JPH08120031A - Continuous production of ultrahigh-gloss abs resin - Google Patents

Continuous production of ultrahigh-gloss abs resin

Info

Publication number
JPH08120031A
JPH08120031A JP25682094A JP25682094A JPH08120031A JP H08120031 A JPH08120031 A JP H08120031A JP 25682094 A JP25682094 A JP 25682094A JP 25682094 A JP25682094 A JP 25682094A JP H08120031 A JPH08120031 A JP H08120031A
Authority
JP
Japan
Prior art keywords
resin
extruder
particles
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25682094A
Other languages
Japanese (ja)
Inventor
Mutsuko Uchida
睦子 内田
So Iwamoto
宗 岩本
Akihiko Nakajima
明彦 中島
Hisao Morita
尚夫 森田
Masato Takaku
真人 高久
Tomofumi Shirafuji
朋史 白藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP25682094A priority Critical patent/JPH08120031A/en
Publication of JPH08120031A publication Critical patent/JPH08120031A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a high-gloss ABS resin without detriment to its impact resistance. CONSTITUTION: This process for continuously producing an ultrahigh-gloss ABS resin by solution or bulk polymerization comprises the steps of: producing an ABS resin by polymerization, separating and recovering unreacted monomers and/or the solvent from the resin component by heating the mixture containing the polymer, unreacted monomers and/or the solvent and introducing the mixture into a vacuum chamber during or after the heating, feeding the resin component into the extruder and passing it through the extruder to obtain a product. In the process, a zone (zone X) for adding water, a zone (zone Y) for evaporating the added water and a zone (zone Z) for kneading the resin after the evaporation of the water are provided between the exit of the recovery step and the exit of the extrusion step (particularly zones Y and Z are provided in the extruder) and water is added to the resin in zone X and then evaporated in zone Y to adjust the temperature of the resin to a temperature lower than that of the resin at the exit of the recovery step by 10-60%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は衝撃強度を保持しながら
高い光沢を有するABS系樹脂を製造する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ABS resin having high gloss while maintaining impact strength.

【0002】[0002]

【従来の技術】従来ABS系樹脂は光沢に勝れた樹脂と
して広く使用されている。しかしながら近年家庭電器製
品や電子製品においては、その商品価値を高めるため、
従来によりまして光沢の高いABS系樹脂が求められて
いる。従来成形加工温度を低くすると製品の光沢は一般
的に低下するが成形加工時のサイクル向上のため加工温
度を低下させてなおかつ高い光沢を保持するABS系樹
脂が求められている。
2. Description of the Related Art Conventionally, ABS resins have been widely used as resins having excellent gloss. However, in recent years, in order to increase the commercial value of home electric appliances and electronic products,
There is a demand for ABS resins having a high gloss. Conventionally, when the molding temperature is lowered, the gloss of the product is generally lowered, but there is a demand for an ABS resin which lowers the processing temperature and retains a high gloss in order to improve the cycle during molding.

【0003】一般的にABS系樹脂においては樹脂中の
ゴム粒子の大きさが光沢、及びその他の物性を決定する
上でのキーファクターとして知られており、用途毎に光
沢と、例えば衝撃特性、成形加工特性とバランスをとり
ながら、ゴム粒子径等をデザインしている。しかし、こ
れまでの方法ではABS系樹脂の諸物性を維持しながら
光沢を向上するには限界があり、新たな方法が求められ
てきた。例えば樹脂そのものを改質するのではなく、成
形段階で成形条件、例えば金型温度を高くするというこ
とが行われてきた。この場合は成形条件が限定され、成
形射出サイクルが長くなり、生産性に重要な問題が残
る。
Generally, in ABS resins, the size of rubber particles in the resin is known as a key factor in determining gloss and other physical properties. For each application, gloss and impact properties, for example, The rubber particle size is designed while balancing the molding characteristics. However, the conventional methods have a limit in improving the gloss while maintaining the physical properties of the ABS resin, and a new method has been required. For example, rather than modifying the resin itself, it has been practiced to increase molding conditions, such as mold temperature, at the molding stage. In this case, molding conditions are limited, a molding injection cycle becomes long, and an important problem remains in productivity.

【0004】また特開昭62−164707 38頁
右上項17行目〜左下項6行目までに乳化重合法による
ABS系樹脂においてゴム粒子がゴムの表面に適切なグ
ラフト層を設け、その厚みが100〜200Åとするこ
とによって高光沢なABS系樹脂が得られることについ
て記載がある。しかしながらこの方法は化学組成を複雑
にコントロールするので連続式の塊状重合、または溶液
重合法には適さない。
Further, JP-A-62-164707, page 38
From the 17th line on the upper right side to the 6th line on the lower left side, in the ABS resin by the emulsion polymerization method, the rubber particles are provided with a suitable graft layer on the surface of the rubber, and the thickness thereof is 100 to 200Å, thereby providing a high gloss ABS system. There is a description that a resin can be obtained. However, this method is not suitable for continuous bulk polymerization or solution polymerization because it controls the chemical composition in a complicated manner.

【0005】[0005]

【発明が解決しようとする課題】本発明では、ABS系
樹脂の表面光沢を、衝撃強度等を維持しながら高くする
方法を提供する事にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for increasing the surface gloss of ABS resin while maintaining impact strength and the like.

【0006】[0006]

【課題を解決するための手段】本発明においては、従来
とは全く異なる技術手段を用いて成形物表面の光沢を向
上させる。
In the present invention, the gloss of the surface of the molded product is improved by using a technical means which is completely different from the conventional one.

【0007】即ち、本発明ではABS系樹脂の溶液もし
くは連続塊状重合法において、驚くべき事に、押し出し
工程で水を添加し、さらに混練を加えることによって得
られた樹脂の成形物表面の光沢が向上できることを見出
し本発明に至った。
That is, in the present invention, in the ABS resin solution or continuous bulk polymerization method, surprisingly, the gloss of the surface of the molded product of the resin obtained by adding water in the extrusion step and further kneading The inventors have found that they can be improved and have reached the present invention.

【0008】即ち、本発明で溶液もしくは連続塊状重合
法のABS系樹脂の製造方法において、押出機は樹脂に
水を添加する部分と、添加した水を蒸発させる部分を有
する。水を蒸発させることにより押出機内の樹脂の温度
を低下させるので、押出機内で樹脂に混練を与える。か
かる方法によって、従来の方法で得られるABS系樹脂
に比較し、卓越した表面光沢のある樹脂を提供する。
That is, in the method for producing an ABS resin by the solution or continuous bulk polymerization method of the present invention, the extruder has a portion for adding water to the resin and a portion for evaporating the added water. The temperature of the resin in the extruder is lowered by evaporating the water, so that the resin is kneaded in the extruder. By such a method, a resin having an excellent surface gloss as compared with the ABS resin obtained by the conventional method is provided.

【0009】即ち本発明は、少なくともスチレン系単量
体及びアクリロニトリル系単量体、及びゴム状重合体を
含む原料を重合工程に供給し、該単量体を重合させ、ゴ
ム状重合体粒子(ゴム粒子)形成を含む該単量体を重合
する重合工程を経由し、その後重合体、未反応単量体お
よび/または溶剤を含む混合液を加熱し、加熱と同時
に、または加熱の後減圧室に導入して単量体および/ま
たは溶剤を樹脂成分と分離する分離回収工程を経由し、
該回収工程の後押出機に導入し、押出機を通過させて製
品を得る、溶液または塊状重合法によるABS系樹脂の
連続的製造方法において、回収工程出口から押出工程出
口までの間に、水を添加する部分(X部)、添加した水
を蒸発させる部分(Y部)と蒸発後樹脂に混練を与える
部分(Z部)を有し、特にY部とZ部は押出機(E)に
設けられており、X部に水を添加し、その後Y部で水を
蒸発させることにより樹脂の温度を回収工程出口での樹
脂の温度の10〜60%分低下させた温度にすることを
特徴とするABS系樹脂の製造方法である。
That is, according to the present invention, a raw material containing at least a styrene-based monomer, an acrylonitrile-based monomer, and a rubber-like polymer is supplied to a polymerization step, the monomer is polymerized, and rubber-like polymer particles ( (Rubber particles) through a polymerization step of polymerizing the monomer, and then heating a mixed solution containing a polymer, an unreacted monomer and / or a solvent, simultaneously with heating, or after heating, a decompression chamber Via a separation and recovery step in which the monomer and / or solvent is separated from the resin component by introducing into
In the continuous method for producing an ABS resin by the solution or bulk polymerization method, which is introduced into an extruder after the recovering step and passed through the extruder to obtain a product, water is collected between the recovering step outlet and the extrusion step outlet. Has a portion for adding (X portion), a portion for evaporating the added water (Y portion), and a portion for kneading the resin after evaporation (Z portion). Particularly, the Y portion and the Z portion are provided in the extruder (E). It is provided, and is characterized by adding water to the X part and then evaporating the water in the Y part so that the temperature of the resin is lowered by 10 to 60% of the temperature of the resin at the exit of the recovery process. Is a method for producing an ABS resin.

【0010】水を添加する部分(X部)は該部分に添加
する水を通過させる管を接続し、例えばプランジャーポ
ンプなどを用いて、強制的に水を押出機内に導入させる
構造を有しており、樹脂と水との混合が十分に行えるよ
うに、スクリュウーには混練を与える部分があっても良
い。また添加した水を蒸発させる部分(Y部)は例えば
真空ポンプ等の減圧装置に通じる管を該部に接続し、添
加した水が押出機内の該部を通過した除去できる様に減
圧状態に保つ構造を有している。
The portion to which water is added (X portion) has a structure in which a pipe for passing water to be added to the portion is connected, and water is forcibly introduced into the extruder by using, for example, a plunger pump. Therefore, the screw may have a kneading portion so that the resin and water can be sufficiently mixed. In addition, the portion (Y portion) where the added water is evaporated is connected to a pipe connected to a decompression device such as a vacuum pump, and is kept in a depressurized state so that the added water passes through the portion in the extruder and can be removed. It has a structure.

【0011】水を添加する部分は1カ所でもよく、2〜
3カ所設けてもよい。又水を蒸発させる部分も1カ所以
上3〜5カ所設けることができる。添加する水の量は、
単位時間当たりの押し出し樹脂量100重量部に対して
2〜15重量部、好ましくは2.5〜15重量部、より
好ましくは4〜15重量部である。水の添加量が15重
量部を越えると押出機の処理能力が低下して生産性に影
響が出て好ましくない。
The portion to which water is added may be one place,
You may provide in three places. Further, one or more 3 to 5 portions can be provided to evaporate water. The amount of water added is
The amount of the extruded resin per unit time is 2 to 15 parts by weight, preferably 2.5 to 15 parts by weight, and more preferably 4 to 15 parts by weight with respect to 100 parts by weight of the extruded resin. If the amount of water added exceeds 15 parts by weight, the processing capacity of the extruder is lowered and the productivity is affected, which is not preferable.

【0012】また本発明の方法において、(I)分離回
収工程後、押出機に導入する工程途上の樹脂が、該樹脂
を射出成形した時に得られる成形物(成形物1)におい
てその表面から0.5〜1.5μmの深さに存在するゴ
ム粒子が、成形物表面との平行面を超薄切片法による電
子顕微鏡写真で観察する時、 長径aと短径bの比率a/bが1.5以下の粒子A、
及び 長径aと短径bの比率a/bが5以上である粒子B の少なくとも2種類の形態を有し、且つ超薄切片法によ
る電子顕微鏡写真で観察されるゴム粒子の全面積を10
0%とした時に粒子Aの面積が少なくとも10%以上、
粒子Bの面積(B1 )が0.001〜2%であるABS
系樹脂であって、なおかつ、(II)押出機通過後の製
品において上記(I)と同様の分析方法で観察したとき
の粒子Bの面積(B2 )が下記関係式0.001≦B2
/B1 ×100≦50を満足することを特徴とする高光
沢ABS系樹脂の製造方法である。
In the method of the present invention, the resin in the process of being introduced into the extruder after the (I) separation and recovery step is 0 from the surface of the molded product (molded product 1) obtained when the resin is injection molded. When the rubber particles present at a depth of 0.5 to 1.5 μm are observed on an electron micrograph of a plane parallel to the surface of the molded article by an ultrathin section method, the ratio a / b of the major axis a and the minor axis b is 1 Particle A of less than or equal to 5
And at least two types of particles B having a ratio a / b of the major axis a to the minor axis b of 5 or more and the total area of the rubber particles observed by an electron micrograph by the ultrathin section method is 10
The area of particles A is at least 10% or more when 0%,
ABS in which the area (B 1 ) of particles B is 0.001 to 2%
The area (B 2 ) of the particles B, which is a system resin and is observed by the same analysis method as the above (I) in the product after passing through the (II) extruder, has the following relational expression 0.001 ≦ B 2
/ B 1 × 100 ≦ 50 is satisfied, which is a method for producing a high-gloss ABS resin.

【0013】ここで成形物1の表面には粒子Bが0.0
01〜2%含まれている事が好ましい。B1 粒子0.0
01未満の場合は本願発明の効果が発現されず、また2
%を越えると高い光沢の樹脂が得られにくいので好まし
くない。
Here, the particle B is 0.0 on the surface of the molded article 1.
It is preferable that the content is 01 to 2%. B 1 particle 0.0
When it is less than 01, the effect of the present invention is not exhibited, and 2
If it exceeds%, it is difficult to obtain a resin having high gloss, which is not preferable.

【0014】又、成形物1は以下の方法で測定したゴム
粒子平均径が0.05〜1.5μm、好ましくは0.1
〜1.0μm、より好ましくは0.15〜0.7μmで
あることが好ましい。ゴム粒子径が0.1μm以下では
衝撃強度が低下し、また1.5μm以上では高い光沢が
得られない。ゴム粒子平均径の測定方法は、超薄切片法
による電子顕微鏡写真を撮影し、写真中のゴム粒子50
0から700個の短径及び長径をそれぞれ測定してその
平均値を粒径とし、次式により体積平均径を求める。 体積平均径=ΣnD4 /ΣnD3 (但しnは粒径Dμm
のゴム粒子の個数である。) また本発明において使用される押出機としては混練部を
有する2軸または1軸の押出機を用いることが好まし
い。
The molded product 1 has a rubber particle average diameter of 0.05 to 1.5 μm, preferably 0.1, as measured by the following method.
˜1.0 μm, more preferably 0.15 to 0.7 μm. When the rubber particle size is 0.1 μm or less, the impact strength is lowered, and when it is 1.5 μm or more, high gloss cannot be obtained. The average particle diameter of the rubber particles is measured by taking an electron microscope photograph by the ultrathin section method and measuring the rubber particles 50 in the photograph.
From 0 to 700 minor and major diameters are respectively measured, the average value is taken as the particle diameter, and the volume average diameter is determined by the following formula. Volume average diameter = ΣnD 4 / ΣnD 3 (where n is the particle diameter D μm
Is the number of rubber particles. Further, as the extruder used in the present invention, it is preferable to use a twin-screw or single-screw extruder having a kneading section.

【0015】本発明は光沢以外の樹脂の性能とのバラン
スを勘案してゴム粒子の平均径が決められる。本発明の
方法では従来の光沢と他物性とのバランスを飛躍的に向
上するものである。
In the present invention, the average diameter of the rubber particles is determined in consideration of the balance with the performance of the resin other than the gloss. The method of the present invention dramatically improves the conventional balance between gloss and other physical properties.

【0016】本発明においてはABS系樹脂は押出機内
で水を添加・蒸発させ樹脂の温度を十分下げることがで
きるため押出機内での樹脂の劣化が抑制され、製品の色
相が良好となるメリットもある。
In the present invention, the ABS resin can add and evaporate water in the extruder to sufficiently lower the temperature of the resin, so that the deterioration of the resin in the extruder is suppressed and the hue of the product becomes good. is there.

【0017】従来揮発成分を除去するために押出機に水
を添加する方法は知られていたが、溶液もしくは塊状の
連続的重合法のABS系樹脂の製造工程において、押出
機中で樹脂に水を添加し、樹脂の温度を低下させ、温度
の低下した樹脂に対して混練を与えるという方法は全く
知られていなかった。
Conventionally, a method of adding water to an extruder in order to remove volatile components has been known. However, in the process for producing an ABS resin by a continuous polymerization method of a solution or a block, water is added to the resin in the extruder. There has been no known method for reducing the temperature of the resin and kneading the resin having the lowered temperature.

【0018】これまでのABS系樹脂の知見からは全く
知られていなかった機構によるものと推察する。即ち一
般的にABS系樹脂はスチレン・アクリロニトリルの共
重合体とこれらの共重合体の一部がグラフト及びオクル
ードされたゴム粒子から構成されるがゴム粒子はゴムが
適度に架橋され、また粒子の表面がグラフト部で覆われ
ていることによりゴム粒子の形状を安定させ、光沢や衝
撃の性能発揮させるように構成されている。しかしなが
ら更に詳しく検討すると本発明の方法によりさらに大き
く光沢を改善できることがわかった。本発明の効果の発
現の理由は明確ではないが、このゴム粒子の内の極めて
少ない部分は上記のように安定しておらず、このためこ
のゴム粒子のごく一部が成形加工時に変質し、表面の光
沢がいまだ改良の余地が残され、本発明でいう押出機で
の処理により完璧にゴム粒子が安定化し、効果がもたら
されるものと推察する。
It is presumed that this is due to a mechanism that has never been known from the knowledge of ABS resins. That is, generally, the ABS resin is composed of a copolymer of styrene / acrylonitrile and rubber particles obtained by grafting and occluding a part of these copolymers. The surface of the rubber particles is covered with the graft portion so that the shape of the rubber particles is stabilized and the performance of gloss and impact is exhibited. However, upon further study, it was found that the method of the present invention can further improve gloss. Although the reason for the manifestation of the effect of the present invention is not clear, an extremely small portion of the rubber particles is not stable as described above, and therefore, only a small portion of the rubber particles are deteriorated during molding, It is speculated that the gloss of the surface still has room for improvement, and that the treatment with the extruder in the present invention completely stabilizes the rubber particles and brings about the effect.

【0019】本発明の中で好ましい方法として、回収工
程後の押出機に入る樹脂の成形物(成形物1)には粒子
A及び粒子Bが観察され、なおかつ粒子Bが押出機の出
口において入り口の50%以下に低減することを提案し
ているが、この粒子Bは、上記表面保護のなされ具合に
ついての指標になりうるものであると推定する。
As a preferred method in the present invention, particles A and particles B are observed in the resin molded product (molded product 1) entering the extruder after the recovery step, and the particle B is introduced at the exit of the extruder. However, it is presumed that the particles B can be an index for the degree of surface protection.

【0020】本発明における押出機とは押出し成形やコ
ンパウンディングするために用いられる機器の一つで、
材料をシリンダーと呼ばれる部分と、回転スクリューと
の間で連続的に加熱、溶融、混練し、それをダイから押
し出し、成形あるいはペレット状にするものであり、回
転スクリューの形状等により混練具合が異なる。
The extruder in the present invention is one of the equipment used for extrusion molding and compounding,
The material is continuously heated, melted, and kneaded between a part called a cylinder and a rotating screw, and is extruded from a die to be molded or pelletized.The kneading condition varies depending on the shape of the rotating screw and the like. .

【0021】本発明における混練とは押出機中で流体内
各要素を均一に分散・混合する作用をいい、混練を与え
る部分(Z部)として好ましいスクリュー形状を例示す
ると、“現場で活かす押出機マニュアル”濱田 博晟著
工業調査会 113頁、図4.12、114頁、図
4.13、115頁、図4.14、116頁、図4.1
5、117頁、図4.16、に1軸押出機のスクリュー
形状が記載されており、148頁、図5.1には2軸押
出機のスクリューの種類の記載があり、噛み合い型2軸
スクリュー、同方向回転噛み合い型2軸スクリュー、同
方向回転部分噛み合い型2軸スクリュー等が例示され、
151頁、図5.2には2軸押出機のスクリューのエレ
メントについて記載されており、これらの押出機が使用
できる。150頁 8行目〜151頁7行目までにスク
リューに装着するエレメントについて順ねじ部と逆ねじ
部とがあり、その中間に混練を目的とするニーディング
ディスクと呼ばれるミキシング部分を設けることが記載
され、スクリュー有効長の10〜50%にニーディング
ディスクを有する2軸スクリューを有する押出機も好ま
しく使用される。これらの部分は他の部分とは区別さ
れ、混練部は樹脂に剪断力を与えることを目的にする
が、その他の部分は樹脂を前進させる等を目的とする。
The kneading in the present invention refers to the action of uniformly dispersing and mixing the respective elements in the fluid in the extruder, and a preferable screw shape as the portion (Z portion) to be kneaded is "extruder which is utilized in the field". Manual “Hiroaki Hamada, Industrial Research Society, page 113, figures 4.12, 114, figures 4.13, 115, figures 4.14, 116, figure 4.1.
5, 117, Fig. 4.16, the screw shape of the single-screw extruder is described, and 148, Fig. 5.1, the screw type of the twin-screw extruder is described. Examples include screws, co-rotating meshing twin screw, co-rotating partially meshing twin screw,
Page 151, FIG. 5.2 describes the screw elements of a twin-screw extruder, and these extruders can be used. From page 150, line 8 to page 151, line 7, there is a forward screw part and a reverse screw part for the element to be attached to the screw, and a mixing part called a kneading disk for kneading is provided in the middle. Also, an extruder having a twin screw having a kneading disk in 10 to 50% of the effective screw length is preferably used. These parts are distinguished from other parts, and the kneading part is intended to give a shearing force to the resin, while the other parts are intended to advance the resin.

【0022】本発明におけるニーディングディスクとは
2軸押出機のスクリューを構成する一部であり、混練を
目的とするミキシング部のことである。例えば、前述の
“現場で活かす押出機マニュアル”150頁、14行目
〜152頁、14行目、151頁、図5.2に2条ディ
スク、3条ディスク等の記載があり、これらのニーディ
ングディスクも好ましく用いられる。
The kneading disc in the present invention is a part constituting a screw of a twin-screw extruder, and is a mixing section for the purpose of kneading. For example, the above-mentioned "Extruder manual to be utilized in the field", page 150, line 14 to page 152, line 14, page 151, FIG. Ding disks are also preferably used.

【0023】本発明におけるスクリュー有効長とはスク
リューの根元のグランド部や先端の円錐形の部分を除い
たスクリューの長さを表し、通常スクリュー長さL、シ
リンダー径Dの比L/D、またはDの何倍という表示を
する。
The effective screw length in the present invention means the length of the screw excluding the gland portion at the base of the screw and the conical portion at the tip, and is usually the screw length L, the ratio L / D of the cylinder diameter D, or The number of times D is displayed.

【0024】本発明でいうABS樹脂は、ゴム状重合体
とスチレン系単量体、アクリロニトリル系単量体及び、
必要であれば他の単量体の共重合体からなる樹脂であ
る。ここでスチレン系単量体としては、スチレン,α−
アルキルモノビニリデン芳香族単量体(例えばα−メチ
ルスチレン;α−エチルスチレン;α−メチルビニルト
ルエン;α−メチルジアルキルスチレン;など),環置
換アルキルスチレン(例えばo−m−及びp−ビニルト
ルエン;o−エチルスチレン;p−エチルスチレン;
2,4−ジメチルスチレン;p−第三級ブチルスチレ
ン;など),環置換ハロスチレン(例えばo−クロロス
チレン;p−クロロスチレン;o−ブロモスチレン;
2,4−ジクロロスチレン;など),環−アルキル、環
−ハロ置換スチレン(例えば2−クロロ−4−メチルス
チレン;2,6−ジクロロスチレン;など)ビニルナフ
タレン,ビニルアントラセンの一種又は混合物が用いら
れる。
The ABS resin used in the present invention is a rubber-like polymer, a styrene monomer, an acrylonitrile monomer, and
If necessary, it is a resin composed of a copolymer of other monomers. Here, as the styrene-based monomer, styrene, α-
Alkyl monovinylidene aromatic monomers (eg α-methylstyrene; α-ethylstyrene; α-methylvinyltoluene; α-methyldialkylstyrene; etc.), ring-substituted alkylstyrenes (eg om- and p-vinyltoluene) O-ethylstyrene; p-ethylstyrene;
2,4-dimethyl styrene; p-tertiary butyl styrene; etc.), ring-substituted halostyrenes (eg o-chlorostyrene; p-chlorostyrene; o-bromostyrene;
2,4-dichlorostyrene; etc.), ring-alkyl, ring-halo substituted styrene (for example, 2-chloro-4-methylstyrene; 2,6-dichlorostyrene; etc.) vinylnaphthalene, vinylanthracene, or a mixture thereof. To be

【0025】一般にアルキル置換基は1〜4個の炭素原
子を有し、そしてイソプロピル及びイソブチル基を含
む。このモノビニリデン芳香族単量体の一種もしくは混
合物が用いられる。また、アクリロニトリル系単量体と
しては、アクリロニトリル、メタクリロニトリル、エタ
クリロニトリル、フマロニトリル及びこれらの混合物等
があげられる。
Alkyl substituents generally have 1 to 4 carbon atoms and include isopropyl and isobutyl groups. One or a mixture of these monovinylidene aromatic monomers is used. Examples of the acrylonitrile-based monomer include acrylonitrile, methacrylonitrile, ethacrylonitrile, fumaronitrile, and mixtures thereof.

【0026】またゴム状重合体は常温でゴム状を示すも
のであれば良く特に限定を要しないが、好ましくは、共
役1,3−ジエン(例えばブタジエン;イソプレン;な
ど)などのポリブタジエン類やスチレン−ブタジエン共
重合体又はEPDM(エチレン−プロピレン−ジエン共
重合体)等があげられる。
The rubbery polymer is not particularly limited as long as it shows a rubbery state at room temperature, but preferably polybutadienes such as conjugated 1,3-dienes (eg butadiene; isoprene; etc.) and styrene. Examples thereof include butadiene copolymer and EPDM (ethylene-propylene-diene copolymer).

【0027】本発明でいう他の単量体とは、スチレン、
アクリロニトリルと共重合可能な単量体であれば特に限
定しないが、メチルメタクリレート等のアクリレート類
や、N−フェニルマレイミド、シクロヘキシルマレイミ
ド等のマレイミド類があげられる。
The other monomer in the present invention is styrene,
The monomer is not particularly limited as long as it is a monomer copolymerizable with acrylonitrile, and examples thereof include acrylates such as methyl methacrylate and maleimides such as N-phenylmaleimide and cyclohexylmaleimide.

【0028】ABS樹脂の組成は樹脂中で、スチレン5
0〜95重量部、アクリロニトリル5〜50重量部、ブ
タジエン重合体、あるいはスチレン−ブタジエンブロッ
ク共重合体3〜30重量部が好ましい。
The ABS resin composition is styrene 5
0 to 95 parts by weight, acrylonitrile 5 to 50 parts by weight, butadiene polymer, or styrene-butadiene block copolymer 3 to 30 parts by weight are preferred.

【0029】本発明の中で用いるABS系樹脂とは、上
記ABS樹脂及びABS樹脂を成分とする樹脂であり、
ABS樹脂を成分とする樹脂とは、ABS樹脂と他の樹
脂、例えば、ポリカーボネート、ポリフェニレンエーテ
ル、ポリプロピレン、ポリスチレン、アクリロニトリル
−スチレン共重合樹脂等の混合物や、ABS樹脂と難燃
剤等の混合物、またガラスフィラー、タルク等の混合物
等、ABS樹脂を成分とする樹脂であれば特に限定する
ものではない。
The ABS resin used in the present invention is a resin containing the above ABS resin and ABS resin as components.
The resin containing the ABS resin as a component means a mixture of the ABS resin and other resins such as polycarbonate, polyphenylene ether, polypropylene, polystyrene, acrylonitrile-styrene copolymer resin, a mixture of the ABS resin and a flame retardant, and glass. There is no particular limitation as long as it is a resin containing ABS resin as a component, such as a mixture of filler and talc.

【0030】本発明の中で用いるABS系樹脂の成形物
とはABS系樹脂を成形加工した成形物であり、ABS
系樹脂の機械的、化学的特徴を利用して、機械部品とし
て、或いは文房具用品、玩具等それ自体が最終製品とし
て用いられるものである。成形加工はこれまで知られて
いる通常の樹脂の成形方法が用いられ、例えば射出成
形、押出成形などがあげられる。好ましくは射出成形法
である。好ましい射出成形条件としては、成形機のシリ
ンダー温度が170℃〜280℃、好ましくは180℃
〜260℃、更に好ましくは200℃〜250℃とし、
金型温度30〜90℃の条件によって行われる。本発明
では特に低温側の成形条件、例えば成形機のシリンダー
温度が190〜220℃で成形した場合光沢が向上して
いることが顕著である。
The ABS resin molded product used in the present invention is a molded product obtained by molding the ABS resin.
Utilizing the mechanical and chemical characteristics of the system resin, it is used as a mechanical component, or as a final product such as stationery supplies and toys. As the molding process, a conventional resin molding method known so far is used, and examples thereof include injection molding and extrusion molding. The injection molding method is preferred. As preferable injection molding conditions, the cylinder temperature of the molding machine is 170 ° C to 280 ° C, preferably 180 ° C.
To 260 ° C, more preferably 200 ° C to 250 ° C,
The mold temperature is 30 to 90 ° C. In the present invention, it is remarkable that the gloss is improved particularly when molding is performed at low temperature molding conditions, for example, when the cylinder temperature of the molding machine is 190 to 220 ° C.

【0031】本発明においてゴム粒子の形態(モルフォ
ロジー)を定める領域を表面から0.5〜1.5μmの
深さとするのは、この範囲の深さに存在するゴム粒子を
従来にない特定のモルフォロジーにすることにより、成
形物の表面特性をコントロールできることを見い出した
ことに基づく。表面付近の0.5〜1.5μmというの
は、この深さの間ではゴム粒子の存在状態が、深さに対
して依存性がなく略一定であることを発見したことにも
基づいている。即ち、深さが0.5μmより浅い場合
は、ゴム粒子の形態のばらつきが多くまた、1.5μm
を越えると、深さにより存在状態が変化するため、表面
特性と相関のあるゴム粒子の形態を特定するのに向いて
いない。
In the present invention, the region which determines the morphology (morphology) of the rubber particles is set to have a depth of 0.5 to 1.5 μm from the surface, because the rubber particles present in this range of depth have a specific morphology that has never been found. It is based on the finding that the surface characteristics of the molded product can be controlled by The fact that 0.5 to 1.5 μm in the vicinity of the surface is based on the fact that the existence state of the rubber particles is substantially constant without being dependent on the depth between this depth. . That is, when the depth is less than 0.5 μm, there are many variations in the morphology of the rubber particles and 1.5 μm.
Beyond the range, the existing state changes depending on the depth, so that it is not suitable for specifying the morphology of rubber particles that correlates with the surface characteristics.

【0032】本発明において、ゴム粒子の形態は成形物
表面の平行面において測定する。この平行な断面は、成
形物表面に平行にミクロトームを用いて超薄切片に成形
物を切り出して得られる。この時、ミクロトームによっ
て切り出す1枚あたりの試料の厚みは、0.05μmと
して表面から順に切り出し、11枚目以降30枚目まで
の試料を用いて形態を測定する。
In the present invention, the morphology of the rubber particles is measured in parallel to the surface of the molded product. This parallel cross section is obtained by cutting the molded product into ultrathin sections parallel to the surface of the molded product using a microtome. At this time, the thickness of each sample cut out by a microtome is set to 0.05 μm and cut out in order from the surface, and the morphology is measured using the 11th to 30th samples.

【0033】本発明における粒子Aとは、かかる試料の
電子顕微鏡写真において、ゴム粒子の長径をaμm、短
径をbμmとする時、aとbの比であるa/bが1.5
以下のものを粒子Aと定める。Bはa/bが5以上であ
る粒子である。
The particle A in the present invention means, in an electron micrograph of such a sample, when the major axis of the rubber particles is a μm and the minor axis is b μm, the ratio a / b of a and b is 1.5.
The following is defined as particle A. B is a particle having a / b of 5 or more.

【0034】本発明で言う長径aとは超薄切片法による
電子顕微鏡写真で観察されるゴム粒子の周上の2点間の
距離の最大の長さを表し、短径bとは、長径aにおいて
a/2の点における、長径aに垂直なゴム粒子の長さを
示す。かかる制約条件において、粒子A、Bの面積を算
出する際、全面積は1000μm2 以上とれる様に電子
顕微鏡で観察する視野の大きさを定める。この数は特に
限定はしないが、前記の電子顕微鏡の視野はゴム粒子の
数として1000個以上含まれる視野の大きさである。
The major axis a referred to in the present invention represents the maximum length of the distance between two points on the circumference of the rubber particles observed in the electron micrograph by the ultrathin section method, and the minor axis b is the major axis a. Shows the length of the rubber particles perpendicular to the major axis a at the point a / 2. Under such a constraint condition, when calculating the areas of the particles A and B, the size of the visual field to be observed with the electron microscope is determined so that the total area can be 1000 μm 2 or more. This number is not particularly limited, but the field of view of the electron microscope is the size of the field of view containing 1000 or more rubber particles.

【0035】本発明において押出機(E)に導入するA
BS系樹脂は成形物としたときに表面付近を電子顕微鏡
で観察したとき粒子Bを含んでいることが特徴である。
かかる粒子Bが存在していれば製造方法は限定されない
が、例えば塊状重合法の場合回収工程での回収温度の変
動させることにより粒子(B)が生成する。例えば前記
塊状重合法によるABS系樹脂製造工程で溶剤及び未反
応モノマーを樹脂成分から分離する分離回収工程での回
収の出口の樹脂平均温度(TAV)を170〜280℃の
範囲とし、回収の出口の樹脂の温度を変動させ、TAV
対する回収の出口の温度の変動率(Tde)と1時間当た
りの温度の変動回数(NCT)の積を調整することにより
粒子Bが生成される。本発明で言う回収温度の平均値
(TAV)は下記式で算出される。
A introduced into the extruder (E) in the present invention
The BS-based resin is characterized in that it contains particles B when the surface vicinity is observed with an electron microscope when it is formed into a molded product.
The production method is not limited as long as the particles B are present. For example, in the case of the bulk polymerization method, the particles (B) are produced by changing the recovery temperature in the recovery step. For example, the average resin temperature (T AV ) at the recovery outlet in the separation / recovery step of separating the solvent and unreacted monomer from the resin component in the ABS resin manufacturing step by the bulk polymerization method is set in the range of 170 to 280 ° C. Particles B are generated by changing the temperature of the resin at the outlet and adjusting the product of the rate of change of the temperature at the outlet of recovery with respect to T AV (T de ) and the number of times of temperature change per hour (N CT ). . The average value (T AV ) of the recovery temperatures referred to in the present invention is calculated by the following formula.

【0036】[0036]

【数1】 本発明でいう温度変動率(Tde:1時間当たりの温度変
動率)は下記式で算出される。 温度変動率(Tde)=((Tmax −Tmin )/TAV)×
100 (但しTmax は1時間当たりの回収温度の最大温度、T
min は最小温度) また1時間当たりの温度の変動回数を毎時温度変動回数
(NCT)と呼び(但し、温度変動率0.5%以内の変動
は無視する。)、時間に対し温度の微分値が正負に変動
する回数をさす。
[Equation 1] The temperature variation rate (T de : temperature variation rate per hour) in the present invention is calculated by the following formula. Temperature fluctuation rate (T de ) = ((T max −T min ) / T AV ) ×
100 (however, T max is the maximum temperature of recovery temperature per hour, T max
min is the minimum temperature. The number of temperature changes per hour is called the number of temperature changes per hour (N CT ) (however, changes within a temperature change rate of 0.5% are ignored), and the temperature is differentiated with respect to time. The number of times the value fluctuates between positive and negative.

【0037】本発明において回収温度の平均値TAV、温
度変動率Tde及び毎時温度変動回数は3時間以上の回収
温度の平均値を一定にして運転し、その区間の測定値か
ら算出する。
In the present invention, the average value T AV of recovery temperature, the temperature variation rate T de, and the number of times of temperature variation per hour are calculated by operating with the average value of the recovery temperature constant for 3 hours or more and operating from the measured values in that section.

【0038】上記TdeとNCTの積(F)を調整すること
により粒子Bの割合がコントロールできる。本発明では
上記Fの値が0.5〜20の範囲に入るものが使用でき
る。本発明においては上記成形物1(成形物1を得るた
めには回収工程出口に設けたサンプル弁から樹脂をひも
状に取り出し、水槽中で冷却しストランドを得、これを
切断してペレットを作成する。得られたペレットを射出
成形機に導入し、成形物2と同じ条件で成形する。)の
表面から0.5〜1.5μmの深さの平行面を超薄切片
法による電子顕微鏡で観察したとき、粒子Aと粒子Bを
有するような樹脂を分離回収工程を出た後、押出機に送
入する。こうして得られた樹脂を成形し(成形物2)、
成形物表面を成形物1と同様にして電子顕微鏡写真で観
察したとき、成形物1での粒子Bの割合をB1 、成形物
2で観察された粒子Bの割合をB2 、B2 /B1 ×10
0で表されるBD が0.001〜50、好ましくは0.
1〜45、更に好ましくは0.1〜30となる様に粒子
Bを減少させることで成形物の表面光沢を向上すること
ができる。
The ratio of particles B can be controlled by adjusting the product (F) of T de and N CT . In the present invention, those having the value of F within the range of 0.5 to 20 can be used. In the present invention, the above-mentioned molded product 1 (in order to obtain the molded product 1, the resin is taken out in the form of a string from the sample valve provided at the outlet of the recovery step, cooled in a water tank to obtain a strand, and this is cut to form a pellet. The obtained pellets are introduced into an injection molding machine and molded under the same conditions as the molded product 2.) A parallel surface having a depth of 0.5 to 1.5 μm from the surface of the molded product is observed by an electron microscope using an ultrathin section method. When observed, the resin having the particles A and the particles B is fed into the extruder after exiting the separation and recovery step. The resin thus obtained is molded (molded product 2),
When the surface of the molded product was observed by an electron micrograph in the same manner as in the molded product 1, the ratio of the particles B in the molded product 1 was B 1 , the ratios of the particles B observed in the molded product 2 were B 2 , B 2 / B 1 x 10
BD represented by 0 is 0.001 to 50, preferably 0.
The surface gloss of the molded product can be improved by reducing the particle B so as to be 1 to 45, more preferably 0.1 to 30.

【0039】例えば成形物1で観察される粒子Bの面積
の割合は、溶液又は塊状重合法によるABS樹脂製造工
程の分離回収工程での回収温度の変動により生成する。
For example, the area ratio of the particles B observed in the molded article 1 is generated by the fluctuation of the recovery temperature in the separation / recovery step of the ABS resin manufacturing step by the solution or bulk polymerization method.

【0040】本発明においては分離回収工程での温度の
変動の程度と、押し出し工程での樹脂にかかる剪断の程
度が大きいほど成形物表面で観察される粒子Bの面積の
割合が少なくなり、光沢が向上する。
In the present invention, the greater the degree of temperature fluctuation in the separation / recovery step and the greater the degree of shearing applied to the resin in the extrusion step, the smaller the proportion of the area of the particles B observed on the surface of the molded article and the glossiness. Is improved.

【0041】本発明の方法により得られた樹脂の成形物
は衝撃強度等他の物性を低下することなく表面特性をコ
ントロールできるため、電機機器やコンピューター等の
産業分野の部品として幅広く有用であり、また化粧品容
器や玩具・文房具等の成形物として特に有用である。
The resin molded product obtained by the method of the present invention can control surface properties without deteriorating other physical properties such as impact strength, and is therefore widely useful as a component in the industrial field such as electric equipment and computers. Further, it is particularly useful as a molded product such as a cosmetic container, toy, stationery and the like.

【0042】次に実施例により本発明を更に詳細に説明
するが、本発明はこれらの実施例により限定されるもの
ではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0043】[0043]

【実施例】以下、実施例により本発明を更に詳細に説明
する。性能評価は下記の基準で測定した。 (1)光沢測定 JISK7105中の光沢度の測定(60°鏡面光沢)
の測定法に準じて100mm×50mmの試験片3個に
ついて測定し、その平均値を求めた。 (2)衝撃強度の測定 衝撃強度は成形物を切り出し試験片とし、Izod衝撃
試験法(JIS−K7110)で行なった。 (3)耐熱温度の測定 ビカット軟化点はASTM DI525に準拠して、成
形物から試験片を切り出したサンプルを用いて評価し
た。 (4)ゴム粒子形態の測定 TEM(透過型電子顕微鏡)の超薄切片法により、ゴム
粒子形状を測定した。 (5)ゴム粒子平均径の測定 上記の超薄切片法による電子顕微鏡写真を撮影し、写真
中のゴム粒子500から700個の短径及び長径をそれ
ぞれ測定してその平均値を粒径とし、次式により体積平
均径を求めた。 体積平均径=ΣnD4 /ΣnD3 (但しnは粒径Dμm
のゴム粒子の個数である。) 実施例1 スチレン75.8重量部、アクリロニトリル24.2重
量部、エチルベンゼン20重量部、ゴム状重合体(スチ
レン−ブタジエンブロック共重合体 溶液粘度11ct
s 5%スチレン溶液 25℃)9重量部、有機過酸化
物[1,1−ビス(t−ブチルパーオキシ)3,3,5
−トリメチルシクロヘキサン]0.035重量部、メル
カプタン0.15重量部よりなる原料溶液を作成した。
この原料を3段の攪拌式重合槽列反応器にて重合を行な
った。1段目の槽から原料溶液を連続的に供給した。1
段目の槽の反応温度100℃、2段目の槽では110
℃、3段目の槽では120℃とした。3段目の槽より重
合液を予熱器と減圧室より成る分離回収工程に導いた。
分離回収工程の出口での樹脂の平均温度(Tav)を25
0℃、温度変動率(Tde)を3%、1時間あたりの変動
回数(N)2回として回収工程から出た樹脂の一部をシ
リンダー温度200℃、金型温度50℃の条件で射出成
形した(成形物1)。得られた成形物の表面を電子顕微
鏡で観察した。分離回収工程から出た樹脂を表1に示す
押出機にて、スクリュー回転数3rpsの条件で、押
出機入り口で1時間当たりの樹脂の押し出し量100重
量部に対し、水を4%添加し、処理した後、射出成形を
行った(成形物2)。成形条件は成形物1と同様、シリ
ンダー温度200℃、金型温度50℃で行い、以下同じ
とする。結果を表2に示す。Y部の樹脂の温度(T1
は205℃であった。回収工程出口の温度(T0 )から
パイナッツプルスクリュー部入り口の温度の低下率(D
e )を(T0 −T1 )/T0 ×100とするとDe は1
8%、粒子BはB2 /B1 ×100=BD とするとBD
は48となった。光沢は成形物1は73%、成形物2は
84%となった。なお温度変動率及び1時間当たりの温
度変動率は、予熱器のジャケットの熱媒の平均温度及び
流量で調節した。なお本実験に使用したペレットは、3
時間を1ロットとして混合して使用した。
The present invention will be described in more detail with reference to the following examples. The performance evaluation was measured according to the following criteria. (1) Gloss measurement Measurement of gloss level in JIS K7105 (60 ° specular gloss)
According to the measuring method of No. 3, three 100 mm × 50 mm test pieces were measured, and the average value was obtained. (2) Measurement of Impact Strength The impact strength was measured by the Izod impact test method (JIS-K7110) using a molded product cut out as a test piece. (3) Measurement of heat resistant temperature The Vicat softening point was evaluated according to ASTM DI525 using a sample obtained by cutting a test piece from a molded product. (4) Measurement of rubber particle morphology The shape of rubber particles was measured by the ultrathin section method of TEM (transmission electron microscope). (5) Measurement of average particle diameter of rubber particles An electron micrograph is taken by the above ultra-thin section method, 500 to 700 minor and major diameters of each rubber particle in the photograph are measured, and the average value is taken as the particle diameter, The volume average diameter was calculated by the following formula. Volume average diameter = ΣnD 4 / ΣnD 3 (where n is the particle diameter D μm
Is the number of rubber particles. ) Example 1 75.8 parts by weight of styrene, 24.2 parts by weight of acrylonitrile, 20 parts by weight of ethylbenzene, a rubber-like polymer (styrene-butadiene block copolymer, solution viscosity 11 ct)
s 5% styrene solution 25 ° C.) 9 parts by weight, organic peroxide [1,1-bis (t-butylperoxy) 3,3,5
-Trimethylcyclohexane] 0.035 parts by weight and a mercaptan 0.15 parts by weight to prepare a raw material solution.
This raw material was polymerized in a three-stage stirring type polymerization tank array reactor. The raw material solution was continuously supplied from the first-stage tank. 1
The reaction temperature in the second tank is 100 ° C and 110 in the second tank.
C. and 120.degree. C. in the third tank. The polymerization liquid was introduced from the third tank to a separation and recovery process consisting of a preheater and a decompression chamber.
The average temperature (T av ) of the resin at the outlet of the separation and recovery process is set to 25
0 ° C, temperature fluctuation rate (T de ) 3%, number of fluctuations per hour (N) 2 times, part of the resin discharged from the recovery process is injected at a cylinder temperature of 200 ° C and a mold temperature of 50 ° C. Molded (molded product 1). The surface of the obtained molded product was observed with an electron microscope. In the extruder shown in Table 1, the resin discharged from the separation / recovery step was added with 4% of water with respect to 100 parts by weight of the resin extruded per hour at the extruder inlet under the condition of the screw rotation speed of 3 rps, After the treatment, injection molding was performed (molded product 2). The molding conditions are the same as in the case of the molded product 1 at a cylinder temperature of 200 ° C. and a mold temperature of 50 ° C., and the same applies hereinafter. Table 2 shows the results. Resin temperature of Y part (T 1 )
Was 205 ° C. The rate of decrease (D) from the temperature (T 0 ) at the exit of the recovery process to the temperature at the entrance of the pine nut pull screw section
When e ) is (T 0 −T 1 ) / T 0 × 100, D e is 1
8%, the particles B is set to B 2 / B 1 × 100 = B D B D
Became 48. The gloss of the molded product 1 was 73% and that of the molded product 2 was 84%. The temperature fluctuation rate and the temperature fluctuation rate per hour were adjusted by the average temperature and flow rate of the heating medium in the jacket of the preheater. The pellets used in this experiment are 3
The time was mixed as one lot and used.

【0044】実施例2 押出機でのスクリュー回転数を4.2rpsとする以外
は実施例1と同じ条件で成形物2を得た。結果を表2に
示す。BD は40となり、成形物2の光沢は87%とな
った。
Example 2 A molded product 2 was obtained under the same conditions as in Example 1 except that the screw rotation speed in the extruder was 4.2 rps. Table 2 shows the results. B D was 40, and the gloss of the molded product 2 was 87%.

【0045】実施例3 押出機入り口での水の添加量を8%とする以外は実施例
1と同じ条件で成形物2を得た。結果を表2に示す。D
e は35.4%、BD は33となり、光沢は93%とな
った。
Example 3 A molded product 2 was obtained under the same conditions as in Example 1 except that the amount of water added at the extruder inlet was 8%. Table 2 shows the results. D
The e was 35.4%, the B D was 33, and the gloss was 93%.

【0046】実施例4 回収工程を出た樹脂に表1に示す押出機に導入し、押
出機入り口で水を1時間当たりの樹脂の押し出し量10
0重量部に対して6%添加し、押出機のスクリュー回転
数3.3rpsの条件で成形物2を得た。結果を表2に
示す。De は22.4%、BD は30となり、光沢は9
0%となった。
Example 4 The resin discharged from the recovery step was introduced into the extruder shown in Table 1, and water was extruded at the inlet of the extruder at an extrusion amount of the resin of 10 per hour.
6% was added to 0 part by weight, and a molded product 2 was obtained under the condition that the screw rotation speed of the extruder was 3.3 rps. Table 2 shows the results. D e is 22.4%, B D 30, and the gloss 9
It became 0%.

【0047】実施例5 押出機のスクリュー回転数を4.3rpsとする以外は
実施例4と同じ条件で成形物2を得た。結果を表2に示
す。BD は21となり、光沢は94%となった。 実施例6 押出機入り口での水の添加量を10%とする以外は実施
例4と同じ条件で成形物2を得た。結果を表2に示す。
D は10となり、光沢は98%となった。
Example 5 A molded product 2 was obtained under the same conditions as in Example 4 except that the screw rotation speed of the extruder was 4.3 rps. Table 2 shows the results. B D was 21 and gloss was 94%. Example 6 A molded product 2 was obtained under the same conditions as in Example 4 except that the addition amount of water at the inlet of the extruder was 10%. Table 2 shows the results.
B D was 10 and gloss was 98%.

【0048】比較例1 押出機内での水を添加しないこと以外は実施例1と同じ
とした。結果を表3に示す。BD は90、成形物2の光
沢も成形物1とほとんど差はなく、73%であった。
Comparative Example 1 Same as Example 1 except that water was not added in the extruder. The results are shown in Table 3. The B D was 90, and the gloss of the molded product 2 was 73%, which was almost the same as that of the molded product 1.

【0049】比較例2 押出機内での水を添加しないこと以外は実施例4と同じ
とした。結果を表3に示す。BD は88、光沢は74%
であった。
Comparative Example 2 Same as Example 4 except that water was not added in the extruder. The results are shown in Table 3. B D is 88, gloss is 74%
Met.

【0050】比較例3 回収工程を出た樹脂に表1に示す押出機に導入し、押
出機のスクリュー回転数3.0rpsとする以外は実施
例4とおなじとした。結果を表3に示す。BD は85、
光沢は74%であった。
Comparative Example 3 The same procedure as in Example 4 was carried out except that the resin discharged from the recovery step was introduced into the extruder shown in Table 1 and the screw rotation speed of the extruder was set to 3.0 rps. The results are shown in Table 3. B D is 85,
The gloss was 74%.

【0051】比較例4 回収工程を出た樹脂に表1に示す押出機に導入し、押
出機のスクリュー回転数4.3rpsとする以外は実施
例4とおなじとした。結果を表3に示す。BD は81、
光沢は76%であった。
Comparative Example 4 The same procedure as in Example 4 was conducted except that the resin discharged from the recovery step was introduced into the extruder shown in Table 1 and the screw rotation speed of the extruder was set to 4.3 rps. The results are shown in Table 3. B D is 81,
The gloss was 76%.

【0052】比較例5 ポリブタジエンラテックス20重量部の存在下でスチレ
ン72%アクリロニトリル28%からなる単量体混合物
80重量部を乳化重合した。得られたグラフト共重合体
は硫酸で凝固し、化成ソーダで中和・洗浄・濾過・乾燥
してABS樹脂をえた。得られた樹脂を表1に示す押出
機でシリンダー温度250℃、スクリュー回転数2.
2rpsで溶融し、その溶融樹脂を押出機に導入し、
スクリュー回転数3rps、押出機入り口で1時間当た
りの樹脂の押し出し量100重量部に対し、水を10%
添加し処理した後、射出成形を行った。押出機を出た
樹脂を用いて射出成形したものを成形物1、押出機を
出た樹脂を用いて射出成形したものを成形物2として結
果を表3に示す。成形物1、2の表面には粒子Bが観察
されず光沢も変化しなかった。
Comparative Example 5 80 parts by weight of a monomer mixture consisting of 72% styrene and 28% acrylonitrile was emulsion polymerized in the presence of 20 parts by weight of polybutadiene latex. The obtained graft copolymer was coagulated with sulfuric acid, neutralized with chemical conversion soda, washed, filtered and dried to obtain an ABS resin. The obtained resin was melted with an extruder shown in Table 1 at a cylinder temperature of 250 ° C. and a screw rotation speed of 2.
Melt at 2 rps, introduce the molten resin into the extruder,
10% of water per 100 parts by weight of resin extrusion per hour at the extruder rotation speed of 3 rps
After adding and treating, injection molding was performed. The results are shown in Table 3 as a molded product 1 obtained by injection molding using the resin discharged from the extruder and as a molded product 2 obtained by injection molding using the resin discharged from the extruder. No particles B were observed on the surfaces of the molded products 1 and 2, and the gloss did not change.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【発明の効果】本発明の方法により耐衝撃性を保持して
高い光沢を有するABS樹脂のを製造することができ
る。
By the method of the present invention, it is possible to produce an ABS resin having high gloss while maintaining impact resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 尚夫 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 (72)発明者 高久 真人 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 (72)発明者 白藤 朋史 大阪府高石市高砂1丁目6番地 三井東圧 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nao Morita 1-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Kagaku Co., Ltd. (72) Masato Takahisa 1-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Kagaku Incorporated (72) Inventor Tomofumi Shirato 1-6 Takasago, Takaishi-shi, Osaka Mitsui Toatsu Chemical Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくともスチレン系単量体及びアクリ
ロニトリル系単量体、及びゴム状重合体を含む原料を重
合工程に供給し、該単量体を重合させ、ゴム状重合体粒
子(ゴム粒子)形成を含む該単量体を重合する重合工程
を経由し、その後重合体、未反応単量体および/または
溶剤を含む混合液を加熱し、加熱と同時に、または加熱
の後減圧室に導入して単量体および/または溶剤を樹脂
成分と分離する分離回収工程を経由し、該回収工程の後
押出機に導入し、押出機を通過させて製品を得る、溶液
または塊状重合法によるABS系樹脂の連続的製造方法
において、回収工程出口から押出工程出口までの間に、
水を添加する部分(X部)、添加した水を蒸発させる部
分(Y部)と蒸発後樹脂に混練を与える部分(Z部)を
有し、特にY部とZ部は押出機(E)に設けられてお
り、X部に水を添加し、その後Y部で水を蒸発させるこ
とにより樹脂の温度を回収工程出口での樹脂の温度の1
0〜60%分低下させた温度にすることを特徴とするA
BS系樹脂の製造方法。
1. Rubber-like polymer particles (rubber particles) by supplying a raw material containing at least a styrene-based monomer, an acrylonitrile-based monomer, and a rubber-like polymer to a polymerization step to polymerize the monomer. Through a polymerization step of polymerizing the monomer including formation, and then heating a mixed solution containing a polymer, an unreacted monomer and / or a solvent, at the same time as heating, or after heating and introducing into a decompression chamber. ABS system by solution or bulk polymerization method in which a monomer and / or solvent is separated from the resin component through a separation and recovery step, introduced into an extruder after the recovery step, and passed through the extruder to obtain a product. In the continuous resin production method, between the recovery process outlet and the extrusion process outlet,
It has a part for adding water (X part), a part for evaporating the added water (Y part) and a part for kneading the resin after evaporation (Z part), and particularly the Y part and the Z part are extruders (E). The water temperature is adjusted to 1 of the resin temperature at the exit of the recovery process by adding water to the X part and then evaporating the water in the Y part.
A characterized in that the temperature is lowered by 0 to 60%
Manufacturing method of BS resin.
【請求項2】 請求項1の方法において添加する水の割
合が単位時間当たりの樹脂の押し出し量100重量部に
対して2〜15重量部であることを特徴とするABS系
樹脂の製造方法。
2. The method for producing an ABS resin according to claim 1, wherein the proportion of water added is 2 to 15 parts by weight per 100 parts by weight of resin extruded per unit time.
【請求項3】 請求項1に記載の方法において、 (I)分離回収工程後、押出機に導入する工程途上の樹
脂が、該樹脂を射出成形した時に得られる成形物(成形
物1)においてその表面から0.5〜1.5μmの深さ
に存在するゴム粒子が、成形物表面との平行面を超薄切
片法による電子顕微鏡写真で観察する時、 長径aと短径bの比率a/bが1.5以下の粒子A、
及び 長径aと短径bの比率a/bが5以上である粒子B の少なくとも2種類の形態を有し、且つ超薄切片法によ
る電子顕微鏡写真で観察されるゴム粒子の全面積を10
0%とした時に粒子Aの面積が少なくとも10%以上、
粒子Bの面積(B1 )が0.001〜2%であるABS
系樹脂であって、なおかつ、 (II)押出機通過後の製品において上記(I)と同様
の方法で観察したときの粒子Bの面積(B2 )が下記関
係式0.001≦B2 /B1 ×100≦50を満足する
ことを特徴とする請求項1に記載のABS系樹脂の製造
方法。
3. The method according to claim 1, wherein the resin in the process of being introduced into the extruder after (I) the separation and recovery step is a molded article (molded article 1) obtained when the resin is injection-molded. When the rubber particles existing at a depth of 0.5 to 1.5 μm from the surface are observed by an electron micrograph by the ultrathin section method on a plane parallel to the surface of the molded product, the ratio a of the major axis a to the minor axis b. Particle A having a / b of 1.5 or less,
And at least two types of particles B having a ratio a / b of the major axis a to the minor axis b of 5 or more and the total area of the rubber particles observed by an electron micrograph by the ultrathin section method is 10
The area of particles A is at least 10% or more when 0%,
ABS in which the area (B 1 ) of particles B is 0.001 to 2%
The area (B 2 ) of the particles B, which is a system resin and is observed in the same manner as in the above (I) in the product (II) after passing through the extruder, has the following relational expression 0.001 ≦ B 2 / The method for producing an ABS resin according to claim 1, wherein B 1 × 100 ≦ 50 is satisfied.
【請求項4】 請求項3に記載の成形物1において以下
の方法で測定したゴム粒子平均径が0.05〜1.5μ
mであるABS系樹脂の製造方法。超薄切片法による電
子顕微鏡写真を撮影し、写真中のゴム粒子500から7
00個の短径及び長径をそれぞれ測定してその平均値を
粒径とし、次式により体積平均径を求めた。 体積平均径=ΣnD4 /ΣnD3 (但しnは粒径Dμm
のゴム粒子の個数である。)
4. The molded article 1 according to claim 3 has an average rubber particle diameter of 0.05 to 1.5 μm measured by the following method.
The method for producing an ABS resin, which is m. Electron micrograph taken by ultra-thin section method, and rubber particles 500 to 7 in the photo were taken.
Each of the 00 short diameters and long diameters was measured, and the average value was used as the particle diameter, and the volume average diameter was calculated by the following formula. Volume average diameter = ΣnD 4 / ΣnD 3 (where n is the particle diameter D μm
Is the number of rubber particles. )
【請求項5】 請求項1に記載の押出機として混練部を
有する2軸押出機を用いるABS系樹脂の製造方法。
5. A method for producing an ABS resin, which uses a twin-screw extruder having a kneading section as the extruder according to claim 1.
【請求項6】 請求項1に記載の押出機として混練部を
有する1軸押出機を用いるABS系樹脂の製造方法。
6. A method for producing an ABS resin, which uses a uniaxial extruder having a kneading section as the extruder according to claim 1.
【請求項7】 請求項1に記載のABS系樹脂の連続的
製造方法において、水を蒸発させた後の樹脂の温度が押
出機入り口での樹脂の温度の20〜50%低下させた温
度とするABS系樹脂の製造方法。
7. The method for continuously producing an ABS resin according to claim 1, wherein the temperature of the resin after evaporation of water is 20 to 50% lower than the temperature of the resin at the inlet of the extruder. A method for producing an ABS resin.
JP25682094A 1994-10-21 1994-10-21 Continuous production of ultrahigh-gloss abs resin Pending JPH08120031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25682094A JPH08120031A (en) 1994-10-21 1994-10-21 Continuous production of ultrahigh-gloss abs resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25682094A JPH08120031A (en) 1994-10-21 1994-10-21 Continuous production of ultrahigh-gloss abs resin

Publications (1)

Publication Number Publication Date
JPH08120031A true JPH08120031A (en) 1996-05-14

Family

ID=17297894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25682094A Pending JPH08120031A (en) 1994-10-21 1994-10-21 Continuous production of ultrahigh-gloss abs resin

Country Status (1)

Country Link
JP (1) JPH08120031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061208A (en) * 2012-12-24 2013-04-24 华泰集团有限公司 Manufacturing method for super gloss paper
US10410982B2 (en) 2014-06-06 2019-09-10 Murata Manufacturing Co., Ltd. Resin molded body with RFIC package incorporated therein and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103061208A (en) * 2012-12-24 2013-04-24 华泰集团有限公司 Manufacturing method for super gloss paper
US10410982B2 (en) 2014-06-06 2019-09-10 Murata Manufacturing Co., Ltd. Resin molded body with RFIC package incorporated therein and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4904730A (en) Rubber-modified resin blends
US3851014A (en) Method for making rubber modified resins
US4419492A (en) Process for preparing ABS polymeric polyblends
US4880877A (en) Method for producing rubber modified thermoplastic resins
EP0096555B1 (en) Rubber-modified thermoplastic resins and production thereof
JPH08120031A (en) Continuous production of ultrahigh-gloss abs resin
US4410659A (en) Manufacture of rubber modified copolymers in an extruder type reactor
JP3325405B2 (en) Continuous production method of ABS resin with good balance of physical properties
JP3325399B2 (en) Method for producing ABS resin having various surface morphologies
JP3581173B2 (en) Various methods for controlling surface morphology of ABS resin
JPH08120032A (en) Continuous production of improved high-gloss abs resin
JP3325382B2 (en) Method for adjusting morphology of surface of ABS resin
JP3213501B2 (en) ABS resin quality control method and molded product thereof
JPH08231635A (en) Continuous production of abs resin with improved gloss
JP3349859B2 (en) Thermoplastic resin composition and method for producing the same
JPH08231634A (en) Method of preparing actylonitrile/styrene copolymer of lowered residual nitrile component content
US3345321A (en) Pretreatment of polymer solution with rubber latices
JPH04211430A (en) Production of rubber-modified thermoplastic resin
JPS60233116A (en) Rubber-reinforced aromatic monovinyl resin composition
CN115427506B (en) Thermoplastic resin composition, method for preparing the same, and molded article comprising the same
JP2000178405A (en) Resin composition and its production
JPH1025399A (en) Polycarbonate/abs resin composition
KR0155018B1 (en) Method for controlling quality of abs-resin and molded product of this resin
JP2003105147A (en) Thermoplastic copolymer composition
KR100353758B1 (en) Manufacturing method of impact resistant resin composition