JPH0483137A (en) Minute force detector
JPH05107050A (en) Detecting device of displacement of cantilever
JPH08101217A (en) Scanning probe microscope
JPH06213909A (en) Scanning type photon tunneling spectral analyzer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090518

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term