JPH0882213A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JPH0882213A
JPH0882213A JP6217417A JP21741794A JPH0882213A JP H0882213 A JPH0882213 A JP H0882213A JP 6217417 A JP6217417 A JP 6217417A JP 21741794 A JP21741794 A JP 21741794A JP H0882213 A JPH0882213 A JP H0882213A
Authority
JP
Japan
Prior art keywords
deterioration
catalyst
recovery
degree
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6217417A
Other languages
Japanese (ja)
Other versions
JP2785702B2 (en
Inventor
Akio Isobe
明雄 磯部
Tadaki Ota
忠樹 太田
Hisashi Aoyama
尚志 青山
Akira Tayama
彰 田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6217417A priority Critical patent/JP2785702B2/en
Publication of JPH0882213A publication Critical patent/JPH0882213A/en
Application granted granted Critical
Publication of JP2785702B2 publication Critical patent/JP2785702B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE: To aim at an appropriate deterioration recovery treatment by surely detecting unrecoverable temporary and permanent deterioration in a palladium group catalyst. CONSTITUTION: An exhaust emission control device of an internal combustion device is provided with a catalyst 50 for exhaust emission control carrying mainly palladium, a deterioration degree detection means 51 for detecting deterioration degree of the catalyst 50, an exhaust temperature detection means 52 for detection exhaust temperature flowing in the catalyst 50, a deterioration recovery treatment timing judging means 53 for judging a deterioration recovery treatment timing of the catalyst according to the detected deterioration degree, and a deterioration recovery treating means 54 in which the deterioration of the catalyst is recovered by controlling the air-fuel ratio of exhaust gas to the leaner side than its theoretical air fuel ratio when the detected exhaust temperature is larger than a specified value. It is also provided with a recovery non-treatment judging means 55 for judging whether the recovery of the temporary deterioration is not yet treated or not based on the deterioration degree detected just after the engine is started, and an interrupt means 56 for making the deterioration recover treatment regardless of the deterioration recovery treatment timing, when the judged result shows no recovering treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パラジウム系の三元触
媒を用いた内燃機関の排気浄化装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device for an internal combustion engine using a palladium-based three-way catalyst.

【0002】[0002]

【従来の技術】内燃機関から排出される排気ガスを浄化
するため、空燃比を理論空燃比となるようにフィードバ
ック制御すると共に、排気通路にHC、C0の酸化と、
NOの還元を同時に行う三元触媒を配設したものが従来
から広く実用化されている。
2. Description of the Related Art In order to purify exhaust gas discharged from an internal combustion engine, feedback control is performed so that the air-fuel ratio becomes a stoichiometric air-fuel ratio, and HC and C0 are oxidized in the exhaust passage.
A three-way catalyst that simultaneously reduces NO has been widely put into practical use.

【0003】この三元触媒に用いられる触媒金属として
は、機関始動直後、短時間のうちから良好に機能する、
低温活性に優れたパラジウムを主成分としたものが開発
されている(特開昭58−189037号公報参照)。
The catalytic metal used in this three-way catalyst functions well immediately after starting the engine and within a short time.
A material containing palladium as a main component, which is excellent in low-temperature activity, has been developed (see JP-A-58-189037).

【0004】パラジウム(Pd)は常温で酸化物が安定
で、酸化パラジウム(PdO)として触媒作用を発揮す
る。
Oxide of palladium (Pd) is stable at room temperature and exhibits a catalytic action as palladium oxide (PdO).

【0005】パラジウム系の触媒は、理論空燃比よりも
リッチ側の空燃比で高温の排気雰囲気に晒されると金属
パラジウム(Pd)に還元されて、一時的に触媒性能が
劣化する、いわゆる一時劣化を起こす。
When a palladium-based catalyst is exposed to a high temperature exhaust atmosphere at an air-fuel ratio richer than the stoichiometric air-fuel ratio, it is reduced to metallic palladium (Pd) and the catalytic performance is temporarily deteriorated. Cause

【0006】この一時劣化に対して、ウォッシュコート
の熱変形による比表面積の減少、あるいは貴金属の分散
度の減少等によって触媒性能が劣化する場合は永久劣化
となり、永久劣化が進んだ触媒ほど一時劣化が顕著に現
れる。
In contrast to this temporary deterioration, when the catalytic performance deteriorates due to a decrease in specific surface area due to thermal deformation of the washcoat or a decrease in the degree of dispersion of the noble metal, it becomes permanent deterioration. Appears prominently.

【0007】触媒の一時劣化が起きれば、その間、排気
の浄化作用が低下して排気エミッションが増大するとい
う問題があり、本願出願人は特願平5−337960号
として、触媒の一時的な劣化が判定されると、排気温度
が所定値以上のときに、排気の空燃比をリーン側に制御
して触媒の劣化回復処理を行う排気浄化装置を提案し
た。
If the catalyst is temporarily deteriorated, there is a problem that the exhaust gas purifying action is lowered and the exhaust emission is increased during that time, and the applicant of the present application proposes that the catalyst is temporarily deteriorated. If it is determined that the exhaust gas temperature is equal to or higher than a predetermined value, an exhaust gas purifying apparatus that controls the air-fuel ratio of the exhaust gas to a lean side to perform a catalyst deterioration recovery process has been proposed.

【0008】この装置では、機関始動直後に検出した触
媒の永久劣化度合に関連して劣化回復処理時期を判定
し、高温のリーン雰囲気で回復するパラジウム系触媒の
一時劣化は常温で放置による完全冷却によっても回復す
るため、機関始動直後に検出された初期劣化度合は、触
媒の回復不能な劣化である永久劣化を表しており、触媒
の劣化進行度を初期劣化度合に応じた基準値と比較する
ことにより、一時劣化と永久劣化とを合わせた全体の劣
化が許容範囲に達するまでの時期を判定して上記のよう
な劣化回復処理を行うものである。
In this apparatus, the deterioration recovery treatment timing is determined in relation to the degree of permanent deterioration of the catalyst detected immediately after the engine is started, and the temporary deterioration of the palladium-based catalyst recovered in a high temperature lean atmosphere is completely cooled by leaving it at room temperature. The initial degree of deterioration detected immediately after the engine is started indicates permanent deterioration, which is irrecoverable deterioration of the catalyst, and the degree of deterioration of the catalyst is compared with a reference value according to the degree of initial deterioration. As a result, the above-described deterioration recovery process is performed by determining the time until the total deterioration including the temporary deterioration and the permanent deterioration reaches the allowable range.

【0009】[0009]

【発明が解決しようとする課題】ところで、一時劣化の
回復処理中に機関を停止させた後、すぐに再始動を行う
ホットスタート時のような場合などでは、触媒の常温放
置による冷却が充分に行われないため、前回始動時の一
時劣化が回復していない場合がある。
By the way, in a case such as a hot start in which the engine is restarted immediately after the engine is stopped during the recovery process of the temporary deterioration, the catalyst is sufficiently cooled by leaving it at room temperature. Since it is not performed, the temporary deterioration at the time of the previous start may not be recovered.

【0010】しかしながら、上記従来の装置では、触媒
の常温放置による完全冷却が行われ、触媒の一時劣化が
完全に回復された状態を前提として始動直後の触媒性能
を基準とする劣化度合を判定するため、前回の運転で未
回復の一時劣化分がある場合には、あたかも著しく永久
劣化の進行した触媒であると判断し、劣化回復処理への
判断を誤らせ、劣化回復処理の不必要な触媒の劣化状態
であっても劣化回復処理が頻繁に行われてしまう場合が
あった。
However, in the above conventional apparatus, the catalyst is completely cooled by being left at room temperature, and the degree of deterioration is determined based on the catalyst performance immediately after the start of the catalyst, assuming that the temporary deterioration of the catalyst is completely recovered. Therefore, if there is an unrecovered temporary deterioration component in the previous operation, it is judged as if the catalyst has undergone significant permanent deterioration, and the judgment for the deterioration recovery process is erroneously made. Even in the deteriorated state, the deterioration recovery process may be frequently performed.

【0011】そこで本発明は、上記問題点に鑑みてなさ
れたもので、ホットスタート時などでの未回復の一時劣
化を確実に検出すると共に、一時劣化を起こした触媒に
劣化回復処理を施し、触媒性能を速やかに回復すること
を目的とする。
Therefore, the present invention has been made in view of the above problems, and reliably detects unrecovered temporary deterioration at the time of hot start and the like, and performs deterioration recovery treatment on the catalyst that has caused temporary deterioration, The purpose is to recover the catalyst performance promptly.

【0012】[0012]

【課題を解決するための手段】第1の発明は、図1に示
すように、触媒金属として主にパラジウムを担持させた
排気浄化用の触媒50と、この触媒50の劣化度合を検
出する劣化度合検出手段51と、触媒50に流入する排
気温度を検出する排気温度検出手段52と、検出された
触媒劣化度合に応じて触媒の劣化回復処理を行う時期を
判定する劣化回復処理時期判定手段53と、前記判定結
果が劣化回復処理時期で、かつ検出された排気温度が所
定値以上であるときに排気の空燃比を理論空燃比よりも
リーン側の劣化回復処理空燃比に制御して触媒の劣化回
復処理を行う劣化回復処理手段54とを備えた内燃機関
の排気浄化装置において、機関の始動直後に検出した前
記劣化度合に基づいて一時劣化の回復が未処理であるか
を判定する回復未処理判定手段55と、この判定結果が
回復未処理のときには前記劣化回復処理時期にかかわら
ず劣化回復処理を行う割り込み手段56とを備える。
The first invention, as shown in FIG. 1, is a catalyst 50 for purifying exhaust gas, which mainly carries palladium as a catalyst metal, and a deterioration for detecting the degree of deterioration of the catalyst 50. Degree detecting means 51, exhaust temperature detecting means 52 for detecting the exhaust temperature flowing into the catalyst 50, and deterioration recovery processing timing determining means 53 for determining the time when the catalyst deterioration recovery processing is performed according to the detected catalyst deterioration degree. When the determination result is the deterioration recovery processing time, and the detected exhaust temperature is equal to or higher than a predetermined value, the air-fuel ratio of the exhaust gas is controlled to a deterioration recovery processing air-fuel ratio leaner than the stoichiometric air-fuel ratio. In an exhaust gas purification apparatus for an internal combustion engine, comprising: a deterioration recovery processing means (54) for performing deterioration recovery processing, a recovery undecision is made based on the deterioration degree detected immediately after the engine is started to determine whether the temporary deterioration recovery is unprocessed. A management decision means 55, when the determination result is recovering unprocessed and an interrupt unit 56 for performing the deterioration recovery process regardless the deterioration recovery process time.

【0013】また、第2の発明は、図2に示すように、
触媒金属として主にパラジウムを担持させた排気浄化用
の触媒50と、この触媒50の劣化度合を検出する劣化
度合検出手段51と、触媒50に流入する排気温度を検
出する排気温度検出手段52と、検出された触媒劣化度
合に応じて触媒50の劣化回復処理を行う時期を判定す
る劣化回復処理時期判定手段53と、前記判定結果が劣
化回復処理時期で、かつ検出された排気温度が所定値以
上であるときに排気の空燃比を理論空燃比よりもリーン
側の劣化回復処理空燃比に制御して触媒の劣化回復処理
を行う劣化回復処理手段54とを備えた内燃機関の排気
浄化装置において、機関の暖機運転中を判定する暖機判
定手段57と、機関の始動直後に検出した前記劣化度合
に基づいて一時劣化の回復が未処理であるかを判定する
回復未処理判定手段55と、この判定結果が回復未処理
のときには前記劣化回復処理時期にかかわらず劣化回復
処理を行う割り込み手段56と、前記回復未処理判定手
段55及び暖機判定手段57の判定結果が回復未処理か
つ暖機中のときにNOの排出を抑制する暖機制御手段5
8とを備える。
The second invention, as shown in FIG.
An exhaust gas-purifying catalyst 50 mainly carrying palladium as a catalytic metal, a deterioration degree detecting means 51 for detecting a deterioration degree of the catalyst 50, and an exhaust temperature detecting means 52 for detecting an exhaust gas temperature flowing into the catalyst 50. Deterioration recovery processing timing determination means 53 for determining the timing for performing the degradation recovery processing of the catalyst 50 according to the detected degree of catalyst degradation, the determination result is the degradation recovery processing timing, and the detected exhaust temperature is a predetermined value. In the exhaust gas purifying apparatus for an internal combustion engine, which includes the deterioration recovery processing means 54 for performing the deterioration recovery processing of the catalyst by controlling the air-fuel ratio of the exhaust gas to the deterioration recovery processing air-fuel ratio leaner than the stoichiometric air-fuel ratio when the above A warm-up determination means 57 for determining whether the engine is warming up, and a recovery unprocessed determination means for determining whether or not the temporary deterioration is unprocessed based on the degree of deterioration detected immediately after the engine is started. 55, an interruption means 56 for performing deterioration recovery processing regardless of the deterioration recovery processing timing when the judgment result is recovery unprocessed, and the judgment results of the recovery unprocessed judgment means 55 and the warm-up judgment means 57 are recovery unprocessed. In addition, warm-up control means 5 that suppresses NO emission during warm-up
8 and.

【0014】また、第3の発明は、前記第2の発明にお
いて、前記暖機制御手段58は、機関の空燃比を理論空
燃比にフィードバック制御するときのフィードバック制
御係数を補正して空燃比をリッチ側にシフトする。
In a third aspect based on the second aspect, the warm-up control means 58 corrects the feedback control coefficient when the air-fuel ratio of the engine is feedback-controlled to the stoichiometric air-fuel ratio to adjust the air-fuel ratio. Shift to the rich side.

【0015】また、第4の発明は、前記第2の発明にお
いて、前記暖機制御手段58は、排気の一部を吸気通路
へ導く。
Further, in a fourth aspect based on the second aspect, the warm-up control means 58 guides a part of the exhaust gas to the intake passage.

【0016】また、第5の発明は、図2に示すように、
前記第1ないし第4の発明のいずれかひとつにおいて、
前記回復未処理判定手段55が、触媒の温度を検出する
手段59を備えて、機関の始動直後に検出した触媒温度
が所定値以下のときには同じく始動直後の劣化度合を永
久劣化と判定する一方、そうでない場合には一時劣化の
回復が未処理であると判定する。
The fifth invention, as shown in FIG.
In any one of the first to fourth inventions,
The recovery unprocessed determination means 55 includes means 59 for detecting the temperature of the catalyst, and when the catalyst temperature detected immediately after the engine is started is equal to or lower than a predetermined value, the degree of deterioration immediately after the start is also determined as permanent deterioration. If not, it is determined that recovery from temporary deterioration is unprocessed.

【0017】また、第6の発明は、図2に示すように、
前記第1ないし第4の発明のいずれかひとつにおいて、
前記回復未処理判定手段55が、触媒50の温度を検出
する手段52と、機関の始動の度に劣化度合を学習する
手段60とを備え、機関の始動直後に検出した触媒温度
が所定値以下のときには同じく始動直後の劣化度合を永
久劣化と判定するとともに検出した前記劣化度合を今回
の永久劣化度合として学習する一方、触媒温度が所定値
を越え、かつ今回の劣化度合の検出値が前回までの学習
値を越えるときには一時劣化の回復が未処理であると判
定するとともに、前回の学習値を今回の永久劣化度合と
して学習する。
The sixth aspect of the invention, as shown in FIG.
In any one of the first to fourth inventions,
The unrestored recovery determination means 55 includes means 52 for detecting the temperature of the catalyst 50 and means 60 for learning the degree of deterioration each time the engine is started, and the catalyst temperature detected immediately after the engine is started is below a predetermined value. At the same time, the degree of deterioration immediately after the start is determined as permanent deterioration and the detected degree of deterioration is learned as the degree of permanent deterioration of this time, while the catalyst temperature exceeds the predetermined value and the detected value of the degree of deterioration of this time is the same as the previous time. When it exceeds the learning value of, it is determined that the recovery of the temporary deterioration is unprocessed, and the previous learning value is learned as the degree of permanent deterioration of this time.

【0018】[0018]

【作用】したがって、第1の発明は、始動直後に検出し
た触媒の劣化度合が回復未処理と判定されると、劣化度
合に応じて設定される劣化回復処理時期にかかわらず速
やかに劣化回復処理空燃比に移行し、排気温度が所定値
以上になると高温のリーン雰囲気に晒すことでパラジウ
ム系の触媒に残留した一時劣化を永久劣化の初期状態へ
速やかに戻した後、機関の運転中は検出した劣化度合に
応じて設定される劣化回復処理時期に応じて劣化回復処
理が行われ、ホットスタート時などで一時劣化が未回復
である触媒を速やかに回復させてから永久劣化に応じた
回復処理を適切に行うことができる。
Therefore, according to the first aspect of the present invention, when it is determined that the degree of deterioration of the catalyst detected immediately after starting is not recovered, the deterioration recovery processing is promptly performed regardless of the deterioration recovery processing timing set according to the degree of deterioration. When the engine shifts to the air-fuel ratio and the exhaust temperature rises above a certain level, it is exposed to a high-temperature lean atmosphere to quickly restore the temporary deterioration remaining on the palladium-based catalyst to the initial state of permanent deterioration, and then detect it while the engine is operating. The deterioration recovery process is performed according to the deterioration recovery process timing that is set according to the degree of deterioration, and the recovery process that responds to the permanent deterioration is promptly recovered after the catalyst whose temporary deterioration has not yet recovered at the time of hot start. Can be done properly.

【0019】また、第2の発明は、触媒に回復未処理の
一時劣化があると判定されると、まず、機関の暖機中に
NOの排出を低減して未回復の一時劣化が残留したパラ
ジウム系の触媒性能の低下を補助した後、排気温度が所
定値以上になると劣化度合に応じて設定される劣化回復
処理時期にかかわらず速やかに劣化回復処理を行うこと
で触媒の一時劣化を回復して永久劣化の初期状態に戻す
ことができ、ホットスタート時などで前回の一時劣化が
未回復である触媒を速やかに回復するとともに、一時劣
化によって暖機中のNO浄化性能が低下したパラジウム
系触媒を補って排気エミッションの排出を抑制すること
ができる。
Further, in the second aspect of the invention, when it is determined that the catalyst has recovered unprocessed temporary deterioration, first, the NO emission is reduced during warm-up of the engine to leave unrecovered temporary deterioration. Temporary deterioration of the catalyst is recovered by promptly performing deterioration recovery processing regardless of the deterioration recovery processing time that is set according to the degree of deterioration when the exhaust temperature rises above a certain value after assisting the deterioration of palladium-based catalyst performance. It is possible to return to the initial state of permanent deterioration by quickly recovering the catalyst whose previous temporary deterioration was not recovered at the time of hot start, etc., and the palladium purification system whose NO purification performance during warming up has deteriorated due to temporary deterioration. Emission of exhaust emission can be suppressed by supplementing the catalyst.

【0020】また、第3の発明は、暖機制御手段が空燃
比をリッチ側へシフトするため、暖機中において排気ガ
ス中のNOを低減することができ、未回復の一時劣化に
よって低下した暖機中の触媒のNOの浄化性能を補っ
て、排気エミッションの排出を抑制することができる。
Further, according to the third aspect of the invention, since the warm-up control means shifts the air-fuel ratio to the rich side, NO in the exhaust gas can be reduced during warm-up, and it is reduced by unrecovered temporary deterioration. It is possible to supplement the NO purification performance of the catalyst during warm-up and suppress the emission of exhaust emission.

【0021】また、第4の発明は、暖機制御手段が排気
の一部を吸気通路へ還流させるため、暖機中において排
気ガス中のNOを低減することができ、未回復の一時劣
化による暖機中の触媒のNOの浄化性能を補って、排気
エミッションの排出を抑制することができる。
Further, according to the fourth aspect of the invention, since the warm-up control means recirculates a part of the exhaust gas to the intake passage, NO in the exhaust gas can be reduced during warm-up, which results from unrecovered temporary deterioration. It is possible to supplement the NO purification performance of the catalyst during warm-up and suppress the emission of exhaust emission.

【0022】また、第5の発明は、回復未処理判定手段
は触媒の温度に基づいて機関の始動状態を判定し、触媒
温度が所定値以下のコールドスタートのときには常温放
置による完全冷却が行われたと判定して始動直後の劣化
度合を永久劣化とする一方、触媒温度が所定値を越えて
いれば常温放置による冷却が不充分なホットスタートで
あると判定し、このホットスタートの場合では始動直後
に検出した劣化度合に未回復の一時劣化が含まれると判
定することができ、パラジウム系触媒の永久劣化と未回
復の一時劣化を含んだ状態とを容易に分離して、触媒の
劣化状態を正確に把握することができる。
According to a fifth aspect of the present invention, the recovery unprocessed determining means determines the starting state of the engine based on the temperature of the catalyst, and when the catalyst temperature is a cold start below a predetermined value, complete cooling by leaving it at room temperature is performed. If the catalyst temperature exceeds the predetermined value, it is determined that the hot start was insufficient cooling due to standing at room temperature.In this hot start, immediately after the start. It is possible to determine that the degree of deterioration detected in the above includes unrecovered temporary deterioration, and it is possible to easily separate the permanent deterioration of the palladium-based catalyst from the state including unrecovered temporary deterioration to determine the deterioration state of the catalyst. It can be grasped accurately.

【0023】また、第6の発明は、一時劣化の回復未処
理の判定を触媒温度に基づく機関始動状態に加えて永久
劣化の学習値と始動直後の劣化度合とから判定すること
で、触媒の永久劣化と未回復の一時劣化を確実に分離す
ることができ、触媒温度が所定値以下のコールドスター
トの場合には常温放置による完全冷却が行われるため始
動直後に検出した劣化度合を今回の永久劣化として学習
する一方、ホットスタートの場合には始動直後の劣化度
合が前回の学習値より大きいときに一時劣化が未回復で
あると判定し、検出した劣化度合に代わって前回までの
学習値を今回の永久劣化として学習することにより、学
習値は常に一時劣化を含まない永久劣化度合を示すこと
ができ、触媒の劣化度合の進行を正確に把握することで
未回復の一時劣化をより正確に判定することができ、劣
化回復処理を適切に行うことが可能となる。
In the sixth aspect of the present invention, the determination of whether or not the temporary deterioration is unprocessed is made based on the learning value of the permanent deterioration and the deterioration degree immediately after the start in addition to the engine starting state based on the catalyst temperature. Permanent deterioration and unrecovered temporary deterioration can be reliably separated, and in the case of a cold start where the catalyst temperature is below a specified value, complete cooling is performed by leaving it at room temperature. While learning as deterioration, in the case of hot start, it is determined that temporary deterioration has not been recovered when the degree of deterioration immediately after startup is larger than the previous learning value, and the learning value up to the previous time is used instead of the detected deterioration degree. By learning as the permanent deterioration this time, the learned value can always show the degree of permanent deterioration that does not include temporary deterioration, and by accurately grasping the progress of the degree of deterioration of the catalyst, unrecovered temporary deterioration Can be determined more accurately, it is possible to properly perform the deterioration recovery process.

【0024】[0024]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0025】図3は本発明の一実施例を示すもので、エ
ンジン7の吸気通路8には燃料噴射弁5が配設され、コ
ントローラ4からの信号に応じて燃料を噴射する。
FIG. 3 shows an embodiment of the present invention. A fuel injection valve 5 is arranged in an intake passage 8 of an engine 7 and injects fuel in response to a signal from a controller 4.

【0026】排気通路9には排気中のHC、COの酸化
と、NOの還元を同時に行う三元触媒1が介装される。
この三元触媒1はアルミナに触媒金属としてパラジウム
(Pd)を主に、その他セリア等を担持させたパラジウ
ム系の触媒で構成される。
The exhaust passage 9 is provided with a three-way catalyst 1 which simultaneously oxidizes HC and CO in the exhaust gas and reduces NO.
The three-way catalyst 1 is composed of a palladium-based catalyst in which alumina is mainly supported by palladium (Pd) as a catalyst metal and other ceria and the like are supported.

【0027】三元触媒1の上流と下流には、触媒前酸素
センサ2と触媒後酸素センサ3がそれぞれ設置され、触
媒前酸素センサ2の出力に基づいて空燃比が理論空燃比
となるように、前記燃料噴射量をフィードバック制御し
ている。
A pre-catalyst oxygen sensor 2 and a post-catalyst oxygen sensor 3 are installed upstream and downstream of the three-way catalyst 1 so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on the output of the pre-catalyst oxygen sensor 2. The fuel injection amount is feedback-controlled.

【0028】また、触媒前酸素センサ2と、触媒後酸素
センサ3の出力がそれぞれリッチ、リーンに反転する回
数を比較して、後述するように反転周波数に基づいて触
媒の劣化度合を検出し、この劣化度合に対応して、所定
の運転時期に触媒の劣化回復処理を実行する。
Further, the number of times the outputs of the pre-catalyst oxygen sensor 2 and the post-catalyst oxygen sensor 3 are inverted to rich and lean, respectively, are compared, and the degree of deterioration of the catalyst is detected based on the inversion frequency, as will be described later. Corresponding to this degree of deterioration, the catalyst deterioration recovery process is executed at a predetermined operation time.

【0029】コントローラ4には、エンジンの運転状態
を検出するため、エンジン冷却水温TWを検出する水温
センサ12、三元触媒1に流入する排気温度を検出する
温度センサ13、三元触媒1の内部の温度TBを検出す
る温度センサ20からの信号が入力される。また、図示
はしないが、エンジン7の吸入空気量Q、回転数Ne等
の運転状態を代表する信号も入力される。
The controller 4 includes a water temperature sensor 12 for detecting the engine cooling water temperature T W , a temperature sensor 13 for detecting the exhaust temperature flowing into the three-way catalyst 1, and a three-way catalyst 1 for detecting the engine operating state. A signal from the temperature sensor 20 that detects the internal temperature T B is input. Although not shown, signals representative of operating conditions such as the intake air amount Q of the engine 7 and the rotation speed Ne are also input.

【0030】そして、吸気通路8には排気通路9からの
排気の一部を還流する排気還流通路14が接続され、コ
ントローラ4によって排気還流制御弁15がエンジン7
の運転状態に応じて排気の還流量を制御し、排気中のN
Oを減少させる。
An exhaust gas recirculation passage 14 for recirculating a part of the exhaust gas from the exhaust passage 9 is connected to the intake passage 8, and an exhaust gas recirculation control valve 15 is connected to the engine 7 by the controller 4.
The exhaust gas recirculation amount is controlled according to the operating state of
Decrease O.

【0031】パラジウム系の三元触媒1は、理論空燃比
もしくはそれよりもリッチな高温排気雰囲気に晒すこと
により、触媒性能が一時的に劣化する特性を備えてい
る。
The palladium-based three-way catalyst 1 has a characteristic that the catalytic performance is temporarily deteriorated when exposed to a high temperature exhaust atmosphere rich in the stoichiometric air-fuel ratio or higher.

【0032】図4は温度が500℃で空燃比が理論空燃
比(λ=1)の高温排気に長時間にわたって三元触媒1
を晒したときの触媒転化率の変化の状態(一時劣化)を
表しており、時間の経過と共に触媒転化率は低下してい
くが、永久劣化の少ない図中触媒Aは変化が少ないが、
これに対して、触媒B、Cと永久劣化の進んだものほど
転化率の低下が顕著に表れる。
FIG. 4 shows that the three-way catalyst 1 is used for a long time in high-temperature exhaust gas having a temperature of 500 ° C. and an air-fuel ratio of stoichiometric air-fuel ratio (λ = 1).
Represents the state of change in catalyst conversion rate (temporary deterioration) when exposed to, and the catalyst conversion rate decreases with the passage of time, but there is little change in the catalyst A in the figure with little permanent deterioration,
On the other hand, as the catalysts B and C and the permanent deterioration proceeded, the conversion rate decreased remarkably.

【0033】三元触媒1の一時劣化については、リーン
空燃比の高温排気雰囲気中へ三元媒媒1を晒すことで回
復させることができ、それぞれ永久劣化の最初の状態ま
で触媒性能は回復する。
Temporary deterioration of the three-way catalyst 1 can be recovered by exposing the three-way medium 1 to a high temperature exhaust atmosphere with a lean air-fuel ratio, and the catalytic performance is recovered to the initial state of permanent deterioration. .

【0034】したがって、触媒の一時劣化の状態を判定
したら、排気温度が所定の高温となる運転条件で、一時
的に空燃比をリーン側に制御することで一時劣化したパ
ラジウム系の三元触媒1を回復することができるのであ
る。
Therefore, when the state of temporary deterioration of the catalyst is determined, the palladium-based three-way catalyst 1 temporarily deteriorated by temporarily controlling the air-fuel ratio to the lean side under the operating condition that the exhaust temperature becomes a predetermined high temperature. Can be recovered.

【0035】このような三元触媒1の劣化回復処理を行
うために、コントローラ4は図5〜図9に示すような制
御行う。
In order to perform such deterioration recovery processing of the three-way catalyst 1, the controller 4 performs the control shown in FIGS.

【0036】まず、図5、図6は三元触媒1の劣化を判
断するための制御ルーチンで、エンジン7の始動後に一
回だけ実行される。
First, FIGS. 5 and 6 are control routines for judging the deterioration of the three-way catalyst 1, which are executed only once after the engine 7 is started.

【0037】ステップS1、S2で機関冷却水温TW
び三元触媒1の内部の温度TBを読み込んでから、ステ
ップS3では機関冷却水温TWが、例えば暖機終了後の
所定値T1以上かを判定し、次いで、ステップS4では
空燃比のフィードバック制御領域にあるかを判断する。
暖機終了後の空燃比フィードバック制御領域にあればス
テップS5以降の劣化診断処理へ進む一方、そうでない
場合にはステップS1へ戻る。
After the engine cooling water temperature T W and the internal temperature T B of the three-way catalyst 1 are read in steps S1 and S2, the engine cooling water temperature T W is, for example, a predetermined value T 1 or more after completion of warm-up in step S3. Then, in step S4, it is determined whether the air-fuel ratio is in the feedback control region.
If it is in the air-fuel ratio feedback control region after completion of warm-up, the process proceeds to the deterioration diagnosis process after step S5, while if not so, the process returns to step S1.

【0038】ステップS5、6では三元触媒1の上流の
触媒前酸素センサ2と、下流の触媒後酸素センサ3の出
力のリッチ、リーンの反転周波数F1、F2をそれぞれ読
み込む。
In steps S5 and S6, the rich and lean inversion frequencies F 1 and F 2 of the pre-catalyst oxygen sensor 2 upstream of the three-way catalyst 1 and the post-catalyst oxygen sensor 3 downstream are read respectively.

【0039】ステップS7ではこれら反転周波数F1
2の比FrをFr=F2/F1として算出する。この反
転周波数比Frは、図12に示すように、三元触媒1の
劣化が進行するほど1に近付き、三元触媒1が正常に機
能しているときは、排気中の酸素がストージされるの
で、三元触媒1の上流の排気中に含まれる酸素をそのま
ま三元触媒1の下流で検出することはできない。一方、
三元触媒1が劣化してくると、この酸素ストージ能力も
低下するため上流の排気中の酸素がそのまま下流に流れ
るため、三元触媒1の下流に配設した触媒後酸素センサ
3の出力の反転周波数F2は触媒前酸素センサ2の出力
の反転周波数F1に近似する。このため、反転周波数比
Frは三元触媒1の劣化度合を代表する値となる。
In step S7, these inversion frequencies F 1 ,
The ratio Fr of F 2 is calculated as Fr = F 2 / F 1. As shown in FIG. 12, the reversal frequency ratio Fr approaches 1 as the deterioration of the three-way catalyst 1 progresses, and when the three-way catalyst 1 is functioning normally, the oxygen in the exhaust gas is stored. Therefore, oxygen contained in the exhaust gas upstream of the three-way catalyst 1 cannot be directly detected downstream of the three-way catalyst 1. on the other hand,
When the three-way catalyst 1 deteriorates, the oxygen storage capacity also decreases, and the oxygen in the upstream exhaust flows as it is to the downstream, so that the output of the post-catalyst oxygen sensor 3 arranged downstream of the three-way catalyst 1 is reduced. The inversion frequency F 2 is close to the inversion frequency F 1 of the output of the pre-catalyst oxygen sensor 2. Therefore, the inversion frequency ratio Fr has a value representative of the degree of deterioration of the three-way catalyst 1.

【0040】一方、ステップS8では反転周波数比Fr
の前回の始動時までの学習値であるFrmを図示しない
記憶手段より読み出す。この学習値Frmは機関の始動
毎に算出、学習された反転周波数比で、例えば次のよう
な任意の移動平均値Frm(t)で表される。
On the other hand, in step S8, the inversion frequency ratio Fr
Frm, which is the learning value up to the previous start of, is read from the storage means (not shown). The learning value Frm is the reversal frequency ratio calculated and learned each time the engine is started, and is represented by, for example, the following moving average value Frm (t).

【0041】 Frm(t)=aFrm(t−1)+bFr(t) ただし、a、bは定数である こうして読み出した前回の始動時までの学習値Frmと
今回の始動後に検出した反転周波数比Frとから、ステ
ップS9では反転周波数比Frが学習値Frm以上であ
るかを判断する。
Frm (t) = aFrm (t−1) + bFr (t) where a and b are constants The learning value Frm read in this way up to the previous startup and the inversion frequency ratio Fr detected after the current startup. Therefore, in step S9, it is determined whether the inversion frequency ratio Fr is equal to or larger than the learning value Frm.

【0042】ここで、学習値Frmは永久劣化を、反転
周波数比Frが一時劣化を示すと仮定すると、反転周波
数比Frが学習値Frm以上の場合には直前のエンジン
停止後から常温放置による完全冷却が終了しておらず、
三元触媒1に一時劣化が生じていると判定してステップ
S11の処理へ進む一方、そうでない場合には永久劣化
のみであると判定して検出した反転周波数比Frで学習
値Frmを更新するステップS13の処理へ進む。
Assuming that the learning value Frm shows permanent deterioration and the reversal frequency ratio Fr shows temporary deterioration, if the reversal frequency ratio Fr is equal to or larger than the learning value Frm, the engine will be completely left at room temperature after the last engine stop. Cooling has not finished,
While it is determined that the three-way catalyst 1 is temporarily deteriorated, the process proceeds to step S11. If not, the learning value Frm is updated with the detected inversion frequency ratio Fr that is determined to be only permanent deterioration. The process proceeds to step S13.

【0043】このステップS9で一時劣化と判定された
場合、すなわち、反転周波数比Frが学習値Frm以上
の場合にはステップS2で読み込んだ三元触媒1の内部
の温度TBが所定値T2以上のエンジン7のホットスター
ト状態であるかを判定する(ステップS10)。
When it is determined in step S9 that the deterioration is temporary, that is, when the inversion frequency ratio Fr is equal to or larger than the learning value Frm, the temperature T B inside the three-way catalyst 1 read in step S2 is the predetermined value T 2. It is determined whether or not the engine 7 is in the hot start state (step S10).

【0044】ステップS10ではこの触媒内部の温度T
Bが所定値T2以上の場合には前回の機関停止からの経過
時間の少ないホットスタートであると判定してステップ
S11の処理へ進む一方、触媒内部の温度TBが所定値
2未満の場合には同じく前回の機関停止から充分時間
が経過して三元触媒1が常温放置によって完全に冷却さ
れたコールドスタート状態であると判定して上記と同様
に検出した反転周波数比Frを永久劣化として学習値F
rmに反映させるためステップS13の処理へ進むもの
で、機関始動直後の触媒の温度TBによってホットスタ
ート及びコールドスタートのいずれかを判定し、この機
関始動状態に応じて始動直後に検出した劣化度合が三元
触媒1の一次劣化及び永久劣化のいずれであるかを判定
するのである。
In step S10, the temperature T inside the catalyst is
If B is equal to or greater than the predetermined value T 2, it is determined that the hot start has been performed for a short time since the last engine stop, and the process proceeds to step S11 while the temperature T B inside the catalyst is less than the predetermined value T 2 . In this case, similarly, it is determined that the three-way catalyst 1 is in a cold start state in which the three-way catalyst 1 is completely cooled by being left at room temperature after a sufficient time has passed since the last engine stop, and the reversal frequency ratio Fr detected in the same manner as above is permanently deteriorated. Learning value F
In order to reflect it in rm, the process proceeds to step S13, and either hot start or cold start is determined by the temperature T B of the catalyst immediately after the engine is started, and the degree of deterioration detected immediately after the start is determined according to the engine starting state. Is the primary deterioration or permanent deterioration of the three-way catalyst 1.

【0045】ステップS10でホットスタートであると
判定されてステップS11へ進む場合は、反転周波数比
Frが学習値Frm以上で三元触媒1の一時劣化が回復
未処理のホットスタート状態であるため、ステップS1
1ではHot未回復状態信号TBmに1をセットして三元
触媒1の一時劣化が未回復であることを設定し、次い
で、ステップS12では今回検出した反転周波数比Fr
を前回までの永久劣化を示す学習値Frmに置き換え
て、今回の始動直後に検出した劣化度合、すなわち、反
転周波数比Frが永久劣化を代表する学習値Frmに反
映させない。
When it is determined in step S10 that the hot start is determined and the process proceeds to step S11, the reversal frequency ratio Fr is equal to or higher than the learning value Frm, and the temporary deterioration of the three-way catalyst 1 is recovered. Step S1
In 1, the Hot unrecovered state signal T Bm is set to 1 to set that the temporary deterioration of the three-way catalyst 1 is unrecovered. Then, in step S12, the reversal frequency ratio Fr detected this time is set.
Is replaced with the learning value Frm indicating the permanent deterioration up to the previous time, and the degree of deterioration detected immediately after this start, that is, the inversion frequency ratio Fr is not reflected in the learning value Frm representing the permanent deterioration.

【0046】このステップS12では、今回検出した反
転周波数比Frが回復未処理の一時劣化を生じたホット
スタート後のもので、永久劣化に一時劣化が加算された
ものと推定できるため、永久劣化を示す学習値Frmへ
反映させず、前回までの学習値Frmを今回の永久劣化
度合として代用し、永久劣化度合の変動を抑制するた
め、学習値Frmは永久劣化度合の進行に応じた値とし
て扱うことが可能となり、学習値Frmに基づく一次劣
化の判断を正確に行うことがきるのである。
In this step S12, it can be estimated that the inversion frequency ratio Fr detected this time is after the hot start in which the recovery unprocessed temporary deterioration has occurred and the temporary deterioration is added to the permanent deterioration. The learning value Frm up to the previous time is used as the current permanent deterioration degree instead of being reflected in the learning value Frm shown, and the learning value Frm is treated as a value according to the progress of the permanent deterioration degree in order to suppress the fluctuation of the permanent deterioration degree. Therefore, it is possible to accurately determine the primary deterioration based on the learning value Frm.

【0047】こうして、学習値Frmを更新した後にス
テップS20の劣化検出時ルーチンへ進む。一方、ステ
ップS9で反転周波数比Frが永久劣化を示すと判定さ
れた場合またはステップS10の判定で触媒ベッド温度
Bが所定値T2未満のコールドスタートである場合に
は、ステップS13で学習値Frmを三元触媒1の永久
劣化の進行に対応させるために、今回検出した反転周波
数比Frの移動平均値に基づいて学習値Frmを更新し
た後、ステップS14で反転周波数比Frが所定値Fr
a以上であるかを判定する。なお、学習値Frmは反転
周波数比Frの移動平均値としたが、単純に前回始動時
の反転周波数比Frとしてもよい。
After updating the learning value Frm in this way, the routine proceeds to the deterioration detection routine of step S20. On the other hand, if it is determined in step S9 that the reversal frequency ratio Fr indicates permanent deterioration, or if the determination in step S10 is a cold start in which the catalyst bed temperature T B is less than the predetermined value T 2 , the learning value is determined in step S13. In order to make Frm correspond to the progress of permanent deterioration of the three-way catalyst 1, the learning value Frm is updated based on the moving average value of the inversion frequency ratio Fr detected this time, and then the inversion frequency ratio Fr is set to the predetermined value Fr in step S14.
It is determined whether it is a or more. Although the learning value Frm is the moving average value of the inversion frequency ratio Fr, it may be simply the inversion frequency ratio Fr at the time of the previous start.

【0048】ステップS14の判定は、永久劣化が所定
値Fra以上に進行したかを判定するもので、反転周波
数比Frが所定値Fra以上のときはステップS20の
劣化検出時ルーチンへ進む一方、そうでない場合にはそ
のまま終了する。
The determination in step S14 is to determine whether the permanent deterioration has progressed to a predetermined value Fra or more. When the inversion frequency ratio Fr is the predetermined value Fra or more, the routine proceeds to the deterioration detection routine of step S20, while If not, the process ends as it is.

【0049】以上の制御はエンジン7が始動される度
に、始動直後に一回だけ実行されるが、触媒ベッド温度
Bによってホットスタートとコールドスタートの場合
に分けることで検出した劣化度合(反転周波数比Fr:
以下で初期劣化度合という)は回復が可能な一時劣化と
永久劣化とに分けて取り扱うことができるのである。
Although the above control is executed only once each time the engine 7 is started, immediately after the engine 7 is started, the degree of deterioration (reversal) detected by separating the hot start and cold start depending on the catalyst bed temperature T B. Frequency ratio Fr:
The degree of initial deterioration (hereinafter, referred to as “degree of deterioration”) can be separately treated as temporary deterioration that can be recovered and permanent deterioration.

【0050】次に、図7の劣化検出時ルーチンにおい
て、ステップS21では反転周波数比Frに基づいて図
10に示すテーブルから、数段階に設定した触媒の劣化
度合Rmと、触媒性能の許容範囲内でそのまま排気に晒
すことが可能な暴露可能時間Tcと、劣化度合に応じて
決まる劣化回復処理時間に相当する回復処理判定値Tr
とをそれぞれ読み出す。
Next, in the deterioration detection routine of FIG. 7, in step S21, based on the reversal frequency ratio Fr, from the table shown in FIG. 10, the deterioration degree Rm of the catalyst set in several stages and the allowable range of the catalyst performance are set. Exposure time Tc that can be directly exposed to exhaust gas and a recovery process determination value Tr that corresponds to the deterioration recovery process time that is determined according to the degree of deterioration.
And are read respectively.

【0051】この劣化度合Rmは反転周波数比Frに対
応し、また、始動直後に検出した初期劣化度合は永久劣
化度合に対応していることから、三元触媒1の暴露可能
時間Tcは、この永久劣化の状態を基礎にして、排気温
度が所定値よりも高いときに、そのまま運転を継続した
ときに進行すると予測される触媒の劣化度合との加算値
が触媒性能の許容限度に達するまでの時間として設定さ
れている。そして、この暴露可能時間Tcに応じて回復
処理判定値Trは設定される。
The deterioration degree Rm corresponds to the reversal frequency ratio Fr, and the initial deterioration degree detected immediately after the start corresponds to the permanent deterioration degree. Therefore, the exposure possible time Tc of the three-way catalyst 1 is Based on the state of permanent deterioration, when the exhaust temperature is higher than a predetermined value, the addition value with the deterioration degree of the catalyst that is predicted to proceed when the operation is continued until it reaches the allowable limit of the catalyst performance. It is set as time. Then, the recovery process determination value Tr is set according to the exposure possible time Tc.

【0052】ステップS22では上記ステップS10で
エンジン7の始動状態がホットスタートで一時劣化の回
復未処理と判定されたかをHot未回復信号Tbm=1
であるかどうかによって判断し、このTbmが1であれ
ば一時劣化による三元触媒1のNO浄化性能の低下を補
うために、ステップS23の処理へ進む一方、永久劣化
のみの場合にはステップS30の暴露可能時間算出・回
復処理ルーチンへ進む。
In step S22, the Hot unrecovery signal Tbm = 1 indicates whether or not it is determined in step S10 that the starting state of the engine 7 is a hot start and it is determined that the temporary deterioration has not been recovered.
If Tbm is 1, the process proceeds to step S23 to compensate for the deterioration of the NO purification performance of the three-way catalyst 1 due to temporary deterioration, while if only Tbm is permanently deteriorated, step S30 is performed. Proceed to the exposure time calculation / recovery processing routine of.

【0053】ここで、ステップS23では一時劣化が未
回復のホットスタートであると判定されたHot未回復
状態信号=1であるときに、ステップS21で読み込ん
だ劣化度合Rmに応じて空燃比フィードバックの制御定
数をリッチ側へ変更し、NOの排出を抑制する処理を行
ってからステップS30の暴露可能時間算出・回復処理
ルーチンへ進む。この場合、一次劣化を生じたパラジウ
ム系の三元触媒1は触媒性能の低下によって暖機完了前
のNO排出量が増大する。このため、劣化度合に応じて
空燃比をリッチ側へシフトさせることでNOの排出量を
低減し、一次劣化の回復以前の三元触媒1の性能を補う
ものである。
Here, when the Hot unrecovered state signal = 1 in which it is determined in step S23 that the temporary deterioration is unrecovered hot start, the air-fuel ratio feedback control is performed according to the deterioration degree Rm read in step S21. After changing the control constant to the rich side and performing a process of suppressing NO emission, the process proceeds to the exposure time calculation / recovery process routine of step S30. In this case, in the palladium-based three-way catalyst 1 that has undergone primary deterioration, the NO emission amount before the completion of warming up increases due to the deterioration of the catalyst performance. Therefore, the NO-emission amount is reduced by shifting the air-fuel ratio to the rich side according to the degree of deterioration, and the performance of the three-way catalyst 1 before the recovery of the primary deterioration is compensated.

【0054】なお、ステップS23におけるリッチ側へ
の空燃比制御の代わりに、排気還流制御弁15を駆動し
て排気の一部を吸気通路8へ還流させる排気還流率(E
GR率)を増大させてもよく、この場合も排気中のNO
を低減することができる。
In place of the air-fuel ratio control to the rich side in step S23, the exhaust gas recirculation rate (E) for driving the exhaust gas recirculation control valve 15 to recirculate a part of the exhaust gas to the intake passage 8 (E
GR rate) may be increased, and in this case as well, NO in the exhaust gas is increased.
Can be reduced.

【0055】上記劣化検出時処理ルーチンはエンジン7
が停止するまでの間、所定の周期で繰り返し実行される
(ステップS24)。
The above-described deterioration detection processing routine is performed by the engine 7.
Is repeatedly executed at a predetermined cycle until is stopped (step S24).

【0056】図8、図9は前記した暴露時間算出・回復
処理ルーチンの詳細であり、図8は暴露可能時間算出
を、図9は回復処理をそれぞれ示す。
8 and 9 show the details of the exposure time calculation / recovery processing routine described above. FIG. 8 shows the exposure possible time calculation and FIG. 9 shows the recovery processing.

【0057】まず、ステップS31ではHot未回復状
態信号Tbmに基づいて三元触媒1に一時劣化が生じた
場合のホットスタートであるかを判定し、Tbm=1と
なるHot未回復状態の場合には、まず図9に示すステ
ップS39以降の劣化回復処理へ進んで三元触媒1の一
次劣化を速やかに回復させる一方、そうでない場合には
ステップS32より高温の排気に晒された時間に比例し
た一次劣化を検出するため暴露時間の算出を行う。
First, in step S31, it is determined based on the Hot unrecovered state signal Tbm whether or not the hot start is performed when the three-way catalyst 1 is temporarily deteriorated. If the Hot unrecovered state where Tbm = 1 is established, First, the process proceeds to the deterioration recovery process after step S39 shown in FIG. 9 to promptly recover the primary deterioration of the three-way catalyst 1, while otherwise it is proportional to the time exposed to the exhaust gas at a temperature higher than that in step S32. Exposure time is calculated to detect the primary deterioration.

【0058】ステップS32では後述する積算値Tin
=0にセットし、ステップS33でタイマTi=0とし
てからタイマの計数を開始するとともに、ステップS3
4でそのときの温度センサ20からの排気の触媒入口温
度Tに基づいて図11のテーブルから重み係数Kcを読
み出す。
In step S32, an integrated value Tin, which will be described later, is set.
= 0, and in step S33, the timer Ti is set to 0, and then counting of the timer is started.
4, the weighting coefficient Kc is read from the table of FIG. 11 based on the exhaust gas catalyst inlet temperature T from the temperature sensor 20 at that time.

【0059】この重み係数Kcは、単位時間当たりに進
行する触媒の劣化度(これは回復度にも対応)を表すも
ので、厳密には排気温度と空燃比をパラーメータとする
二次元マップとなるが、排気温度の影響がより大きいた
め、温度のみに基づくテーブル設定でもよい。
This weighting coefficient Kc represents the degree of deterioration of the catalyst that progresses per unit time (this also corresponds to the degree of recovery), and strictly speaking, it is a two-dimensional map having exhaust gas temperature and air-fuel ratio as parameters. However, since the influence of the exhaust gas temperature is greater, the table setting may be based only on the temperature.

【0060】ステップS35では排気の触媒入口温度T
を重み係数Kcを選んだときの設定温度範囲と比較し、
この温度範囲にある時間をステップS36、S37で積
算する。ただし、この積算値Tinは、Tin=Tin
+Kc×Tiとして算出し、触媒入口温度Tに基づいて
求めた重み係数Kcと設定温度範囲にあるときの時間T
iとの乗算分を加算することによって積算値Tinを増
大していく。
At step S35, the exhaust gas catalyst inlet temperature T
Is compared with the set temperature range when the weighting coefficient Kc is selected,
The times within this temperature range are integrated in steps S36 and S37. However, this integrated value Tin is Tin = Tin
+ Kc × Ti, and the weighting coefficient Kc calculated based on the catalyst inlet temperature T and the time T when the temperature is within the set temperature range
The integrated value Tin is increased by adding the product of multiplication with i.

【0061】ステップS35で触媒入口温度Tが所定の
温度範囲から変化したら、ステップS36でタイマTi
の計数を停止し、ステップS37を経由して再びステッ
プS33へ戻り、暴露時間の積算を継続する。
When the catalyst inlet temperature T changes from the predetermined temperature range in step S35, the timer Ti is counted in step S36.
Counting is stopped, the process returns to step S33 again via step S37, and the integration of the exposure time is continued.

【0062】そして、ステップS38でこの積算値Ti
nを前記ステップS21で読み込んだ暴露可能時間Tc
と比較し、この時間Tcに達するまではステップS33
〜S37までの積算動作を繰り返し、そのときの排気の
触媒入口温度Tに応じて積算を継続する。そして、積算
結果がTin>Tcとなると図9に示すステップS39
以降の回復処理に移行する。
Then, in step S38, the integrated value Ti
exposure time Tc obtained by reading n in step S21
And step S33 until the time Tc is reached.
The accumulation operation from S37 to S37 is repeated, and the accumulation is continued according to the catalyst inlet temperature T of the exhaust gas at that time. Then, when the integration result is Tin> Tc, step S39 shown in FIG.
The subsequent recovery processing is performed.

【0063】三元触媒1の一次劣化は高温のリッチ雰囲
気に晒されている時間に応じて進行するため、上記ステ
ップS32〜S38のように積算した暴露時間Tinと
暴露可能時間Tcとの関係で、劣化の進行状態を判断す
るのである。
Since the primary deterioration of the three-way catalyst 1 progresses according to the time of exposure to the high temperature rich atmosphere, there is a relationship between the exposure time Tin and the exposure possible time Tc that are integrated as in steps S32 to S38. , The progress of deterioration is determined.

【0064】こうして積算値Tinが暴露可能時間Tc
を経過するとステップS39では、まず積算値Timを
0にリセットし、ステップS40では読み込んだ排気の
触媒入口温度Tが、劣化回復処理が可能な所定値以上の
高温状態であるかを判断し、さらにステップS41で
は、運転条件が高負荷のリッチ空燃比領域(KMR域)
にあるかを判段する。
Thus, the integrated value Tin is the exposure possible time Tc.
When step S39 has passed, the integrated value Tim is first reset to 0 in step S39, and it is determined in step S40 whether the read catalyst inlet temperature T of the exhaust gas is in a high temperature state above a predetermined value at which deterioration recovery processing is possible. In step S41, the operating condition is a high load rich air-fuel ratio region (KMR region).
Determine if it is in.

【0065】この高負荷のリッチ空燃比領域では、触媒
の劣化回復処理のために空燃比をリーン側へシフトしよ
うとしても、運転性を確保する点からKMR域が優先さ
れるためにリーンシフトできず、ステップS39へ戻っ
てそれまでの劣化回復処理を最初からやり直す。
In this high load rich air-fuel ratio range, even if an attempt is made to shift the air-fuel ratio to the lean side for catalyst deterioration recovery processing, lean shift can be performed because the KMR range is prioritized in order to ensure drivability. Instead, the process returns to step S39 and the deterioration recovery process up to that point is restarted from the beginning.

【0066】一方、KMR域にないときは次のように三
元触媒1の劣化回復処理を行う。
On the other hand, when it is not in the KMR range, the deterioration recovery process of the three-way catalyst 1 is performed as follows.

【0067】まず、ステップS42でタイマTiを0に
リセットするとともに計数を開始し、ステップS43で
排気の触媒入口温度Tに基づいて図11のテーブルから
重み係数Krを読み出す。
First, in step S42, the timer Ti is reset to 0 and counting is started, and in step S43, the weighting factor Kr is read from the table of FIG. 11 based on the catalyst inlet temperature T of the exhaust gas.

【0068】そして、ステップS44で空燃比フィード
バック制御の制御係数(例えば、比例値、積分値)を変
更して、空燃フィードバック制御の制御中心をリーン側
にシフトし、劣化した三元触媒1を高温のリーン雰囲気
へ晒すことで一次劣化の回復処理を行う。
Then, in step S44, the control coefficient (for example, the proportional value or the integral value) of the air-fuel ratio feedback control is changed to shift the control center of the air-fuel feedback control to the lean side, so that the deteriorated three-way catalyst 1 is removed. The primary deterioration is recovered by exposing it to a high temperature lean atmosphere.

【0069】このとき、同時に排気還流制御弁15を駆
動して排気還流率(EGR率)を増大し、空燃比をリー
ン化することで三元触媒1で浄化処理できなくなったN
Oの排出量を低減し、排気浄化性能の低下を補助する。
At this time, at the same time, the exhaust gas recirculation control valve 15 is driven to increase the exhaust gas recirculation ratio (EGR ratio) and make the air-fuel ratio lean, so that the three-way catalyst 1 cannot perform purification processing.
It reduces the amount of O emission and assists in lowering the exhaust gas purification performance.

【0070】前述のように、三元触媒1に流入する排気
温度が高温の状態において、空燃比をリーン側へシフト
することで劣化したパラジウム系の触媒は、永久劣化を
除いて一時劣化の回復を図ることがき、三元触媒1は永
久劣化の初期状態まで劣化度合を回復する。
As described above, when the temperature of the exhaust gas flowing into the three-way catalyst 1 is high, the palladium catalyst deteriorated by shifting the air-fuel ratio to the lean side recovers from temporary deterioration except permanent deterioration. The three-way catalyst 1 recovers the degree of deterioration to the initial state of permanent deterioration.

【0071】ステップS45〜S47で排気の温度が一
定値以上の状態となる時間を積算する。この積算値Ti
mは上記ステップS43で読み出した重み係数Krから
Tim=Tim+Kr×Tiとして算出される。
In steps S45 to S47, the time during which the temperature of the exhaust gas reaches a certain value or higher is integrated. This integrated value Ti
m is calculated as Tim = Tim + Kr × Ti from the weighting coefficient Kr read in step S43.

【0072】ステップS45で触媒入口温度Tが所定の
温度範囲から変化したら、ステップS46でタイマTi
の計数を停止し、ステップS47を経由して再びステッ
プS40へ戻り、劣化回復処理時間の積算を継続する。
When the catalyst inlet temperature T changes from the predetermined temperature range in step S45, the timer Ti is set in step S46.
Counting is stopped, the process returns to step S40 again via step S47, and the integration of the deterioration recovery processing time is continued.

【0073】なお、この場合も、劣化の回復がリーン雰
囲気の排気の温度に大きく影響されるため、排気の触媒
入口温度Tにのみ依存して設定した図11のテーブルか
ら重み計数Krを設定することができるのである。
Also in this case, since the recovery of deterioration is greatly influenced by the temperature of the exhaust gas in the lean atmosphere, the weighting factor Kr is set from the table of FIG. 11 which is set depending only on the catalyst inlet temperature T of the exhaust gas. It is possible.

【0074】ステップS48では、積算値Timを前記
ステップS21で読み込んだ回復処理判定値Trと比較
することにより、劣化回復処理が完了したかを判定す
る。このようにして、検出された三元触媒1の劣化度合
に対応した劣化回復処理時間を経過すれば、触媒の一時
劣化は前記したように初期状態まで回復(ただし永久劣
化分を除く)したものと判定し、ステップS49へ進ん
で空燃比のフィードバック制御の制御係数と、排気還流
率を通常の運転状態の値に戻して劣化回復処理を終了す
る。
In step S48, it is determined whether the deterioration recovery process is completed by comparing the integrated value Tim with the recovery process determination value Tr read in step S21. In this way, when the deterioration recovery processing time corresponding to the detected degree of deterioration of the three-way catalyst 1 elapses, the temporary deterioration of the catalyst is recovered to the initial state (excluding permanent deterioration) as described above. Then, the process proceeds to step S49, the control coefficient of the feedback control of the air-fuel ratio and the exhaust gas recirculation rate are returned to the values in the normal operating state, and the deterioration recovery process is ended.

【0075】ここで、エンジン7の始動後に検出した触
媒温度TBが所定値以上となるホットスタートで、かつ
反転周波数比Frが前回の学習値Frmより大きい場
合、三元触媒1は常温放置による一時劣化の回復が不充
分であると判定でき、このような三元触媒1では図13
の図中破線に示すように性能が劣化している。
Here, when the catalyst temperature T B detected after the engine 7 is started is a hot start at which the temperature is higher than a predetermined value and the reversal frequency ratio Fr is larger than the previous learned value Frm, the three-way catalyst 1 is left at room temperature. It can be determined that the recovery from the temporary deterioration is insufficient, and such a three-way catalyst 1 shown in FIG.
The performance is degraded as indicated by the broken line in the figure.

【0076】一時劣化したパラジウム系の触媒は特に暖
機終了前のNOの排出量が増大するため、上記ステップ
S23のように劣化回復処理へ入る前に空燃比をリッチ
側へシフトすることで一時劣化による触媒性能の低下を
補って、NOの排出量を低減し、さらに、一時劣化を生
じたホットスタートの場合には暴露時間の算出を行わず
に速やかに回復処理を行って永久劣化の初期状態まで回
復させるようにしたため、排気エミッションの増大を抑
制しながら三元触媒1の劣化回復処理を迅速に行うこと
ができるのであり、この場合に検出した反転周波数比F
rは学習値Frmへ反映させないため、学習値Frmは
一時劣化を含むことはなく、常時永久劣化の度合として
扱うことが可能となって、三元触媒1の劣化状態を一次
劣化と永久劣化に分離して正確に把握することが可能と
なるのである。
Since the amount of NO emission before the warm-up is increased especially for the temporarily deteriorated palladium-based catalyst, it is possible to temporarily change the air-fuel ratio to the rich side before entering the deterioration recovery process as in step S23. In order to compensate for the deterioration of catalyst performance due to deterioration, reduce NO emissions, and in the case of hot start with temporary deterioration, perform recovery processing promptly without calculating the exposure time to achieve the initial stage of permanent deterioration. Since the recovery to the state is performed, the deterioration recovery process of the three-way catalyst 1 can be quickly performed while suppressing the increase of the exhaust emission. In this case, the inversion frequency ratio F detected
Since r is not reflected in the learning value Frm, the learning value Frm does not include temporary deterioration and can be treated as the degree of permanent deterioration at all times, and the deterioration state of the three-way catalyst 1 is divided into primary deterioration and permanent deterioration. It is possible to separate and accurately grasp.

【0077】一方、エンジン7のコールドスタートの場
合には、検出した反転周波数比Frが永久劣化の進行度
合を示すため、これを学習値Frmへ反映させることで
三元触媒1の永久劣化の度合を正確に把握し、高温のリ
ッチ雰囲気への暴露時間に応じて運転中に進行した三元
触媒1の一時劣化を判定するとともに劣化回復処理を行
うようにしたため、低温活性及び経済性に優れたパラジ
ウム系の触媒の一時劣化を随時回復しながら内燃機関か
らの排気エミッションを抑制することが可能となるので
ある。
On the other hand, in the case of cold start of the engine 7, the detected reversal frequency ratio Fr indicates the degree of progress of permanent deterioration. Therefore, by reflecting this to the learning value Frm, the degree of permanent deterioration of the three-way catalyst 1 is shown. Of the three-way catalyst 1 that has progressed during operation according to the exposure time to the high-temperature rich atmosphere and the deterioration recovery process is performed, and the low-temperature activity and the economical efficiency are excellent. It is possible to suppress the exhaust emission from the internal combustion engine while recovering the temporary deterioration of the palladium-based catalyst as needed.

【0078】こうして、一時劣化が未回復のホットスタ
ートの場合には、暴露時間の算出を行わずに速やかに劣
化回復処理を行って永久劣化の初期状態まで回復させる
ようにしたため、前記従来例のように未回復の一時劣化
を永久劣化が著しく進行した状態と判定して頻繁に劣化
回復処理を行うことがなくなって、必要以上に空燃比を
リーン化することなく良好な運転性を確保しながらパラ
ジウム系の触媒の一時劣化を随時回復することが可能と
なり、さらにホットスタート時で未回復の一時劣化があ
る場合には暖気運転中に空燃比をリッチ側へシフトする
ことで一時劣化による触媒性能の低下を補って、NOの
排出量を低減し、幅広い運転域で排気エミッションを抑
制することができるのである。
Thus, in the case of a hot start in which temporary deterioration has not been recovered, the deterioration recovery process is promptly performed to recover the initial state of permanent deterioration without calculating the exposure time. As described above, unrecovered temporary deterioration is judged as a state where permanent deterioration has significantly progressed, and frequent deterioration recovery processing is no longer performed, while maintaining good drivability without making the air-fuel ratio leaner than necessary. Temporary deterioration of the palladium-based catalyst can be recovered at any time, and if there is unrecovered temporary deterioration during hot start, the air-fuel ratio is shifted to the rich side during warm-up operation to improve catalyst performance due to temporary deterioration. The exhaust emission can be suppressed in a wide operating range by compensating for the decrease in NO.

【0079】次に、図14、図15に示す他の実施例に
ついて説明する。
Next, another embodiment shown in FIGS. 14 and 15 will be described.

【0080】三元触媒1の劣化の進行度が、永久劣化度
合、すなわちコールドスタート時に検出した機関始動直
後の初期劣化度合に関連していることから、この劣化度
合に応じた基準値に基づいて、一時劣化と永久劣化とを
合わせた総合の劣化が許容限度に達するまでの時期を判
定するようにしたものである。
Since the degree of progress of deterioration of the three-way catalyst 1 is related to the degree of permanent deterioration, that is, the degree of initial deterioration immediately after engine start detected at cold start, based on the reference value according to this degree of deterioration. The time until the total deterioration of the temporary deterioration and the permanent deterioration reaches the allowable limit is determined.

【0081】図14の処理は、エンジン7を始動する度
に一回だけ実行されるもので、ステップS51〜S58
までは図5に示した処理のステップS1〜S8と同一で
あり、ステップS59において反転周波数比Frに基づ
いて図10のテーブルから劣化度合Rmを初期劣化度R
moとして記憶し、ステップS60でこの初期劣化度R
moに基づいて図16のテーブルから基準値Rmcを読
み込む。この基準値Rmcは、Rmo+Rmcが触媒性
能の劣化限度となるように定められ、初期劣化度Rmo
が大きくなるほどRmcは小さくなる。
The process of FIG. 14 is executed only once each time the engine 7 is started, and steps S51 to S58 are executed.
Up to the step S1 to S8 of the processing shown in FIG. 5, the deterioration degree Rm is calculated from the table of FIG. 10 based on the inversion frequency ratio Fr in the step S59.
The initial deterioration degree R is stored in step S60.
Based on mo, the reference value Rmc is read from the table of FIG. This reference value Rmc is determined so that Rmo + Rmc becomes the deterioration limit of the catalyst performance, and the initial deterioration degree Rmo
Becomes larger, Rmc becomes smaller.

【0082】つまり、ここでは、エンジン7の始動後に
一回だけ行われる触媒の劣化判定から、この劣化度合R
mを初期劣化度Rmoとして記憶しておく。
That is, here, from the deterioration determination of the catalyst which is performed only once after the engine 7 is started, the deterioration degree R
m is stored as the initial deterioration degree Rmo.

【0083】次に、図15の処理に移行する。この処理
は機関始動後の所定時間毎に実行されるもので、触媒の
劣化の進行度を判定する。
Next, the processing shifts to the processing in FIG. This process is executed every predetermined time after the engine is started, and the degree of deterioration of the catalyst is determined.

【0084】ステップS61〜S68までは、同じく上
記ステップS1、S3〜S8までと同一であり、ここで
は排気の触媒入口温度Tが所定値以上のときの反転周波
数比Frを算出したら、ステップS69でこのFrに基
づいて図10のテーブルから劣化度合Rmを読み出し、
この劣化度合Rmと前記初期劣化度Rmoとの差で表さ
れる一時劣化の進行度ΔRmを、ΔRm=Rm−Rmo
として算出する。エンジン7の始動直後に検出した初期
劣化度Rmoは永久劣化度合に対応するから、このΔR
mは回復可能な触媒の一時劣化を表す。
Steps S61 to S68 are the same as steps S1 and S3 to S8. Here, the reversal frequency ratio Fr when the catalyst inlet temperature T of the exhaust gas is equal to or higher than a predetermined value is calculated, and then in step S69. Based on this Fr, the deterioration degree Rm is read from the table of FIG.
The progress degree ΔRm of the temporary deterioration represented by the difference between the deterioration degree Rm and the initial deterioration degree Rmo is ΔRm = Rm−Rmo
Calculate as Since the initial deterioration degree Rmo detected immediately after the start of the engine 7 corresponds to the permanent deterioration degree, this ΔR
m represents the temporary deterioration of the recoverable catalyst.

【0085】ステップS70では算出した一時劣化進行
度ΔRmをステップS60で読み出した基準値Rmcと
比較する。永久劣化が進んでいるほど基準値Rmcは小
さい値となり、それだけ一時劣化の許容度も小さい値と
なる。
In step S70, the calculated temporary deterioration progress degree ΔRm is compared with the reference value Rmc read in step S60. As the permanent deterioration progresses, the reference value Rmc becomes smaller, and the tolerance of temporary deterioration becomes smaller accordingly.

【0086】ここで、一時劣化進行度ΔRmが基準値R
mc以下でない場合には触媒の劣化回復処理ルーチンに
進むためステップS71へ進んで図17のテーブルから
一時劣化進行度ΔRmに応じた回復処理判定値Trを読
み出す。
Here, the temporary deterioration progress degree ΔRm is the reference value R.
If it is not less than mc, the routine proceeds to step S71 to proceed to the catalyst deterioration recovery processing routine, and the recovery processing determination value Tr corresponding to the temporary deterioration progress degree ΔRm is read from the table of FIG.

【0087】そして、ステップS72へ進んで上記ステ
ップS9〜S12と同様にして始動状態及び一時劣化の
有無を判定した後、ステップS71で得た回復処理判定
値Trに基づいて前記と同様にステップS20以降の劣
化回復処理を行う。
Then, the process proceeds to step S72, where it is determined in the same manner as in steps S9 to S12 whether or not there is a starting state and temporary deterioration, and then, based on the recovery process determination value Tr obtained in step S71, step S20 is performed as described above. The subsequent deterioration recovery processing is performed.

【0088】こうして、エンジン7の始動直後に検出し
た初期劣化度合Rmも応じた基準値Rmcに基づいて、
一時劣化と永久劣化とを合わせた全体の劣化度合が許容
限度に達するまでの時期を判定するので、触媒の劣化回
復処理を劣化の進行状態に応じて正確に判断しながら適
切な時期に行うことができるのである。
Thus, based on the reference value Rmc corresponding to the initial deterioration degree Rm detected immediately after the engine 7 is started,
Since the time until the total degree of deterioration including temporary deterioration and permanent deterioration reaches the allowable limit is judged, the catalyst deterioration recovery process should be performed at an appropriate time while accurately judging according to the progress of deterioration. Can be done.

【0089】なお、上記劣化回復処理において排気の空
燃比をリーン化するには上記のようにフィードバック制
御係数を補正する他に、三元触媒1の上流かつ触媒前酸
素センサ2の下流に2次空気を導入する図示しない装置
を設け、三元触媒1の上流へ2次空気を導入して三元触
媒1へ流入する排気をリーン化してもよい。この場合エ
ンジン7の空燃比は通常の理論空燃比とすることがで
き、三元触媒1の劣化回復処理を行いながらも良好な運
転性を確保できるのである。
In addition, in order to make the air-fuel ratio of the exhaust gas lean in the deterioration recovery process, in addition to correcting the feedback control coefficient as described above, the secondary is provided upstream of the three-way catalyst 1 and downstream of the pre-catalyst oxygen sensor 2. A device (not shown) for introducing air may be provided, and secondary air may be introduced upstream of the three-way catalyst 1 to make the exhaust gas flowing into the three-way catalyst 1 lean. In this case, the air-fuel ratio of the engine 7 can be set to a normal stoichiometric air-fuel ratio, and good drivability can be secured while performing the deterioration recovery process of the three-way catalyst 1.

【0090】[0090]

【発明の効果】以上説明したように第1の発明は、触媒
金属として主にパラジウムを担持させた排気浄化用の触
媒と、この触媒の劣化度合を検出する劣化度合検出手段
と、触媒に流入する排気温度を検出する排気温度検出手
段と、検出された触媒劣化度合に応じて触媒の劣化回復
処理を行う時期を判定する劣化回復処理時期判定手段
と、前記判定結果が劣化回復処理時期で、かつ検出され
た排気温度が所定値以上であるときに排気の空燃比を理
論空燃比よりもリーン側の劣化回復処理空燃比に制御し
て触媒の劣化回復処理を行う劣化回復処理手段とを備え
た内燃機関の排気浄化装置において、機関の始動直後に
検出した前記劣化度合に基づいて一時劣化の回復が未処
理であるかを判定する回復未処理判定手段と、この判定
結果が回復未処理のときには前記劣化回復処理時期にか
かわらず劣化回復処理を行う割り込み手段とを備え、ホ
ットスタート時などで前回の一時劣化が未回復である触
媒を永久劣化の初期状態へ速やかに回復した後に、永久
劣化に応じた回復処理時期で回復処理を行うことが可能
となり、前記従来例のように未回復の一時劣化をあたか
も永久劣化の著しく進んだ状態と判定して頻繁に回復処
理を行うことがなくなって、空燃比のリーン化を必要以
上に行うことがなくなって良好な運転性を確保すること
ができ、パラジウム系の触媒の一時劣化特性に対応しな
がら排気エミッションの排出の低減を行うことが可能と
なる。
As described above, according to the first aspect of the present invention, an exhaust purification catalyst mainly carrying palladium as a catalyst metal, a deterioration degree detecting means for detecting the deterioration degree of this catalyst, and a catalyst flowing into the catalyst. Exhaust temperature detection means for detecting the exhaust temperature, deterioration degradation processing timing determination means for determining the timing of performing the catalyst degradation recovery processing according to the detected catalyst degradation degree, and the determination result is the degradation recovery processing timing, Further, when the detected exhaust temperature is equal to or higher than a predetermined value, deterioration recovery processing means for controlling the air-fuel ratio of the exhaust gas to a deterioration recovery processing air-fuel ratio leaner than the stoichiometric air-fuel ratio to perform deterioration recovery processing of the catalyst is provided. In an exhaust gas purification apparatus for an internal combustion engine, a recovery unprocessed determination means for determining whether recovery of temporary deterioration is unprocessed based on the degree of deterioration detected immediately after the engine is started, and the result of this determination is recovery unprocessed. In this case, an interrupt means for performing deterioration recovery processing regardless of the deterioration recovery processing time is provided, and after the catalyst whose temporary temporary deterioration is not recovered at the time of hot start etc. is quickly recovered to the initial state of permanent deterioration, It becomes possible to perform recovery processing at a recovery processing time corresponding to permanent deterioration, and it is possible to frequently perform recovery processing by determining unrecovered temporary deterioration as in the case of the conventional example as if the permanent deterioration is significantly advanced. Since it is no longer necessary to make the air-fuel ratio leaner than necessary, good drivability can be secured, and exhaust emission emissions can be reduced while responding to the temporary deterioration characteristics of the palladium-based catalyst. It will be possible.

【0091】また、第2の発明は、触媒金属として主に
パラジウムを担持させた排気浄化用の触媒と、この触媒
の劣化度合を検出する劣化度合検出手段と、触媒に流入
する排気温度を検出する排気温度検出手段と、検出され
た触媒劣化度合に応じて触媒の劣化回復処理を行う時期
を判定する劣化回復処理時期判定手段と、前記判定結果
が劣化回復処理時期で、かつ検出された排気温度が所定
値以上であるときに排気の空燃比を理論空燃比よりもリ
ーン側の劣化回復処理空燃比に制御して触媒の劣化回復
処理を行う劣化回復処理手段とを備えた内燃機関の排気
浄化装置において、機関の暖機運転中を判定する暖機判
定手段と、機関の始動直後に検出した前記劣化度合に基
づいて一時劣化の回復が未処理であるかを判定する回復
未処理判定手段と、この判定結果が回復未処理のときに
は前記劣化回復処理時期にかかわらず劣化回復処理を行
う割り込み手段と、前記回復未処理判定手段及び暖機判
定手段の判定結果が回復未処理かつ暖機中のときにNO
の排出を抑制する暖機制御手段とを備え、ホットスター
ト時などで前回の一時劣化が未回復である触媒を速やか
に永久劣化の初期状態に回復するとともに、劣化回復処
理が可能となる以前の機関の暖機中は排気エミッション
を低減することができ、未回復の一時劣化によるパラジ
ウム系の触媒のNO浄化特性を補うことが可能となっ
て、排気エミッションの排出を確実に抑制することが可
能となる。
The second aspect of the invention is directed to an exhaust gas purification catalyst mainly carrying palladium as a catalytic metal, a deterioration degree detecting means for detecting the deterioration degree of the catalyst, and an exhaust gas temperature flowing into the catalyst. Exhaust temperature detecting means, a deterioration recovery processing timing determining means for determining the timing for performing the catalyst deterioration recovery processing according to the detected catalyst deterioration degree, and the determination result is the deterioration recovery processing timing, and the detected exhaust gas Exhaust of an internal combustion engine equipped with deterioration recovery processing means for performing deterioration recovery processing of a catalyst by controlling the air-fuel ratio of exhaust gas to a deterioration recovery processing air-fuel ratio leaner than the stoichiometric air-fuel ratio when the temperature is equal to or higher than a predetermined value. In the purification device, warm-up determination means for determining whether the engine is in warm-up operation, and recovery unprocessed determination means for determining whether recovery of temporary deterioration is unprocessed based on the degree of deterioration detected immediately after starting the engine. When When the determination result is recovery unprocessed, the interrupt recovery unit performs the recovery process regardless of the deterioration recovery process timing, and the determination results of the recovery unprocessed determination unit and the warm-up determination unit are recovery unprocessed and warm-up. NO
It is equipped with a warm-up control means that suppresses the emission of exhaust gas, and promptly restores the catalyst whose previous temporary deterioration has not been recovered at the time of hot start to the initial state of permanent deterioration, and before the deterioration recovery process becomes possible. Exhaust emissions can be reduced while the engine is warming up, and the NO purification characteristics of the palladium catalyst due to unrecovered temporary deterioration can be supplemented, and exhaust emission emissions can be reliably suppressed. Becomes

【0092】また、第3の発明は、前記暖機制御手段
は、機関の空燃比を理論空燃比にフィードバック制御す
るときのフィードバック制御係数を補正して空燃比をリ
ッチ側にシフトし、未回復の一時劣化によって低下した
暖機中の触媒のNO浄化性能を補うことが可能となっ
て、パラジウム系触媒の一時劣化特性に対応しながら排
気エミッションの排出を抑制することができる。
In a third aspect of the present invention, the warm-up control means corrects the feedback control coefficient when feedback controlling the air-fuel ratio of the engine to the stoichiometric air-fuel ratio, shifts the air-fuel ratio to the rich side, and does not recover. It is possible to supplement the NO purification performance of the catalyst during warm-up, which has deteriorated due to the temporary deterioration, and it is possible to suppress the emission of exhaust emission while corresponding to the temporary deterioration characteristic of the palladium-based catalyst.

【0093】また、第4の発明は、前記暖機制御手段
は、排気の一部を吸気通路へ導くようにしたため、未回
復の一時劣化によって低下した暖機中の触媒のNO浄化
性能を補うことが可能となって、パラジウム系触媒の一
時劣化特性に対応しながら排気エミッションの排出を抑
制することができる。
Further, in the fourth aspect of the present invention, the warm-up control means guides part of the exhaust gas to the intake passage, so that the NO purification performance of the catalyst during warm-up, which is lowered by unrecovered temporary deterioration, is supplemented. This makes it possible to suppress exhaust emission while dealing with the temporary deterioration characteristic of the palladium-based catalyst.

【0094】また、第5の発明は、前記回復未処理判定
手段が、触媒の温度を検出する手段を備えて、機関の始
動直後に検出した触媒温度が所定値以下のときには同じ
く始動直後の劣化度合を永久劣化と判定する一方、そう
でない場合には一時劣化の回復が未処理であると判定す
るため、常温放置による冷却が完全に行われたコールド
スタートと、同じく常温放置による冷却が不充分なホッ
トスタートを確実に判断することができ、ホットスター
トの場合には未回復の一時劣化が含まれると判定して速
やかに劣化回復処理へ移行することができ、機関始動直
後のパラジウム系触媒の劣化度合を永久劣化と未回復の
一時劣化を含んだ状態とに確実に判断して、パラジウム
系触媒の一時劣化特性に対応した劣化回復処理を適切に
実行して排気エミッションの排出を抑制することが可能
となる。
According to a fifth aspect of the present invention, the recovery unprocessed determining means includes means for detecting the temperature of the catalyst, and when the catalyst temperature detected immediately after the engine is started is below a predetermined value, deterioration just after the engine is started. The degree is judged to be permanent deterioration, but if not, the recovery from temporary deterioration is judged to be unprocessed.Therefore, cold start in which cooling at room temperature is completely performed and cooling at room temperature are insufficient. A reliable hot start can be reliably determined, and in the case of a hot start, it can be determined that unrecovered temporary deterioration is included, and the deterioration recovery processing can be immediately started. The degree of deterioration is surely judged to be a state that includes permanent deterioration and unrecovered temporary deterioration, and the deterioration recovery process corresponding to the temporary deterioration characteristic of the palladium-based catalyst is appropriately executed to execute exhaust emission control. Deployment discharge becomes possible to suppress the.

【0095】また、第6の発明は、前記回復未処理判定
手段が、触媒の温度を検出する手段と、機関の始動の度
に劣化度合を学習する手段とを備え、機関の始動直後に
検出した触媒温度が所定値以下のときには同じく始動直
後の劣化度合を永久劣化と判定するとともに検出した前
記劣化度合を今回の永久劣化度合として学習する一方、
触媒温度が所定値を越え、かつ今回の劣化度合の検出値
が前回までの学習値を越えるときには一時劣化の回復が
未処理であると判定するとともに、前回の学習値を今回
の永久劣化度合として学習するため、触媒温度に基づく
機関始動状態に加えて永久劣化の学習値と始動直後に検
出した劣化度合とから触媒の劣化状態を永久劣化と未回
復の一時劣化を含んだ状態とに正確に分離することが可
能となり、触媒の劣化度合の進行を正確に把握しながら
パラジウム系触媒の一時劣化特性に対応した劣化回復処
理をさらに適切に行うことができる。
According to a sixth aspect of the present invention, the unrestored recovery determination means comprises means for detecting the temperature of the catalyst and means for learning the degree of deterioration each time the engine is started. Similarly, when the catalyst temperature is equal to or lower than the predetermined value, the deterioration degree immediately after the start is determined as permanent deterioration and the detected deterioration degree is learned as the current permanent deterioration degree.
When the catalyst temperature exceeds the predetermined value and the detected value of the degree of deterioration of this time exceeds the learned value up to the previous time, it is determined that the recovery of the temporary deterioration is unprocessed, and the previously learned value is set as the degree of permanent deterioration of this time. In order to learn, in addition to the engine starting state based on the catalyst temperature, the deterioration state of the catalyst is accurately determined based on the learning value of permanent deterioration and the degree of deterioration detected immediately after starting, to a state including permanent deterioration and unrecovered temporary deterioration. It becomes possible to separate, and it is possible to more appropriately perform the deterioration recovery process corresponding to the temporary deterioration characteristic of the palladium-based catalyst while accurately grasping the progress of the deterioration degree of the catalyst.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明に対応するクレーム対応図である。FIG. 1 is a claim correspondence diagram corresponding to a first invention.

【図2】第2の発明に対応するクレーム対応図である。FIG. 2 is a claim correspondence diagram corresponding to the second invention.

【図3】本発明の実施例を示すブロック図である。FIG. 3 is a block diagram showing an embodiment of the present invention.

【図4】触媒性能の変遷状態を示す説明図である。FIG. 4 is an explanatory diagram showing a transition state of catalyst performance.

【図5】三元触媒の劣化検出の制御動作を示すフローチ
ャートの前半である。
FIG. 5 is a first half of a flowchart showing a control operation for detecting deterioration of a three-way catalyst.

【図6】同じくフローチャートの後半である。FIG. 6 is the latter half of the flowchart.

【図7】劣化検出時ルーチンの制御動作を示すフローチ
ャートである。
FIG. 7 is a flowchart showing a control operation of a deterioration detection routine.

【図8】暴露時間設定の制御動作を示すフローチャート
である。
FIG. 8 is a flowchart showing a control operation for setting an exposure time.

【図9】回復処理の制御動作を示すフローチャートであ
る。
FIG. 9 is a flowchart showing a control operation of recovery processing.

【図10】反転周波数比Frと劣化度合等との関係を示
す説明図である。
FIG. 10 is an explanatory diagram showing the relationship between the inversion frequency ratio Fr and the degree of deterioration and the like.

【図11】触媒入口温度と重み係数との関係を示す説明
図である。
FIG. 11 is an explanatory diagram showing a relationship between a catalyst inlet temperature and a weighting coefficient.

【図12】反転周波数比と触媒性能の劣化の関係を示す
説明図である。
FIG. 12 is an explanatory diagram showing a relationship between a reversal frequency ratio and deterioration of catalyst performance.

【図13】触媒温度と転化性能との関係を示す図であ
る。
FIG. 13 is a diagram showing the relationship between catalyst temperature and conversion performance.

【図14】他の実施例を示す制御動作のフローチャート
である。
FIG. 14 is a flowchart of a control operation showing another embodiment.

【図15】同じくフローチャートである。FIG. 15 is a flowchart of the same.

【図16】初期劣化度と基準値との関係を示す説明図で
ある。
FIG. 16 is an explanatory diagram showing a relationship between an initial deterioration degree and a reference value.

【図17】劣化進行度と基準値との関係を示す説明図で
ある。
FIG. 17 is an explanatory diagram showing a relationship between a deterioration progress degree and a reference value.

【符号の説明】[Explanation of symbols]

1 三元触媒 2 触媒前酸素センサ 3 触媒後酸素センサ 4 コントローラ 9 排気通路 13 排気温度センサ 20 触媒温度センサ 50 触媒 51 劣化度合検出手段 52 排気温度検出手段 53 劣化回復処理時期判定手段 54 劣化回復処理手段 55 回復未処理判定手段 56 割り込み手段 57 暖機状態判定手段 58 暖機制御手段 59 触媒温度検出手段 60 学習手段 1 Three-way catalyst 2 Pre-catalyst oxygen sensor 3 Post-catalyst oxygen sensor 4 Controller 9 Exhaust passage 13 Exhaust temperature sensor 20 Catalyst temperature sensor 50 Catalyst 51 Degradation degree detection means 52 Exhaust temperature detection means 53 Deterioration recovery processing timing determination means 54 Degradation recovery processing Means 55 Recovery unprocessed judging means 56 Interrupting means 57 Warm-up state judging means 58 Warm-up control means 59 Catalyst temperature detecting means 60 Learning means

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F01N 3/24 R ZAB B F02D 41/14 310 C (72)発明者 田山 彰 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location F01N 3/24 R ZAB B F02D 41/14 310 C (72) Inventor Akira Tayama 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Address Within Nissan Motor Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 触媒金属として主にパラジウムを担持さ
せた排気浄化用の触媒と、この触媒の劣化度合を検出す
る劣化度合検出手段と、触媒に流入する排気温度を検出
する排気温度検出手段と、検出された触媒劣化度合に応
じて触媒の劣化回復処理を行う時期を判定する劣化回復
処理時期判定手段と、前記判定結果が劣化回復処理時期
で、かつ検出された排気温度が所定値以上であるときに
排気の空燃比を理論空燃比よりもリーン側の劣化回復処
理空燃比に制御して触媒の劣化回復処理を行う劣化回復
処理手段とを備えた内燃機関の排気浄化装置において、
機関の始動直後に検出した前記劣化度合に基づいて一時
劣化の回復が未処理であるかを判定する回復未処理判定
手段と、この判定結果が回復未処理のときには前記劣化
回復処理時期にかかわらず劣化回復処理を行う割り込み
手段とを備えたことを特徴とする内燃機関の排気浄化装
置。
1. An exhaust gas purifying catalyst mainly carrying palladium as a catalytic metal, a deterioration degree detecting means for detecting a deterioration degree of the catalyst, and an exhaust temperature detecting means for detecting an exhaust temperature flowing into the catalyst. Deterioration recovery processing timing determining means for determining the timing for performing the catalyst degradation recovery processing according to the detected catalyst degradation degree, the determination result is the degradation recovery processing timing, and the detected exhaust temperature is a predetermined value or more. In an exhaust gas purification apparatus for an internal combustion engine, which comprises a deterioration recovery processing unit that controls the deterioration recovery processing of the catalyst by controlling the deterioration recovery processing air-fuel ratio of the exhaust air-fuel ratio to the lean side of the stoichiometric air-fuel ratio at a certain time,
Recovery unprocessed determination means for determining whether the recovery of temporary deterioration is unprocessed based on the degree of deterioration detected immediately after the engine is started, and when the result of this determination is recovery unprocessed, regardless of the deterioration recovery process timing. An exhaust emission control device for an internal combustion engine, comprising: an interruption unit that performs deterioration recovery processing.
【請求項2】 触媒金属として主にパラジウムを担持さ
せた排気浄化用の触媒と、この触媒の劣化度合を検出す
る劣化度合検出手段と、触媒に流入する排気温度を検出
する排気温度検出手段と、検出された触媒劣化度合に応
じて触媒の劣化回復処理を行う時期を判定する劣化回復
処理時期判定手段と、前記判定結果が劣化回復処理時期
で、かつ検出された排気温度が所定値以上であるときに
排気の空燃比を理論空燃比よりもリーン側の劣化回復処
理空燃比に制御して触媒の劣化回復処理を行う劣化回復
処理手段とを備えた内燃機関の排気浄化装置において、
機関の暖機運転中を判定する暖機判定手段と、機関の始
動直後に検出した前記劣化度合に基づいて一時劣化の回
復が未処理であるかを判定する回復未処理判定手段と、
この判定結果が回復未処理のときには前記劣化回復処理
時期にかかわらず劣化回復処理を行う割り込み手段と、
前記回復未処理判定手段及び暖機判定手段の判定結果が
回復未処理かつ暖機中のときにNOの排出を抑制する暖
機制御手段とを備えたことを特徴とする内燃機関の排気
浄化装置。
2. An exhaust gas purification catalyst mainly carrying palladium as a catalytic metal, a deterioration degree detecting means for detecting a deterioration degree of the catalyst, and an exhaust temperature detecting means for detecting an exhaust temperature flowing into the catalyst. Deterioration recovery processing timing determining means for determining the timing for performing the catalyst degradation recovery processing according to the detected catalyst degradation degree, the determination result is the degradation recovery processing timing, and the detected exhaust temperature is a predetermined value or more. In an exhaust gas purification apparatus for an internal combustion engine, which comprises a deterioration recovery processing unit that controls the deterioration recovery processing of the catalyst by controlling the deterioration recovery processing air-fuel ratio of the exhaust air-fuel ratio to the lean side of the stoichiometric air-fuel ratio at a certain time,
Warm-up determining means for determining whether the engine is warming up, and recovery unprocessed determining means for determining whether recovery of temporary deterioration is unprocessed based on the degree of deterioration detected immediately after starting the engine,
When the result of this determination is that recovery is not yet processed, an interrupt means for performing deterioration recovery processing regardless of the deterioration recovery processing time,
An exhaust gas purification apparatus for an internal combustion engine, comprising: warm-up control means for suppressing NO emission when the determination results of the recovery-unprocessed determination means and the warm-up determination means are recovery-unprocessed and warm-up. .
【請求項3】 前記暖機制御手段は、機関の空燃比を理
論空燃比にフィードバック制御するときのフィードバッ
ク制御係数を補正して空燃比をリッチ側にシフトするこ
とを特徴とする請求項2に記載の内燃機関の排気浄化装
置。
3. The warm-up control means corrects a feedback control coefficient when feedback-controlling an air-fuel ratio of an engine to a stoichiometric air-fuel ratio, and shifts the air-fuel ratio to a rich side. An exhaust gas purification device for an internal combustion engine as described.
【請求項4】 前記暖機制御手段は、排気の一部を吸気
通路へ導くことを特徴とする請求項2に記載の内燃機関
の排気浄化装置。
4. The exhaust gas purification device for an internal combustion engine according to claim 2, wherein the warm-up control means guides a part of the exhaust gas to the intake passage.
【請求項5】 前記回復未処理判定手段が、触媒の温度
を検出する手段を備えて、機関の始動直後に検出した触
媒温度が所定値以下のときには同じく始動直後の劣化度
合を永久劣化と判定する一方、そうでない場合には一時
劣化の回復が未処理であると判定することを特徴とする
請求項1ないし請求項4のいずれかひとつに記載の内燃
機関の排気浄化装置。
5. The recovery unprocessed determination means includes means for detecting the temperature of the catalyst, and when the catalyst temperature detected immediately after the engine is started is below a predetermined value, the degree of deterioration immediately after the start is also determined as permanent deterioration. On the other hand, if not so, it is determined that the recovery from the temporary deterioration is unprocessed, and the exhaust emission control system for an internal combustion engine according to any one of claims 1 to 4.
【請求項6】 前記回復未処理判定手段が、触媒の温度
を検出する手段と、機関の始動の度に劣化度合を学習す
る手段とを備え、機関の始動直後に検出した触媒温度が
所定値以下のときには同じく始動直後の劣化度合を永久
劣化と判定するとともに検出した前記劣化度合を今回の
永久劣化度合として学習する一方、触媒温度が所定値を
越え、かつ今回の劣化度合の検出値が学習値を越えると
きには一時劣化の回復が未処理であると判定するととも
に、前回までの学習値を今回の永久劣化度合として学習
することを特徴とする請求項1ないし請求項4のいずれ
かひとつに記載の内燃機関の排気浄化装置。
6. The unrestored recovery determination means comprises means for detecting the temperature of the catalyst and means for learning the degree of deterioration every time the engine is started, and the catalyst temperature detected immediately after the start of the engine has a predetermined value. In the following cases, similarly, the degree of deterioration immediately after the start is determined as permanent deterioration and the detected degree of deterioration is learned as the degree of permanent deterioration of this time, while the catalyst temperature exceeds a predetermined value and the detected value of the degree of deterioration of this time is learned. 5. When the value exceeds the value, it is determined that the recovery of the temporary deterioration is unprocessed, and the learning value up to the previous time is learned as the current degree of permanent deterioration, and the learning value according to any one of claims 1 to 4. Exhaust gas purification device for internal combustion engine.
JP6217417A 1994-09-12 1994-09-12 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP2785702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6217417A JP2785702B2 (en) 1994-09-12 1994-09-12 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6217417A JP2785702B2 (en) 1994-09-12 1994-09-12 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0882213A true JPH0882213A (en) 1996-03-26
JP2785702B2 JP2785702B2 (en) 1998-08-13

Family

ID=16703888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6217417A Expired - Fee Related JP2785702B2 (en) 1994-09-12 1994-09-12 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2785702B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001049993A1 (en) * 1999-12-31 2001-07-12 Robert Bosch Gmbh Method for operating an internal combustion engine, in particular of a motor vehicle
EP1177371A1 (en) * 1999-05-05 2002-02-06 Ford Global Technologies, Inc. Engine management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1177371A1 (en) * 1999-05-05 2002-02-06 Ford Global Technologies, Inc. Engine management system
WO2001049993A1 (en) * 1999-12-31 2001-07-12 Robert Bosch Gmbh Method for operating an internal combustion engine, in particular of a motor vehicle
US6745559B1 (en) 1999-12-31 2004-06-08 Robert Bosch Gmbh Method for operating and internal combustion engine, in particular of a motor vehicle

Also Published As

Publication number Publication date
JP2785702B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
JP3759578B2 (en) Deterioration detection device for exhaust gas purification catalyst
JP2000274228A (en) Exhaust emission control device for engine
JP2000265825A (en) Exhaust emission control device for engine
US20070113538A1 (en) Exhaust gas purifying system and abnormality determining method therefor
JP3063517B2 (en) Exhaust gas purification device for internal combustion engine
JP2003524110A (en) Engine exhaust purification system
JP4225126B2 (en) Engine exhaust gas purification device
JP3606211B2 (en) Engine exhaust purification system
JP4186259B2 (en) Exhaust gas purification device for internal combustion engine
JP2003314350A (en) Exhaust gas purifying device of internal combustion engine
JP3376651B2 (en) Exhaust gas purification device for internal combustion engine
JP2785702B2 (en) Exhaust gas purification device for internal combustion engine
JP2962127B2 (en) Control device for internal combustion engine
JP2996084B2 (en) Exhaust gas purification device for internal combustion engine
JPH0674765B2 (en) Air-fuel ratio control method for internal combustion engine
JP2000110553A (en) Exhaust gas emission control device of internal combustion engine
JP2009030459A (en) Exhaust emission control device of internal combustion engine
US6835357B2 (en) Exhaust emission control system for internal combustion engine
JP2003120382A (en) Diagnostic device for abnormality of catalyst premature warming control system for internal combustion engine
JP3448931B2 (en) Catalyst deterioration determination device for internal combustion engine
JPH0972211A (en) Exhaust purifying facility for internal combustion engine
JP3327238B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176632A (en) Exhaust emission control device for internal combustion engine
JP3401955B2 (en) Exhaust gas purification device for internal combustion engine
JP4315121B2 (en) Exhaust purification catalyst deterioration judgment device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees