JPH0881733A - High strength steel for induction hardening excellent in machinability - Google Patents

High strength steel for induction hardening excellent in machinability

Info

Publication number
JPH0881733A
JPH0881733A JP25261094A JP25261094A JPH0881733A JP H0881733 A JPH0881733 A JP H0881733A JP 25261094 A JP25261094 A JP 25261094A JP 25261094 A JP25261094 A JP 25261094A JP H0881733 A JPH0881733 A JP H0881733A
Authority
JP
Japan
Prior art keywords
less
machinability
steel
strength
induction hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25261094A
Other languages
Japanese (ja)
Inventor
Tatsumi Urita
龍実 瓜田
Sadayuki Nakamura
貞行 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25261094A priority Critical patent/JPH0881733A/en
Publication of JPH0881733A publication Critical patent/JPH0881733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE: To produce a steel for induction hardening excellent in machinability and excellent in static strength, bending fatigue strength and rolling contact fatigue strength by regulating the compsn. of a steel to the specified one in which the content of C is higher than that in a carbon steel of S45C to S55C, the contents of Mn and Si are reduced and B is added. CONSTITUTION: This high strength steel for induction hardening has a compsn. contg., by mass, 0.50 to 0.80% C, <=0.15% Si, <=0.60%. Mn, 0.0005 to 0.0050% B and <=0.05% Ti, furthermore contg., at need, <=2.0% Cr, <=3.0% Ni, <=1.0% Mo, <=0.10% Nb and 0.05 to 0.50% V, and the balance Fe. Moreover, this steel may contain one or more kinds of machinability improving elements among <=0.20% S, <=0.20% Te and <=0.0050% Ca as well. By the same C content, its static strength, bending fatigue strength and rolling contact fatigue strength can be improved, by the reduction of the contents of Mn and Si, its machinability can be improved, and by the addition of B, deterioration in its hardenability caused by the reduction of the Mn and Si contents can be covered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、機械構造用部品、例え
ば変速ギヤ、無段変速機用転動体、等速ジョイントアウ
ターレース、その他の高周波焼入れを施して機械構造用
部品に用いられる被削性に優れかつ静的強度や曲げ疲労
強度および転がり接触疲労強度に優れた高強度高周波焼
入用鋼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to machine structural parts such as speed change gears, rolling elements for continuously variable transmissions, constant-velocity joint outer races, and other materials used for machine structural parts after induction hardening. The present invention relates to a high-strength induction hardening steel having excellent static properties, static strength, bending fatigue strength, and rolling contact fatigue strength.

【0002】[0002]

【従来の技術と問題点】これまで機械構造用炭素鋼のう
ちS45C〜S55Cなどの中炭素鋼のものを高周波焼
入れにより表面硬化させ、曲げ疲労強度や転がり接触疲
労強度および静的強度を得てきた。しかしながら高周波
焼入れに用いられる炭素鋼は、一般的に軸受け鋼や浸炭
軸受け鋼に比べて低C量のため表面硬さが低く、転がり
接触疲労強度および静的強度が高いレベルで要求される
部品には不適当であった。
2. Description of the Related Art Among the carbon steels for machine structure, medium carbon steels such as S45C to S55C have been surface hardened by induction hardening to obtain bending fatigue strength, rolling contact fatigue strength and static strength. It was However, the carbon steel used for induction hardening is generally low in surface hardness due to the low C content compared with bearing steel and carburized bearing steel, and is suitable for parts that require high rolling contact fatigue strength and static strength. Was inappropriate.

【0003】高周波焼入材の転がり接触疲労強度および
静的強度を向上させるためには、高周波焼入後の表面硬
さを高めるC量を増加させるのが最も有効であるが、C
量が高ければ素材状態における硬さを高め、被削性や加
工性を損なうなどの弊害をもたらす。
In order to improve the rolling contact fatigue strength and static strength of the induction hardened material, it is most effective to increase the amount of C which increases the surface hardness after induction hardening.
If the amount is high, the hardness in the raw material state is increased, and the machinability and workability are impaired.

【0004】また被削性や加工性を向上させるため、固
溶強化元素であるMnやSiを低減することも考えられ
るが、この場合、高周波焼入性が低下し必要な硬化層深
さを確保できないため曲げ疲労強度や静的強度が劣化す
るという問題があった。このように被削性と強度は相反
するものであり、被削性と強度を両立した鋼を得るのは
従来の技術では困難であった。
Further, in order to improve machinability and workability, it is possible to reduce Mn and Si which are solid solution strengthening elements, but in this case, the induction hardenability is lowered and the required hardened layer depth is reduced. There is a problem that bending fatigue strength and static strength deteriorate because it cannot be secured. As described above, machinability and strength are contradictory, and it has been difficult to obtain a steel having both machinability and strength by the conventional techniques.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
な事情を背景としてなされたもので、本発明の目的とす
るところは、被削性に優れかつ静的強度や曲げ疲労強度
および転がり接触疲労強度に優れた高強度高周波焼入用
鋼に関する。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide excellent machinability, static strength, bending fatigue strength and rolling. The present invention relates to high strength induction hardening steel having excellent contact fatigue strength.

【0006】[0006]

【課題を解決するための手段】本発明者は、種々の合金
元素の組合せについて検討した結果、静的強度や曲げ疲
労強度および転がり接触疲労強度を向上させるためC量
を通常のS45C〜S55Cの炭素鋼より高い0.50
%以上の添加とした。また被削性を向上させるため、固
溶強化元素であるMnやSi量を低減した。この場合、
MnやSiを低減したことにより高周波焼入性が低下す
るが、焼入性向上元素であるBを添加してMnやSi量
低減による焼入性低下を補完する以上の高周波焼入性を
確保した。Bは高C領域では焼入性向上に有効でないと
いわれているが、高周波焼入れなどの急速加熱の場合は
炉加熱の場合に比べ焼入性向上の効果が高く、0.50
%以上のC量でもBの焼入性が高いことを見いだした。
Means for Solving the Problems As a result of studying combinations of various alloying elements, the present inventor has found that the C content in the usual S45C to S55C is improved in order to improve static strength, bending fatigue strength and rolling contact fatigue strength. 0.50 higher than carbon steel
% Or more. Further, in order to improve machinability, the amounts of Mn and Si, which are solid solution strengthening elements, were reduced. in this case,
Induction hardenability is reduced by reducing Mn and Si, but the induction hardenability is ensured by adding B, which is a hardenability improving element, to supplement the decrease in hardenability by reducing the amount of Mn and Si. did. B is said to be ineffective in improving the hardenability in the high C region, but in the case of rapid heating such as induction hardening, the effect of improving the hardenability is higher than that in the case of furnace heating.
It has been found that the hardenability of B is high even if the amount of C is at least%.

【0007】すなわち、本発明の被削性に優れた高強度
高周波焼入用鋼、合金元素の含有率が質量%で、C :
0.50〜0.80%、Si:0.15%以下、Mn:
0.60%以下、B :0.0005〜0.0050
%、Ti:0.05%以下あり、残部Feおよび不可避
的不純物からなることを特徴とする。
That is, according to the present invention, the high-strength induction hardening steel excellent in machinability, the content of alloying elements in mass%, C:
0.50 to 0.80%, Si: 0.15% or less, Mn:
0.60% or less, B: 0.0005 to 0.0050
%, Ti: 0.05% or less, and the balance is Fe and inevitable impurities.

【0008】また、上記の合金元素に加えて、質量%
で、Cr:2.0%以下、Ni:3.0%以下、Mo:
1.0%以下、Nb:0.10%以下、V :0.05
〜0.50% うち1種または2種以上を含むことがで
きる。
In addition to the above alloy elements, mass%
Then, Cr: 2.0% or less, Ni: 3.0% or less, Mo:
1.0% or less, Nb: 0.10% or less, V: 0.05
~ 0.50% Of these, one or more can be included.

【0009】また、上記の合金元素に加えて、質量%で
S :0.20%以下、Te:0.20%以下、Ca:
0.0050%以下のうち1種または2種以上の被削性
向上元素を含むことができる。
In addition to the above alloying elements, S: 0.20% or less, Te: 0.20% or less, Ca:
One or more of 0.0050% or less may be included in the machinability improving element.

【0010】以下に各合金成分の限定理由について説明
する。 C :0.50〜0.80% Cは高周波焼入後、 鋼の強度を保持するために必須の
元素であり、高周波焼入れ後の表面硬さを確保し、静的
強度や曲げ疲労強度および転がり接触疲労強度を向上さ
せるために0.50%以上添加する必要がある。しか
し、その含有率が0.80%の共析点を超えて添加する
とむしろ表面硬さが低下し、強度向上の劣化を招く。ま
た初析セメンタイトが生成して靭性を損なうばかりでな
く、素材状態における材料硬さを高め、被削性を損なう
などの弊害をもたらすので、C含有率の上限を0.80
%とする。
The reasons for limiting the alloy components will be described below. C: 0.50 to 0.80% C is an essential element for maintaining the strength of the steel after induction hardening. It secures the surface hardness after induction hardening, and the static strength and bending fatigue strength and It is necessary to add 0.50% or more in order to improve the rolling contact fatigue strength. However, if the content exceeds the eutectoid point of 0.80%, the surface hardness rather lowers, leading to deterioration in strength improvement. Further, not only does proeutectoid cementite generate to impair the toughness, but it also causes adverse effects such as increasing the material hardness in the raw material state and impairing machinability. Therefore, the upper limit of the C content is 0.80.
%.

【0011】Si:0.15%以下 Siは溶製時の脱酸剤として作用する元素であるが、通
常の脱酸剤として含有される量であると素材の硬さを高
め被削性の劣化を招くので0.15%以下に規定した。
Si: 0.15% or less Si is an element that acts as a deoxidizing agent during melting, but if it is contained as a normal deoxidizing agent, the hardness of the material is increased and machinability is improved. Since it causes deterioration, it is specified to be 0.15% or less.

【0012】Mn:0.60%以下、 Mnは溶製時の脱硫剤として作用する元素であり、また
高周波焼入性を向上させる元素であるが、十分な焼入性
を得るために必要な量を添加すると固溶強化元素である
ため、素材の硬さを高め被削性および加工性を劣化させ
る。そのため、Mnの含有率を0.60%以下とする。
Mn低下による高周波焼入性の不足は、Bの添加により
補完する。
Mn: 0.60% or less, Mn is an element that acts as a desulfurizing agent during melting and is an element that improves the induction hardenability, but it is necessary to obtain sufficient hardenability. If added in an amount, since it is a solid solution strengthening element, it increases the hardness of the material and deteriorates machinability and workability. Therefore, the content ratio of Mn is set to 0.60% or less.
The lack of induction hardenability due to a decrease in Mn is complemented by the addition of B.

【0013】B :0.0005〜0.0050% Bは素材の硬さの上昇を招くことなく、硬化層潔さを深
める元素である。このB添加によりMnの低減による焼
入性低下を補完する以上の高周波焼入性が確保できる。
Bの焼入性効果は、通常0.80%の共析点で消失する
といわれているが、高周波焼入れの場合、急速加熱であ
るためCの分布も不均一になりやすく、部分的にマトリ
ックス中のC量が低下するため高C材でもB効果が高い
という効果もある。このB効果の最も安定する0.00
05%以上の添加を必要とする。しかし、過剰に添加し
てもその効果はかえって低下するので上限を0.005
0%以下に限定した。
B: 0.0005 to 0.0050% B is an element that deepens the integrity of the hardened layer without increasing the hardness of the material. By adding B, it is possible to secure the induction hardenability that complements the deterioration of the hardenability due to the reduction of Mn.
It is said that the hardenability effect of B usually disappears at the eutectoid point of 0.80%, but in the case of induction hardening, the distribution of C tends to become non-uniform because of rapid heating, and it is partially in the matrix. Since the amount of C is decreased, the B effect is high even in a high C material. The most stable B effect of 0.00
Addition of 05% or more is required. However, even if added excessively, the effect will rather decrease, so the upper limit is 0.005.
It was limited to 0% or less.

【0014】Ti:0.05%以下 Tiは鋼中のNを固定するために必要な元素である。T
iN化合物の生成により、BN化合物の生成を抑制し、
Bの焼入性向上効果を確保できる。しかし、多すぎると
靭性の低下をきたすので0.05%以下に限定した。ま
た、Tiの望ましい添加量は、Ti/N>3.4であ
る。
Ti: 0.05% or less Ti is an element necessary for fixing N in steel. T
The production of the iN compound suppresses the production of the BN compound,
The effect of improving the hardenability of B can be secured. However, if it is too large, the toughness is lowered, so the content is limited to 0.05% or less. Further, the desirable addition amount of Ti is Ti / N> 3.4.

【0015】V :0.05〜0.50% Vは鋼の結晶粒界を微細化する効果を持ち、さらに焼戻
し軟化抵抗を高める効果を持つ。特に、転動疲労によっ
て短寿命で破壊する現象を防止するのに有効な元素であ
る。これらの効果を発揮するためには、V含有率0.0
5%以上を必要とする。しかし、過剰に添加してもその
効果は飽和するので上限を0.50%とする。
V: 0.05 to 0.50% V has the effect of refining the crystal grain boundaries of steel, and further has the effect of increasing the temper softening resistance. In particular, it is an effective element for preventing the phenomenon of breaking in a short life due to rolling fatigue. In order to exert these effects, the V content is 0.0
5% or more is required. However, even if added excessively, the effect is saturated, so the upper limit is made 0.50%.

【0016】Cr:2.0%以下、Ni:3.0%以
下、Mo:1.0%以下、Nb:0.10%以下、C
r、Ni、MoおよびNbは、硬化層部の靭性を高め、
硬化層深さを深める元素なので、それぞれ2.0%以
下、3.0%以下、1.0%以下および0.10%以下
で単独に、または複合添加してもよい。
Cr: 2.0% or less, Ni: 3.0% or less, Mo: 1.0% or less, Nb: 0.10% or less, C
r, Ni, Mo and Nb increase the toughness of the hardened layer portion,
Since it is an element that deepens the depth of the hardened layer, it may be added individually or in combination at 2.0% or less, 3.0% or less, 1.0% or less and 0.10% or less, respectively.

【0017】S :0.20%以下、Te:0.20%
以下、Ca:0.0050%以下 被削性を特に高めたい場合に添加する元素であって、そ
れぞれ0.20%以下、0.20%以下および0.00
50%以下の範囲で単独に、または複合添加してもよ
い。ただしこれ以上添加すると機械的性質が劣化するの
で上限を定めた。
S: 0.20% or less, Te: 0.20%
Hereinafter, Ca: 0.0050% or less is an element added when it is desired to particularly improve machinability, and is 0.20% or less, 0.20% or less, and 0.00, respectively.
They may be added alone or in combination within a range of 50% or less. However, an upper limit was set because mechanical properties deteriorate if added more than this.

【0018】[0018]

【実施例】【Example】

【0019】表1に示す化学組成をもつ各鋼材を2t溶
製し、直径32mmおよび直径60mmの棒鋼に圧延し
た。この棒鋼の1/2R部の硬さを測定するとともに、
下記試験条件にて転動試験、被削性試験および高周波焼
入性試験を行った。
Each steel material having the chemical composition shown in Table 1 was melted for 2 tons and rolled into a steel bar having a diameter of 32 mm and a diameter of 60 mm. While measuring the hardness of the 1 / 2R part of this steel bar,
A rolling test, a machinability test and an induction hardenability test were conducted under the following test conditions.

【0020】試験部直径12.3mmのラジアル型転動
疲労試験片を削り出し、周波数:100kHz、方式:
定置焼入れ、加熱時間:2.5s、電力:50kW、最
高加熱温度:980℃、冷却水:水、焼戻し:160℃
×1時間の条件で高周波焼入焼戻し処理を施した。また
高周波焼入れの比較として、比較例12のみCポテンシ
ャル0.8%,硬化層深さが1.0mmになる条件で浸
炭焼入れ焼もどし処理をした。処理後、表面研削を行い
転動疲労試験に供した。転動試験はラジアル型転動疲労
試験により、SUJ2製ボールを用いて面圧5880M
Paにて試験を実施した。
A radial type rolling contact fatigue test piece having a test portion diameter of 12.3 mm was carved out, frequency: 100 kHz, method:
Stationary quenching, heating time: 2.5 s, power: 50 kW, maximum heating temperature: 980 ° C, cooling water: water, tempering: 160 ° C
Induction hardening and tempering treatment was performed under the condition of × 1 hour. Further, as a comparison of induction hardening, only Comparative Example 12 was carburized, quenched and tempered under the conditions that the C potential was 0.8% and the depth of the hardened layer was 1.0 mm. After the treatment, the surface was ground and subjected to a rolling fatigue test. The rolling test is a radial type rolling fatigue test, and the surface pressure is 5880M using SUJ2 balls.
The test was performed at Pa.

【0021】被削性試験は旋削試験にて実施した。直径
70mmの各鋼材を直径60mmに加工した後に下記条
件の旋削試験行った。試験条件は工具:P10、形状:
TNP331、速度:150m/min、切込み:2m
m/rev、潤滑油:なしである。工具寿命はフランク
磨耗が0.2mmに達した時点とし,比較例1の鋼材の
工具寿命を1.0としたときの相対値として示した。
The machinability test was carried out by a turning test. After turning each steel material having a diameter of 70 mm into a diameter of 60 mm, a turning test under the following conditions was performed. Test conditions are tool: P10, shape:
TNP331, speed: 150m / min, depth of cut: 2m
m / rev, lubricating oil: None. The tool life is shown as a relative value when the flank wear reaches 0.2 mm and the tool life of the steel material of Comparative Example 1 is 1.0.

【0022】高周波焼入性を直径25mm、長さ100
mmの丸棒試験片を加工し、、周波数:10kHz、電
力:55kW、加熱時間:4sの条件で高周波焼入れ
し、表面からビッカース硬さで500HVになる硬さま
での距離を測定した。
Induction hardenability has a diameter of 25 mm and a length of 100
A mm bar test piece was processed, induction hardened under the conditions of frequency: 10 kHz, power: 55 kW, heating time: 4 s, and the distance from the surface to the hardness of 500 VV in Vickers hardness was measured.

【0023】以上の試験結果を一括して表2に示した。The above test results are shown collectively in Table 2.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表3の実施例1〜12は本発明に係わる成
分組成および高周波焼入することの条件すべてを満足す
る実施例であり、転動疲労特性、被削性および高周波焼
入性の全てに優れている。
Examples 1 to 12 in Table 3 are examples satisfying all the composition of components and conditions for induction hardening according to the present invention, and all of rolling fatigue characteristics, machinability and induction hardening. Is excellent.

【0027】これに対して、比較例1は従来鋼JIS−
S55Cであり、実施例1〜12と比べ、転動疲労特
性、被削性および高周波焼入性の全てに劣っている。
On the other hand, in Comparative Example 1, the conventional steel JIS-
S55C, which is inferior to Examples 1 to 12 in rolling fatigue characteristics, machinability, and induction hardenability.

【0028】比較例2は従来鋼JIS−S70Cであ
り、C量が高いため転動疲労特性は優れているものの、
硬さが高く被削性に劣っている。
Comparative Example 2 is a conventional steel JIS-S70C, which has a high C content but has excellent rolling fatigue characteristics.
High hardness and poor machinability.

【0029】比較例3は、Bが添加されていない例で、
高周波焼入性が不足している。そのためB10寿命も低
下する。
Comparative Example 3 is an example in which B is not added,
The induction hardenability is insufficient. Therefore, B 10 life is also shortened.

【0030】比較例4は、代表的な肌焼鋼JIS−SC
M420である。実施例1〜12は肌焼鋼と転動疲労特
性、被削性がほぼ同等であることがわかる。
Comparative Example 4 is a representative case hardening steel JIS-SC.
It is M420. It is understood that Examples 1 to 12 have almost the same rolling contact fatigue characteristics and machinability as case-hardening steel.

【0031】さらに歯車疲労試験を実施した。試験材に
は高周波焼入れ材として実施例1をまた比較材の浸炭焼
入れ材として比較例4を用いた。試験歯車は基準ピッチ
円Φ80mm、歯数32と基準ピッチ円Φ70mm、歯
数28の2種類の歯車の組合わせでおこなった。両歯車
ともにモジュールは2.5,圧力角は20°である。高
周波焼入れは周波数:150kHz、電力:400k
W、加熱時間:0.2sの条件でおこない硬化層深さは
1mmで歯形に沿った輪郭焼入れとなるように諸条件を
調整した。また浸炭焼入れ条件も硬化層深さが1mmに
なる条件で実施した。結果を図1に示す。本発明鋼であ
る実施例1は浸炭材比較例4と同等以上の疲労強度をも
つことが確認された。
Further, a gear fatigue test was carried out. As the test material, Example 1 was used as an induction hardened material and Comparative Example 4 was used as a carburized and hardened material of a comparative material. The test gear was a combination of two types of gears having a reference pitch circle Φ80 mm, the number of teeth 32 and the reference pitch circle Φ70 mm, and the number of teeth 28. Both gears have a module of 2.5 and a pressure angle of 20 °. Induction hardening is frequency: 150kHz, power: 400k
W, heating time: 0.2 s, the hardened layer depth was 1 mm, and various conditions were adjusted so that contour hardening along the tooth profile was achieved. The carburizing and quenching conditions were also set so that the depth of the hardened layer was 1 mm. The results are shown in Fig. 1. It was confirmed that the steel of the present invention, Example 1, has a fatigue strength equal to or higher than that of the carburized material comparative example 4.

【0032】[0032]

【発明の効果】本発明によれば、固有の合金元素の選択
によって、被削性に優れた高強度高周波焼入用鋼を提供
することができる。
According to the present invention, it is possible to provide a high-strength induction hardening steel excellent in machinability by selecting a unique alloy element.

【図面の簡単な説明】[Brief description of drawings]

図1は負荷応力と歯車の疲労特性を示す関係図である。 FIG. 1 is a relationship diagram showing load stress and fatigue characteristics of gears.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】合金元素の含有率が質量%で、 C :0.50〜0.80%、 Si:0.15%以下、 Mn:0.60%以下、 B :0.0005〜0.0050%、 Ti:0.05%以下であり、 残部Feおよび不可避的不純物からなることを特徴とす
る被削性に優れた高強度高周波焼入用鋼。
1. The alloy element content is mass%, C: 0.50 to 0.80%, Si: 0.15% or less, Mn: 0.60% or less, B: 0.0005 to 0. 0050%, Ti: 0.05% or less, high-strength induction hardening steel with excellent machinability, characterized by the balance Fe and unavoidable impurities.
【請求項2】 請求項1記載の合金元素に加えて、質量
%で、 Cr:2.0%以下 Ni:3.0%以下、 Mo:1.0%以下、 Nb:0.10%以下、 V :0.05〜0.50%のうち1種または2種以上
の元素を含み、残部Feおよび不可避的不純物からなる
ことを特徴とする被削性に優れた高強度高周波焼入用
鋼。
2. In addition to the alloy element according to claim 1, in mass%, Cr: 2.0% or less, Ni: 3.0% or less, Mo: 1.0% or less, Nb: 0.10% or less. , V: 0.05 to 0.50% of high-strength induction hardening steel with excellent machinability, characterized by containing one or more elements, and the balance being Fe and unavoidable impurities. .
【請求項3】 請求項1〜2記載の合金元素に加えて、
質量%で、 S :0.20%以下、 Te:0.20%以下、 Ca:0.0050%以下のうち1種または2種以上の
被削性向上元素を含み、残部Feおよび不可避的不純物
からなることを特徴とする被削性に優れた高強度高周波
焼入用鋼。
3. In addition to the alloy elements according to claims 1 and 2,
In mass%, S: 0.20% or less, Te: 0.20% or less, Ca: 0.0050% or less, including one or more kinds of machinability improving elements, and the balance Fe and unavoidable impurities. High-strength induction hardening steel with excellent machinability.
JP25261094A 1994-09-12 1994-09-12 High strength steel for induction hardening excellent in machinability Pending JPH0881733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25261094A JPH0881733A (en) 1994-09-12 1994-09-12 High strength steel for induction hardening excellent in machinability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25261094A JPH0881733A (en) 1994-09-12 1994-09-12 High strength steel for induction hardening excellent in machinability

Publications (1)

Publication Number Publication Date
JPH0881733A true JPH0881733A (en) 1996-03-26

Family

ID=17239769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25261094A Pending JPH0881733A (en) 1994-09-12 1994-09-12 High strength steel for induction hardening excellent in machinability

Country Status (1)

Country Link
JP (1) JPH0881733A (en)

Similar Documents

Publication Publication Date Title
US10202677B2 (en) Production method of carburized steel component and carburized steel component
US7763124B2 (en) Steel material with excellent rolling fatigue life and method of producing the same
US9890446B2 (en) Steel for induction hardening roughly shaped material for induction hardening
JP3550308B2 (en) Rolling bearing
JPH0953149A (en) Case hardening steel with high strength and high toughness
US5788923A (en) Bearing steel
JP2001026836A (en) Steel for induction hardening and parts for machine structure excellent in cold workability, rolling fatigue strength and twisting fatigue strength
JP3411086B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
JPH07188895A (en) Manufacture of parts for machine structure use
JP3411088B2 (en) Bearings with excellent microstructure change delay characteristics due to repeated stress loading
EP3252182B1 (en) Case hardening steel
JPH0881733A (en) High strength steel for induction hardening excellent in machinability
JP3411387B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JP3411388B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JPH07126803A (en) Steel for carburizing gear
JPS62274056A (en) Steel for rapid carburizing
JPH02145744A (en) Carbon steel for machine structural use having excellent cold forgeability and induction hardenability
JP3233792B2 (en) Bearing steel with excellent microstructure change delay characteristics due to cyclic stress loading and heat treatment productivity
JP3188098B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3411389B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3243329B2 (en) Bearing steel with excellent heat treatment productivity and delayed microstructure change due to repeated stress loading
JP3411386B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP3233778B2 (en) Bearing member with excellent heat treatment productivity and delay characteristics of microstructure change due to repeated stress load
JP2740897B2 (en) Steel for machine structural use for hot forging with excellent durability ratio