JP2996084B2 - Exhaust gas purification device for internal combustion engine - Google Patents
Exhaust gas purification device for internal combustion engineInfo
- Publication number
- JP2996084B2 JP2996084B2 JP5337960A JP33796093A JP2996084B2 JP 2996084 B2 JP2996084 B2 JP 2996084B2 JP 5337960 A JP5337960 A JP 5337960A JP 33796093 A JP33796093 A JP 33796093A JP 2996084 B2 JP2996084 B2 JP 2996084B2
- Authority
- JP
- Japan
- Prior art keywords
- deterioration
- catalyst
- degree
- recovery processing
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は内燃機関の排気浄化装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine.
【0002】[0002]
【従来の技術】内燃機関から排出される排気ガスを清浄
化するため、空燃比を理論空燃比となるようにフィード
バック制御すると共に、排気通路にHC,COの酸化
と、NOの還元を同時に行う三元触媒を設置したシステ
ムが、広く実用化されている。2. Description of the Related Art In order to purify exhaust gas discharged from an internal combustion engine, feedback control is performed so that an air-fuel ratio becomes a stoichiometric air-fuel ratio, and oxidation of HC and CO and reduction of NO are simultaneously performed in an exhaust passage. Systems in which a three-way catalyst is installed have been widely put into practical use.
【0003】この三元触媒に用いられる触媒金属とし
て、機関始動後、短時間のうちから良好に機能する、低
温活性にすぐれているパラジウムを主成分としたものが
開発されている(特開昭58−189037号公報参
照)。As a catalytic metal used in the three-way catalyst, a metal mainly composed of palladium excellent in low-temperature activity, which functions well within a short time after starting the engine, has been developed (Japanese Patent Application Laid-Open (JP-A) No. Sho. 58-189037).
【0004】パラジウム(Pd)は常温で酸化物が安定
で、酸化パラジウム(PdO)として触媒作用を発揮す
る。[0004] Palladium (Pd) is an oxide which is stable at room temperature and exhibits a catalytic action as palladium oxide (PdO).
【0005】[0005]
【発明が解決しようとする課題】ところで、パラジウム
系触媒は、理論空燃比よりもリッチ側の空燃比で、高温
の排気雰囲気に晒されると、金属パラジウムに還元され
てしまい、触媒性能が一時的に低下する、いわゆる一時
劣化を起こす。この一時劣化は、ウォッシュコートの熱
変形による比表面積の減少や、貴金属の分散度の減少等
によって起きる永久劣化が進んだ触媒ほど、顕著に現れ
る。When a palladium-based catalyst is exposed to a high-temperature exhaust atmosphere at an air-fuel ratio richer than the stoichiometric air-fuel ratio, it is reduced to metallic palladium, and the catalyst performance is temporarily reduced. So-called temporary deterioration. This temporary deterioration is more remarkable in a catalyst in which permanent deterioration caused by a decrease in the specific surface area due to thermal deformation of the wash coat or a decrease in the degree of dispersion of the noble metal has progressed.
【0006】触媒の一時劣化が起きれば、その間、排気
の浄化作用が低下し、排気エミッションが増加する。[0006] When the catalyst is temporarily deteriorated, the exhaust gas purifying action is reduced during that time, and the exhaust emission is increased.
【0007】そこで、本発明は、このように一時劣化を
起こした場合に、触媒の劣化回復処理を施し、触媒性能
を回復させることを目的とする。[0007] Therefore, an object of the present invention is to recover the catalyst performance by performing a catalyst deterioration recovery process when such temporary deterioration occurs.
【0008】[0008]
【課題を解決するための手段】第1の発明は、図14に
示すように、触媒金属として主にパラジウムを担持させ
た機関排気系に設置される排気浄化用の触媒(1)と、
この触媒(1)の劣化度合を検出する劣化度合検出手段
51と、触媒(1)に流入する排気温度を検出する排気
温度検出手段(13)と、検出された触媒劣化度合に応
じて触媒(1)の劣化回復処理を行う時期を判定する劣
化回復処理時期判定手段52と、この判定結果が劣化回
復処理時期にありかつ検出された排気温度が所定値以上
であるときに排気の空燃比を理論空燃比よりもリーン側
の劣化回復処理空燃比に制御して触媒(1)の劣化回復
処理を行う劣化回復処理手段53とを備える。According to a first aspect of the present invention, as shown in FIG. 14, an exhaust purification catalyst (1) installed in an engine exhaust system mainly supporting palladium as a catalyst metal,
Deterioration degree detecting means 51 for detecting the degree of deterioration of the catalyst (1), exhaust temperature detecting means (13) for detecting the temperature of exhaust gas flowing into the catalyst (1), and a catalyst ( A deterioration recovery processing time determining means 52 for determining the timing of performing the deterioration recovery processing of 1), and determining the air-fuel ratio of the exhaust when the determination result is the deterioration recovery processing time and the detected exhaust gas temperature is equal to or higher than a predetermined value Deterioration recovery processing means 53 for performing a deterioration recovery processing of the catalyst (1) by controlling the air-fuel ratio to a deterioration recovery processing leaner than the stoichiometric air-fuel ratio.
【0009】第2の発明は、図15に示すように、触媒
金属として主にパラジウムを担持させた機関排気系に設
置される排気浄化用の触媒(1)と、この触媒(1)の
劣化度合を検出する劣化度合検出手段51と、触媒
(1)に流入する排気温度を検出する排気温度検出手段
(13)と、検出された触媒劣化度合に応じて触媒
(1)の劣化回復処理を行う時期を判定する劣化回復処
理時期判定手段52と、検出された触媒劣化度合に応じ
て触媒の劣化回復処理を行う時間を設定する劣化回復処
理時間設定手段54と、前記判定結果が劣化回復処理時
期にありかつ検出された排気温度が所定値以上であると
きに排気の空燃比を理論空燃比よりもリーン側の劣化回
復処理空燃比に制御して触媒の劣化回復処理を行う劣化
回復処理手段53と、この劣化回復処理に移行してから
の積算時間が設定された劣化回復処理時間に達したとき
に劣化回復処理を終了させる劣化回復処理終了手段55
とを備える。As shown in FIG. 15, a second invention is a catalyst (1) for purifying exhaust gas which is installed in an engine exhaust system mainly supporting palladium as a catalyst metal, and a catalyst for deterioration of the catalyst (1). Deterioration degree detecting means 51 for detecting the degree, exhaust temperature detecting means (13) for detecting the temperature of exhaust gas flowing into the catalyst (1), and deterioration recovery processing of the catalyst (1) according to the detected catalyst deterioration degree. Degradation recovery processing time determination means 52 for determining when to perform; degradation recovery processing time setting means 54 for setting the time for performing the catalyst degradation recovery processing according to the detected degree of catalyst degradation; A deterioration recovery processing means for controlling the air-fuel ratio of the exhaust to a leaner air-fuel ratio than the stoichiometric air-fuel ratio when the exhaust gas temperature is equal to or higher than a predetermined value and performing catalyst deterioration recovery processing; 53 and this Deterioration recovery process ending means ends the deterioration recovery process when the reduction recovery process integration time from the transition to reach the set degraded recovery processing time 55
And
【0010】第3の発明は、第1または第2の発明にお
いて、前記劣化回復処理時期判定手段が、機関始動直後
の触媒劣化度合の検出値に基づいて、触媒を所定温度以
上の排気に晒したときに劣化度合が許容範囲を越えて進
行するまでの時間を推定する暴露可能時間推定手段と、
この検出された排気温度が所定値以上である時間を積算
する暴露時間積算手段と、積算された暴露時間と推定さ
れた暴露可能時間とを比較して劣化回復処理時期を判定
する比較判定手段とから構成される。In a third aspect based on the first or second aspect, the deterioration recovery processing timing determining means exposes the catalyst to exhaust gas having a temperature equal to or higher than a predetermined temperature based on a detected value of the degree of catalyst deterioration immediately after starting the engine. Exposure time estimating means for estimating the time until the degree of deterioration proceeds beyond the allowable range when
Exposure time integration means for integrating the time during which the detected exhaust gas temperature is equal to or higher than a predetermined value, and comparison determination means for comparing the integrated exposure time with the estimated possible exposure time to determine the deterioration recovery processing time. Consists of
【0011】第4の発明は、第1または第2の発明にお
いて、前記劣化回復処理時期判定手段が、機関始動直後
に劣化度合検出手段が検出した劣化度合を初期劣化度合
として記憶する記憶手段と、所定時間毎に検出した劣化
度合と初期劣化度合との差を算出する劣化進行度算出手
段と、この劣化進行度と初期劣化度合に応じて設定され
る基準値とを比較して劣化回復処理時期を判定する比較
判定手段とから構成される。According to a fourth aspect of the present invention, in the first or second aspect, the deterioration recovery processing timing determining means stores the degree of deterioration detected by the degree of deterioration detecting means immediately after starting the engine as an initial degree of deterioration. A deterioration progress calculating means for calculating a difference between the degree of deterioration detected at predetermined time intervals and the initial deterioration degree, and a deterioration recovery process by comparing the deterioration progress with a reference value set in accordance with the initial deterioration degree. And comparison determination means for determining the timing.
【0012】第5の発明は、第1〜第4の発明におい
て、前記劣化回復処理手段は、機関の空燃比を理論空燃
比にフィードバック制御するときのフィードバック制御
係数を補正して空燃比をリーン側にシフトさせる。In a fifth aspect based on the first to fourth aspects, the deterioration recovery processing means corrects a feedback control coefficient when the air-fuel ratio of the engine is feedback-controlled to a stoichiometric air-fuel ratio to reduce the air-fuel ratio. Shift to the side.
【0013】第6の発明は、第1〜第4の発明におい
て、前記劣化回復処理手段は、排気通路に設置した触媒
の上流に2次空気を導入して触媒流入排気の空燃比をリ
ーン側にシフトさせる。In a sixth aspect based on the first to fourth aspects, the deterioration recovery processing means introduces secondary air upstream of the catalyst installed in the exhaust passage to reduce the air-fuel ratio of the exhaust gas flowing into the catalyst to the lean side. Shift to
【0014】[0014]
【作用】第1の発明では、触媒の一時的な劣化が判定さ
れると、排気温度が所定値以上のときに、空燃比が理論
空燃比よりもリーン側に制御され、触媒回復処理が行わ
れる。パラジウム系触媒は、高温のリーン雰囲気に晒さ
れることにより、触媒の一時劣化が取り除かれ、触媒性
能が回復する。According to the first aspect of the invention, when the temporary deterioration of the catalyst is determined, when the exhaust gas temperature is equal to or higher than the predetermined value, the air-fuel ratio is controlled to be leaner than the stoichiometric air-fuel ratio, and the catalyst recovery processing is performed. Will be When the palladium-based catalyst is exposed to a high-temperature lean atmosphere, temporary deterioration of the catalyst is removed, and the catalyst performance is restored.
【0015】したがって、触媒の劣化が判定されたとき
に、このように触媒の回復処理を実施することで、触媒
に長期的に安定した性能をもたらすことが可能となり、
良好な排気浄化機能を維持できる。Therefore, when the deterioration of the catalyst is determined, by performing the recovery process of the catalyst in this way, it is possible to provide the catalyst with stable performance for a long time,
A good exhaust purification function can be maintained.
【0016】第2の発明では、触媒の劣化度合に応じて
劣化回復処理に必要な時間が決められ、この設定時間だ
け回復処理を行うことにより、空燃比をリーン化しての
劣化回復処理に伴う運転性や排気性能に及ぼす影響を可
及的に少なくし、効率的に触媒の回復処理を実施でき
る。In the second invention, the time required for the deterioration recovery processing is determined according to the degree of deterioration of the catalyst, and the recovery processing is performed only for the set time, thereby accommodating the deterioration recovery processing by making the air-fuel ratio lean. The effect on the operability and the exhaust performance is reduced as much as possible, and the catalyst recovery processing can be performed efficiently.
【0017】第3の発明では、機関始動直後に検出した
触媒の永久劣化度合に関連して劣化回復処理時期を判定
している。高温リーン雰囲気で回復する一時劣化は、常
温で放置することによっても回復し、機関を停止させて
おくと触媒は回復する。したがって、機関の始動直後に
検出された初期劣化度合は、触媒の回復不能な劣化、つ
まり永久劣化を表している。一時劣化の進行の速さは、
永久劣化の程度に依存し、永久劣化度合が大きくなるほ
ど進行が速まる。したがって、この永久劣化の程度に応
じて、触媒の劣化が許容範囲に到達するまでの時間を推
定することにより、正確に劣化回復処理時期を判定でき
る。In the third aspect, the timing of the deterioration recovery processing is determined in relation to the degree of permanent deterioration of the catalyst detected immediately after the start of the engine. Temporary deterioration that recovers in a high-temperature lean atmosphere can be recovered by leaving it at room temperature, and the catalyst recovers when the engine is stopped. Therefore, the initial deterioration degree detected immediately after the start of the engine indicates irrecoverable deterioration of the catalyst, that is, permanent deterioration. The rate of progress of temporary deterioration is
Depending on the degree of permanent deterioration, the higher the degree of permanent deterioration, the faster the progress. Therefore, by estimating the time until the deterioration of the catalyst reaches the allowable range according to the degree of the permanent deterioration, it is possible to accurately determine the deterioration recovery processing time.
【0018】第4の発明では、初期劣化度合と所定時間
毎の劣化度合との比較に応じて劣化回復処理時期を判定
している。初期劣化度合と所定時間毎の劣化度合との
差、つまり劣化進行度は、その運転中に進行した一時劣
化の大きさを表しており、したがって、この劣化進行度
を初期劣化度合に応じた基準値と比較することにより、
一時劣化と永久劣化を合わせた全体の劣化が許容範囲に
達するまでの時期を正確に判定することができる。In the fourth invention, the deterioration recovery processing time is determined based on a comparison between the initial deterioration degree and the deterioration degree at predetermined time intervals. The difference between the initial deterioration degree and the deterioration degree for each predetermined time, that is, the deterioration progress degree represents the magnitude of the temporary deterioration that has progressed during the operation, and therefore, this deterioration progress degree is a reference based on the initial deterioration degree. By comparing with the value,
It is possible to accurately determine the time until the entire deterioration including the temporary deterioration and the permanent deterioration reaches the allowable range.
【0019】第5の発明では、空燃比フィードバック制
御の制御係数(例えば比例値、積分値)を補正して空燃
比をリーン化するので、このための新たなハード構成の
追加が不必要となる。In the fifth aspect, the air-fuel ratio is made lean by correcting the control coefficient (for example, proportional value or integral value) of the air-fuel ratio feedback control. Therefore, it is not necessary to add a new hardware configuration for this purpose. .
【0020】第6の発明では、2次空気の導入により空
燃比をリーン化するので、機関は理論空燃比など、通常
の制御範囲の空燃比で運転され、劣化回復処理中でも良
好な運転性を確保できる。In the sixth aspect, the air-fuel ratio is made lean by introducing secondary air, so that the engine is operated at an air-fuel ratio within a normal control range such as a stoichiometric air-fuel ratio, and good operability is maintained even during the deterioration recovery process. Can be secured.
【0021】[0021]
【実施例】図1は本発明の実施例を示すもので、エンジ
ン7の吸気通路8には燃料噴射弁5が取付けられ、コン
トローラ4からの信号に応じて燃料を噴射する。排気通
路9には排気中のHC,COの酸化と、NOの還元を同
時に行う三元触媒1が設置される。この三元触媒1は、
アルミナに触媒金属として、パラジウム(Pd)を主
に、その他セリア等を担持させたパラジウム系触媒で構
成される。FIG. 1 shows an embodiment of the present invention. A fuel injection valve 5 is attached to an intake passage 8 of an engine 7 and injects fuel according to a signal from a controller 4. The exhaust passage 9 is provided with a three-way catalyst 1 that simultaneously oxidizes HC and CO in exhaust gas and reduces NO. This three-way catalyst 1
It is composed of a palladium-based catalyst in which palladium (Pd) is mainly supported on alumina as a catalytic metal and ceria or the like is supported.
【0022】三元触媒1の上流と下流には、それぞれ第
1、第2の酸素センサ2と3が設置され、コントローラ
4は、第1の酸素センサ2の出力に基づいて空燃比が理
論空燃比となるように、前記燃料噴量をフィードバック
制御している。また、第1の酸素センサ2と、第2の酸
素センサ3の出力が、それぞれリッチリーンに反転する
回数を比較して、後述するように、触媒の劣化度合を検
出し、この劣化に対応して、所定の運転時期に触媒の劣
化回復処理を実行する。なおこのため、コントローラ4
には、エンジン冷却水温を検出する水温センサ12、三
元触媒1の入口側の排気温度を検出する温度センサ13
からの信号が入力する。また、図示しないが、エンジン
吸入空気量、回転数等の運転状態を代表する信号も入力
する。First and second oxygen sensors 2 and 3 are installed upstream and downstream of the three-way catalyst 1, respectively. The controller 4 determines the stoichiometric air-fuel ratio based on the output of the first oxygen sensor 2. The fuel injection amount is feedback-controlled so as to obtain the fuel ratio. Further, the number of times that the output of the first oxygen sensor 2 and the output of the second oxygen sensor 3 are each inverted in a rich lean manner is compared to detect the degree of deterioration of the catalyst, as described later. Then, the catalyst deterioration recovery process is executed at a predetermined operation time. For this reason, the controller 4
A water temperature sensor 12 for detecting an engine cooling water temperature, and a temperature sensor 13 for detecting an exhaust gas temperature on the inlet side of the three-way catalyst 1.
The signal from is input. Although not shown, a signal representing an operating state such as an engine intake air amount and a rotation speed is also input.
【0023】なお、吸気通路8には排気通路9からの一
部の排気を還流する排気還流通路14が接続され、コン
トローラ4を介して排気還流制御弁15が運転条件に応
じて排気の還流量を制御し、排気中のNOを減少させ
る。An exhaust gas recirculation passage 14 for recirculating a part of the exhaust gas from the exhaust gas passage 9 is connected to the intake passage 8, and an exhaust gas recirculation control valve 15 is connected via a controller 4 to an exhaust gas recirculation control valve 15 in accordance with operating conditions. To reduce NO in the exhaust gas.
【0024】図2にも示すように、パラジウム系触媒
は、理論空燃比もしくはそれよりもリッチな高温排気雰
囲気で晒すことにより、触媒性能が一時的に劣化する特
性をもっている。また、これとは別に触媒の物理的な劣
化に伴う永久劣化も一般的な触媒と同様に発生する。図
示したものは、温度が500℃で、空燃比が理論空燃比
(λ=1)の高温排気に長時間にわたりパラジウム系触
媒を晒したときの、触媒転化率の変化の状態(一時劣
化)を表している。この場合、時間の経過と共に触媒転
化率は低下していくが、永久劣化の少ない触媒Aは変化
が少なく、これに対して、触媒B、Cと、永久劣化の進
んだものほど、転化率の低下が顕著に現れる。触媒の一
時劣化については、リーン空燃比の高温排気雰囲気にお
いて、回復することができ、それぞれ永久劣化の最初の
状態まで、触媒性能は回復する。したがって、触媒の一
時劣化の状態を判断したら、排気温度が高温となる運転
条件で、一時的に空燃比をリーンに制御することで、劣
化した触媒を回復させられるのである。As shown in FIG. 2, the palladium-based catalyst has a characteristic that the catalyst performance is temporarily deteriorated when exposed to a stoichiometric air-fuel ratio or a high-temperature exhaust atmosphere richer than the stoichiometric air-fuel ratio. Apart from this, permanent deterioration due to physical deterioration of the catalyst also occurs similarly to a general catalyst. The graph shows the state of change (temporary deterioration) of the catalyst conversion when the palladium-based catalyst is exposed to high-temperature exhaust gas having a temperature of 500 ° C. and an air-fuel ratio of stoichiometric air-fuel ratio (λ = 1) for a long time. Represents. In this case, the catalyst conversion rate decreases with the passage of time, but the catalyst A with less permanent deterioration has less change. On the other hand, the catalysts with the more permanent deterioration, catalysts B and C, have a higher conversion rate. The drop is noticeable. The temporary deterioration of the catalyst can be recovered in a high-temperature exhaust atmosphere with a lean air-fuel ratio, and the catalyst performance recovers to the first state of the permanent deterioration. Therefore, when the state of the temporary deterioration of the catalyst is determined, the deteriorated catalyst can be recovered by temporarily controlling the air-fuel ratio to lean under the operating condition where the exhaust gas temperature becomes high.
【0025】このような触媒の劣化回復処理を行うため
に、コントローラ4は図3〜図9に示す制御を行う。In order to perform such catalyst deterioration recovery processing, the controller 4 performs the control shown in FIGS.
【0026】まず、図3は触媒の劣化を判断するための
制御ルーチンで、機関の始動後に一回だけ実行される。First, FIG. 3 shows a control routine for determining the deterioration of the catalyst, which is executed only once after the start of the engine.
【0027】ステップS1で機関冷却水温Twを読み込
んだら、ステップS2で冷却水温Twが、例えば暖機終
了後の所定値T1以上かどうか判断し、次いで、ステッ
プS3で空燃比のフィードバック制御領域にあるか判断
する。After reading the engine cooling water temperature Tw in step S1, it is determined in step S2 whether the cooling water temperature Tw is, for example, equal to or higher than a predetermined value T1 after completion of warm-up, and then in step S3, the air-fuel ratio is in a feedback control region. Judge.
【0028】なお、いずれも異なる場合は、最初に戻
る。If both are different, the process returns to the beginning.
【0029】ステップS4と5では、それぞれ触媒上流
の第1の酸素センサ2と、下流の第2の酸素センサ3の
出力のリッチリーンの反転周波数F1とF2を読み込
む。反転周波数の比率、F2/F1は、図4に示すよう
に、触媒の劣化度合が進むほど1に近づく。触媒が正常
に機能しているときは、排気中の酸素をストレージする
ので、上流の排気中に含まれている酸素を、そのまま触
媒の下流で検出することはできない。しかし、触媒が劣
化してくると、上流の排気中の酸素がそのまま下流に流
れる出るため、下流の酸素センサ出力の反転周波数は、
上流の酸素センサ出力の反転周波数に近づいてくる。In steps S4 and S5, rich lean inversion frequencies F1 and F2 of the outputs of the first oxygen sensor 2 upstream of the catalyst and the second oxygen sensor 3 downstream are read, respectively. As shown in FIG. 4, the ratio of the inversion frequency, F2 / F1, approaches 1 as the degree of deterioration of the catalyst advances. When the catalyst is functioning normally, the oxygen in the exhaust gas is stored, so that the oxygen contained in the exhaust gas upstream cannot be detected directly downstream of the catalyst. However, when the catalyst deteriorates, the oxygen in the upstream exhaust flows out downstream as it is, so the reversal frequency of the downstream oxygen sensor output is
It approaches the inversion frequency of the upstream oxygen sensor output.
【0030】ステップS6では、この反転周波数比Fr
を、F2/F1として算出し、ステップS7で、この周
波数比Frを所定値Fraと比較する。ここでは、触媒
の劣化度合を判定し、検出した周波数比が所定値よりも
大きいときは、触媒が劣化しているものと判断し、ステ
ップS8の劣化検出ルーチンへ移行する。In step S6, the inversion frequency ratio Fr
Is calculated as F2 / F1, and in step S7, the frequency ratio Fr is compared with a predetermined value Fra. Here, the degree of deterioration of the catalyst is determined, and when the detected frequency ratio is larger than a predetermined value, it is determined that the catalyst is deteriorated, and the process proceeds to a deterioration detection routine of step S8.
【0031】以上の制御は機関が始動される度に、始動
直後(ただし触媒活性後)に一回だけ実行されるが、触
媒の一時劣化は常温に放置した状態で自然に回復するた
め、機関を停止している間に劣化が回復し、したがって
上記タイミングで検出した劣化度合(周波数比Fr:以
下で初期劣化度合という)は、触媒の永久劣化のみを反
映しているものとみなすことができる。The above control is performed only once immediately after the start of the engine (but after the activation of the catalyst), but the temporary deterioration of the catalyst naturally recovers at room temperature. The deterioration is recovered during the stop of the operation, and therefore, the degree of deterioration detected at the above timing (frequency ratio Fr: hereinafter referred to as initial deterioration degree) can be regarded as reflecting only the permanent deterioration of the catalyst. .
【0032】次に図5の劣化検出ルーチンにおいて、ス
テップS11では反転周波数比Frに基づいて、図8に
示すテーブルから、数段階に設定した触媒の劣化度合R
mと、触媒性能の許容範囲内でそのまま排気に晒すこと
が可能な暴露可能時間Tcと、劣化度合に応じて決まる
回復処理時間に相当する回復処理判定値Trとを読み出
し、ステップS12の暴露時間算出・回復処理ルーチン
へ進む。Next, in the deterioration detection routine of FIG. 5, in step S11, based on the reversal frequency ratio Fr, the deterioration degree R of the catalyst set in several stages from the table shown in FIG.
m, an exposure time Tc during which the catalyst can be directly exposed to the exhaust gas within the allowable range of the catalyst performance, and a recovery processing determination value Tr corresponding to a recovery processing time determined according to the degree of deterioration. Proceed to the calculation / recovery processing routine.
【0033】この場合、触媒の劣化度合Rmは反転周波
数比Frに対応し、また、始動直後に検出した初期劣化
度合Rmは永久劣化度合に対応していることから、暴露
可能時間Tcは、この永久劣化の状態を基盤にして、排
気温度がある値よりも高いときに、そのまま運転を継続
したときに進行すると予測される触媒劣化度との加算値
が、触媒性能の許容限度に達するまでの時間として設定
されている。そして、この暴露可能時間Tcに応じて回
復処理判定値Trは設定される。In this case, the deterioration degree Rm of the catalyst corresponds to the reversal frequency ratio Fr, and the initial deterioration degree Rm detected immediately after the start corresponds to the permanent deterioration degree. Based on the state of permanent deterioration, when the exhaust gas temperature is higher than a certain value, the added value with the degree of catalyst deterioration that is predicted to proceed when the operation is continued as it is until the allowable limit of the catalyst performance is reached It is set as time. Then, the recovery processing determination value Tr is set according to the exposure possible time Tc.
【0034】なお、このルーチンはエンジンが停止する
までの間、所定の周期でもって繰り返し実行される(ス
テップS13)。This routine is repeatedly executed at a predetermined cycle until the engine stops (step S13).
【0035】図6は前記した暴露時間算出・回復処理ル
ーチンの詳細であり、ステップS21で後述する積算値
Tin=0にセットし、ステップS22でタイマTi=
0として、タイマの計数を開始すると共に、そのときの
触媒入口排気温度Tに基づいて、図9のテーブルから重
み係数Kcを読み出す。この重み係数は、単位時間当た
りに進行する触媒の劣化度(これは回復度にも対応)を
表すもので、厳密には、排気温度と空燃比をパラメータ
とする二次元マップとなるが、排気温度の影響がより大
きいので、温度のみに基くテーブル設定でもよい。FIG. 6 shows the details of the exposure time calculation / recovery processing routine described above. In step S21, an integrated value Tin = 0, which will be described later, is set, and in step S22, a timer Ti =
When the count is set to 0, the timer starts counting, and the weight coefficient Kc is read from the table of FIG. 9 based on the catalyst inlet exhaust gas temperature T at that time. This weighting coefficient represents the degree of deterioration of the catalyst that progresses per unit time (this also corresponds to the degree of recovery). Strictly speaking, it is a two-dimensional map using the exhaust gas temperature and the air-fuel ratio as parameters. Since the influence of the temperature is greater, a table setting based on only the temperature may be used.
【0036】ステップS23で排気温度Tを重み係数K
cを選んだときの設定温度範囲と比較し、この温度範囲
内にある時間をステップS24で積算する。ただし、こ
の積算値Tinは、Tin=Tin+Kc×Tiとして
算出し、排気温度Tに基づいて求めた重み係数Kcと温
度範囲にあるときの時間Tiとの乗算分を加算すること
により、積算値を増していく。In step S23, the exhaust gas temperature T is changed to a weight coefficient K.
The time within the set temperature range is compared with the set temperature range when c is selected, and the time within this temperature range is integrated in step S24. However, the integrated value Tin is calculated as Tin = Tin + Kc × Ti, and the integrated value is calculated by adding the multiplication of the weight coefficient Kc obtained based on the exhaust gas temperature T and the time Ti in the temperature range. Will increase.
【0037】そして、ステップS25でこの積算値Ti
nを暴露可能時間Tcと比較し、このTcに達するまで
は、上記ステップS22からS25までの積算動作を繰
り返し、そのときの排気温度に応じて積算を継続し、そ
して積算結果が、Tin>Tcになったならば、図7の
触媒劣化回復処理に移行する。Then, in step S25, the integrated value Ti
n is compared with the exposure time Tc. Until the exposure time Tc is reached, the integration operation from the above steps S22 to S25 is repeated, integration is continued according to the exhaust gas temperature at that time, and the integration result is Tin> Tc Then, the process proceeds to the catalyst deterioration recovery process of FIG.
【0038】触媒の劣化は、高温の排気温度に晒されて
いる時間に応じて進行し、このようにして暴露可能時間
Tcとの関係で、劣化の進行を判断するのである。The deterioration of the catalyst proceeds in accordance with the time during which the catalyst is exposed to a high exhaust gas temperature. Thus, the progress of the deterioration is determined in relation to the exposure time Tc.
【0039】図7において、ステップS26では、まず
積算値Tin=0にリセットし、ステップS27で触媒
入口温度Tが、劣化回復処理が可能な所定値以上の高温
状態かどうかを判断し、さらにステップS28では、運
転条件が高負荷のリッチ空燃比領域(KMR)かどうか
判断する。In FIG. 7, in step S26, first, the integrated value Tin is reset to 0, and in step S27, it is determined whether or not the catalyst inlet temperature T is in a high temperature state equal to or higher than a predetermined value at which deterioration recovery processing can be performed. In S28, it is determined whether or not the operating condition is a high load rich air-fuel ratio region (KMR).
【0040】このリッチ空燃比領域では、触媒劣化回復
処理のためリーンシフトしようとしても、運転性の点か
らKMRが優先され、リーンシフトできないので、それ
までの回復処理の経過を無視して、最初からやり直す。In this rich air-fuel ratio region, even if an attempt is made to perform a lean shift for the catalyst deterioration recovery processing, KMR is prioritized from the viewpoint of drivability, and the lean shift cannot be performed. Start over.
【0041】KMRにないときは、ステップS29で、
タイマTi=0として、タイマの計数を開始し、触媒入
口温度Tに基づいて図9のテーブルから、重み係数Kr
を読み出し、ステップS30で空燃比フィードバック制
御の制御係数(例えば比例値、積分値)を変更し、フィ
ードバック制御の制御中心をリーン側にシフトし、劣化
回復処理に移行する。なお、このとき、同時に排気還流
量を増量し、空燃比リーン化により、三元触媒で浄化処
理できなくなったNOを低減する。If it is not in the KMR, at step S29,
Assuming that the timer Ti is 0, the counting of the timer is started, and the weight coefficient Kr is obtained from the table of FIG.
The control coefficient (for example, proportional value, integral value) of the air-fuel ratio feedback control is changed in step S30, the control center of the feedback control is shifted to the lean side, and the process proceeds to the deterioration recovery process. At this time, the exhaust gas recirculation amount is increased at the same time, and the NO that cannot be purified by the three-way catalyst due to the lean air-fuel ratio is reduced.
【0042】前述のように、触媒に流入する排気温度が
高温の状態において、空燃比をリーン化することで、劣
化したパラジウム系触媒は、永久劣化を除き、一時劣化
分の回復が図られるのである。As described above, when the exhaust gas flowing into the catalyst is at a high temperature, the air-fuel ratio is made lean, so that the deteriorated palladium-based catalyst can recover the temporarily deteriorated part except for the permanent deterioration. is there.
【0043】ステップS31、S32で一定温度以上の
状態での時間を積算する。この積算値Timは、Tim
=Tim+Kr×Tiとして算出される。ステップS3
1で排気温度が所定の温度範囲から変化したら、ステッ
プS32でタイマを停止し、ステップS33を経由し
て、再びステップS27に戻り、劣化処理時間の積算を
継続する。In steps S31 and S32, the time in a state where the temperature is equal to or higher than a predetermined temperature is integrated. This integrated value Tim is represented by Tim
= Tim + Kr × Ti. Step S3
When the exhaust gas temperature changes from the predetermined temperature range in step 1, the timer is stopped in step S32, the process returns to step S27 via step S33, and the integration of the deterioration processing time is continued.
【0044】なお、この場合も、劣化の回復が、リーン
雰囲気の排気の温度に大きく影響されるため、排気温度
にのみ依存して設定した図9のテーブルから、重み係数
Krを設定することができるのである。In this case as well, since the recovery from deterioration is greatly affected by the temperature of the exhaust gas in the lean atmosphere, the weight coefficient Kr can be set from the table of FIG. 9 which is set only depending on the exhaust gas temperature. You can.
【0045】ステップS33では、積算値Timを、前
記した回復処理判定値Trと比較することにより、回復
処理が完了したかどうかを判断する。このようにして、
検出された触媒の劣化度合に対応した回復処理時間を経
過したならば、触媒の一時劣化は、初期状態まで回復
(ただし永久劣化分は除く)したものと判断し、ステッ
プS34に進み、空燃比のフィードバック制御の制御係
数と、排気還流率(EGR率)を通常の運転状態の値に
戻し、劣化回復処理を終了する。In step S33, it is determined whether or not the recovery processing has been completed by comparing the integrated value Tim with the above-described recovery processing determination value Tr. In this way,
If the recovery processing time corresponding to the detected degree of deterioration of the catalyst has elapsed, it is determined that the temporary deterioration of the catalyst has been recovered to the initial state (however, the amount of permanent deterioration has been excluded). Then, the control coefficient of the feedback control and the exhaust gas recirculation rate (EGR rate) are returned to the values in the normal operation state, and the deterioration recovery processing ends.
【0046】空燃比をリーン化するのに、フィードバッ
ク制御係数を補正する代わりに、三元触媒1の上流かつ
酸素センサ2の下流に2次空気を導入する装置を設け、
ステップS30において、触媒の上流に2次空気を導入
し、触媒流入排気をリーン化してもよい。この場合、エ
ンジン空燃比は、通常の理論空燃比となるので、触媒の
劣化回復処理を行っても、良好な運転性を確保できる。In order to make the air-fuel ratio lean, instead of correcting the feedback control coefficient, a device for introducing secondary air upstream of the three-way catalyst 1 and downstream of the oxygen sensor 2 is provided.
In step S30, secondary air may be introduced upstream of the catalyst to make the catalyst inflow exhaust gas lean. In this case, the engine air-fuel ratio becomes the normal stoichiometric air-fuel ratio, so that good operability can be ensured even when the catalyst deterioration recovery processing is performed.
【0047】次に、図10、図11に示す他の実施例を
説明する。Next, another embodiment shown in FIGS. 10 and 11 will be described.
【0048】この実施例は、前記触媒の劣化の進行度
が、永久劣化度合、つまり機関始動直後に検出した初期
劣化度合に関連していることから、この劣化度合に応じ
た基準値に基づいて、一時劣化と永久劣化を合わせた全
体の劣化が許容限度に達するまでの時期を判定するよう
にしたのである。In this embodiment, since the degree of progress of the catalyst deterioration is related to the degree of permanent deterioration, that is, the initial degree of deterioration detected immediately after the engine is started, it is determined based on a reference value corresponding to the degree of deterioration. Then, the time until the total deterioration including the temporary deterioration and the permanent deterioration reaches the allowable limit is determined.
【0049】まず、図10のルーチンは、機関を始動す
るたびに一回だけ実行されるもので、ステップS41か
らステップS46までは、図3の基本ルーチンの、ステ
ップS1〜ステップS6と同一であり、ステップS47
において、反転周波数比Frにより図8のテーブルから
求めた劣化度Rmを、初期劣化度Rmoとして記憶する
と共に、このRmoに基づいて、図12のテーブルか
ら、基準値Rmcを読み出す。この基準値Rmcは、R
mo+Rmcが触媒性能の劣化限度となるように決めら
れ、初期劣化度Rmoが大きくなるほど、Rmcは小さ
くなる。First, the routine of FIG. 10 is executed only once every time the engine is started. Steps S41 to S46 are the same as steps S1 to S6 of the basic routine of FIG. , Step S47
, The degree of deterioration Rm obtained from the table of FIG. 8 by the inversion frequency ratio Fr is stored as the initial degree of deterioration Rmo, and based on this Rmo, the reference value Rmc is read from the table of FIG. This reference value Rmc is
Mo + Rmc is determined to be the deterioration limit of the catalyst performance, and as the initial deterioration degree Rmo increases, Rmc decreases.
【0050】つまり、ここでは、機関始動後に一回行わ
れる、触媒の劣化判定から、この劣化度合を初期劣化と
して記憶しておく。That is, here, the degree of this deterioration is stored as the initial deterioration from the catalyst deterioration judgment performed once after the engine is started.
【0051】そして、図10のルーチンに移行する。こ
のルーチンは機関運転後の所定時間毎に繰り返し実行さ
れるもので、触媒の劣化の進行度を判定するもので、こ
このステップS51〜ステップS54までは、同じく上
記ステップS2〜ステップS6までと同一の内容であ
り、ここでは排気温度が所定値以上のときの、酸素セン
サ出力の反転周波数比Frを算出したら、ステップS5
5で、このFrに基づいて、図8のテーブルから劣化度
合Rmを読み出し、これと前記初期劣化度合Rmoとの
差、つまり一時劣化の進行度ΔRmを、ΔRm=Rm−
Rmoとして算出する。機関の始動直後に検出した初期
劣化度合は、永久劣化度合に対応するから、このΔRm
は、回復可能な触媒の一時劣化を表す。Then, the process proceeds to the routine of FIG. This routine is repeatedly executed at predetermined time intervals after the operation of the engine, and determines the degree of progress of catalyst deterioration. Steps S51 to S54 are the same as steps S2 to S6. Here, when the reversal frequency ratio Fr of the oxygen sensor output when the exhaust gas temperature is equal to or higher than the predetermined value is calculated, step S5 is performed.
At step 5, based on this Fr, the degree of deterioration Rm is read from the table of FIG. 8, and the difference between this and the initial degree of deterioration Rmo, that is, the degree of temporary deterioration ΔRm, is expressed as ΔRm = Rm−
It is calculated as Rmo. Since the initial deterioration degree detected immediately after the start of the engine corresponds to the permanent deterioration degree, this ΔRm
Represents temporary deterioration of the recoverable catalyst.
【0052】ステップS56でこの一時劣化進行度ΔR
mを基準値Rmcと比較する。初期劣化度合、つまり永
久劣化度合が進んでいるほど、基準値Rmcは小さい値
となり、この場合には、それだけ一時劣化の許容度も小
さくなる。もし、一時劣化度合ΔRmが、基準値Rmc
以下でないときは、触媒の回復処理ルーチンに移行する
ためステップS57に進み、回復処理判定値Trを読み
出し、ステップS58の回復処理動作を実行する。In step S56, the temporary deterioration progress rate ΔR
m is compared with a reference value Rmc. As the degree of initial deterioration, that is, the degree of permanent deterioration advances, the reference value Rmc becomes smaller. In this case, the tolerance of temporary deterioration also becomes smaller. If the temporary deterioration degree ΔRm is equal to the reference value Rmc
If not, the flow proceeds to step S57 to shift to the catalyst recovery processing routine, reads the recovery processing determination value Tr, and executes the recovery processing operation of step S58.
【0053】なお、この回復処理ルーチンは、前記した
図7のステップS26からステップS34と同一の動作
内容となっていて、高温排気雰囲気での空燃比のリーン
化により、回復処理判定値Trに達するまでの期間、触
媒の劣化回復処理を行うのである。Note that this recovery processing routine has the same operation contents as steps S26 to S34 in FIG. 7 described above, and reaches the recovery processing determination value Tr by making the air-fuel ratio lean in a high-temperature exhaust atmosphere. During this period, catalyst deterioration recovery processing is performed.
【0054】このようにして、機関始動直後に検出した
初期劣化度合に応じた基準値に基づいて、一時劣化と永
久劣化を合わせた全体の劣化が許容限度に達するまでの
時期を判定するので、触媒を回復処理するための制御
を、劣化の状態を正確に判断しながら効率よく行うこと
ができる。In this manner, the time until the total deterioration including the temporary deterioration and the permanent deterioration reaches the allowable limit is determined based on the reference value corresponding to the initial deterioration degree detected immediately after the engine is started. Control for performing a recovery process on the catalyst can be efficiently performed while accurately determining the state of deterioration.
【0055】[0055]
【発明の効果】以上のように第1の発明は、触媒金属と
して主にパラジウムを担持させた機関排気系に設置され
る排気浄化用の触媒と、この触媒の劣化度合を検出する
劣化度合検出手段と、触媒に流入する排気温度を検出す
る排気温度検出手段と、検出された触媒劣化度合に応じ
て触媒の劣化回復処理を行う時期を判定する劣化回復処
理時期判定手段と、この判定結果が劣化回復処理時期に
ありかつ検出された排気温度が所定値以上であるときに
排気の空燃比を理論空燃比よりもリーン側の劣化回復処
理空燃比に制御して触媒の劣化回復処理を行う劣化回復
処理手段とを備えたため、触媒の一時的な劣化が判定さ
れると、排気温度が所定値以上のときに、排気空燃比を
リーン制御し、触媒の回復処理を行うので、常に良好な
触媒性能を維持し、排気エミッションを改善することが
できる。As described above, the first aspect of the present invention is directed to an exhaust gas purifying catalyst installed in an engine exhaust system mainly supporting palladium as a catalytic metal, and a deterioration degree detecting method for detecting the degree of deterioration of the catalyst. Means, exhaust temperature detecting means for detecting the temperature of exhaust gas flowing into the catalyst, deterioration recovery processing time determining means for determining when to perform catalyst recovery processing in accordance with the detected degree of catalyst deterioration, and At the time of deterioration recovery processing and when the detected exhaust gas temperature is equal to or higher than a predetermined value, the air-fuel ratio of the exhaust gas is controlled to the air-fuel ratio leaner than the stoichiometric air-fuel ratio to perform the catalyst deterioration recovery processing. When the exhaust gas temperature is equal to or higher than a predetermined value, the exhaust air-fuel ratio is lean-controlled to perform the catalyst recovery process. Maintain performance It is possible to improve the exhaust emission.
【0056】第2の発明は、触媒金属として主にパラジ
ウムを担持させた機関排気系に設置される排気浄化用の
触媒と、この触媒の劣化度合を検出する劣化度合検出手
段と、触媒に流入する排気温度を検出する排気温度検出
手段と、検出された触媒劣化度合に応じて触媒の劣化回
復処理を行う時期を判定する劣化回復処理時期判定手段
と、検出された触媒劣化度合に応じて触媒の劣化回復処
理を行う時間を設定する劣化回復処理時間設定手段と、
前記判定結果が劣化回復処理時期にありかつ検出された
排気温度が所定値以上であるときに排気の空燃比を理論
空燃比よりもリーン側の劣化回復処理空燃比に制御して
触媒の劣化回復処理を行う劣化回復処理手段と、この劣
化回復処理に移行してからの積算時間が設定された劣化
回復処理時間に達したときに劣化回復処理を終了させる
劣化回復処理終了手段とを備えたため、触媒の劣化度合
に応じて劣化回復処理に必要な時間が決められ、この設
定時間だけ回復処理を行うので、空燃比をリーン化して
の劣化回復処理に伴う運転性や排気性能に及ぼす影響を
可及的に少なくし、効率よく触媒の回復処理を実施でき
る。According to a second aspect of the present invention, there is provided an exhaust gas purifying catalyst installed in an engine exhaust system mainly supporting palladium as a catalyst metal, a deterioration degree detecting means for detecting the degree of deterioration of the catalyst, Exhaust temperature detecting means for detecting the temperature of the exhaust gas to be heated, deterioration recovery processing time determining means for determining when to perform the catalyst deterioration recovery processing in accordance with the detected degree of catalyst deterioration, and catalyst in accordance with the detected degree of catalyst deterioration. Degradation recovery processing time setting means for setting a time for performing the degradation recovery processing,
When the determination result is at the time of the deterioration recovery processing and the detected exhaust gas temperature is equal to or higher than the predetermined value, the air-fuel ratio of the exhaust gas is controlled to the air-fuel ratio leaner than the stoichiometric air-fuel ratio to recover the deterioration of the catalyst. A deterioration recovery processing means for performing the processing, and a deterioration recovery processing ending means for ending the deterioration recovery processing when the integrated time from the shift to the deterioration recovery processing reaches the set deterioration recovery processing time, The time required for the deterioration recovery process is determined according to the degree of deterioration of the catalyst, and the recovery process is performed only for this set time, so it is possible to influence the operability and exhaust performance of the deterioration recovery process by making the air-fuel ratio lean. As much as possible, the catalyst can be efficiently recovered.
【0057】第3の発明は、第1または第2の発明にお
いて、前記劣化回復処理時期判定手段が、機関始動直後
の触媒劣化度合の検出値に基づいて、触媒を所定温度以
上の排気に晒したときに劣化度合が許容範囲を越えて進
行するまでの時間を推定する暴露可能時間推定手段と、
検出された排気温度が所定値以上である時間を積算する
暴露時間積算手段と、積算された暴露時間と推定された
暴露可能時間とを比較して劣化回復処理時期を判定する
比較判定手段とから構成されるので、触媒の永久劣化の
程度に応じて、一時劣化が許容範囲に到達するまでの時
間を推定することにより、正確に劣化回復処理時期を判
定できる。In a third aspect based on the first or second aspect, the deterioration recovery processing timing determining means exposes the catalyst to exhaust gas having a temperature equal to or higher than a predetermined temperature based on a detected value of the degree of catalyst deterioration immediately after the start of the engine. Exposure time estimating means for estimating the time until the degree of deterioration proceeds beyond the allowable range when
Exposure time integrating means for integrating the time during which the detected exhaust gas temperature is equal to or higher than a predetermined value, and comparison determining means for comparing the integrated exposure time with the estimated possible exposure time to determine the deterioration recovery processing time. With this configuration, it is possible to accurately determine the deterioration recovery processing time by estimating the time until the temporary deterioration reaches the allowable range according to the degree of permanent deterioration of the catalyst.
【0058】第4の発明は、第1または第2の発明にお
いて、前記劣化回復処理時期判定手段が、機関始動直後
に劣化度合検出手段が検出した劣化度合を初期劣化度合
として記憶する記憶手段と、所定時間毎に検出した劣化
度合と初期劣化度合との差を算出する劣化進行度算出手
段と、この劣化進行度と初期劣化度合に応じて設定され
る基準値とを比較して劣化回復処理時期を判定する比較
判定手段とから構成されるので、触媒の劣化進行度を初
期劣化度合と比較することにより、一時劣化と永久劣化
を合わせた全体の劣化が許容範囲に達するまでの時期を
正確に判定することができる。According to a fourth aspect, in the first or second aspect, the deterioration recovery processing timing determining means stores the deterioration degree detected by the deterioration degree detecting means immediately after the engine is started as an initial deterioration degree. A deterioration progress calculating means for calculating a difference between the degree of deterioration detected at predetermined time intervals and the initial deterioration degree, and a deterioration recovery process by comparing the deterioration progress with a reference value set in accordance with the initial deterioration degree. Since it is composed of a comparison judgment means for judging the timing, by comparing the degree of progress of the catalyst deterioration with the initial deterioration degree, it is possible to accurately determine the time until the total deterioration including the temporary deterioration and the permanent deterioration reaches an allowable range. Can be determined.
【0059】第5の発明は、第1〜第4の発明におい
て、前記劣化回復処理手段は、機関の空燃比を理論空燃
比にフィードバック制御するときのフィードバック制御
係数を補正して空燃比をリーン側にシフトさせるので、
劣化処理のために空燃比をリーン化するのに、新たなハ
ード構成の追加が不必要で、構成が簡略化される。In a fifth aspect based on the first to fourth aspects, the deterioration recovery processing means corrects a feedback control coefficient when the air-fuel ratio of the engine is feedback-controlled to a stoichiometric air-fuel ratio to reduce the air-fuel ratio. Shift to the side,
To make the air-fuel ratio lean for the deterioration process, it is unnecessary to add a new hardware configuration, and the configuration is simplified.
【0060】第6の発明は、第1〜第4の発明におい
て、前記劣化回復処理手段は、排気通路に設置した触媒
の上流に2次空気を導入して触媒流入排気の空燃比をリ
ーン側にシフトさせるので、劣化回復処理のために空燃
比をリーン化しても、機関の空燃比は通常の制御範囲に
あるため、劣化回復処理中でも良好な運転性を確保でき
る。In a sixth aspect based on the first to fourth aspects, the deterioration recovery processing means introduces secondary air upstream of the catalyst installed in the exhaust passage to reduce the air-fuel ratio of the exhaust gas flowing into the catalyst to the lean side. Therefore, even if the air-fuel ratio is made lean for the deterioration recovery process, the air-fuel ratio of the engine is within the normal control range, so that good operability can be ensured even during the deterioration recovery process.
【図1】本発明の実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
【図2】触媒性能の変遷状態を示す説明図である。FIG. 2 is an explanatory diagram showing a transition state of catalyst performance.
【図3】上記実施例の触媒の劣化検出の制御動作を示す
フローチャートである。FIG. 3 is a flowchart showing a control operation for detecting catalyst deterioration according to the embodiment.
【図4】同じく触媒の劣化判定の説明図である。FIG. 4 is an explanatory diagram of a catalyst deterioration determination.
【図5】同じく触媒の劣化判定の制御動作を示すフロー
チャートである。FIG. 5 is a flowchart showing a control operation for determining deterioration of a catalyst.
【図6】同じく触媒の暴露時間設定の制御動作を示すフ
ローチャートである。FIG. 6 is a flowchart showing a control operation of setting the exposure time of the catalyst.
【図7】同じく劣化回復処理の制御動作を示すフローチ
ャートである。FIG. 7 is a flowchart showing a control operation of a deterioration recovery process.
【図8】反転周波数比と劣化度合等の関係を示す説明図
である。FIG. 8 is an explanatory diagram showing a relationship between an inversion frequency ratio and a degree of deterioration.
【図9】触媒入口温度と重み係数の関係を示す説明図で
ある。FIG. 9 is an explanatory diagram showing a relationship between a catalyst inlet temperature and a weight coefficient.
【図10】他の実施例の制御動作を示すフローチャート
である。FIG. 10 is a flowchart illustrating a control operation according to another embodiment.
【図11】同じく触媒の劣化進行判定の制御動作のフロ
ーチャートである。FIG. 11 is a flowchart of a control operation for determining the progress of deterioration of the catalyst.
【図12】初期劣化度と基準値の関係を示す説明図であ
る。FIG. 12 is an explanatory diagram showing a relationship between an initial deterioration degree and a reference value.
【図13】劣化進行度と回復処理判定値の関係を示す説
明図である。FIG. 13 is an explanatory diagram showing the relationship between the degree of progress of deterioration and a recovery processing determination value.
【図14】第1の発明の構成図である。FIG. 14 is a configuration diagram of the first invention.
【図15】第2の発明の構成図である。FIG. 15 is a configuration diagram of the second invention.
1 三元触媒(パラジウム系触媒) 2 酸素センサ 3 酸素センサ 4 コントローラ 5 燃料噴射弁 9 排気通路 13 排気温度センサ 51 劣化度合検出手段 52 劣化回復処理時期判定手段 53 劣化回復処理手段 54 劣化回復処理時間設定手段 55 劣化回復処理終了手段 DESCRIPTION OF SYMBOLS 1 Three-way catalyst (palladium catalyst) 2 Oxygen sensor 3 Oxygen sensor 4 Controller 5 Fuel injection valve 9 Exhaust passage 13 Exhaust temperature sensor 51 Deterioration degree detecting means 52 Deterioration recovery processing time determination means 53 Deterioration recovery processing means 54 Deterioration recovery processing time Setting means 55 Degradation recovery processing end means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 磯部 明雄 神奈川県横浜市神奈川区宝町2番地 日 産自動車株式会社内 (56)参考文献 特開 昭58−189037(JP,A) 特開 平5−312024(JP,A) 特開 平5−248227(JP,A) 特開 昭60−48146(JP,A) 特開 平6−200766(JP,A) 国際公開93/25806(WO,A1) (58)調査した分野(Int.Cl.6,DB名) B01J 23/44 B01D 53/86 F01N 3/20 F02D 41/02 305 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akio Isobe 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd. (56) References JP-A-58-1889037 (JP, A) 312024 (JP, A) JP-A-5-248227 (JP, A) JP-A-60-48146 (JP, A) JP-A-6-200766 (JP, A) WO 93/25806 (WO, A1) ( 58) Field surveyed (Int.Cl. 6 , DB name) B01J 23/44 B01D 53/86 F01N 3/20 F02D 41/02 305
Claims (6)
た機関排気系に設置される排気浄化用の触媒と、 この触媒の劣化度合を検出する劣化度合検出手段と、 触媒に流入する排気温度を検出する排気温度検出手段
と、 検出された触媒劣化度合に応じて触媒の劣化回復処理を
行う時期を判定する劣化回復処理時期判定手段と、 この判定結果が劣化回復処理時期にありかつ検出された
排気温度が所定値以上であるときに排気の空燃比を理論
空燃比よりもリーン側の劣化回復処理空燃比に制御して
触媒の劣化回復処理を行う劣化回復処理手段とを備える
ことを特徴とする内燃機関の排気浄化装置。An exhaust purification catalyst installed in an engine exhaust system mainly supporting palladium as a catalyst metal, a deterioration degree detecting means for detecting a degree of deterioration of the catalyst, and a temperature of exhaust gas flowing into the catalyst. Exhaust temperature detecting means for detecting; deterioration recovery processing time determining means for determining when to perform catalyst recovery processing in accordance with the detected degree of catalyst deterioration; When the exhaust gas temperature is equal to or higher than a predetermined value, deterioration recovery processing means for controlling the air-fuel ratio of the exhaust gas to a leaner-side deterioration recovery processing air-fuel ratio than the stoichiometric air-fuel ratio to perform catalyst deterioration recovery processing is provided. Exhaust purification device for an internal combustion engine.
た機関排気系に設置される排気浄化用の触媒と、 この触媒の劣化度合を検出する劣化度合検出手段と、 触媒に流入する排気温度を検出する排気温度検出手段
と、 検出された触媒劣化度合に応じて触媒の劣化回復処理を
行う時期を判定する劣化回復処理時期判定手段と、 検出された触媒劣化度合に応じて触媒の劣化回復処理を
行う時間を設定する劣化回復処理時間設定手段と、 前記判定結果が劣化回復処理時期にありかつ検出された
排気温度が所定値以上であるときに排気の空燃比を理論
空燃比よりもリーン側の劣化回復処理空燃比に制御して
触媒の劣化回復処理を行う劣化回復処理手段と、 この劣化回復処理に移行してからの積算時間が設定され
た劣化回復処理時間に達したときに劣化回復処理を終了
させる劣化回復処理終了手段とを備えることを特徴とす
る内燃機関の排気浄化装置。2. An exhaust gas purifying catalyst installed in an engine exhaust system mainly supporting palladium as a catalyst metal, a deterioration degree detecting means for detecting the degree of deterioration of the catalyst, and a temperature of exhaust gas flowing into the catalyst. Exhaust temperature detecting means for detecting, deterioration recovery processing time determining means for determining when to perform the catalyst deterioration recovery processing in accordance with the detected catalyst deterioration degree, and catalyst deterioration recovery processing in accordance with the detected catalyst deterioration degree A recovery time setting means for setting a time for performing the operation, when the determination result is the deterioration recovery processing time and the detected exhaust gas temperature is equal to or higher than a predetermined value, the air-fuel ratio of the exhaust gas is leaner than the stoichiometric air-fuel ratio. Degradation recovery processing means for performing a catalyst degradation recovery process by controlling the air-fuel ratio, and when the accumulated time from the shift to the degradation recovery process reaches the set degradation recovery processing time, Exhaust purification system of an internal combustion engine, characterized in that it comprises a deterioration recovery process ending means for ending the reduction recovery process.
動直後の触媒劣化度合の検出値に基づいて、触媒を所定
温度以上の排気に晒したときに劣化度合が許容範囲を越
えて進行するまでの時間を推定する暴露可能時間推定手
段と、 この検出された排気温度が所定値以上である時間を積算
する暴露時間積算手段と、 積算された暴露時間と推定された暴露可能時間とを比較
して劣化回復処理時期を判定する比較判定手段とから構
成される請求項1または2に記載の内燃機関の排気浄化
装置。3. The deterioration recovery processing timing determining means, based on a detected value of the catalyst deterioration degree immediately after the start of the engine, causes the deterioration degree to exceed an allowable range when the catalyst is exposed to exhaust gas having a temperature equal to or higher than a predetermined temperature. Exposure time estimating means for estimating the time until exposure time, Exposure time estimating means for accumulating the time during which the detected exhaust gas temperature is equal to or higher than a predetermined value, and comparing the accumulated exposure time with the estimated exposure time 3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, further comprising a comparison judging means for judging a deterioration recovery processing time.
動直後に劣化度合検出手段が検出した劣化度合を初期劣
化度合として記憶する記憶手段と、 所定時間毎に検出した劣化度合と初期劣化度合との差を
算出する劣化進行度算出手段と、 この劣化進行度と初期劣化度合に応じて設定される基準
値とを比較して劣化回復処理時期を判定する比較判定手
段とから構成される請求項1または2に記載の内燃機関
の排気浄化装置。4. A storage means for storing the degree of deterioration detected by the degree-of-degradation detecting means immediately after the engine is started as an initial degree of deterioration; And a comparison determining means for comparing the degree of deterioration with a reference value set according to the initial degree of deterioration to determine the timing of the deterioration recovery processing. Item 3. An exhaust gas purifying apparatus for an internal combustion engine according to item 1 or 2.
理論空燃比にフィードバック制御するときのフィードバ
ック制御係数を補正して空燃比をリーン側にシフトさせ
る請求項1〜4のいずれか一つに記載の内燃機関の排気
浄化装置。5. A method according to claim 1, wherein said deterioration recovery processing means corrects a feedback control coefficient when feedback-controlling the air-fuel ratio of the engine to the stoichiometric air-fuel ratio to shift the air-fuel ratio to the lean side. An exhaust gas purifying apparatus for an internal combustion engine according to any one of the preceding claims.
した触媒の上流に2次空気を導入して触媒流入排気の空
燃比をリーン側にシフトさせる請求項1〜4のいずれか
一つに記載の内燃機関の排気浄化装置。6. The deterioration recovery processing means according to claim 1, wherein secondary air is introduced upstream of the catalyst provided in the exhaust passage to shift the air-fuel ratio of the exhaust gas flowing into the catalyst to the lean side. An exhaust gas purifying apparatus for an internal combustion engine according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5337960A JP2996084B2 (en) | 1993-12-28 | 1993-12-28 | Exhaust gas purification device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5337960A JP2996084B2 (en) | 1993-12-28 | 1993-12-28 | Exhaust gas purification device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07185344A JPH07185344A (en) | 1995-07-25 |
JP2996084B2 true JP2996084B2 (en) | 1999-12-27 |
Family
ID=18313617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5337960A Expired - Fee Related JP2996084B2 (en) | 1993-12-28 | 1993-12-28 | Exhaust gas purification device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2996084B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0861972B1 (en) * | 1995-11-17 | 2006-08-09 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control device for internal combustion engines |
JP4226275B2 (en) | 2002-06-07 | 2009-02-18 | 日本パイオニクス株式会社 | Exhaust gas purification method |
JP5767024B2 (en) * | 2011-06-01 | 2015-08-19 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP6237464B2 (en) * | 2014-05-22 | 2017-11-29 | 株式会社デンソー | Exhaust gas purification control device for internal combustion engine |
-
1993
- 1993-12-28 JP JP5337960A patent/JP2996084B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH07185344A (en) | 1995-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5743084A (en) | Method for monitoring the performance of a nox trap | |
JP3805562B2 (en) | Exhaust gas purification device for internal combustion engine | |
US7513105B2 (en) | Exhaust gas purifying system and abnormality determining method therefor | |
JP3063517B2 (en) | Exhaust gas purification device for internal combustion engine | |
EP3266999B1 (en) | Exhaust purification system and catalyst regeneration method | |
JP4186259B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2016133064A (en) | Exhaust emission control system | |
JP2005307745A (en) | Exhaust emission control device | |
JP2996084B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2000356124A (en) | Exhaust emission control device for engine | |
JP2962127B2 (en) | Control device for internal combustion engine | |
JP4114355B2 (en) | Exhaust gas purification device for internal combustion engine and method for determining deterioration thereof | |
JP3674358B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4289033B2 (en) | Exhaust gas purification system | |
JP4453061B2 (en) | Control device for internal combustion engine | |
JP2009030459A (en) | Exhaust emission control device of internal combustion engine | |
JP4389141B2 (en) | Exhaust gas purification device for internal combustion engine | |
US10392986B2 (en) | Exhaust purification system, and control method for exhaust purification system | |
JP3409699B2 (en) | Apparatus and method for diagnosing deterioration of HC adsorbent in internal combustion engine | |
JP4510709B2 (en) | Catalyst deterioration judgment device | |
JP2005299587A (en) | Air fuel ratio control device for internal combustion engine | |
JP2785702B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3772554B2 (en) | Engine exhaust purification system | |
JP3327238B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4134665B2 (en) | HC concentration prediction method and HC adsorption catalyst deterioration diagnosis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |