JPH0881238A - Thermal insulation glass - Google Patents

Thermal insulation glass

Info

Publication number
JPH0881238A
JPH0881238A JP6217556A JP21755694A JPH0881238A JP H0881238 A JPH0881238 A JP H0881238A JP 6217556 A JP6217556 A JP 6217556A JP 21755694 A JP21755694 A JP 21755694A JP H0881238 A JPH0881238 A JP H0881238A
Authority
JP
Japan
Prior art keywords
heat
glass
transparent
temperature
glass substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6217556A
Other languages
Japanese (ja)
Other versions
JP3726100B2 (en
Inventor
Yukio Kujirai
幸夫 鯨井
Yumiko Kujirai
由美子 鯨井
Masami Kujirai
正見 鯨井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekuto Kagaku KK
Original Assignee
Sekuto Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekuto Kagaku KK filed Critical Sekuto Kagaku KK
Priority to JP21755694A priority Critical patent/JP3726100B2/en
Publication of JPH0881238A publication Critical patent/JPH0881238A/en
Application granted granted Critical
Publication of JP3726100B2 publication Critical patent/JP3726100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Special Wing (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE: To obtain a thermal insulation glass having excellent thermal insulation effect because of promoting thermal energy incidence indoors form the outside but suppressing thermal energy radiation in the opposite direction when used as a window glass or door glass for buildings, automobiles or streetcars. CONSTITUTION: This thermal insulation glass is a plate glass for blocking a thermal insulation space from the outside, which is obtained by laminating the plate glass surface on the side of a thermal insulation space with a transparent thermal gradient-forming layer having heat capacity and radiation absorptivity respectively <=10% and <=60% of those of the glass base body. A transparent interlayer between the glass base body and the transparent thermal gradient- forming layer may be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、隔壁に取り付けたとき
に高い保温力を示す板ガラスに関するものである。さら
に詳しくいえば、本発明は、保温空間例えば建物の部屋
や車両の内部と外部とを遮断するために取り付けられた
板ガラスであって、外部から保温空間内への熱の移動を
促進するが、保温空間から外部への熱の移動を抑制する
ことにより、室内の温度を高く保持しうる板ガラスに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate glass which exhibits a high heat retaining power when attached to a partition wall. More specifically, the present invention is a sheet glass attached to shut off the inside and outside of a heat retaining space such as a room of a building or a vehicle, and promotes the transfer of heat from the outside into the heat retaining space. The present invention relates to a plate glass capable of maintaining a high room temperature by suppressing the transfer of heat from the heat retaining space to the outside.

【0002】[0002]

【従来の技術】通常、保温ガラスとしては、透明ガラ
ス、遠赤外線透過ガラスのように輻射線を透過しやすい
材料から成るガラスやガラス内に加熱用電熱線を組み込
んだガラスが知られている。しかしながら、前者は熱源
からの輻射線を入射して、室温を温める一方、室内から
輻射線を室外に放射するため、夜間などにおいては、む
しろ室内の温度低下を促進する傾向があるし、後者は継
続的な保温を得るには、常時電気エネルギーを供給する
必要があり、エネルギー消費の点ではあまり得策でな
い。ところで、エネルギーの有効利用という面からは、
室外や車外からの熱エネルギー例えば太陽光を円滑に取
り入れるとともに、室内からの熱エネルギーの放射を阻
止する機能をもつ保温ガラスが望ましいが、このような
ものはまだ実現していない。
2. Description of the Related Art Generally, as a heat insulating glass, there is known a glass made of a material such as transparent glass or far infrared transmitting glass which easily transmits a radiation ray, or a glass in which a heating wire for heating is incorporated. However, the former emits radiation from a heat source to warm the room temperature, while radiating radiation from the room to the outside, it tends to accelerate the temperature drop in the room at night, while the latter In order to obtain continuous heat retention, it is necessary to constantly supply electric energy, which is not a good idea in terms of energy consumption. By the way, from the viewpoint of effective use of energy,
It is desirable to use a heat insulating glass that has a function of smoothly taking in heat energy from the outside or outside the vehicle, such as sunlight, and blocking the emission of heat energy from the inside, but such a thing has not been realized yet.

【0003】[0003]

【発明が解決しようとする課題】本発明は、建物用や車
両用の窓ガラスのように、保温を要する室内や車内への
熱エネルギーの入射を円滑に行い、しかも室内や車内か
らの熱エネルギーの放射を阻止する機能をもつ保温ガラ
スを提供することを目的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention smoothly injects thermal energy into a room or a vehicle that needs to be kept warm, such as a window glass for a building or a vehicle, and further, the thermal energy from the room or the vehicle. The purpose of the present invention is to provide a heat insulating glass having a function of blocking the radiation of.

【0004】[0004]

【課題を解決するための手段】本発明者は、外部からの
熱エネルギーの入射を促進し、内部からの熱エネルギー
の放射を抑制して、効率よく内部を保温しうる窓ガラス
を開発するために、鋭意研究を重ねた結果、ガラス基体
の内部側に特定の熱移動関係を有する単数又は複数の透
明層を積層し、外部から内部へ向って熱傾斜を形成させ
ることによりその目的を達成しうることを見出し、この
知見に基づいて本発明をなすに至った。
DISCLOSURE OF THE INVENTION The inventor of the present invention intends to develop a window glass which promotes the incidence of heat energy from the outside and suppresses the radiation of the heat energy from the inside to efficiently keep the inside warm. As a result of repeated intensive research, the objective was achieved by laminating one or more transparent layers having a specific heat transfer relationship on the inner side of the glass substrate and forming a heat gradient from the outside to the inside. Based on this finding, the present invention has been completed.

【0005】すなわち、本発明は、保温空間と外部とを
遮断するための板ガラスであって、保温空間側の表面
に、ガラス基体の熱容積及び放射熱吸収率に対し、それ
ぞれ10%以下好ましくは5%以下及び60%、好まし
くは50%以下の熱容積及び放射熱吸収率を有する透明
熱傾斜形成層を場合により単数又は複数の透明中間層を
介して積層したことを特徴とする保温ガラスを提供する
ものである。
That is, the present invention is a plate glass for isolating the heat retaining space from the outside, and the surface of the heat retaining space is preferably 10% or less with respect to the heat volume and radiant heat absorption rate of the glass substrate. A heat-insulating glass comprising a transparent thermal gradient forming layer having a heat capacity and a radiant heat absorption rate of 5% or less and 60% or less, preferably 50% or less, optionally via a transparent intermediate layer or layers. It is provided.

【0006】ここでいう熱容積とは、これをQとしたと
き、次式で表わされるものである。 Q=V・d・C …(1) =W・C …(1′) ただしVは全容積(cm3)、dは密度(g/cm3)、
Cは比熱(cal/g/℃)、Wは全重量(g)を示
す。
The heat volume referred to here is expressed by the following equation, where Q is the heat volume. Q = V · d · C (1) = W · C (1 ′) where V is the total volume (cm 3 ), d is the density (g / cm 3 ),
C indicates specific heat (cal / g / ° C.), and W indicates total weight (g).

【0007】この式中の比熱Cは、各材料に固有のもの
で、温度により若干変化するが、本発明においては、外
気温度において、各材料ごとに測定した数値が使用され
る。この測定は、常法に従い、比熱測定装置を用いて行
うことができる。
The specific heat C in this equation is unique to each material and slightly changes depending on the temperature. In the present invention, the numerical value measured for each material at the outside air temperature is used. This measurement can be performed using a specific heat measuring device according to a conventional method.

【0008】次に、ここでいう放射熱吸収率とは、太陽
光の放射温度と太陽光が所定材料を通過したときに低下
する温度との割合を百分比で表わしたものであって、所
定材料の放射熱吸収率Xは、次の式に従って求めること
ができる。
The radiant heat absorptivity referred to here is the ratio of the radiant temperature of sunlight to the temperature that is lowered when the sunlight passes through the prescribed material, expressed as a percentage. The radiant heat absorption rate X of can be calculated according to the following equation.

【0009】[0009]

【数1】 [Equation 1]

【0010】ただし、Tは太陽光の放射温度、T′は太
陽光が所定材料を通過した後の放射温度である。次に本
発明の基本的原理を説明すると、熱の移動には、対流、
伝導及び放射の3形式があり、通常その組合せによって
行われている。
Here, T is the radiation temperature of sunlight, and T'is the radiation temperature after the sunlight has passed through a predetermined material. Next, explaining the basic principle of the present invention, heat transfer includes convection,
There are three types of conduction and radiation, which are usually done by a combination thereof.

【0011】そして、通常状態における対流及び伝導に
よる熱の流れqは次式によって表わされる。 q=α1(Tr−T1)=λ/L(T1−T2)=α0(T2−T0) …(2) ここでα1は高温の流体の熱伝達係数、α0は低温の流体
の熱伝達係数、Trは高温の流体の温度、T1は高温側の
隔壁表面の温度、T2は低温側の隔壁表面の温度、T0
低温の流体の温度、λは隔壁の熱伝導率、Lは隔壁の厚
さである。
The heat flow q due to convection and conduction in the normal state is represented by the following equation. q = α 1 (T r −T 1 ) = λ / L (T 1 −T 2 ) = α 0 (T 2 −T 0 ) ... (2) where α 1 is the heat transfer coefficient of the high temperature fluid, α 0 is the heat transfer coefficient of the low temperature fluid, T r is the temperature of the high temperature fluid, T 1 is the temperature of the high temperature side partition wall surface, T 2 is the temperature of the low temperature side partition wall surface, T 0 is the low temperature fluid temperature, λ is the thermal conductivity of the partition, and L is the thickness of the partition.

【0012】この式から分るように、熱は高温流体から
隔壁の高温側表面に流れ、次いで隔壁の中を、高温流体
に接している面から低温流体に接している面に向って熱
伝導で流れ、隔壁の低温側表面から低温流体に流れる。
As can be seen from this equation, heat flows from the high temperature fluid to the high temperature side surface of the partition wall, and then heat is conducted in the partition wall from the surface in contact with the high temperature fluid to the surface in contact with the low temperature fluid. And flows from the low temperature side surface of the partition wall to the low temperature fluid.

【0013】一方、ガラスのような透明体については、
太陽光の短かい波長の光を透過するが二次的に発生する
長い波長の光を吸収するので、これを隔壁とした室内で
は、太陽光により内部が加温されるが、内部からの熱を
外部に放熱することがなく、放射熱により内部温度は次
第に上昇する傾向にある。例えば窓ガラスにより外気と
遮断された室内に外部から太陽光が照射されると、太陽
光の短い波長の光により室内は加温され、室内で二次的
に発生した長い波長の光例えば遠赤外線を遮断するため
室内温度は次第に上昇する。この際に窓ガラスは室内か
らの放射を抑制して保温効果を高める役割を果たしてい
る。
On the other hand, for a transparent body such as glass,
Although it transmits the light of short wavelength of sunlight, it absorbs the light of secondary long wavelength that is generated secondarily. The internal temperature tends to gradually rise due to radiant heat without radiating heat to the outside. For example, when sunlight is radiated from the outside into the room that is shielded from the outside air by the window glass, the room is heated by the short wavelength light of the sunlight, and the long wavelength light secondarily generated in the room, for example, far infrared rays. The room temperature gradually rises to shut off. At this time, the window glass plays a role of suppressing the radiation from the room and enhancing the heat retention effect.

【0014】すなわち、通常、放射熱を吸収して高温に
なった窓ガラスは、その厚みの方向の中央部の温度が高
く、外側の大気に接し冷却されている表面の温度は低く
なっている。そして、太陽光の照射が強いときには、ガ
ラスの厚みの方向の中央部の温度は、室内に閉じ込めら
れて、高温に温められている空気の温度よりも高く、少
なくとも同じ温度以下になることはないので、室内の熱
がガラスを通過して外部に流れることはない。
That is, normally, the temperature of the window glass, which has become high temperature by absorbing radiant heat, is high in the central portion in the thickness direction thereof, and the temperature of the surface which is in contact with the outside atmosphere and is cooled is low. . When the sunlight is strong, the temperature of the central portion in the thickness direction of the glass is higher than the temperature of the air that is trapped inside the room and is heated to a high temperature, and does not fall below at least the same temperature. Therefore, the heat in the room does not flow through the glass to the outside.

【0015】ところで、大気中に置かれている高温の物
体は、空気の対流により絶えず熱を奪われ、温度が降下
している。そして、この温度の降下速度は、物体の比熱
が小さいほど、またその容積が小さいほど速くなる。す
なわち、比熱と容積との積、いわゆる熱容積が小さいほ
ど速くなる。
By the way, a high-temperature object placed in the atmosphere constantly loses heat due to convection of air, and its temperature drops. Then, the rate of decrease in temperature becomes faster as the specific heat of the object is smaller and the volume thereof is smaller. That is, the smaller the product of specific heat and volume, so-called heat volume, the faster the speed.

【0016】したがって、ガラス基体の大気側に熱容積
の小さい層を形成させると、空気の対流により奪われる
熱に変わりがなければ大気側の透明層表面の温度は急速
に降下する。そして、ガラスの厚み方向中央部の温度と
大気側のガラス表面の温度との間の差が大きくなるの
で、熱エネルギーは大気側のガラス表面に向って流れ、
ガラス全体に蓄積されていた熱エネルギーが減少し、ガ
ラスの温度が低下する。結果、室内の熱エネルギーも外
部に向って流れはじめる。
Therefore, when a layer having a small heat volume is formed on the atmosphere side of the glass substrate, the temperature of the surface of the transparent layer on the atmosphere side drops rapidly unless the heat absorbed by the convection of air remains unchanged. Then, since the difference between the temperature of the central portion in the thickness direction of the glass and the temperature of the glass surface on the atmosphere side becomes large, thermal energy flows toward the glass surface on the atmosphere side,
The thermal energy accumulated in the entire glass is reduced and the temperature of the glass is lowered. As a result, the thermal energy inside the room also begins to flow toward the outside.

【0017】これとは逆に、ガラス基体の室内側表面す
なわち大気に接する表面に、熱容積が小さい層を形成さ
せると熱エネルギーの流れは、大気側から室内に向うよ
うになる。
On the contrary, when a layer having a small heat volume is formed on the surface of the glass substrate on the indoor side, that is, the surface in contact with the atmosphere, the flow of thermal energy is directed from the atmospheric side to the room.

【0018】また、一般に放射熱吸収が多いと、太陽光
が照射されたときその物体の温度は上昇するので、上記
のガラス表面に形成させた層の放射、吸収率が大きい
と、その層の温度がガラスよりも高くなり、大気側から
入射する放射線エネルギーの移動が阻止され、室内の温
度上昇に寄与しなくなる。
Further, generally, when the radiation heat absorption is large, the temperature of the object rises when it is irradiated with sunlight, so if the radiation and absorption rate of the layer formed on the glass surface is large, The temperature becomes higher than that of glass, the movement of radiation energy incident from the atmosphere side is blocked, and it does not contribute to the temperature rise in the room.

【0019】また、太陽光の照射が弱くなったり、照射
がなくなるとガラス基体の温度は放射熱吸収による温度
上昇より、大気の対流による温度下降が大きくなり、ガ
ラス基体の温度は低くなる。そして、ガラス基体の温度
上昇により外部へ放熱されなかった熱が、ガラス基体の
温度が下がることにより外部に放熱し始める。ガラス基
体の室内側表面に放射熱吸収率の小さい透明層を形成さ
せるとガラス表面に向かう放射熱は、放射熱吸収率の小
さい透明層を透過して、ガラス面に多く吸収され、そし
てガラス面の温度は上昇する。そして、ガラス基体の室
内側表面に熱容積の小さい透明層を形成させると対流に
より冷却される時は、その温度下降速度は透明層が速く
なる。したがって、ガラス基体の室内側表面にガラス基
体に対して放射熱吸収率が小さく、かつ熱容積が小さい
透明層すなわち、ガラス基体に対し温度降下速度が速
く、かつ温度上昇の小さい透明層を積層することによ
り、外気側に面したガラス面の表面温度と室内側に面し
た透明層の温度差を少なくすることができる。
Further, when the irradiation of sunlight is weakened or disappears, the temperature of the glass substrate becomes lower due to convection of the atmosphere than the temperature of the glass substrate due to the absorption of radiant heat, and the temperature of the glass substrate becomes low. Then, the heat that is not radiated to the outside due to the temperature rise of the glass substrate starts to radiate to the outside when the temperature of the glass substrate decreases. When a transparent layer with a small radiant heat absorption rate is formed on the indoor surface of the glass substrate, the radiant heat directed to the glass surface passes through the transparent layer with a small radiant heat absorption rate and is largely absorbed by the glass surface. Temperature rises. When a transparent layer having a small heat capacity is formed on the surface of the glass substrate on the inner side of the glass substrate, when cooled by convection, the temperature of the transparent layer becomes faster. Therefore, a transparent layer having a small radiant heat absorptivity and a small heat volume with respect to the glass substrate, that is, a transparent layer having a fast temperature drop rate and a small temperature rise is laminated on the glass substrate on the inner surface of the glass substrate. This makes it possible to reduce the temperature difference between the surface temperature of the glass surface facing the outside air and the temperature of the transparent layer facing the indoor side.

【0020】そして、伝導による熱の流れqは、前記式
(2)により q=λ/L(T1−T2) で表わされるから、(T1−T2)すなわち室内側の表面
温度と外気側の表面温度の差が小さくなれば、熱伝導率
λを小さくしたり、またガラスの厚さLを大きくしなく
ても熱の流れを少なくすることができる。
Since the heat flow q due to conduction is expressed by the equation (2) as q = λ / L (T 1 -T 2 ), (T 1 -T 2 ), that is, the surface temperature on the indoor side, If the difference in the surface temperature on the outside air side becomes small, the heat conductivity λ can be made small, and the heat flow can be made small without increasing the thickness L of the glass.

【0021】対流、伝導により熱が高温側から低温側に
流れる場合、前記式(2)の熱の流れの式から分るよう
に(イ)内部の熱が室内側のガラス表面に対流により流
れる熱と、(ロ)室内側のガラス表面から外気側のガラ
ス表面に流れる熱と、(ハ)外気側のガラス表面から外
気に流れる熱とは、すべて等しくなっている。したがっ
て、室内側のガラス表面から外気側のガラス表面に流れ
る熱、すなわち伝導による熱の流れを、室内側の温度を
低くして減少させることにより、全体の対流、伝導によ
る熱の流れを減少させ、内部の保温効果を得ることがで
きる。すなわち、内部から外気に向かう放射熱を利用し
て、対流、伝導により外気に放熱する熱を減少させ、保
温効果を高めることができる。
When heat flows from the high temperature side to the low temperature side due to convection and conduction, as can be seen from the equation of heat flow in the above equation (2), the heat inside (a) flows convectively to the glass surface inside the room. The heat, (b) the heat flowing from the glass surface on the indoor side to the glass surface on the outside air side, and (c) the heat flowing from the glass surface on the outside air side to the outside air are all equal. Therefore, the heat flowing from the glass surface on the indoor side to the glass surface on the outside air, that is, the heat flow due to conduction, is reduced by decreasing the temperature inside the room to reduce the overall convection and heat flow due to conduction. , The internal heat retention effect can be obtained. That is, by utilizing the radiant heat from the inside to the outside air, the heat radiated to the outside air by convection and conduction can be reduced, and the heat retention effect can be enhanced.

【0022】本発明者らは、このような基本的原理に基
づき、種々検討した結果、ガラスとその内側表面に熱傾
斜を形成させるために積層する透明層とが、ガラス基体
の熱容積に対する透明熱傾斜形成層の熱容積の割合が1
0%以下、好ましくは5%以下で、ガラス基体の放射吸
収率に対する透明熱傾斜形成層の放射吸収率の割合が6
0%以下、好ましくは50%以下とした場合に、実用的
な保温ガラスとしての効果が発揮されることを見出した
のである。
As a result of various studies based on such a basic principle, the present inventors found that the glass and the transparent layer laminated to form a thermal gradient on the inner surface of the glass are transparent to the heat capacity of the glass substrate. The ratio of the heat capacity of the thermal gradient forming layer is 1
The ratio of the radiation absorptivity of the transparent thermal gradient forming layer to the radiation absorptivity of the glass substrate is 6% or less, preferably 0% or less.
It has been found that when it is 0% or less, preferably 50% or less, the effect as a practical heat insulating glass is exhibited.

【0023】したがって、本発明においては、ガラス基
体の熱容積Q1、放射吸収率X1と、その内側表面に積層
する透明熱傾斜形成層の熱容積Q2、放射吸収率X2との
間に次の関係があることが必要である。 0.10Q1≧Q2 …(3) 0.60X1≧X2 …(4)
Therefore, in the present invention, between the heat volume Q 1 and the radiation absorption rate X 1 of the glass substrate and the heat volume Q 2 and the radiation absorption rate X 2 of the transparent thermal gradient forming layer laminated on the inner surface thereof. Must have the following relationships: 0.10Q 1 ≧ Q 2 (3) 0.60X 1 ≧ X 2 (4)

【0024】そして、そのために、透明熱傾斜形成層の
材料として比熱の小さい材料を用い、かつ太陽光線を吸
収しうる物質を混合して、材料自体の単位容量当りの熱
容積及び放射吸収率を低くしたり、層厚を小さくすると
ともに、ガラス基体として比熱や放射熱吸収率の大きい
材料を選んだり、厚みを大きくして熱容積を大きくする
ことにより、上記の関係式を満たしたものを作成する。
For that purpose, a material having a small specific heat is used as a material of the transparent heat gradient forming layer, and a substance capable of absorbing sunlight is mixed to obtain a heat capacity and a radiation absorption rate per unit volume of the material itself. Create a material that satisfies the above relational expressions by lowering the thickness and decreasing the layer thickness, selecting a material with a high specific heat and radiant heat absorption coefficient as the glass substrate, and increasing the thickness to increase the heat capacity. To do.

【0025】本発明において用いる板ガラスとしては、
透明である限り、普通ガラス、カリガラス、鉛ガラス、
特殊ガラス例えば熱線吸収ガラスや熱線反射ガラスなど
の任意のものを用いることができるが、前記の式(3)
及び(4)の関係を満たしやすいという点で比熱や放射
熱吸収率の大きいものを選ぶのが有利である。また、こ
の板ガラスとしては、通常無色透明なものが用いられる
が、所望に応じ青色、赤色、黄色、淡かっ色、グレーな
どに着色されたものを用いることもできる。この板ガラ
スの厚さは、通常1〜10mm程度である。
The plate glass used in the present invention includes:
As long as it is transparent, ordinary glass, potash glass, lead glass,
Although any special glass such as heat ray absorbing glass or heat ray reflecting glass can be used, the above formula (3)
It is advantageous to select a material having a large specific heat and radiant heat absorption rate in that the relationship of (4) and (4) can be easily satisfied. The plate glass is usually colorless and transparent, but may be colored in blue, red, yellow, pale brown, gray or the like if desired. The thickness of this plate glass is usually about 1 to 10 mm.

【0026】他方、透明熱傾斜形成層の材料としては、
ガラス基体と異なる組成をもつガラスや、金属、セラミ
ックスの蒸着膜などでもよいが、多種多様の物性のもの
を容易かつ安価に入手でき、しかも積層加工が簡単であ
るという点でプラスチックが好ましい。
On the other hand, as the material of the transparent thermal gradient forming layer,
Glass having a composition different from that of the glass substrate, a vapor-deposited film of metal or ceramics, or the like may be used, but plastics are preferable in that various materials having various physical properties can be easily and inexpensively obtained and the lamination process is easy.

【0027】この透明熱傾斜形成層の材料として好適な
プラスチックには、例えば高圧法ポリエチレン、低圧法
ポリエチレン、エチレン‐酢酸ビニル共重合体、エチレ
ン‐アクリル酸又はアクリル酸エステル共重合体、含金
属エチレン‐アクリル酸共重合体、エチレン‐プロピレ
ン共重合体、エチレン‐塩化ビニル‐酢酸ビニル共重合
体、ポリプロピレン、プロピレン‐塩化ビニル共重合
体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレ
ン、ポリエチレンテレフタレート、ABS樹脂、ポリア
ミド、ポリアセタール、フッ素樹脂、アクリル樹脂、メ
タクリル樹脂、ポリカーボネート、尿素樹脂、メラミン
樹脂、不飽和ポリエステル、ケイ素樹脂、エポキシ樹脂
などを挙げることができる。これらのプラスチックに
は、慣用されている各種添加剤を配合することができ、
これらの添加剤の種類、組み合せ、添加量を変えること
によって、その熱容量や放射熱吸収率を調整することが
できる。これらは単独で用いてもよいし、2種以上混合
して用いてもよいが、透明状態を保ったままガラス基体
上に積層されることが必要である。
Suitable plastics as the material of the transparent thermal gradient forming layer include, for example, high-pressure polyethylene, low-pressure polyethylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid or acrylic ester copolymer, metal-containing ethylene. -Acrylic acid copolymer, ethylene-propylene copolymer, ethylene-vinyl chloride-vinyl acetate copolymer, polypropylene, propylene-vinyl chloride copolymer, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyethylene terephthalate, ABS resin , Polyamide, polyacetal, fluororesin, acrylic resin, methacrylic resin, polycarbonate, urea resin, melamine resin, unsaturated polyester, silicon resin, epoxy resin and the like. These plastics can be blended with various commonly used additives,
The heat capacity and radiant heat absorptivity can be adjusted by changing the type, combination and addition amount of these additives. These may be used alone or as a mixture of two or more kinds, but it is necessary that they are laminated on the glass substrate while keeping the transparent state.

【0028】本発明におけるガラス基体と透明熱傾斜形
成層との積層方法は、あらかじめフィルム状又はシート
状に形成した透明層をガラス基体表面に熱融着や接着に
より貼着する方法、プラスチックを適当な溶剤に溶かし
てガラス基体上に塗布し乾燥、固化させる方法、化学蒸
着、真空蒸着、無電界めっきなどで固着する方法など、
これまでガラス基板上に他の材料を積層するのに慣用さ
れている方法の中から任意に選ぶことができる。このよ
うにして、ガラス基板上に1〜1000μm、好ましく
は10〜500μmの厚さの透明熱傾斜形成層を積層さ
せる。
The method for laminating the glass substrate and the transparent thermal gradient forming layer in the present invention is a method in which a transparent layer formed in advance in the form of a film or sheet is adhered to the surface of the glass substrate by heat fusion or adhesion, or plastic is suitable. A method of dissolving it in a different solvent and coating it on a glass substrate, drying and solidifying it, a method of fixing it by chemical vapor deposition, vacuum vapor deposition, electroless plating, etc.
It can be arbitrarily selected from the methods conventionally used for laminating other materials on the glass substrate. Thus, the transparent thermal gradient forming layer having a thickness of 1 to 1000 μm, preferably 10 to 500 μm is laminated on the glass substrate.

【0029】本発明のもう1つの好ましい実施態様は、
ガラス基体と透明熱傾斜形成層との間に単数又は複数の
透明中間層を介在させることである。最終的に、ガラス
基体と透明熱傾斜形成層との間に前記した式(3)及び
(4)の関係が満たされている限り、中間層としては、
任意の透明層を用いることができるが、外部から保温空
間内に向っての熱エネルギーの移動が円滑に行われる熱
傾斜を形成させるためには、ガラス基体の熱容積及び放
射熱吸収率よりは小さく、かつ透明熱傾斜形成層のそれ
らよりは大きい熱容積及び放射熱吸収率をもつ透明層を
用いるのが有利である。
Another preferred embodiment of the present invention is
One or more transparent intermediate layers are interposed between the glass substrate and the transparent thermal gradient forming layer. Finally, as long as the relations of the above formulas (3) and (4) are satisfied between the glass substrate and the transparent thermal gradient forming layer, the intermediate layer is
Although any transparent layer can be used, in order to form a thermal gradient in which heat energy is smoothly transferred from the outside into the heat retaining space, the heat capacity and the radiant heat absorption coefficient of the glass substrate are more preferable than those of the glass substrate. It is advantageous to use transparent layers that are small and have a heat volume and radiant heat absorption coefficient that are larger than those of the transparent thermal gradient forming layers.

【0030】[0030]

【発明の効果】本発明の保温ガラスは、建物の窓ガラス
やドアガラス、自動車、電車用の窓ガラスやドアガラス
として用いると、外部から室内への熱エネルギーの入射
を促進するが、室内から外部への熱エネルギーの放射を
抑制するため、非常に優れた保温効果を示す。
INDUSTRIAL APPLICABILITY When the heat insulating glass of the present invention is used as a window glass or a door glass of a building, a window glass or a door glass of an automobile or a train, it promotes the incidence of heat energy from the outside into the room. Since it suppresses the radiation of heat energy to the outside, it has a very excellent heat retaining effect.

【0031】[0031]

【実施例】次に実施例により本発明をさらに詳細に説明
する。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0032】参考例 厚さ3mmの透明普通ガラス(放射熱吸収率7.9%)
の半分に、放射熱吸収率の異なる材料から成る5種の市
販フィルム、すなわち、熱遮断性ポリエステルフィルム
(A)、塩化ビニル樹脂フィルム(B)、ポリエステル
フィルム(C)、変性アクリル樹脂フィルム(D)、ア
クリル樹脂フィルム(E)を積層して試料を作成し、フ
ィルム側とは反対の側から赤外線ランプを照射して、ガ
ラスのみの部分とフィルムを積層した部分の表面にそれ
ぞれ接触して配置した温度計により、表面温度の変化を
測定した。この結果を表1に示す。なお、表1における
対ガラス吸収熱比は、ガラスの放射熱吸収率に対する各
試料の放射熱吸収率の割合である。
Reference Example Transparent ordinary glass with a thickness of 3 mm (radiant heat absorption rate 7.9%)
5 types of commercially available films made of materials having different radiant heat absorptivities, namely, heat-shielding polyester film (A), vinyl chloride resin film (B), polyester film (C), and modified acrylic resin film (D) ), An acrylic resin film (E) is laminated to prepare a sample, which is irradiated with an infrared lamp from the side opposite to the film side to be placed in contact with the surfaces of the glass only portion and the film laminated portion, respectively. The change in surface temperature was measured by the thermometer. Table 1 shows the results. The ratio of heat absorption to glass in Table 1 is the ratio of the heat absorption coefficient of each sample to the heat absorption coefficient of glass.

【0033】[0033]

【表1】 [Table 1]

【0034】この結果から、ガラス基体の放射熱吸収率
に対し、60%以下の放射熱吸収率を有する透明フィル
ム(D)、(E)を積層すれば表面温度がガラスよりも
低下し、ガラス側からフィルム側への熱移動が促進され
るが、これよりも放射熱吸収が大きいと表面温度が高く
なり、熱移動が阻止されることが分る。
From these results, when the transparent films (D) and (E) having a radiant heat absorptivity of 60% or less with respect to the radiant heat absorptivity of the glass substrate are laminated, the surface temperature becomes lower than that of the glass. It can be seen that the heat transfer from the side to the film side is promoted, but if the radiation heat absorption is larger than this, the surface temperature becomes high and the heat transfer is blocked.

【0035】実施例1、比較例1 カヤクリルレジンP4838(日本化薬社製、アクリル
酸エステルとスチレンとの共重合体の商品名)を溶媒に
溶解し、この中に変性ジメチルシリコーンオイルSF8
419(東レ・ダウコーニングシリコーンオイル社製の
商品名)を加えて塗膜形成用組成物を調製した。前面の
みを開放した発泡スチロール製の箱(縦33cm、横3
9cm、奥行24cm)の開放面に、厚さ3mmの透明
普通板ガラス(放射吸収率7.9%、熱容積193.1
cal/℃)(対照)、そのガラスの内側面に上記の塗
膜形成用組成物を塗布し、放射熱吸収率1.9%、熱容
積0.26cal/℃の層を形成させたもの(実施例
1)及びガラスの外側面に上記の層を形成させたもの
(比較例1)をそれぞれ装着した試験箱3個を準備し、
これらを太陽に対し、同じ方向になるように並列的に配
置して、それぞれの箱内温度の経時的変化を測定した。
その結果を表2に示す。
Example 1 and Comparative Example 1 Kayacryl resin P4838 (trade name of a copolymer of acrylic ester and styrene manufactured by Nippon Kayaku Co., Ltd.) was dissolved in a solvent, and modified dimethyl silicone oil SF8 was added thereto.
419 (trade name of Toray Dow Corning Silicone Oil Co., Ltd.) was added to prepare a coating film forming composition. Styrofoam box with only the front open (length 33 cm, width 3)
On the open surface of 9 cm, depth of 24 cm, transparent ordinary flat glass with a thickness of 3 mm (radiation absorption rate 7.9%, heat capacity 193.1)
cal / ° C) (control), the above-mentioned composition for forming a coating film was applied to the inner surface of the glass to form a layer having a radiant heat absorption rate of 1.9% and a heat capacity of 0.26 cal / ° C ( Example 1) and three test boxes equipped with the above-mentioned layers formed on the outer surface of the glass (Comparative Example 1) were prepared,
These were arranged in parallel to the sun so as to be in the same direction, and the time-dependent change in the temperature inside each box was measured.
The results are shown in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】この結果から、ガラスの室内側に所定のフ
ィルムを積層した場合(実施例1)には、保温効果は向
上するが、大気側に積層した場合(比較例1)には、む
しろ保温効果の低下が認められることが分る。なお、3
0分経過以降における内部温度の低下は、日照量の減少
に基づくものである。
From these results, when a predetermined film is laminated on the inner side of the glass (Example 1), the heat retaining effect is improved, but when laminated on the atmosphere side (Comparative Example 1), the heat retaining effect is rather obtained. It can be seen that a decrease in the effect is observed. 3
The decrease in the internal temperature after 0 minutes is due to the decrease in the amount of sunlight.

【0038】実施例2 厚さ3mmの板ガラス(50×50cm、放射熱吸収率
7.9%、熱容積375cal/℃)の表面を清浄化し
たのち、シランカップリング剤としてオルガノシランK
BM503(信越化学社製)をコーティングし、この上
にカヤクリルレジンP4838(日本化薬社製、アクリ
ル酸エステルとスチレンとの共重合体の商品名)を酢酸
エチルとトルエンとイソプロパノールと酢酸ブチルとメ
タノールから成る混合溶媒に溶かし、変性ジメチルシリ
コーンオイルSF8419(東レ・ダウコーニングシリ
コーンオイル社製の商品名)0.03重量部を加え混合
したものを塗布し、乾燥させることにより厚さ5μmの
中間層を形成させた。この塗膜の放射熱吸収率はガラス
基体の放射熱吸収率に対し1.9%であり、熱容積は
0.5cal/℃(ガラス基体の熱容量に対し24.1
%)であった。
Example 2 After cleaning the surface of a plate glass having a thickness of 3 mm (50 × 50 cm, radiant heat absorption rate 7.9%, heat capacity 375 cal / ° C.), organosilane K was used as a silane coupling agent.
BM503 (manufactured by Shin-Etsu Chemical Co., Ltd.) is coated, and kayakryl resin P4838 (manufactured by Nippon Kayaku Co., Ltd., a trade name of a copolymer of acrylic acid ester and styrene) is coated on this with ethyl acetate, toluene, isopropanol, and butyl acetate. Dissolved in a mixed solvent composed of methanol, added 0.03 parts by weight of modified dimethyl silicone oil SF8419 (trade name of Toray Dow Corning Silicone Oil Co., Ltd.), mixed and applied, and then dried to form an intermediate layer having a thickness of 5 μm. Was formed. The radiant heat absorptivity of this coating film was 1.9% with respect to the radiant heat absorptivity of the glass substrate, and the heat volume was 0.5 cal / ° C (24.1 with respect to the heat capacity of the glass substrate).
%)Met.

【0039】この塗膜を十分に乾燥させたのち、さらに
この上にエマルション型ジメチルシリコーンオイルSH
7028(東レ・ダウコーニングシリコーンオイル社
製、商品名、固形分含有量30%)水で5倍に希釈して
コーティングすることにより厚さ1μmの塗膜を形成さ
せた。この塗膜の放射熱吸収率は上記中間層に対し58
%、熱容積は0.09cal/℃であった。
After the coating film is sufficiently dried, an emulsion type dimethyl silicone oil SH is further formed on the coating film.
7028 (trade name, manufactured by Toray Dow Corning Silicone Oil Co., Ltd., solid content: 30%) was diluted 5 times with water to form a coating having a thickness of 1 μm. The radiant heat absorptivity of this coating is 58 with respect to the intermediate layer.
%, The heat volume was 0.09 cal / ° C.

【0040】厚さ5mmの発泡スチロール板により1面
を開放した50cm立方の箱を作製し、内壁前面を黒布
で覆い、開放面に上記の保温ガラス又は3mm透明ガラ
スとを装着して2個の保温箱を準備した。この保温箱を
用いて実施例1と同様の太陽光照射実験を行い、その結
果を図1に示す。図中の実線は本発明の保温ガラスを、
また破線は透明ガラスについてのグラフである。
A 50 cm cubic box, one surface of which was opened with a styrofoam plate having a thickness of 5 mm, was prepared, the front surface of the inner wall was covered with a black cloth, and the above-mentioned heat insulating glass or 3 mm transparent glass was attached to the open surface of two boxes. I prepared a warm box. Using this heat insulation box, the same solar irradiation experiment as in Example 1 was conducted, and the results are shown in FIG. The solid line in the figure indicates the heat insulating glass of the present invention,
The broken line is a graph for transparent glass.

【0041】実施例3 厚さ3mmの透明板ガラス(50×50cm、放射熱吸
収率7.9%、熱容積375cal/℃)に、ポリエス
テル樹脂(密度0.92g/cm3、比熱0.55)の
溶液を塗布し、乾燥することにより厚さ50μmの中間
層(放射熱吸収率15.8%、熱容積6.3cal/
℃)を形成させた。次に、この中間層の上に、実施例2
の中間層を形成させる場合と同様の方法で、アクリル酸
エステルとスチレンとの共重合体及び変性ジメチルシリ
コーンオイルから成る塗膜(放射線吸収率は中間層に対
して1.9%、熱容積は中間層に対して3.2%)を2
μmの厚さで形成させることにより3層構造の保温ガラ
スを作製した。
Example 3 A transparent plate glass (50 × 50 cm, radiant heat absorption rate 7.9%, heat volume 375 cal / ° C.) having a thickness of 3 mm was applied to a polyester resin (density 0.92 g / cm 3 , specific heat 0.55). 50 μm-thick intermediate layer (radiant heat absorption rate 15.8%, heat volume 6.3 cal /
C.) was formed. Then, on this intermediate layer, Example 2
In the same manner as in the case of forming the intermediate layer of 1., a coating film composed of a copolymer of acrylic ester and styrene and modified dimethyl silicone oil (the radiation absorption rate is 1.9% with respect to the intermediate layer, the heat capacity is 3.2% for the middle layer) 2
A heat insulating glass having a three-layer structure was produced by forming the heat insulating glass with a thickness of μm.

【0042】次に、この保温ガラスについて、実施例2
と同様の太陽光照射実験を行い、その結果を図2に実線
グラフで示した。なお、比較のために、同じ透明板ガラ
スに中間層のみを積層した保温ガラス(一点鎖線)及び
透明板ガラスのみ(破線)について同じ実験を行った結
果を併記した。これらの結果より中間層を介在させた場
合は、さらに保温効果が向上することが分る。
Next, with respect to this heat insulating glass, Example 2
A solar irradiation experiment similar to that was conducted, and the result is shown by the solid line graph in FIG. For comparison, the results of the same experiment performed on the heat insulating glass in which only the intermediate layer is laminated on the same transparent plate glass (dashed line) and the transparent plate glass only (broken line) are also shown. From these results, it can be seen that the heat retaining effect is further improved when the intermediate layer is interposed.

【0043】実施例4 縦33cm、横39cm、厚さ5mmの熱線吸収板ガラ
ス(放射熱吸収率32.8%、熱容積321.8cal
/℃)と厚さ1mmの普通の透明板ガラス(放射熱吸収
率7.9%、熱容積64、3cal/℃)を貼り合わせ
て二重ガラスとし、透明ガラスの表面に、実施例2の中
間層と同じ厚さ5μmの塗膜(放射熱吸収率は普通の厚
さ1mmの透明板ガラスに対し24.1%、熱容積は
0.39%)を積層した。このものについて、実施例1
と同様にして初期温度19℃における保温効果を試験し
た結果を表3に示す。なお、対照としては二重ガラスの
みを用いた場合を示した。
Example 4 Heat ray absorbing plate glass having a length of 33 cm, a width of 39 cm and a thickness of 5 mm (radiant heat absorption rate 32.8%, heat volume 321.8 cal)
/ ° C) and an ordinary transparent plate glass with a thickness of 1 mm (radiant heat absorption rate 7.9%, heat volume 64, 3 cal / ° C) are laminated to form a double glass, and the surface of the transparent glass is the middle of Example 2. A coating film having the same thickness as the layer and having a thickness of 5 μm (radiation heat absorptivity was 24.1% with respect to an ordinary transparent glass plate having a thickness of 1 mm and a heat capacity of 0.39%) was laminated. About this, Example 1
Table 3 shows the results of testing the heat retention effect at the initial temperature of 19 ° C in the same manner as in. In addition, the case where only double glazing was used was shown as a control.

【0044】[0044]

【表3】 [Table 3]

【0045】この結果から、二重ガラスについても塗膜
層を設けることにより、平均2℃高い内部温度が得られ
ることが分る。
From these results, it can be seen that an average internal temperature of 2 ° C. higher can be obtained by providing a coating layer for double glazing.

【0046】実施例5 縦1.8m、横1.8mの窓をもつ高さ2.2m、間口
2.7m、奥行3.6mの同じ広さの2つの部屋の、そ
れぞれの窓に普通の透明板ガラス(厚さ3mm)と、実
施例1で得た保温ガラスとを取り付け、この室内に同じ
能力の暖房機を設置し、夜間に作動させて、室温の変化
を調べた。その結果をグラフとして図3に示す。図中の
実線は保温ガラス、破線は普通の板ガラスである。この
結果から、本発明の保温ガラスは、普通の板ガラスに比
べ1.5〜3℃も高い保温効果を示すことが分る。
Example 5 Two windows of the same size having a height of 2.2 m, a height of 2.2 m, a frontage of 2.7 m, and a depth of 3.6 m having a window of 1.8 m in length and 1.8 m in width, and ordinary windows are provided for each window. A transparent plate glass (thickness: 3 mm) and the heat insulating glass obtained in Example 1 were attached, a heater having the same capacity was installed in this room, and the room temperature was checked by operating it at night. The results are shown as a graph in FIG. The solid line in the figure is heat insulating glass, and the broken line is ordinary plate glass. From these results, it can be seen that the heat insulating glass of the present invention exhibits a heat insulating effect as high as 1.5 to 3 ° C. as compared with ordinary plate glass.

【0047】実施例6 東京都千代田区に存在する鉄筋コンクリート造12階建
マンションの同じ方向に面した8階と9階の同一構造の
部屋を使用し、各期の朝10時から夜9時にわたって、
実施例2で得た保温ガラスと普通の透明板ガラスについ
ての実装試験を行った。この部屋の床面積は31m2
高さは2.7m、窓ガラス面積は12m2であった。こ
の場合のガラスの熱容積は30000cal/℃、塗膜
の熱容積は23.87cal/℃であった。その結果を
図4に示す。なお、参考のために外気温度(鎖線)を併
記した。この図から分るように、本発明の保温ガラスを
用いると、24時間にわたって、普通ガラスの場合より
も1.5〜4℃も高い保温効果が得られる。
Example 6 Using a reinforced concrete 12-story condominium located in Chiyoda-ku, Tokyo, which has rooms of the same structure on the 8th and 9th floors facing the same direction, from 10 am to 9 pm in each period ,
A mounting test was carried out on the heat insulating glass obtained in Example 2 and an ordinary transparent plate glass. The floor area of this room is 31m 2 ,
The height was 2.7 m and the window glass area was 12 m 2 . In this case, the glass had a heat capacity of 30,000 cal / ° C and the coating film had a heat capacity of 23.87 cal / ° C. The result is shown in FIG. The outside air temperature (chain line) is also shown for reference. As can be seen from this figure, when the heat insulating glass of the present invention is used, a heat insulating effect higher by 1.5 to 4 ° C. than that of the ordinary glass can be obtained over 24 hours.

【0048】実施例7 車内床面積55.1m2、車内高さ2.1m、窓面積2
0m2の同型車両を2両連結し、11月下旬北九州のJ
R線支線を利用して、本発明の保温ガラスの実装試験を
行った。計測器としては、神栄株式会社製コンピュータ
内蔵型温湿度計を用い、これを車内中央部高さ1mの位
置に設置した。このときの気候は雨、外気温は約13.
5℃であった。各駅通過時における車内温度を記録し、
グラフとして図5に示す。図中の破線は普通の窓ガラス
(厚さ5mm、熱容積50000cal/℃、放射熱吸
収率12.5%)を取り付けた車両の温度測定値、実線
はその車内側表面に厚さ5μmの塗膜(熱容積39.7
8cal/℃、放射熱吸収率1.9%)を積層した保温
ガラスを取り付けた車両の温度測定値を示す。
Example 7 Floor space in the vehicle 55.1 m 2 , height in the vehicle 2.1 m, window area 2
Two 0m 2 vehicles of the same type were connected, and J in Kitakyushu in late November
A mounting test of the heat insulating glass of the present invention was performed using the R line branch line. As a measuring instrument, a computer built-in thermo-hygrometer manufactured by Shinei Co., Ltd. was used, and the thermo-hygrometer was installed at a height of 1 m in the center of the vehicle. The climate at this time was rain, and the outside temperature was about 13.
5 ° C. Record the temperature inside the car when passing each station,
A graph is shown in FIG. The broken line in the figure is the temperature measurement value of a vehicle equipped with a normal window glass (thickness 5 mm, heat capacity 50000 cal / ° C, radiant heat absorption rate 12.5%), and the solid line is a 5 μm thick coating on the inside surface of the vehicle. Membrane (heat volume 39.7
The temperature measurement value of a vehicle provided with a heat insulating glass laminated with 8 cal / ° C. and a radiant heat absorption rate of 1.9% is shown.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例2における保温効果を示すグラフ。FIG. 1 is a graph showing a heat retaining effect in Example 2.

【図2】 実施例3における保温効果を示すグラフ。FIG. 2 is a graph showing the heat retaining effect in Example 3.

【図3】 実施例5における保温効果を示すグラフ。FIG. 3 is a graph showing the heat retaining effect in Example 5.

【図4】 実施例6における保温効果を示すグラフ。FIG. 4 is a graph showing the heat retaining effect in Example 6.

【図5】 実施例7における保温効果を示すグラフ。FIG. 5 is a graph showing the heat retaining effect in Example 7.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 保温空間と外部とを遮断するための板ガ
ラスであって、保温空間側の表面に、ガラス基体の熱容
積及び放射熱吸収率に対し、それぞれ10%以下及び6
0%以下の熱容積及び放射熱吸収率を有する透明熱傾斜
形成層を積層したことを特徴とする保温ガラス。
1. A plate glass for isolating a heat insulating space from the outside, wherein the surface of the heat insulating space is 10% or less and 6% with respect to the heat volume and the radiant heat absorption rate of the glass substrate, respectively.
A heat-insulating glass comprising a transparent heat gradient forming layer having a heat capacity of 0% or less and a radiant heat absorptivity.
【請求項2】 ガラス基体と透明熱傾斜形成層との間
に、ガラス基体の熱容積及び放射熱吸収率よりは小さ
く、透明熱傾斜形成層のそれらよりは大きい熱容積及び
放射熱吸収をもつ透明中間層を単数又は複数介在させる
請求項1記載の保温ガラス。
2. A heat volume and a radiant heat absorption between the glass substrate and the transparent heat gradient forming layer are smaller than those of the glass substrate and larger than those of the transparent heat gradient forming layer. The heat insulating glass according to claim 1, wherein one or more transparent intermediate layers are interposed.
JP21755694A 1994-09-12 1994-09-12 Thermal insulation glass Expired - Lifetime JP3726100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21755694A JP3726100B2 (en) 1994-09-12 1994-09-12 Thermal insulation glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21755694A JP3726100B2 (en) 1994-09-12 1994-09-12 Thermal insulation glass

Publications (2)

Publication Number Publication Date
JPH0881238A true JPH0881238A (en) 1996-03-26
JP3726100B2 JP3726100B2 (en) 2005-12-14

Family

ID=16706117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21755694A Expired - Lifetime JP3726100B2 (en) 1994-09-12 1994-09-12 Thermal insulation glass

Country Status (1)

Country Link
JP (1) JP3726100B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087004A1 (en) * 2002-04-15 2003-10-23 Kabushikikaisha Sekuto Kagaku Solar heat cutoff glass and solar heat cutoff method using same
WO2003087003A1 (en) * 2002-04-15 2003-10-23 Kabushikikaisha Sekuto Kagaku Water-based heat-radiation-preventive coating material for glass, heat-radiation-preventive glass, and method of preventing heat radiation
WO2018055998A1 (en) * 2016-09-23 2018-03-29 日本板硝子株式会社 Cover glass and display using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003087004A1 (en) * 2002-04-15 2003-10-23 Kabushikikaisha Sekuto Kagaku Solar heat cutoff glass and solar heat cutoff method using same
WO2003087003A1 (en) * 2002-04-15 2003-10-23 Kabushikikaisha Sekuto Kagaku Water-based heat-radiation-preventive coating material for glass, heat-radiation-preventive glass, and method of preventing heat radiation
JPWO2003087004A1 (en) * 2002-04-15 2005-09-29 株式会社セクト化学 Solar heat insulation glass and solar heat insulation method using the same
JP4553235B2 (en) * 2002-04-15 2010-09-29 株式会社翠光トップライン Solar heat insulation glass and solar heat insulation method using the same
US7858196B2 (en) 2002-04-15 2010-12-28 Suikoh Top Line Co., Ltd. Water-based heat-radiation-preventive coating matrial for glass, heat-radiation-preventive glass, and method of preventing heat radiation
WO2018055998A1 (en) * 2016-09-23 2018-03-29 日本板硝子株式会社 Cover glass and display using same
KR20190058447A (en) * 2016-09-23 2019-05-29 니혼 이타가라스 가부시키가이샤 Cover glass and display using the same
US11155492B2 (en) 2016-09-23 2021-10-26 Nippon Sheet Glass Company, Limited Cover glass and display using same

Also Published As

Publication number Publication date
JP3726100B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US11215407B2 (en) Radiative cooling with solar spectrum reflection
KR100340257B1 (en) Insulation board and insulation method using it
US20170248381A1 (en) Radiative cooling structures and systems
US20100155043A1 (en) Element for emission of thermal radiation
JPH07101242B2 (en) Selective radiation coating for room temperature drop in enclosed spaces
KR20020044153A (en) Thermochromic laminates and methods for controlling the temperature of a struncture
US20200393148A1 (en) Thermally radiative apparatus and method
Smith et al. Environmental science
JP2003237492A (en) Interior material for vehicle
JP2004330930A (en) Heat shield and heat release structure for automobile
US3243117A (en) Building structures
US20220381524A1 (en) Systems and Methods for Spectrally Selective Thermal Radiators with Partial Exposures to Both the Sky and the Terrestrial Environment
JPH0881238A (en) Thermal insulation glass
SE535033C2 (en) A building material including PCM and a climate housing
JP4075383B2 (en) Panel structure
WO2009069811A1 (en) Device for collecting solar ray and heat and for collecting and exhausting heat, and method for utilizing the device
JP2019066101A (en) Sky radiation cooling device
Nautiyal et al. An Overview of Transparent Insulation Materials and Its Future Developments
JP3184299U (en) Heat insulation inner window and kit for making heat insulation inner window
JP4553235B2 (en) Solar heat insulation glass and solar heat insulation method using the same
JP2009091818A (en) Window structure
JP7454968B2 (en) radiant cooling box
JP2002061464A (en) Heat insulating window material
JP2002285649A (en) Wall structure
US4018214A (en) Heating and ventilation system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term