JPH0881523A - Production of abs resin having various surface morphology - Google Patents

Production of abs resin having various surface morphology

Info

Publication number
JPH0881523A
JPH0881523A JP21852694A JP21852694A JPH0881523A JP H0881523 A JPH0881523 A JP H0881523A JP 21852694 A JP21852694 A JP 21852694A JP 21852694 A JP21852694 A JP 21852694A JP H0881523 A JPH0881523 A JP H0881523A
Authority
JP
Japan
Prior art keywords
resin
particles
extruder
screw
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21852694A
Other languages
Japanese (ja)
Other versions
JP3325399B2 (en
Inventor
Mutsuko Uchida
睦子 内田
So Iwamoto
宗 岩本
Akihiko Nakajima
明彦 中島
Hisao Morita
尚夫 森田
Masato Takaku
真人 高久
Tomofumi Shirafuji
朋史 白藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP21852694A priority Critical patent/JP3325399B2/en
Publication of JPH0881523A publication Critical patent/JPH0881523A/en
Application granted granted Critical
Publication of JP3325399B2 publication Critical patent/JP3325399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE: To arbitrarily control the surface morphology of a molded ABS resin article without detriment to its impact strength by subjecting an ABS resin separated and recovered after polymn. and having a specific rubber-particle morphology to shear with a twin-screw extruder. CONSTITUTION: After the completion of polymn., unreacted monomers and/or a solvent is separated and recovered to obtain an ABS resin which gives an injection molded article wherein, when a plane parallel to the surface of the article is observed with an electron microscope photograph by ultramicrotomy, two kinds of rubber particles, one (A) having a ratio of the length (a) to the breadth (b) of 1.5 or lower and the other (B) having a ratio of a/b of higher than 5.0, are present at a depth of 0.5-1.5μm from the surface in such amts. that the area of particles A and that of particles B are 10% or higher and 0.01-90%, respectively, based on the total area of the rubber particles observed with the photograph. The resin is subjected to shear with a twin-screw extruder having a kneading disk or rotor to control the area of particles B to 0-95% of that before subjecting to shear.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形物のモルフォロジ
ー、更に詳しくは成形物表面のモルフォロジーをコント
ロールするABS系樹脂成形物の製造方法に関するもの
である。本発明によって成形物の表面におけるゴム粒子
モルフォロジーが自由に変えられるのでABS樹脂の表
面の特徴を極めて容易に発現させることができ、例えば
光沢・艶消しを任意にコントロールできるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a morphology of a molded article, and more particularly to a method for producing an ABS resin molded article which controls the morphology of the surface of the molded article. According to the present invention, the rubber particle morphology on the surface of the molded product can be freely changed, so that the characteristics of the surface of the ABS resin can be extremely easily developed, and for example, gloss and matte can be arbitrarily controlled.

【0002】[0002]

【従来の技術】従来ABS系樹脂において表面の特性を
コントロールするために様々な方法が用いられてきた。
例えばゴム粒子径の大きいゴム粒子を用いることにより
表面のゴム粒子(もちろん内部の粒子も同様であるが)
形状を大きくしたり、あるいは逆にゴム粒子径の小さい
ゴム粒子を用いて表面及び内部のゴム粒子の形状を小さ
くすることにより表面の特性をコントロールしていた。
即ち従来技術においてはABS樹脂の製造工程からゴム
粒子径をコントロールする事が一般的であり、そのため
表面のみならず、成形物の衝撃や剛性等にまでゴム粒子
径のコントロールの影響が現れ、物性バランスの面で大
きな問題であった。例えば艶消し性を持たせるため、粒
子径の大きなゴム粒子を用いると表面の艶消し性は優れ
るが、一方で衝撃強度が低下するという問題があった。
また表面に光沢性を付与するためにゴム粒子径を小さく
すると光沢性は優れるが衝撃強度が低下するためゴム成
分を多量に必要とした。その他にABS樹脂の表面モル
フォロジーをコントロールする方法としては成形段階で
成形条件を特定する方法がある。例えば光沢を高く保持
するために射出成形時、高温の金型温度を用いるという
ことが行われてきた。この場合は成形条件が限定され、
成形射出サイクルが長くなり、生産性に重要な問題が残
る。
2. Description of the Related Art Conventionally, various methods have been used to control surface characteristics of ABS resins.
For example, by using rubber particles with a large diameter, the rubber particles on the surface (the same applies to the particles inside)
The surface characteristics have been controlled by increasing the shape or, conversely, by using rubber particles having a small rubber particle diameter to reduce the shape of the rubber particles on the surface and inside.
That is, in the prior art, it is common to control the rubber particle size from the manufacturing process of ABS resin, so that not only the surface but also the impact and rigidity of the molded product have an effect of controlling the rubber particle size, It was a big problem in terms of balance. For example, when rubber particles having a large particle size are used to impart matte properties, the matte properties of the surface are excellent, but on the other hand, there is a problem that the impact strength is reduced.
Further, when the rubber particle size is reduced to impart gloss to the surface, the gloss is excellent, but the impact strength decreases, so a large amount of rubber component is required. Another method for controlling the surface morphology of the ABS resin is to specify molding conditions at the molding stage. For example, it has been practiced to use a high mold temperature during injection molding in order to maintain high gloss. In this case, molding conditions are limited,
The molding injection cycle becomes long, and there remains an important productivity problem.

【0003】また、従来表面光沢を特定の値に保持する
ためには重合工程で厳密に管理しなければならなかっ
た。本発明においては原料樹脂の製造でのコントールだ
けでなく押出工程で表面特性が厳密にコントロールでき
る。
Further, conventionally, in order to maintain the surface gloss at a specific value, it has been necessary to strictly control the polymerization step. In the present invention, the surface characteristics can be strictly controlled not only in the control of the raw material resin production but also in the extrusion process.

【0004】[0004]

【本発明が解決しようとする課題】従ってABS系樹脂
の成形物表面モルフォロジーを、衝撃強度等を維持しな
がら任意にコントロールする方法を提供する事にある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a method for arbitrarily controlling the surface morphology of a molded article of ABS resin while maintaining impact strength and the like.

【0005】[0005]

【課題を解決するための手段】本発明においては、従来
とは全く異なる技術手段を用いて成形物表面で観察され
るゴム粒子の形態(ゴム粒子のモルフォロジー)のコン
トロールを行う。即ち本発明では少なくともスチレン系
単量体及びアクリロニトリル系単量体、及びゴム状重合
体を含む原料を重合工程に供給し、該単量体の一部もし
くは全量を重合させてゴム状重合体粒子(ゴム粒子)形
成を含む重合体を重合する工程の後、重合体、未反応単
量体および/または溶剤を含む混合液を加熱し、同時に
または加熱後減圧室に導入して単量体および/または溶
剤を樹脂成分と分離する分離回収工程を持ち、その分離
回収工程を出た樹脂を射出成形して得られた成形物(成
形物1)は、成形物表面で観察されるゴム粒子のうち、
長径aと短径bの比率a/bが1.5以下の粒子A、及
び、長径aと短径bの比率a/bが5以上である粒子B
を有している。(本発明において成形物1を得る方法と
しては、重合で得られた樹脂のモルフォロジーを測定す
るので、分離回収工程出口にサンプル弁を設け、そこか
らひも状に樹脂をを取り出し、水槽中で冷却してストラ
ンドを得、これを切断してペレットを作成し、これから
射出成形によって成形物1を得る。) かかる樹脂を分離回収工程後、剪断効果のある2軸押出
機で押し出すことによりこれら粒子A・粒子Bの量がコ
ントロールできることは全く知られていなかった。本発
明者らは成形物表面付近で観察されるゴム粒子、粒子A
と粒子Bという異なる形態のゴム粒子の割合を押出機に
より調整するという従来にない方法によって成形物表面
の光沢を任意にコントロールできることを見いだし本発
明に至った。
In the present invention, the morphology of rubber particles (rubber particle morphology) observed on the surface of a molded article is controlled by using a technical means which is completely different from the conventional one. That is, in the present invention, a rubber-like polymer particle is prepared by supplying a raw material containing at least a styrene-based monomer and an acrylonitrile-based monomer, and a rubber-like polymer to a polymerization step and polymerizing a part or all of the monomer. After the step of polymerizing the polymer including (rubber particles) formation, the mixed solution containing the polymer, the unreacted monomer and / or the solvent is heated, and at the same time or after heating, the mixture is introduced into a decompression chamber to remove the monomer and A molded product (molded product 1) having a separation / recovery step of separating the solvent from the resin component and injection-molding the resin that has exited the separation / recovery process is a rubber particle observed on the surface of the molded product. home,
Particle A having a ratio a / b of major axis a to minor axis b of 1.5 or less, and particle B having a ratio a / b of major axis a to minor axis b of 5 or more.
have. (As a method for obtaining the molded article 1 in the present invention, since the morphology of the resin obtained by the polymerization is measured, a sample valve is provided at the outlet of the separation / recovery step, and the resin is taken out in the form of a string and cooled in a water tank. To obtain a strand, which is then cut into pellets to obtain a molded product 1 by injection molding.) After such a resin is separated and recovered, these particles A are extruded by a twin-screw extruder having a shearing effect. -It was not known at all that the amount of particles B could be controlled. The inventors of the present invention observed rubber particles, particle A, observed near the surface of the molded product.
The inventors have found that the gloss of the surface of a molded article can be arbitrarily controlled by an unprecedented method in which the proportion of rubber particles having different forms, such as B and B, is adjusted by an extruder.

【0006】即ち[I]少なくともスチレン系単量体及
びアクリロニトリル系単量体、及びゴム状重合体を含む
原料を重合工程に供給し、該単量体の一部もしくは全量
を重合させてゴム粒子形成を含む重合体を重合する工程
の後、重合体、未反応単量体および/または溶剤を含む
混合液を加熱し、同時にまたは加熱後減圧室に導入して
単量体および/または溶剤を樹脂成分と分離する分離回
収工程を持ち、この分離回収工程を出る樹脂を射出成形
して得られた成形物(成形物1)の表面から0.5〜
1.5μmの深さに存在するゴム粒子が、成形物表面と
の平行面を超薄切片法による電子顕微鏡写真で観察する
時、 長径aと短径bの比率a/bが1.5以下の粒子A、
及び 長径aと短径bの比率a/bが5以上である粒子B の少なくとも2種類の形態を有し、且つ超薄切片法によ
る電子顕微鏡写真で観察されるゴム粒子の全面積を10
0%とした時に粒子Aの面積が少なくとも10%以上、
粒子Bの面積が0.01〜90%であるABS樹脂を、
[II]分離回収工程を出た後、ニーディングディスクま
たはローターを有する2軸押出機により剪断を与えるこ
とによって、得られた成形物(成形物2)の表面を上記
と同じ方法で、 即ち成形物表面から0.5〜1.5μ
mの深さの平行面を超薄切片法による電子顕微鏡写真で
観察し、粒子Bの面積を上記成形物1で観察された粒子
Bの割合を100%とするとき0〜95%となる様コン
トロールする方法である。本発明では分離回収工程を出
た樹脂を射出成形して得られた成形物(成形物1)の表
面には粒子Aと粒子Bが存在する事が特徴である。即ち
成形物1の表面から0.5〜1.5μmの深さに存在す
るゴム粒子のうち、観察されるゴム粒子の全面積を10
0%とすると、10%以上が粒子Aの面積、好ましくは
10〜50%、さらに好ましくは10〜40%であり、
且つ0.01〜90%が粒子Bの面積、好ましくは0.
05〜50%、より好ましくは0.1〜30%を占めて
いることが特徴である。本発明において、粒子Aの面積
が10%未満、または粒子Bの面積が0.01%未満で
あれば本発明の目的である表面のゴム粒子のモルフォロ
ジーがコントロールできなくなり、局所的に光沢が低い
部分が生じる。また、粒子Bが90%を越えると押出機
による処理を行っても成形物表面にすじ模様が発生し好
ましくない。
That is, [I] A raw material containing at least a styrene-based monomer, an acrylonitrile-based monomer, and a rubber-like polymer is supplied to a polymerization step, and a part or all of the monomer is polymerized to produce rubber particles. After the step of polymerizing the polymer including forming, the mixed solution containing the polymer, the unreacted monomer and / or the solvent is heated, and at the same time or after the heating, the mixture is introduced into a decompression chamber to remove the monomer and / or the solvent. From the surface of a molded product (molded product 1) obtained by injection-molding a resin that has a separation / recovery process of separating from a resin component
When the rubber particles present at a depth of 1.5 μm are observed on an electron micrograph of a plane parallel to the surface of the molded product by an ultrathin section method, the ratio a / b of the major axis a and the minor axis b is 1.5 or less. Particle A,
And at least two types of particles B having a ratio a / b of the major axis a to the minor axis b of 5 or more and the total area of the rubber particles observed by an electron micrograph by the ultrathin section method is 10
The area of particles A is at least 10% or more when 0%,
The ABS resin in which the area of the particles B is 0.01 to 90%,
[II] After leaving the separation and recovery step, shearing is applied by a twin-screw extruder having a kneading disc or a rotor, whereby the surface of the obtained molded product (molded product 2) is molded by the same method as described above, that is, molding. 0.5 to 1.5μ from the object surface
The parallel plane at a depth of m is observed by an electron micrograph by an ultrathin section method, and the area of the particles B is 0 to 95% when the ratio of the particles B observed in the molded article 1 is 100%. A way to control. The present invention is characterized in that particles A and particles B are present on the surface of a molded product (molded product 1) obtained by injection molding the resin that has been subjected to the separation and recovery step. That is, of the rubber particles existing at a depth of 0.5 to 1.5 μm from the surface of the molded article 1, the total area of the observed rubber particles is 10
If 0%, 10% or more is the area of the particle A, preferably 10 to 50%, more preferably 10 to 40%,
Further, 0.01 to 90% is the area of the particles B, preferably 0.
It is characterized by occupying 05 to 50%, more preferably 0.1 to 30%. In the present invention, if the area of the particles A is less than 10% or the area of the particles B is less than 0.01%, the morphology of the rubber particles on the surface, which is the object of the present invention, cannot be controlled and the gloss is locally low. Part arises. On the other hand, if the content of the particles B exceeds 90%, a streak pattern is generated on the surface of the molded product even if the treatment with an extruder is performed, which is not preferable.

【0007】また本発明において[I]少なくともスチ
レン系単量体及びアクリロニトリル系単量体、及びゴム
状重合体を含む原料を重合工程に供給し、該単量体の一
部もしくは全量を重合させてゴム粒子形成を含む重合体
を重合する工程の後、重合体、未反応単量体および/ま
たは溶剤を含む混合液を加熱し、同時にまたは加熱後減
圧室に導入して単量体および/または溶剤を樹脂成分と
分離する分離回収工程を持ち、この分離回収工程を出る
樹脂を射出成形して得られた成形物(成形物1)の表面
から0.5〜1.5μmの深さに存在するゴム粒子が、
成形物表面との平行面を超薄切片法による電子顕微鏡写
真で観察する時、粒子A、及び粒子Bの少なくとも2種
類の形態を有し、且つ超薄切片法による電子顕微鏡写真
で観察されるゴム粒子の全面積を100%とした時に粒
子Aの面積が少なくとも10%以上、粒子Bの面積が
0.01〜90%であるABS樹脂を、[II]分離回収
工程を出た後、ニーディングディスクまたはローターを
有する2軸押出機で、分離回収出口とニーディングディ
スクまたはローターが設置されている部分(ニーディン
グゾーン)との間に樹脂に水を添加する部分と添加した
水を蒸発させる部分を有し、且つ添加した水を蒸発させ
る部分はニーディングゾーン入り口と同時またはその直
前部に設けられた押出機を用いて剪断を与えることによ
って得られた成形物(成形物2)の表面を上記と同じ方
法で、即ち成形物表面から0.5〜1.5μmの深さの
平行面を超薄切片法による電子顕微鏡写真で観察し、粒
子Bの面積を上記成形物1で観察された粒子Bの割合を
100%とするとき0〜95%となる様コントロールす
る方法である。この時添加する水の割合は単位時間当た
りの樹脂の押出量100重量部に対して0〜15重量
部、好ましくは0.1〜10重量部、より好ましくは
0.5〜7重量部である。水の添加量が15重量部を越
えると押出機の処理能力が低下して生産性に影響が出て
好ましくない。また、ニーディングゾーン直前で水を添
加・蒸発させニーディングゾーン直前部で回収工程出口
の樹脂温の0〜60%低下させることによりニーディン
グゾーンで十分な剪断力が与えられる。水を添加しない
場合は押出機中でニーディングディスクが設置されてい
る部分またはその直前部で押出機シリンダーの温度を回
収工程出口の樹脂温の0〜60%低下させた温度とする
ことにより水を添加した場合と同様、十分な剪断力が樹
脂に与えられる。ただしシリンダーの温度によって樹脂
温を低下させる場合は、押出機の大きさが制限され、大
型押出機の装置になるとシリンダー温度によって樹脂温
を制御できなくなる。
Further, in the present invention, a raw material containing at least [I] a styrene-based monomer, an acrylonitrile-based monomer, and a rubber-like polymer is supplied to a polymerization step to polymerize a part or all of the monomer. After the step of polymerizing the polymer containing the rubber particles, the mixed solution containing the polymer, the unreacted monomer and / or the solvent is heated, and at the same time or after heating, the mixed solution is introduced into the decompression chamber to remove the monomer and / or Alternatively, it has a separation / recovery step of separating the solvent from the resin component, and the resin exiting the separation / recovery step is injection-molded to obtain a depth of 0.5 to 1.5 μm from the surface of the molded article (molded article 1). The existing rubber particles are
When observing the plane parallel to the surface of the molded article with an electron micrograph by the ultrathin section method, it has at least two types of morphology, particle A and particle B, and is observed by the electron micrograph with the ultrathin section method. The ABS resin in which the area of the particles A is at least 10% or more and the area of the particles B is 0.01 to 90% when the total area of the rubber particles is 100%, is discharged from the [II] separation and recovery step, and A twin-screw extruder having a kneading disk or a rotor is used to evaporate the water added to the resin and the added water between the separation / recovery outlet and the part where the kneading disk or the rotor is installed (kneading zone). A molded product having a part and evaporating the added water is obtained by applying shear using an extruder provided at the same time as or immediately before the kneading zone entrance. The surface of the molded product 2) was observed by the same method as described above, that is, a parallel plane having a depth of 0.5 to 1.5 μm from the surface of the molded product was observed by an electron micrograph by the ultrathin section method, and the area of the particle B was measured as described above. This is a method of controlling the proportion of particles B observed in the molded article 1 to be 0 to 95% when the proportion is 100%. The proportion of water added at this time is 0 to 15 parts by weight, preferably 0.1 to 10 parts by weight, and more preferably 0.5 to 7 parts by weight with respect to 100 parts by weight of the resin extruded per unit time. . If the amount of water added exceeds 15 parts by weight, the processing capacity of the extruder is lowered and the productivity is affected, which is not preferable. In addition, sufficient shearing force is applied in the kneading zone by adding and evaporating water immediately before the kneading zone and lowering the resin temperature at the exit of the recovery step by 0 to 60% immediately before the kneading zone. When water is not added, the temperature of the extruder cylinder is adjusted to 0 to 60% lower than the resin temperature at the exit of the recovery process at the portion where the kneading disk is installed in the extruder or immediately before that. Sufficient shear force is applied to the resin, as in the case of adding. However, when the resin temperature is lowered by the temperature of the cylinder, the size of the extruder is limited, and in the case of a large-sized extruder, the resin temperature cannot be controlled by the cylinder temperature.

【0008】また本発明において押出機のスクリュー長
さ(L)とシリンダー径(D)の比L/Dが10〜50
であるものが好ましい。より好ましくは15〜35、更
に好ましくは25〜30である。またニーディングゾー
ンがシリンダー有効長の5〜60%、好ましくは10〜
50%となるようニーディングディスクを備えた2軸押
出機を用いる。ニーディングゾーンがシリンダー有効長
の5%未満では十分な剪断がかからず、また60%を越
えると剪断がかかりすぎ、剪断発熱作用により、樹脂の
劣化が進む。
In the present invention, the ratio L / D of the screw length (L) of the extruder to the cylinder diameter (D) is 10 to 50.
Are preferred. It is more preferably 15 to 35, still more preferably 25 to 30. The kneading zone is 5 to 60% of the effective cylinder length, preferably 10 to
A twin-screw extruder equipped with a kneading disk so as to be 50% is used. If the kneading zone is less than 5% of the effective cylinder length, sufficient shearing will not be applied, and if it exceeds 60%, the shearing will be excessive and the resin will deteriorate due to the shearing heat generation effect.

【0009】本発明におけるスクリュー有効長とはスク
リューの根元のグランド部や先端の円錐形の部分を除い
たスクリューの長さを表し、通常前述のL/D、または
Dの何倍という表示をする。
The effective screw length in the present invention means the length of the screw excluding the ground portion at the base of the screw and the conical portion at the tip, and is usually indicated as L / D or a multiple of D mentioned above. .

【0010】また本発明において押出機としてシリンダ
ー径(D)と、スクリューエレメントの溝深さ(d)の
比D/dが3〜12、好ましくは3〜10、さらに好ま
しくは3〜8である。スクリューエレメントがスクリュ
ーの有効長の40〜95%、好ましくは50〜90%、
より好ましくは50〜80%である。
In the present invention, as an extruder, the ratio D / d of the cylinder diameter (D) and the groove depth (d) of the screw element is 3 to 12, preferably 3 to 10, and more preferably 3 to 8. . The screw element is 40 to 95% of the effective length of the screw, preferably 50 to 90%,
It is more preferably 50 to 80%.

【0011】ここでスクリューエレメントの溝深さ
(d)とはスクリューエレメントの底部から頂部までの
距離を表す。これはニーディングゾーン以外での不必要
な剪断をかけないためであり、上記のスクリューエレメ
ントを用いることにより樹脂の劣化が抑制され、色相等
の低下が抑えられる。この様なスクリューエレメントが
スクリュー有効長の50%より少ないと樹脂の推進力が
低下し、押出機内での樹脂の滞留時間分布が広がった
り、滞留時間が長くなり樹脂の劣化をまねく。またスク
リューエレメントがスクリュー有効長の95%を越える
と剪断力がかからなくなる。
Here, the groove depth (d) of the screw element represents the distance from the bottom to the top of the screw element. This is because unnecessary shearing is not applied except in the kneading zone, and by using the above screw element, deterioration of the resin is suppressed and deterioration of the hue and the like is suppressed. If such a screw element is less than 50% of the effective screw length, the propulsive force of the resin is lowered, the residence time distribution of the resin in the extruder is widened, and the residence time becomes long, which leads to deterioration of the resin. If the screw element exceeds 95% of the effective length of the screw, shearing force is not applied.

【0012】また本発明における押出機とは押し出し成
形やコンパウンディングするために用いられる機器の一
つで、材料をシリンダーと呼ばれる部分と、回転スクリ
ューとの間で連続的に加熱、溶融、混練し、それをダイ
から押し出し、成形あるいはペレット状にするものであ
り、回転スクリューの形状等により剪断量が異なる。本
発明では特に2軸押出機を用いる。2軸押出機とは回転
スクリューが平行に2本設置されているもので2本のス
クリューの回転方向が同じである同方向回転型と、2本
のスクリューが異なる方向に回転する異方向回転型があ
り、それぞれ目的・性能が異なる。
The extruder in the present invention is one of the equipment used for extrusion molding and compounding, and the material is continuously heated, melted and kneaded between a portion called a cylinder and a rotary screw. It is extruded from a die to be molded or pelletized, and the amount of shear varies depending on the shape of the rotating screw and the like. In the present invention, a twin-screw extruder is especially used. A twin-screw extruder has two rotating screws installed in parallel, and the same-direction rotating type in which the two screws rotate in the same direction and the different-direction rotating type in which the two screws rotate in different directions There are different purposes and performances.

【0013】また本発明におけるスクリューエレメント
とは2軸押出機のスクリューを構成する一部であり、順
ねじ・逆ねじタイプがある。スクリューエレメントは樹
脂を流れ方向に推し進める能力、或いは逆流させて圧力
をかける能力をもつ。また本発明におけるニーディング
ディスクとはスクリューエレメントと同様2軸押出機の
スクリューを構成する一部であり、混練を目的とするミ
キシング部である。ニーディングディスクは2条ディス
ク、3条ディスク等様々なタイプがある。ローターとは
その断面形状はオーバル型であり、フライトは順ねじと
逆ねじから成っている。即ち、順ねじと逆ねじ部から成
る2条のニーディングディスクの組み合わせを連続・固
定化したようなものである。これらスクリューエレメン
トとニーディングディスク・ローターの組み合わせによ
り、目的に応じた性能を押出機にもたせることができ
る。
Further, the screw element in the present invention is a part constituting a screw of a twin-screw extruder, and there are a forward screw type and a reverse screw type. The screw element has the ability to push the resin in the direction of flow or the ability to apply pressure by causing it to flow backward. Further, the kneading disk in the present invention is a part constituting a screw of a twin-screw extruder like the screw element, and is a mixing part for the purpose of kneading. There are various types of kneading discs such as a double-row disc and a triple-row disc. The rotor has an oval cross section, and the flight consists of forward and reverse threads. That is, a combination of two kneading disks consisting of a forward screw and a reverse screw is continuous and fixed. By combining these screw elements and a kneading disc rotor, it is possible to give the extruder performance depending on the purpose.

【0014】成形物表面のモルフォロジーは、成形物表
面特性に影響を与え、重合工程から生成したゴム粒子平
均径が同じでも上記粒子Bの面積の割合が少なければ成
形物表面の光沢は向上し、逆に粒子Bの面積の割合が多
くなると成形物表面は艶消しされる。本発明は重合工程
からのゴム粒子径の調整だけでなく、粒子Bの面積の割
合を押出機によりコントロールすることにより同一の原
料ABS樹脂から成形物表面の特性を任意に調整する事
ができるので工業的利益は極めて大きい。従来の方法で
原料のゴム粒子を調整して光沢を制御する方法では製造
工程が非常に長く、特に艶消し樹脂から高光沢樹脂にグ
レードを変更する場合には、製造の最初の工程からAB
S樹脂の性質を変更させるために長時間にわたって光沢
の異なる製品が必然的に生成する。通常の工業プラント
では、全工程の滞留時間が4時間とすると上記の正規品
でない製品が約4〜12時間生成するこになる。この間
の製品は光沢が中途半端なだけでなく変化しており用途
としては極めて制限される。工業的には一つのプラント
で多種多様のグレードを生産するためにグレード交換に
際して正規でない製品が発生することはプラントの生産
性にとって極めて重要である。
The morphology of the surface of the molded product affects the surface characteristics of the molded product, and even if the average particle diameter of the rubber particles produced from the polymerization step is the same, the gloss of the surface of the molded product is improved if the area ratio of the particles B is small. On the contrary, when the area ratio of the particles B increases, the surface of the molded product is matted. In the present invention, not only the rubber particle size from the polymerization step but also the ratio of the area of the particle B can be controlled by an extruder so that the characteristics of the surface of the molded product can be adjusted arbitrarily from the same raw ABS resin. Industrial benefits are extremely high. In the method of controlling the gloss by adjusting the rubber particles of the raw material by the conventional method, the manufacturing process is very long. Especially when changing the grade from the matte resin to the high gloss resin, the
Over time, products of different gloss are inevitably produced to modify the properties of the S resin. In an ordinary industrial plant, if the residence time of all steps is 4 hours, the above-mentioned non-genuine product will be produced for about 4 to 12 hours. In the meantime, the products have not only a half-finished gloss but also a change, so that the applications are extremely limited. Industrially, in order to produce a wide variety of grades in one plant, it is extremely important for the productivity of the plant that non-genuine products are generated during grade replacement.

【0015】これに対して、本発明の方法では工程の最
後の段階であり、工程の時間が短く、容易な調整で希望
する光沢を有する樹脂が得られる。
On the other hand, in the method of the present invention, which is the final stage of the process, the process time is short, and the resin having the desired gloss can be obtained by easy adjustment.

【0016】本発明でいうABS樹脂は、ゴム状重合体
とスチレン系単量体、アクリロニトリル系単量体及び、
必要であれば他の単量体の共重合体からなる樹脂であ
る。ここでスチレン系単量体としては、スチレン,α−
アルキルモノビニリデン芳香族単量体(例えばα−メチ
ルスチレン;α−エチルスチレン;α−メチルビニルト
ルエン;α−メチルジアルキルスチレン;など),環置
換アルキルスチレン(例えばo−m−及びp−ビニルト
ルエン;o−エチルスチレン;p−エチルスチレン;
2,4−ジメチルスチレン;p−第三級ブチルスチレ
ン;など),環置換ハロスチレン(例えばo−クロロス
チレン;p−クロロスチレン;o−ブロモスチレン;
2,4−ジクロロスチレン;など),環−アルキル,環
−ハロ置換スチレン(例えば2−クロロ−4−メチルス
チレン;2,6−ジクロロスチレン;など)ビニルナフ
タレン,ビニルアントラセンの一種又は混合物が用いら
れる。一般にアルキル置換基は1〜4個の炭素原子を有
し、そしてイソプロピル及びイソブチル基を含む。この
モノビニリデン芳香族単量体の一種もしくは混合物が用
いられる。また、アクリロニトリル系単量体としては、
アクリロニトリル、メタクリロニトリル、エタクリロニ
トリル、フマロニトリル及びこれらの混合物等があげら
れる。
The ABS resin referred to in the present invention is a rubber-like polymer, a styrene monomer, an acrylonitrile monomer, and
If necessary, it is a resin composed of a copolymer of other monomers. Here, as the styrene-based monomer, styrene, α-
Alkyl monovinylidene aromatic monomers (eg α-methylstyrene; α-ethylstyrene; α-methylvinyltoluene; α-methyldialkylstyrene; etc.), ring-substituted alkylstyrenes (eg om- and p-vinyltoluene) O-ethylstyrene; p-ethylstyrene;
2,4-dimethyl styrene; p-tertiary butyl styrene; etc.), ring-substituted halostyrenes (eg o-chlorostyrene; p-chlorostyrene; o-bromostyrene;
2,4-dichlorostyrene; etc.), ring-alkyl, ring-halo substituted styrene (eg 2-chloro-4-methylstyrene; 2,6-dichlorostyrene; etc.) vinylnaphthalene, vinylanthracene, or a mixture thereof is used. To be Generally alkyl substituents have 1 to 4 carbon atoms and include isopropyl and isobutyl groups. One or a mixture of these monovinylidene aromatic monomers is used. Further, as the acrylonitrile-based monomer,
Examples thereof include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile, and mixtures thereof.

【0017】またゴム状重合体は常温でゴム状を示すも
のであれば良く特に限定を要しないが、好ましくは、共
役1,3−ジエン(例えばブタジエン;イソプレン;な
ど)などのポリブタジエン類やスチレン−ブタジエン共
重合体又はEPDM(エチレン−プロピレン−ジエンメ
チレンリンケ−ジ)等があげられる。
The rubbery polymer is not particularly limited as long as it shows a rubbery state at room temperature, but preferably polybutadienes such as conjugated 1,3-dienes (eg butadiene; isoprene; etc.) and styrene. -Butadiene copolymer, EPDM (ethylene-propylene-diene methylene linkage) and the like.

【0018】本発明でいう他の単量体とは、スチレン、
アクリロニトリルと共重合可能な単量体であれば特に限
定しないが、メチルメタクリレ−ト等のアクリレ−ト類
や、N−フェニルマレイミド、シクロヘキシルマレイミ
ド等のマレイミド類があげられる。
The other monomer in the present invention is styrene,
The monomer is not particularly limited as long as it is a monomer copolymerizable with acrylonitrile, and examples thereof include acrylates such as methylmethacrylate and maleimides such as N-phenylmaleimide and cyclohexylmaleimide.

【0019】ABS樹脂の組成は樹脂中で、スチレン5
0〜95重量部、アクリロニトリル5〜50重量部、ブ
タジエン重合体、あるいはスチレン−ブタジエンブロッ
ク共重合体3〜30重量部が好ましい。これらの組成の
樹脂を得るために好ましい方法としては、ゴム状重合体
存在下で、スチレン、アクリロニトリルを有機過酸化物
を開始剤として重合することにより得られる。重合方法
は連続塊状重合及び溶液重合法が好ましく用いられる。
The ABS resin composition is styrene 5
0 to 95 parts by weight, acrylonitrile 5 to 50 parts by weight, butadiene polymer, or styrene-butadiene block copolymer 3 to 30 parts by weight are preferred. A preferable method for obtaining a resin having these compositions is to polymerize styrene and acrylonitrile using an organic peroxide as an initiator in the presence of a rubbery polymer. As the polymerization method, continuous bulk polymerization and solution polymerization are preferably used.

【0020】本発明の中で用いるABS系樹脂とは、上
記のABS樹脂及びABS樹脂を成分とする樹脂であ
り、ABS樹脂を成分とする樹脂とは、ABS樹脂と他
の樹脂、例えば、ポリカーボネート、ポリフェニレンエ
ーテル、ポリプロピレン、ポリスチレン、アクリロニト
リル−スチレン共重合樹脂等の混合物や、ABS樹脂と
難燃剤等の混合物、またガラスフィラー、タルク等の混
合物等、ABS樹脂を成分とする樹脂であれば特に限定
するものではない。
The ABS resin used in the present invention is the above-mentioned ABS resin and a resin containing the ABS resin as a component, and the ABS resin-containing resin means the ABS resin and another resin such as polycarbonate. , A mixture of polyphenylene ether, polypropylene, polystyrene, acrylonitrile-styrene copolymer resin or the like, a mixture of ABS resin and a flame retardant, a glass filler, a mixture of talc and the like, as long as it is a resin containing an ABS resin as a component, particularly limited Not something to do.

【0021】本発明の中で用いるABS系樹脂の成形物
とはABS系樹脂を成形加工した成形物であり、ABS
系樹脂の機械的、化学的特徴を利用して、機械部品とし
て、或いは文房具用品、玩具等それ自体が最終製品とし
て用いられるものである。成形加工はこれまで知られて
いる通常の樹脂の成形方法が用いられ、例えば射出成
形、押出成形などがあげられる。好ましくは射出成形法
である。好ましい射出成形条件としては、成形機のシリ
ンダー温度が170℃〜280℃、好ましくは180℃
〜260℃、更に好ましくは200℃〜250℃とし、
金型温度30〜90℃の条件によって行われる。
The ABS resin molded product used in the present invention is a molded product obtained by molding and processing an ABS resin.
Utilizing the mechanical and chemical characteristics of the system resin, it is used as a mechanical component, or as a final product such as stationery supplies and toys. As the molding process, a conventional resin molding method known so far is used, and examples thereof include injection molding and extrusion molding. The injection molding method is preferred. As preferable injection molding conditions, the cylinder temperature of the molding machine is 170 ° C to 280 ° C, preferably 180 ° C.
To 260 ° C, more preferably 200 ° C to 250 ° C,
The mold temperature is 30 to 90 ° C.

【0022】本発明で問題とするモルフォロジーを定め
る領域を表面から0.5〜1.5μmの深さとするの
は、この範囲の深さに存在するゴム粒子を従来にない特
定のモルフォロジーにすることにより、成形物の表面特
性をコントロールできることを見い出したことに基づ
く。表面付近の0.5〜1.5μというのは、この深さ
の間ではゴム粒子の存在状態が、深さに対して依存性が
なく略一定であることを発見したことにも基づいてい
る。即ち、深さが0.5μmより浅い場合は、ゴム粒子
の形態のばらつきが多くまた、1.5μmを越えると、
深さにより存在状態が変化するため、表面特性と相関の
あるゴム粒子の形態を特定するのに向いていない。
The area for defining the morphology of interest in the present invention is set to have a depth of 0.5 to 1.5 μm from the surface so that the rubber particles existing in the depth of this range have a specific morphology which has never been obtained. It is based on the finding that the surface characteristics of the molded product can be controlled by. The fact that 0.5 to 1.5 μm near the surface is based on the fact that the existence state of rubber particles was found to be substantially constant within this depth without depending on the depth. . That is, when the depth is less than 0.5 μm, there are many variations in the morphology of the rubber particles, and when it exceeds 1.5 μm,
Since the existing state changes depending on the depth, it is not suitable for specifying the morphology of rubber particles that correlates with the surface characteristics.

【0023】本発明において、ゴム粒子の形態は成形物
表面の平行面において測定する。この平行な断面は、成
形物表面に平行にミクロト−ムを用いて超薄切片に成形
物を切り出して得られる。この時、ミクロト−ムによっ
て切り出す1枚あたりの試料の厚みは、0.05μmと
して表面から順に切り出し、11枚目以降30枚目まで
の試料を用いて形態を測定する。
In the present invention, the morphology of the rubber particles is measured in parallel to the surface of the molded product. This parallel cross section is obtained by cutting the molded product into ultrathin sections in parallel with the surface of the molded product using a microtome. At this time, the thickness of each sample cut by a microtome is set to 0.05 μm, and the samples are sequentially cut from the surface, and the morphology is measured using the 11th to 30th samples.

【0024】本発明における粒子Aとは、かかる試料の
電子顕微鏡写真において、ゴム粒子の長径をaμm、短
径をbμmとする時、aとbの比であるa/bが1.5
以下のものを粒子Aと定める。Bはa/bが5以上であ
る粒子である。
The particle A in the present invention is an electron micrograph of such a sample, and when the major axis of the rubber particles is a μm and the minor axis is b μm, the ratio a / b of a and b is 1.5.
The following is defined as particle A. B is a particle having a / b of 5 or more.

【0025】本発明で言う長径aとは超薄切片法による
電子顕微鏡写真で観察されるゴム粒子の周上の2点間の
距離の最大の長さを表し、短径bとは、長径aにおいて
a/2の点における、長径aに垂直なゴム粒子の長さを
示す。かかる制約条件において、粒子A、Bの面積を算
出する際、全面積は1000μm2 以上とれる様に電子
顕微鏡で観察する視野の大きさを定める。この数は特に
限定はしないが、前記の電子顕微鏡の視野はゴム粒子の
数として1000個以上含まれる視野の大きさである。
The major axis a referred to in the present invention represents the maximum length of the distance between two points on the circumference of the rubber particles observed in the electron micrograph by the ultrathin section method, and the minor axis b is the major axis a. Shows the length of the rubber particles perpendicular to the major axis a at the point a / 2. Under such a constraint condition, when calculating the areas of the particles A and B, the size of the visual field to be observed with the electron microscope is determined so that the total area can be 1000 μm 2 or more. This number is not particularly limited, but the field of view of the electron microscope is the size of the field of view containing 1000 or more rubber particles.

【0026】本発明においては上記成形物1の表面から
0.5〜1.5μmの深さの平行面を超薄切片法による
電子顕微鏡で観察したとき、粒子Aと粒子Bを有するよ
うな樹脂を分離回収工程を出た溶融状態で2軸押出機に
より剪断を与える。こうして得られた樹脂を成形し(成
形物2)、成形物表面を成形物1と同様にして電子顕微
鏡写真で観察したとき、成形物1で観察された粒子Bの
面積の割合を100%とすると成形物2での粒子Bの面
積の割合が0〜95%とすることで成形物の表面特性を
任意にコントロールすることができる。
In the present invention, a resin having particles A and particles B when a parallel surface having a depth of 0.5 to 1.5 μm from the surface of the molded article 1 is observed with an electron microscope by an ultrathin section method. Is subjected to shearing by a twin-screw extruder in a molten state that has left the separation and recovery step. When the resin thus obtained was molded (molded product 2) and the surface of the molded product was observed by an electron micrograph in the same manner as in molded product 1, the area ratio of particles B observed in molded product 1 was 100%. Then, by setting the area ratio of the particles B in the molded product 2 to 0 to 95%, the surface characteristics of the molded product can be arbitrarily controlled.

【0027】例えば成形物2のモルフォロジーは、成形
物1での粒子Bの面積の割合(B1)と押出機の剪断の
程度により、成形物2での粒子Bの面積の割合(B2
への粒子Bの面積の割合の変化の程度(粒子Bの変化
率)で決められる。つまり押出機の剪断の程度とB1
の組み合わせにより粒子Bの変化率は調整することがで
きる。
For example, the morphology of the molded product 2 is such that the ratio of the area of the particle B in the molded product 1 (B 1 ) and the degree of shearing of the extruder cause the ratio of the area of the particle B in the molded product 2 (B 2 ).
It is determined by the degree of change in the ratio of the area of the particle B to the particle (change rate of the particle B). That is, the rate of change of the particles B can be adjusted by combining the degree of shearing of the extruder and B 1 .

【0028】例えば成形物1で観察される粒子Bの面積
の割合は、溶液又は塊状重合法によるABS樹脂製造工
程の分離回収工程での回収温度の変動により生成する。
例えば前記塊状重合法によるABS樹脂製造工程で溶剤
・未反応モノマーを樹脂成分から分離する分離回収工程
での回収の出口の樹脂平均温度(TAV)を170〜28
0℃の範囲とし、回収の出口の樹脂温度を変動させ、T
AVに対する回収の出口の温度の変動率(Tde)と1時間
当たりの温度の変動回数(NCT)の積を調整することに
より、成形加工後の成形物表面に観察される粒子Bは生
成する。TdeとNCTの積が大きくなるほど最終的には成
形物で粒子Bとなるゴム粒子の数を増加させることがで
きる。
For example, the area ratio of the particles B observed in the molded article 1 is generated by the fluctuation of the recovery temperature in the separation / recovery step of the ABS resin manufacturing step by the solution or bulk polymerization method.
For example, the resin average temperature (T AV ) at the recovery outlet in the separation / recovery step of separating the solvent / unreacted monomer from the resin component in the ABS resin manufacturing step by the bulk polymerization method is 170 to 28.
Within the range of 0 ° C, the resin temperature at the recovery outlet is changed to
By adjusting the product of the temperature variation rate (T de ) of the recovery outlet with respect to AV and the number of temperature variations per hour (N CT ), particles B observed on the surface of the molded article after molding are produced. To do. The larger the product of T de and N CT, the more the number of rubber particles finally forming particles B in the molded product can be increased.

【0029】本発明で言う回収温度の平均値(TAV)は
下記式(数1)で算出される。
The average value (T AV ) of the recovery temperatures referred to in the present invention is calculated by the following equation (Equation 1).

【0030】[0030]

【数1】 本発明で言う温度変動率(Tde:1時間あたりの温度変
動率)は下記式(数2)で算出される。
[Equation 1] The temperature variation rate (T de : temperature variation rate per hour) referred to in the present invention is calculated by the following equation (Equation 2).

【0031】[0031]

【数2】温度変動率(Tde)=((Tmax −Tmin )/
AV)×100 (但しTmax は1時間当たりの回収温度の最大温度、T
min は最小温度) また1時間当たりの温度の変動回数を毎時温度変動回数
(NCT)とよび(但し温度変動率0.5%以内の変動は
無視する)、時間に対し温度の微分値が正負に変化する
回数をさす。
[Equation 2] Temperature fluctuation rate (T de ) = ((T max −T min ) /
T AV ) × 100 (where T max is the maximum temperature of recovery temperature per hour, T
min is the minimum temperature. The number of temperature fluctuations per hour is called the number of temperature fluctuations per hour (N CT ) (however, fluctuations within a temperature fluctuation rate of 0.5% are ignored), and the differential value of temperature with respect to time is Indicates the number of times it changes to positive or negative.

【0032】本発明において回収温度の平均値TAV、温
度変動率Tde、及び1時間当たりの温度の変動回数NCT
は3時間以上の回収温度の平均値を一定にして運転し、
その区間の測定値から算出する。
In the present invention, the average value T AV of the recovery temperature, the temperature variation rate T de , and the number of times of temperature variation N CT per hour
Runs with the average value of the recovery temperature for 3 hours or more constant,
It is calculated from the measured values in that section.

【0033】上記TdeとNCTの積(F)を調整すること
により成形加工後成形物表面で粒子Bとなりうる粒子が
生成する。本発明では上記Fの値が0.5〜150のも
のが使用でき、特にFの値が異なる2種以上の樹脂を混
合して使用すると好ましい結果を与える。この際も混合
比とF値から平均値を求めてこれが0.5〜150の範
囲に入るものが使用できる。例えばFが0.5〜15で
は粒子Bは0.01〜1%生成し、得られた樹脂のゴム
粒子平均径が0.05〜1μm、好ましくは0.1〜
0.8μmであれば光沢の高い樹脂が得られる。Fが3
5を越えて150以下であれば粒子Bは40〜90%生
成し、ゴム粒子平均径が0.5〜3、μm、好ましくは
1〜2.5μmであれば、艶消し効果のある樹脂が得ら
れる。本発明の方法では、例えば粒子Bを0.01〜1
%含有する光沢の高い樹脂を剪断効果の高い押出機によ
り処理することによりさらに高い光沢の成形物が得られ
る樹脂にすることが可能であり、艶消し効果のある樹脂
についても、1つの樹脂から用途によって適当な光沢に
調整することができる。
By adjusting the product (F) of T de and N CT , particles capable of becoming particles B are formed on the surface of the molded product after the molding process. In the present invention, those having the above F value of 0.5 to 150 can be used, and particularly preferable results are obtained by mixing two or more kinds of resins having different F values. Also in this case, an average value obtained from the mixing ratio and the F value and falling within the range of 0.5 to 150 can be used. For example, when F is 0.5 to 15, 0.01 to 1% of particles B are produced, and the obtained resin has an average rubber particle diameter of 0.05 to 1 μm, preferably 0.1 to 1.
If it is 0.8 μm, a resin having high gloss can be obtained. F is 3
If it exceeds 5 and 150 or less, 40 to 90% of particles B are produced, and if the rubber particle average diameter is 0.5 to 3 μm, preferably 1 to 2.5 μm, a resin having a matting effect is obtained. can get. In the method of the present invention, for example, the particles B are added in an amount of 0.01 to 1
% High gloss resin can be processed by an extruder with a high shearing effect to obtain a resin with a higher gloss, and even a resin with a matting effect can be obtained from one resin. It can be adjusted to an appropriate gloss depending on the application.

【0034】例えば上記の方法で得られた樹脂を溶融状
態で押出機に送入する。ここで使用する押出機はニーデ
ィングディスクまたはローターが設置されている2軸押
出機であり、分離回収工程出口からニーディングゾーン
との間に水を添加する部分と、ニーディングゾーンと同
時またはその直前部に添加した水を蒸発させる部分とを
有する2軸押出機を用いる。添加する水の割合は、1時
間あたり押出機が処理する樹脂量100重量部に対して
0〜15重量部、好ましくは1〜10重量部、より好ま
しくは1〜7重量部である。ニーディングゾーンより前
の部分で水を添加し、蒸発させることによって樹脂温を
下げ、ニーディングゾーンでの樹脂にかかる剪断力を高
めることができる。水の他に低沸点の有機溶媒を混合し
て使用しても良い。
For example, the resin obtained by the above method is fed into an extruder in a molten state. The extruder used here is a twin-screw extruder equipped with a kneading disk or a rotor, and a portion to which water is added between the outlet of the separation / recovery process and the kneading zone and the kneading zone or at the same time. A twin-screw extruder having a portion for evaporating the water added immediately before is used. The proportion of water added is 0 to 15 parts by weight, preferably 1 to 10 parts by weight, and more preferably 1 to 7 parts by weight, based on 100 parts by weight of the resin processed by the extruder. The resin temperature can be lowered by adding water to the portion before the kneading zone to evaporate it, and the shearing force applied to the resin in the kneading zone can be increased. In addition to water, a low boiling point organic solvent may be mixed and used.

【0035】本発明においてニーディングゾーンより前
の部分で水を添加する部分を持たない場合はニーディン
グゾーンと同時または直前部で押出機のシリンダー温度
を回収工程出口の樹脂温の0〜60%低下、より高光沢
の製品が得たい場合は15〜60%低下させることによ
り本発明の効果が得られる。但し大型の押出機の場合、
樹脂温を低下させることは困難であるので水を添加する
方法の方が好ましい。本発明においては分離回収工程で
の温度の変動の程度と、押し出し工程での樹脂にかかる
剪断の程度によって、得られた樹脂の表面モルフォロジ
ーが決められる。押し出し工程で樹脂にかかる剪断の程
度は、例えば同方向回転噛合型2軸押出機で2条のニー
ディングディスクを装着している場合、下記式(数3)
(数4)で表される剪断指標(S)を用いる。
In the present invention, when there is no portion to which water is added before the kneading zone, the cylinder temperature of the extruder is adjusted to 0 to 60% of the resin temperature at the exit of the recovery step at the same time as or immediately before the kneading zone. When it is desired to obtain a product having a lower gloss and higher gloss, the effect of the present invention can be obtained by reducing the amount by 15 to 60%. However, in the case of a large extruder,
Since it is difficult to lower the resin temperature, the method of adding water is preferable. In the present invention, the surface morphology of the obtained resin is determined by the degree of temperature fluctuation in the separation and recovery step and the degree of shear applied to the resin in the extrusion step. The degree of shear applied to the resin in the extrusion step is calculated by the following formula (Equation 3) when a two-row kneading disk is mounted in a co-rotating twin screw extruder.
The shear index (S) represented by (Equation 4) is used.

【0036】[0036]

【数3】γm =(dNE+DNE)×π×N/{(DB
−dNE)/2} dNE:ニーディングディスクの短径(mm) DNE:ニーディングディスクの長径(mm) N :1秒間あたりのスクリュー回転数(rps) DB :シリンダーの直径(mm)
Γ m = (dNE + DNE) × π × N / {(DB
-DNE) / 2} dNE: Minor diameter of kneading disc (mm) DNE: Major diameter of kneading disc (mm) N: Screw rotations per second (rps) DB: Cylinder diameter (mm)

【0037】[0037]

【数4】S=(350−T1 )×0.02×γm ×(θ
/60)×L/100 T1 :ニーディングゾーン入口の樹脂温度(℃) θ :押出機中の樹脂の滞留時間(sec) L :スクリュー有効長に対するニーディングゾーン
の割合(%) このSとB1により粒子Bの変化率(BD)が決まる。粒
子Bの変化率BDは下記式(数5)により求められる。
(4) S = (350−T 1 ) × 0.02 × γ m × (θ
/ 60) × L / 100 T 1 : resin temperature at inlet of kneading zone (° C.) θ: residence time of resin in extruder (sec) L: ratio of kneading zone to effective screw length (%) The rate of change (B D ) of the particles B is determined by B 1 . The change rate B D of the particles B is obtained by the following equation (Equation 5).

【0038】[0038]

【数5】BD=(B1−B2)/B1×100 上記B1・Sを用いて粒子Bの変化率BDを考えると、例
えばB1が0.01〜10%の場合、Sが100以下で
Dは0〜30%、Sが140を超える範囲でB D40〜
70%となる。例えばB1は40〜90%の場合、Sが
60以下でBD0〜30%、Sが100を越える範囲で
Dは50〜90%となる。
[Formula 5] BD= (B1-B2) / B1× 100 Above B1-The change rate B of the particle B using SDGiven an example
Speaking of B1Is 0.01 to 10%, S is 100 or less
BDIs 0 to 30%, S is in the range of over 140 B D40 ~
70%. For example B1Is 40 to 90%, S is
B below 60D0 to 30%, S exceeds 100
BDIs 50 to 90%.

【0039】即ち、あるB1をもつ成形物1となるよう
なABS樹脂を製造しておけば、Sを変えることにより
様々なモルフォロジーの製品を得ることができる。同方
向回転噛合型スクリューとは2軸押出機のスクリューの
タイプであり、2本のスクリューが同じ方向に回転する
ものである。また噛合型とは2本のスクリューの山と谷
がスクリュー軸を結ぶ線上で完全に噛み合っているもの
である。
In other words, if an ABS resin is produced so as to obtain the molded product 1 having a certain B 1 , various morphological products can be obtained by changing S. The co-rotating mesh type screw is a screw type of a twin-screw extruder, and two screws rotate in the same direction. The mesh type is a type in which the peaks and valleys of two screws are completely meshed with each other on the line connecting the screw shafts.

【0040】本願での剪断指標(S)は20〜300、
好ましくは30〜250、さらに好ましくは50〜20
0である。
The shear index (S) in the present application is 20 to 300,
Preferably 30-250, more preferably 50-20
0.

【0041】本発明の方法により得られた樹脂の成形物
は衝撃強度等他の物性を低下することなく表面特性をコ
ントロールできるため、電機機器やコンピューター等の
産業分野の部品として幅広く有用であり、また化粧品容
器や玩具・文房具等の成形物として特に有用である。
The resin molded product obtained by the method of the present invention can control surface properties without deteriorating other physical properties such as impact strength, and is therefore widely useful as a component in the industrial field such as electric equipment and computers. Further, it is particularly useful as a molded product such as a cosmetic container, toy, stationery and the like.

【0042】次に実施例により本発明を更に詳細に説明
するが、本発明はこれらの実施例により限定されるもの
ではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0043】[0043]

【実施例】以下、実施例により本発明を更に詳細に説明
する。性能評価は下記の基準で測定した。 (1)光沢測定 JISK7105中の光沢度の測定(60°鏡面光沢)
の測定法に準じて10mm×50mmの試験片3個につ
いて光沢を測定し、その平均値を求めた。 (2)衝撃強度の測 衝撃強度は成形物を切り出し試験片とし、Izod衝撃
試験法(JIS−K7110)で行なった。 (3)耐熱温度の測定 ビカット軟化点はASTM DI525に準拠して、成
形物から試験片を切り出したサンプルを用いて評価し
た。 (4)ゴム粒子形態の測定 TEM(透過型電子顕微鏡)の超薄切片法により、ゴム
粒子形状を測定した。 (5)ゴム粒子平均径の測定 成形物2の成形前のペレットを超薄切片法による電子顕
微鏡写真を撮影し、写真中のゴム粒子500〜700個
の短径及び長径をそれぞれ測定して、その平均値を粒子
径とし、次式により体積平均径を求めた。 体積平均径=ΣnD4/ΣnD3 (但しnは粒子径Dμmのゴムの個数である。) 参考例 スチレン74.5重量部、アクリロニトリル25.5重
量部、エチルベンゼン25重量部、ゴム状重合体(スチ
レン−ブタジエンブロック共重合体 溶液粘度10ct
s 5%スチレン溶液 25℃)12重量部、有機過酸
化物〔1,1−ビス(t−ブチルパーオキシ)3,3,
5−トリメチルシクロヘキサン〕0.04重量部、メル
カプタン0.2重量部よりなる原料溶液を作成した。こ
の原料を3段の撹拌式重合槽列反応器にて重合を行なっ
た。1段目の槽から原料溶液を連続的に供給した。1段
目の槽の反応温度100℃、2段目の槽では120℃、
3段目の槽では130℃とした。3段目の槽より重合液
を予熱器と減圧室より成る分離回収工程に導いた。分離
回収工程の出口での樹脂の平均温度(Tav)を240
℃、温度変動率(Tde)を8%、1時間あたりの変動回
数(N)10回として回収工程から出た樹脂の一部を射
出成形した(成形物1)。得られた成型物の表面を電子
顕微鏡で観察した。分離回収工程から出た樹脂を表1に
示す押出機Aにて、ニーディングゾーン30%、スクリ
ュー回転数3.3rpsの条件でシリンダー温度を23
0℃として、水を添加することなく処理した後、射出成
形を行った。結果を表2に示す。ニーディングゾーン入
り口の温度(T1)は240℃で あった。成形物2の光
沢は21%となり、成形物1とほとんど光沢は変わらず
良好な艶消し性を有している。なお温度変動率及び1時
間当たりの温度変動率は、予熱器のジャケットの熱媒の
平均温度及び流量で調節した。なお本実験に使用したペ
レットは、3時間を1ロットとして混合して使用した。
EXAMPLES The present invention will be described in more detail below with reference to examples. The performance evaluation was measured according to the following criteria. (1) Gloss measurement Measurement of gloss level in JIS K7105 (60 ° specular gloss)
According to the measuring method of 1., the gloss was measured for three test pieces of 10 mm × 50 mm, and the average value was obtained. (2) Measurement of Impact Strength The impact strength was measured by the Izod impact test method (JIS-K7110) using a molded product as a test piece cut out. (3) Measurement of heat resistant temperature The Vicat softening point was evaluated according to ASTM DI525 using a sample obtained by cutting a test piece from a molded product. (4) Measurement of rubber particle morphology The shape of rubber particles was measured by the ultrathin section method of TEM (transmission electron microscope). (5) Measurement of Rubber Particle Average Diameter A pellet of the molded article 2 before molding was taken by an electron micrograph by an ultrathin section method, and the minor axis and major axis of 500 to 700 rubber particles in the photograph were measured, The average value was used as the particle diameter, and the volume average diameter was determined by the following formula. Volume average diameter = ΣnD 4 / ΣnD 3 (where n is the number of rubbers having a particle diameter Dμm.) Reference Example 74.5 parts by weight of styrene, 25.5 parts by weight of acrylonitrile, 25 parts by weight of ethylbenzene, rubber-like polymer ( Styrene-butadiene block copolymer solution viscosity 10 ct
s 5% styrene solution 25 ° C.) 12 parts by weight, organic peroxide [1,1-bis (t-butylperoxy) 3,3,3
5-trimethylcyclohexane] 0.04 part by weight and a mercaptan 0.2 part by weight were prepared as a raw material solution. This raw material was polymerized in a three-stage stirred polymerization tank array reactor. The raw material solution was continuously supplied from the first-stage tank. The reaction temperature in the first tank is 100 ℃, and in the second tank is 120 ℃,
In the third tank, the temperature was 130 ° C. The polymerization liquid was introduced from the third tank to a separation and recovery process consisting of a preheater and a decompression chamber. The average temperature (T av ) of the resin at the outlet of the separation and recovery process is set to 240
A part of the resin discharged from the recovery step was injection-molded (molded product 1) at a temperature variation rate (T de ) of 8% and a variation frequency (N) of 10 times per hour at 10 ° C. The surface of the obtained molded product was observed with an electron microscope. With the extruder A shown in Table 1, the resin discharged from the separation / recovery step was adjusted to a cylinder temperature of 23 at a kneading zone of 30% and a screw rotation speed of 3.3 rps.
After being treated at 0 ° C. without adding water, injection molding was performed. Table 2 shows the results. The temperature (T 1 ) at the entrance of the kneading zone was 240 ° C. The gloss of the molded product 2 is 21%, which is almost the same as that of the molded product 1 and has a good matting property. The temperature fluctuation rate and the temperature fluctuation rate per hour were adjusted by the average temperature and flow rate of the heating medium in the jacket of the preheater. The pellets used in this experiment were mixed for 3 hours and used.

【0044】実施例A−1 回収工程を出た樹脂を、シリンダーの温度を230℃
と、スクリュウーの回転数を4.8rpsとする以外は
参考例と同じ条件で樹脂を製造し、成形物2を得た。ニ
ーディングゾーン入り口の温度(T1)は235℃であ
った。成形物2の光沢は30%となり、光沢が向上し
た。
Example A-1 The resin discharged from the recovery step was heated at a cylinder temperature of 230 ° C.
Then, a resin was produced under the same conditions as in the reference example except that the rotation speed of the screw was set to 4.8 rps to obtain a molded product 2. The temperature (T 1 ) at the entrance of the kneading zone was 235 ° C. The gloss of the molded product 2 was 30%, which was improved.

【0045】実施例A−2 押出機で水を樹脂の押出量に対して1重量%添加し、シ
リンダー温度を225℃とする以外は参考例と同じとし
た。結果を表2に示す。T1は230℃であった。光沢
は 33.2%となり、さらに光沢が向上した。
Example A-2 Same as Reference Example except that 1% by weight of water was added to the amount of resin extruded in the extruder and the cylinder temperature was 225 ° C. Table 2 shows the results. T 1 was 230 ° C. The gloss was 33.2%, which was further improved.

【0046】実施例A−3 押出機で水の添加量を7重量%とし、シリンダー温度を
160℃とする以外は参考例と同じとした。結果を表2
に示す。T1は177℃であった。光沢は42%とな
り、さらに光沢が向上した。
Example A-3 Same as Reference Example except that the amount of water added was 7% by weight and the cylinder temperature was 160 ° C. in the extruder. Table 2 shows the results
Shown in T 1 was 177 ° C. The gloss was 42%, which was further improved.

【0047】実施例A−4 押出機のスクリュー回転数を6.0rps、押出機で水
の添加量を1重量%とし、シリンダー温度を225℃と
する以外は参考例と同じとした。結果を表2に示す。T
1は233℃であった。光沢は38%となり、光沢が向
上した。
Example A-4 Same as Reference Example except that the screw rotation speed of the extruder was 6.0 rps, the amount of water added in the extruder was 1% by weight, and the cylinder temperature was 225 ° C. Table 2 shows the results. T
1 was 233 ° C. The gloss was 38%, which was improved.

【0048】比較例B−1 回収工程を出た樹脂を表1に示す押出機Bで処理する以
外は実施例A−2と同じとした。結果を表−2に示す。
得られた成形物2の光沢は21%、でほとんど光沢は向
上しなかった。
Comparative Example B-1 Same as Example A-2 except that the resin from the recovering step was treated with extruder B shown in Table 1. Table 2 shows the results.
The gloss of the obtained molded product 2 was 21%, and the gloss was hardly improved.

【0049】比較例B−2 回収工程を出た樹脂を表1に示す押出機Bで処理する以
外は実施例A−3と同とした。結果を表−2に示す。得
られた成形物2の光沢は22%、でほとんど光沢は向上
しなかった。
Comparative Example B-2 Same as Example A-3 except that the resin from the recovery step was treated with extruder B shown in Table 1. Table 2 shows the results. The gloss of the obtained molded product 2 was 22%, and the gloss was hardly improved.

【0050】比較例B−3 回収工程を出た樹脂を表1に示す押出機Bで処理する以
外は実施例A−4と同とした。結果を表−2に示す。得
られた成形物2の光沢は21%、でほとんど光沢は向上
しなかった。この様に1軸フルフライトスクリューでは
剪断指標を変えても光沢はほとんど変化しない。
Comparative Example B-3 The procedure of Example A-4 was repeated, except that the resin from the recovery step was treated with the extruder B shown in Table 1. Table 2 shows the results. The gloss of the obtained molded product 2 was 21%, and the gloss was hardly improved. In this way, the uniaxial full flight screw hardly changes the gloss even if the shear index is changed.

【0051】実施例C−1 エチルベンゼン 20重量部、ゴム状重合体 10重量
部、有機過酸化物 0.03重量部を用いて参考例と同
様に重合し、回収工程での回収温度の平均値(T AV)を
235℃、温度変動率を2%、1時間当たりの変動回数
を4回とする押出機でのシリンダー温度を220とする
以外は実施例A−2と同じ条件とした。結果を表3に示
す。T1は223℃であった。得られた成形物の光沢は
成形物 1が75%、成型物2が84.3%となり光沢
が向上した。
Example C-1 20 parts by weight of ethylbenzene, 10 parts by weight of rubber-like polymer
And 0.03 part by weight of organic peroxide, the same as in Reference Example
The average value of the recovery temperature (T AV)
235 ° C, temperature fluctuation rate 2%, number of fluctuations per hour
Cylinder temperature in the extruder is 4 times and 220
The other conditions were the same as those in Example A-2. The results are shown in Table 3.
You T1Was 223 ° C. The gloss of the obtained molding is
Molded product 1 is 75%, molded product 2 is 84.3%, and gloss
Has improved.

【0052】実施例C−2 押出機で水を7重量%添加し、シリンダー温度を155
℃とする以外は実施例C−1と同じとした。結果を表3
に示す。T1は158℃であった。得られた成形物の光
沢は89.4%となり、さらに光沢が向上した。
Example C-2 7% by weight of water was added in an extruder and the cylinder temperature was adjusted to 155.
Same as Example C-1 except that the temperature was set to be ° C. The results are shown in Table 3.
Shown in T 1 was 158 ° C. The gloss of the obtained molded product was 89.4%, and the gloss was further improved.

【0053】実施例C−3 押出機で水を10重量%添加し、シリンダー温度を12
5℃とする以外は実施例C−1と同じとした。結果を表
3に示す。T1は126℃であった。得られた成形物の
光沢は95.3%となり、さらに光沢が向上した。
Example C-3 10% by weight of water was added in an extruder, and the cylinder temperature was adjusted to 12.
Same as Example C-1 except that the temperature was 5 ° C. The results are shown in Table 3. T 1 was 126 ° C. The gloss of the obtained molded product was 95.3%, which was further improved.

【0054】実施例C−4 押出機のスクリュー回転数を6.0rpsとする以外は
実施例C−1と同じとした。結果を表3に示す。T1
225℃であった。得られた成形物の光 沢は85.5
%となり光沢が向上した。
Example C-4 Same as Example C-1 except that the screw speed of the extruder was 6.0 rps. The results are shown in Table 3. T 1 was 225 ° C. The resulting molded product has a light flux of 85.5.
% And the gloss improved.

【0055】比較例D−1 ポリブタジエンラテックス(ゴム粒子径0.3μm)2
0重量部の存在下でスチレン70%、アクリロニトリル
30%からなる単量体混合物80重量部を乳化重合し
た。得られたグラフト共重合体は硫酸で凝固し、苛性ソ
ーダで中和・洗浄・濾過・乾燥してABS樹脂を得た。
得られた樹脂を表1に示す押出機Cでシリンダー240
℃、スクリュー回転数1.5rpsで溶融し、その溶融
樹脂を押出機Aに送入し実施例C−1と同じ条件で処理
した。押出機Cによる処理前の樹脂の成形物を成形物
1、押出機Aによる処理後の成形物を成形物2として結
果を表−3に示す。押出機Aのニーディングゾーン入口
の温度をT1とすると、T1は224℃であった。成形物
1の光沢は78%であり、成形物2の光沢も78%と変
化しなかった。
Comparative Example D-1 Polybutadiene Latex (rubber particle diameter 0.3 μm) 2
80 parts by weight of a monomer mixture consisting of 70% styrene and 30% acrylonitrile was emulsion polymerized in the presence of 0 part by weight. The obtained graft copolymer was coagulated with sulfuric acid, neutralized with caustic soda, washed, filtered and dried to obtain an ABS resin.
The obtained resin was compressed into a cylinder 240 by an extruder C shown in Table 1.
C., the screw rotation speed was 1.5 rps, and the molten resin was fed into the extruder A and treated under the same conditions as in Example C-1. The results are shown in Table 3 with molding 1 of the resin before treatment by the extruder C and molding 2 as the molding after treatment with the extruder A. When the temperature at the inlet of the kneading zone of the extruder A is T 1 , T 1 was 224 ° C. The gloss of the molded product 1 was 78%, and the gloss of the molded product 2 was 78%, which was unchanged.

【0056】比較例D−2 押出機Aに水を樹脂に対して7重量%添加し、シリンダ
ー温度を155℃とする以外は比較例D−1と同じとし
た。結果を表3に示す。成形物2の光沢が78.3%と
、ほとんど向上していない。
Comparative Example D-2 The same as Comparative Example D-1 except that 7% by weight of water was added to the extruder A and the cylinder temperature was 155 ° C. The results are shown in Table 3. The gloss of the molded product 2 was 78.3%, which was hardly improved.

【0057】比較例D−3 押出機Aのスクリューの回転数を6rpsとする以外は
比較例D−4と同じとした。結果を表3に示す。T1
225℃であった。成形物2の光沢が78%と、ほとん
ど向上していない。乳化重合ABSでは剪断指標が異な
る2軸押出機を用いても、光沢をコントロールする事は
出来ない。
Comparative Example D-3 The same as Comparative Example D-4 except that the screw rotation speed of the extruder A was 6 rps. The results are shown in Table 3. T 1 was 225 ° C. The gloss of the molded product 2 is 78%, which is hardly improved. In emulsion-polymerized ABS, the gloss cannot be controlled even by using a twin-screw extruder having a different shear index.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【発明の効果】本発明の方法により成形物の表面におけ
るゴム粒子モルフォロジーが自由に変えられるのでAB
S樹脂の表面の特徴を極めて容易に発現させることがで
き、例えば光沢・艶消しを任意にコントロールできる。
INDUSTRIAL APPLICABILITY According to the method of the present invention, the rubber particle morphology on the surface of the molded product can be freely changed.
The characteristics of the surface of the S resin can be expressed very easily, and for example, gloss and matte can be controlled arbitrarily.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 尚夫 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 (72)発明者 高久 真人 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 (72)発明者 白藤 朋史 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nao Morita 1-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Kagaku Co., Ltd. (72) Masato Takahisa 1-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Kagaku Incorporated (72) Inventor Tomofumi Shirato 1-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Chemical Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 [I]少なくともスチレン系単量体及び
アクリロニトリル系単量体、及びゴム状重合体を含む原
料を重合工程に供給し、該単量体の一部もしくは全量を
重合させてゴム状重合体粒子(ゴム粒子)形成を含む重
合体を重合する工程の後、重合体、未反応単量体および
/または溶剤を含む混合液を加熱し、同時にまたは加熱
後減圧室に導入して単量体および/または溶剤を樹脂成
分と分離する分離回収工程を持ち、この分離回収工程を
出る樹脂を射出成形して得られた成形物(成形物1)の
表面から0.5〜1.5μmの深さに存在するゴム粒子
が、成形物表面との平行面を超薄切片法による電子顕微
鏡写真で観察する時、 長径aと短径bの比率a/bが1.5以下の粒子A、
及び 長径aと短径bの比率a/bが5以上である粒子B の少なくとも2種類の形態を有し、且つ超薄切片法によ
る電子顕微鏡写真で観察されるゴム粒子の全面積を10
0%とした時に粒子Aの面積が少なくとも10%以上、
粒子Bの面積が0.01〜90%であるABS樹脂を、
[II]分離回収工程を出た後、ニーディングディスクま
たはローターを有する2軸押出機により剪断を与えるこ
とによって、得られた成形物(成形物2)の表面を上記
と同じ方法で、即ち成形物表面から0.5〜1.5μm
の深さの平行面を超薄切片法による電子顕微鏡写真で観
察し、粒子Bの面積を上記成形物1で観察された粒子B
の割合を100%とするとき0〜95%となる様にコン
トロールする事を特徴とする多様な表面モルフォロジー
を有するABS系樹脂の製造方法。
1. A rubber comprising: [I] a raw material containing at least a styrene-based monomer, an acrylonitrile-based monomer, and a rubber-like polymer is supplied to a polymerization step, and a part or all of the monomer is polymerized. After the step of polymerizing the polymer including forming the polymer particles (rubber particles), the mixed solution containing the polymer, the unreacted monomer and / or the solvent is heated, and simultaneously or after heating, introduced into a decompression chamber. It has a separation and recovery step of separating the monomer and / or the solvent from the resin component, and 0.5-1. Rubber particles present at a depth of 5 μm have a ratio a / b of the major axis a to the minor axis b of 1.5 or less when observing a plane parallel to the surface of the molded article with an electron micrograph by the ultrathin section method. A,
And at least two types of particles B having a ratio a / b of the major axis a to the minor axis b of 5 or more and the total area of the rubber particles observed by an electron micrograph by the ultrathin section method is 10
The area of particles A is at least 10% or more when 0%,
The ABS resin in which the area of the particles B is 0.01 to 90%,
[II] After the separation and recovery step, the surface of the obtained molded product (molded product 2) is subjected to shearing by a shearing by a twin-screw extruder having a kneading disk or a rotor, that is, molding is performed in the same manner as above. 0.5 to 1.5 μm from the object surface
The parallel plane of the depth of B is observed by an electron micrograph by the ultrathin section method, and the area of the particle B is the particle B observed in the molding 1.
The method for producing an ABS resin having various surface morphologies, wherein the ratio is controlled to be 0 to 95% when the ratio is 100%.
【請求項2】 [I]少なくともスチレン系単量体及び
アクリロニトリル系単量体、及びゴム状重合体を含む原
料を重合工程に供給し、該単量体の一部もしくは全量を
重合させてゴム粒子形成を含む重合体を重合する工程の
後、重合体、未反応単量体および/または溶剤を含む混
合液を加熱し、同時にまたは加熱後減圧室に導入して単
量体および/または溶剤を樹脂成分と分離する分離回収
工程を持ち、この分離回収工程を出る樹脂を射出成形し
て得られた成形物(成形物1)の表面から0.5〜1.
5μmの深さに存在するゴム粒子が、成形物表面との平
行面を超薄切片法による電子顕微鏡写真で観察する時、 長径aと短径bの比率a/bが1.5以下の粒子A、
及び 長径aと短径bの比率a/bが5以上である粒子B の少なくとも2種類の形態を有し、且つ超薄切片法によ
る電子顕微鏡写真で観察されるゴム粒子の全面積を10
0%とした時に粒子Aの面積が少なくとも10%以上、
粒子Bの面積が0.01〜90%であるABS樹脂を、
[II]分離回収工程を出た後、ニーディングディスクま
たはローターを有する2軸押出機であり、分離回収工程
出口とニーディングディスクまたはローターが設置され
ている部分との間に、樹脂に水を添加する部分と添加し
た水を蒸発させる部分を有し、且つ添加した水を蒸発さ
せる部分はニーディングディスクが設置されている部分
と同時またはその直前部に設けられた押出機を用いて剪
断を与えることによって、得られた成形物(成形物2)
の表面を上記と同じ方法で、即ち成形物表面から0.5
〜1.5μmの深さの平行面を超薄切片法による電子顕
微鏡写真で観察し、粒子Bの面積を上記成形物1で観察
された粒子Bの割合を100%とするとき0〜95%と
なる様にコントロールする事を特徴とする多様な表面モ
ルフォロジーを有するABS系樹脂の製造方法。
2. A rubber obtained by supplying a raw material containing [I] at least a styrene-based monomer, an acrylonitrile-based monomer, and a rubber-like polymer to a polymerization step and polymerizing a part or all of the monomer. After the step of polymerizing the polymer including particle formation, the mixed solution containing the polymer, the unreacted monomer and / or the solvent is heated, and at the same time or after the heating, the mixture is introduced into a decompression chamber so as to introduce the monomer and / or the solvent. From the surface of a molded product (molded product 1) obtained by injection-molding the resin exiting this separation and recovery process.
Rubber particles present at a depth of 5 μm have a ratio a / b of the major axis a to the minor axis b of 1.5 or less when observing a plane parallel to the surface of the molded article with an electron micrograph by the ultrathin section method. A,
And at least two types of particles B having a ratio a / b of the major axis a to the minor axis b of 5 or more and the total area of the rubber particles observed by an electron micrograph by the ultrathin section method is 10
The area of particles A is at least 10% or more when 0%,
The ABS resin in which the area of the particles B is 0.01 to 90%,
[II] A twin-screw extruder having a kneading disk or a rotor after leaving the separation and recovery step, and water is added to the resin between the outlet of the separation and recovery step and the portion where the kneading disk or rotor is installed. There is a portion to be added and a portion to evaporate the added water, and the portion to evaporate the added water is sheared using an extruder provided at the same time as the portion where the kneading disk is installed or immediately before that. Molded product obtained by giving (molded product 2)
In the same manner as above, i.e.
Parallel planes with a depth of ˜1.5 μm are observed with an electron micrograph by an ultrathin section method, and the area of the particles B is 0 to 95% when the ratio of the particles B observed in the above-mentioned molded article 1 is 100%. A method for producing an ABS resin having various surface morphologies, which is characterized by controlling so that
【請求項3】 請求項2の方法において添加する水の割
合が単位時間当たりの樹脂の押出量100重量部に対し
て0〜15重量部であることを特徴とするABS系樹脂
の製造方法。
3. The method for producing an ABS resin according to claim 2, wherein the proportion of water added is 0 to 15 parts by weight per 100 parts by weight of the resin extruded per unit time.
【請求項4】 請求項1の方法において押出機中でニー
ディングディスクが設置されている部分、またはその直
前部で押出機シリンダーの温度を回収工程出口の樹脂温
の0〜60%低下させた温度とすることを特徴とするA
BS系樹脂の製造方法。
4. The method according to claim 1, wherein the temperature of the extruder cylinder is reduced by 0 to 60% of the resin temperature at the exit of the recovery step at the portion where the kneading disk is installed in the extruder or immediately before that. A characterized by the temperature
Manufacturing method of BS resin.
【請求項5】 請求項2の方法において押出機中でニー
ディングディスクが設置されている部分、またはその直
前部で押出機シリンダーの温度を回収工程出口の樹脂温
の0〜60%低下させた温度とすることを特徴とするA
BS系樹脂の製造方法。
5. The method according to claim 2, wherein the temperature of the extruder cylinder is lowered by 0 to 60% of the resin temperature at the exit of the recovery step at the portion where the kneading disk is installed in the extruder or immediately before that. A characterized by the temperature
Manufacturing method of BS resin.
【請求項6】 請求項1または2の方法において押出機
のスクリューの長さ(L)とシリンダー径(D)の比L
/Dが10〜50であって、ニーディングゾーンがスク
リュー有効長の5〜60%である2軸押出機を用いるこ
とを特徴とするABS系樹脂の製造方法。
6. The method according to claim 1, wherein the ratio L of the screw length (L) of the extruder to the cylinder diameter (D) is L.
/ D is 10 to 50 and a kneading zone uses a twin screw extruder having a screw effective length of 5 to 60%, a method for producing an ABS resin.
【請求項7】 請求項1または2の方法で使用する押出
機が、シリンダー径(D)と、スクリューエレメントの
溝深さ(d)の比D/dが3〜12であるスクリューエ
レメントが、スクリューの有効長の40〜95%のセグ
メントを占めることを特徴とするABS樹脂の製造方
法。
7. The extruder used in the method according to claim 1 or 2, wherein the screw element having a ratio D / d of the cylinder diameter (D) to the groove depth (d) of the screw element is 3 to 12, A method for producing an ABS resin, which comprises occupying a segment of 40 to 95% of the effective length of the screw.
【請求項8】 請求項1または2に記載のニーディング
ディスクまたはローターを備えた2軸押出機として同方
向回転噛合型2軸押出機であって、下記式で表される剪
断指標Sが20〜300である条件で用いることを特徴
とする多様な表面モルフォロジーを有するABS系樹脂
の製造方法。 γm =(dNE+DNE)×π×N/{(DB−dN
E)/2} dNE:ニーディングディスクの短径(mm) DNE:ニーディングディスクの長径(mm) N :1秒間あたりのスクリュー回転数(rps) DB :シリンダーの直径(mm) S=(350−T1 )×0.02×γm ×(θ/60)
×L/100 T1 :ニーディングゾーン入口の樹脂温度(℃) θ :押出機中の樹脂の滞留時間(sec) L :スクリュー有効長に対するニーディングゾーン
の割合(%)
8. A twin-screw extruder equipped with the kneading disc or rotor according to claim 1 or 2, which is a co-rotating intermeshing twin-screw extruder and has a shear index S represented by the following formula of 20. A method for producing an ABS resin having various surface morphologies, which is used under the condition of 300 to 300. γ m = (dNE + DNE) × π × N / {(DB-dN
E) / 2} dNE: Minor axis of kneading disc (mm) DNE: Major axis of kneading disc (mm) N: Screw rotation number per second (rps) DB: Cylinder diameter (mm) S = (350 −T 1 ) × 0.02 × γ m × (θ / 60)
X L / 100 T 1 : Resin temperature at the inlet of the kneading zone (° C) θ: Residence time of resin in the extruder (sec) L: Ratio of kneading zone to effective screw length (%)
JP21852694A 1994-09-13 1994-09-13 Method for producing ABS resin having various surface morphologies Expired - Fee Related JP3325399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21852694A JP3325399B2 (en) 1994-09-13 1994-09-13 Method for producing ABS resin having various surface morphologies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21852694A JP3325399B2 (en) 1994-09-13 1994-09-13 Method for producing ABS resin having various surface morphologies

Publications (2)

Publication Number Publication Date
JPH0881523A true JPH0881523A (en) 1996-03-26
JP3325399B2 JP3325399B2 (en) 2002-09-17

Family

ID=16721315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21852694A Expired - Fee Related JP3325399B2 (en) 1994-09-13 1994-09-13 Method for producing ABS resin having various surface morphologies

Country Status (1)

Country Link
JP (1) JP3325399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452035B1 (en) * 1996-01-17 2004-12-03 스미까 에이비에스 라떽꾸스 가부시키가이샤 Thermoplastic resin molded article
WO2007034847A1 (en) * 2005-09-21 2007-03-29 Sumitomo Chemical Company, Limited Method for producing olefin polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100452035B1 (en) * 1996-01-17 2004-12-03 스미까 에이비에스 라떽꾸스 가부시키가이샤 Thermoplastic resin molded article
WO2007034847A1 (en) * 2005-09-21 2007-03-29 Sumitomo Chemical Company, Limited Method for producing olefin polymer

Also Published As

Publication number Publication date
JP3325399B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US4904730A (en) Rubber-modified resin blends
US4802769A (en) Apparatus for treating thermoplastic resin
EP3019548B1 (en) Process for the manufacturing of abs-molding compositions
JPH07233204A (en) Multistage mass process for producing abs graft copolymer controlled in graft, phase inversion and crosslinking
EP2235104A2 (en) Low gloss thermoplastic resin composition with soft touch surface and molded article therefrom
JPH0881523A (en) Production of abs resin having various surface morphology
US4419492A (en) Process for preparing ABS polymeric polyblends
US4410659A (en) Manufacture of rubber modified copolymers in an extruder type reactor
US4992510A (en) Method for producing rubber modified thermoplastic resins
JP3325382B2 (en) Method for adjusting morphology of surface of ABS resin
JPH08120031A (en) Continuous production of ultrahigh-gloss abs resin
JP3581173B2 (en) Various methods for controlling surface morphology of ABS resin
JP3325405B2 (en) Continuous production method of ABS resin with good balance of physical properties
JP3325406B2 (en) Continuous production method of improved high gloss ABS resin
JP3213501B2 (en) ABS resin quality control method and molded product thereof
US6683123B1 (en) Process for making a thermoplastic molding composition
JPH08231634A (en) Method of preparing actylonitrile/styrene copolymer of lowered residual nitrile component content
JPH08231635A (en) Continuous production of abs resin with improved gloss
JPS60233118A (en) Rubber-modified aromatic monovinyl resin composition
JPS60233116A (en) Rubber-reinforced aromatic monovinyl resin composition
KR0155018B1 (en) Method for controlling quality of abs-resin and molded product of this resin
JP3349859B2 (en) Thermoplastic resin composition and method for producing the same
WO2006053711A1 (en) Tenacious moulded masses containing fillers and based on styrol polymers
CN115427506B (en) Thermoplastic resin composition, method for preparing the same, and molded article comprising the same
JPH04211430A (en) Production of rubber-modified thermoplastic resin

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100705

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120705

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130705

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees