JPH088060A - Method for controlling power of three-phase arc type ash melting furnace - Google Patents

Method for controlling power of three-phase arc type ash melting furnace

Info

Publication number
JPH088060A
JPH088060A JP6162716A JP16271694A JPH088060A JP H088060 A JPH088060 A JP H088060A JP 6162716 A JP6162716 A JP 6162716A JP 16271694 A JP16271694 A JP 16271694A JP H088060 A JPH088060 A JP H088060A
Authority
JP
Japan
Prior art keywords
furnace
electrodes
phase
electrode
arc type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6162716A
Other languages
Japanese (ja)
Inventor
Koichi Sugimoto
浩一 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP6162716A priority Critical patent/JPH088060A/en
Publication of JPH088060A publication Critical patent/JPH088060A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Discharge Heating (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PURPOSE:To enhance the efficiency of a quick melting process and to prevent the wear of furnace walls by enabling the amount of heat generated to be distributed to three electrodes as required, in a three-phase arc type ash melting furnace into which the ashes of municipal and industrial wastes or the like are put so as to be subjected to the melting process in which an arc discharge is caused at the three electrodes using a three-phase AC power supply. CONSTITUTION:An arc discharge using a three-phase AC power supply is caused between each of three electrodes A, B, C hanging down into a furnace and a molten slug to melt ashes in the furnace. In this three-phase arc type ash melting furnace, desired impedances ra, rb, rc, are set for the electrodes A, B, C, respectively, and the electrodes A, B, C are independently raised and lowered so that the impedances of the electrodes are held at the desired impedances ra, rb, rc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ごみ,産業廃棄物
等の焼却灰を炉内に投入し三本の電極に三相交流を電源
とするアーク放電をさせて該焼却灰を溶融処理する三相
アーク式灰溶融炉の電力制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to incinerate incinerated ash of municipal waste, industrial waste, etc. into a furnace and subject the three electrodes to arc discharge using a three-phase alternating current as a power source to melt the incinerated ash. The present invention relates to a power control method for a three-phase arc type ash melting furnace.

【0002】[0002]

【従来の技術】都市ごみ,産業廃棄物等の焼却炉から排
出される焼却灰はそのまま埋立地等に投棄すると有害物
質の溶出等の環境破壊の問題を起こすおそれがあるの
で、従来からアーク式溶融炉にてこの焼却灰を溶融させ
ガラス状に固形化させることがなされている。
2. Description of the Related Art If the incineration ash discharged from an incinerator for municipal solid waste, industrial waste, etc. is thrown into a landfill site as it is, it may cause environmental damage such as elution of harmful substances. The incinerator ash is melted in a melting furnace and solidified into a glass.

【0003】このアーク式溶融炉は周知のように電極支
持装置により支持させた棒状の電極を炉内に垂下させ、
該電極の下端と炉内底の溶融スラグ面との間のアーク放
電を起こさせその発熱により焼却灰を溶融させるもので
あるが、従来からその電力制御には投入電力を安定させ
るためにインピーダンスを一定に保つように電極を自動
的に昇降動させる定インピーダンス制御という方式が採
られている。
As is well known, this arc type melting furnace hangs down a rod-shaped electrode supported by an electrode supporting device into the furnace.
An arc discharge is generated between the lower end of the electrode and the molten slag surface at the bottom of the furnace to heat the incineration ash by the heat generation, but conventionally, the power control is performed by adjusting the impedance to stabilize the input power. A method called constant impedance control is adopted in which the electrodes are automatically moved up and down to keep them constant.

【0004】そこで、この定インピーダンス制御につい
て先ず説明すると、図6中、Aは電極、Mは該電極を昇
降動させるモータ、1NVは該モータを制御するインバ
ータ、Tr は炉用トランス、CT,PTは該電極Aへの
送電ケーブルに設けられた電流検出手段と電圧検出手
段、R,I2 は該電流検出手段CTに接続された抵抗器
と検出電流、A1 は制御モジュールである。
[0004] Therefore, when the first described this constant impedance control, in FIG. 6, A is the electrode, M is a motor for raising and lowering movement of the electrode, the inverter 1NV is for controlling the motor, T r is a furnace transformer, CT, PT is current detection means and voltage detection means provided in the power transmission cable to the electrode A, R and I 2 are resistors and detection currents connected to the current detection means CT, and A 1 is a control module.

【0005】炉用トランス2次側電流,電圧をI1 ,V
1 とし、CT比,PT比を各々α1,α2 とすると、電
流検出手段CTから制御モジュールA1 に伝達される測
定電圧Ei 、電圧検出手段PTから制御モジュールA1
に伝達される測定電圧Ev は次式で表わされる。
Secondary current and voltage of the transformer for the furnace are I 1 , V
1 , and the CT ratio and the PT ratio are α 1 and α 2 , respectively, the measured voltage E i transmitted from the current detection means CT to the control module A 1 and the voltage detection means PT to the control module A 1
The measured voltage E v transmitted to the device is expressed by the following equation.

【数1】 また[Equation 1] Also

【数2】 とすると、M=Oのとき電極が停止するように制御さ
れ、そのバランス点は
[Equation 2] Then, the electrode is controlled so as to stop when M = O, and the balance point is

【数3】 となる。(Equation 3) Becomes

【0006】ここで、インピーダンスをZa とすると、Here, if the impedance is Z a ,

【数4】 より[Equation 4] Than

【数5】 となる。今バランス点から何らかの原因で電流がΔi1
増加したとすると、
(Equation 5) Becomes The current is Δi 1 from the balance point for some reason.
If it increases,

【数6】 (Equation 6)

【0007】Mがプラス(+)の時は電極Aは上昇し、
マイナス(−)の時は下降する。制御モジュールA1
の線図よりM′=α・Δi1 ・Rに対応する速度vにて
電極Aが上昇するとアーク長が長くなり、トランス2次
側電流I1 が減少する。アーク電流の増加分Δi1 が減
少し、I1 に戻った時M=0となり電極は停止する。ゆ
えにインピーダンスZa は常に一定に制御される。ま
た、式(1)より、Rを調整することにより、このイン
ピーダンスZa を調整できることがわかる。
When M is positive (+), the electrode A rises,
When minus (-), it descends. From the diagram in the control module A 1 , when the electrode A rises at a speed v corresponding to M ′ = α · Δi 1 · R, the arc length increases and the transformer secondary side current I 1 decreases. When the amount of increase in arc current Δi 1 decreases and returns to I 1 , M = 0 and the electrode stops. Therefore, the impedance Z a is always controlled to be constant. Also, from the equation (1), by adjusting the R, it can be seen that adjusting the impedance Z a.

【0008】ところで、三相交流を電源とする三相アー
ク式灰溶融炉には図2,図3に示したように炉内に3本
の電極A,B,Cを正三角形の各頂点に位置するように
配置した形態のもの、或いは図4に例示したように一直
線上に等間隔で配置した形態のものがあるが、従来の電
力制御方式では電極A,B,Cに灰投入口,出滓口との
相対的な位置関係にかかわらず均等に電力を供給してい
た。
By the way, in a three-phase arc type ash melting furnace using a three-phase alternating current as a power source, as shown in FIGS. 2 and 3, three electrodes A, B and C are provided in the furnace at each vertex of an equilateral triangle. There is a form in which they are arranged so as to be positioned, or a form in which they are arranged at equal intervals on a straight line as illustrated in FIG. Power was supplied evenly regardless of the relative positional relationship with the outlet.

【0009】[0009]

【発明が解決しようとする課題】このため灰投入口Dに
近い部分では熱量不足により溶融の焼却灰が堆積する反
面、電極Aの近辺では熱量が余り炉壁を過熱しその損耗
が早くなるなど、電力の過不足による効率悪化,耐久性
悪化等の問題が生じている。
Therefore, in the portion near the ash input port D, molten incineration ash is accumulated due to insufficient heat amount, but in the vicinity of the electrode A, the heat amount is excessive and the furnace wall is overheated, and its wear is accelerated. However, problems such as efficiency deterioration and durability deterioration due to excess and deficiency of electric power have occurred.

【0010】ところが従来の三相アーク式灰溶融炉の電
力制御方法では電力の合計量は制御できても、各電極へ
の電力配分については個別に制御できず一律であったの
で上記のような問題が生じていた。
However, in the conventional power control method for a three-phase arc type ash melting furnace, even though the total amount of power can be controlled, the power distribution to each electrode cannot be controlled individually and is uniform. There was a problem.

【0011】[0011]

【課題を解決するための手段】本発明は上記に鑑みてな
されたもので、炉内に垂下した3本の電極と溶融スラグ
との間で三相交流電源とするアーク放電をさせて炉内の
焼却灰を溶融させる定インピーダンス制御装置が各電極
に付加された三相アーク式灰溶融炉において、電源電圧
と、溶融に必要な総投入電力と、各電極への電力分配比
とから各相の目標とするインピーダンスを演算により求
めるようにしたことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and the inside of the furnace is arc-discharged between the three electrodes hanging in the furnace and the molten slag by using a three-phase AC power source. In a three-phase arc type ash melting furnace in which a constant impedance control device that melts the incinerated ash of each is added to each electrode, each phase is determined from the power supply voltage, the total input power required for melting, and the power distribution ratio to each electrode. It is characterized in that the target impedance of is calculated.

【0012】[0012]

【作用】溶融に必要な総投入電力を過不足なく維持し、
かつ各電極への適正な電力分配を自由に設定することが
でき、必要な部分に適正な熱量を過不足なく発生させる
ことができる。
[Function] Maintaining the total input power required for melting without excess or deficiency,
In addition, an appropriate power distribution to each electrode can be set freely, and an appropriate amount of heat can be generated in a necessary portion without excess or deficiency.

【0013】[0013]

【実施例】次に本発明の実施例を図面と共に説明する。
図1に本発明に係る三相アーク式灰溶融炉の電力系統図
を示す。同図において、1は三相交流の炉用トランス、
2は炉体、A,B,Cは該炉体2内にモータ4A,4
B,4Cの作動により昇降可能に垂下された電極で、該
各電極A,B,Cに上記トランス1の二次側より送電ケ
ーブル5A,5B,5Cが夫々配線されている。
Embodiments of the present invention will now be described with reference to the drawings.
FIG. 1 shows a power system diagram of a three-phase arc ash melting furnace according to the present invention. In the figure, 1 is a transformer for a three-phase AC reactor,
2 is a furnace body, A, B, C are motors 4A, 4 in the furnace body 2.
Power transmission cables 5A, 5B, and 5C are wired from the secondary side of the transformer 1 to the electrodes A, B, and C, respectively, which are electrodes that can be lifted and lowered by the operation of B and 4C.

【0014】6A,6B,6Cはモータ4A,4B,4
Cにより電極3A,3B,3Cを個々に昇降動させるた
めに該各モータ4A,4B,4Cに夫々より電極昇降速
度指令を出すインピーダンス制御装置で、該各インピー
ダンス制御装置には夫々演算装置7から目標とするイン
ピーダンスra ,rb ,rc が指令され、各電極A,
B,Cとアーク及び炉内溶融スラグを含めたインピーダ
ンスが夫々該インピーダンスra ,rb ,rc に保持さ
れるように該各電極A,B,Cを昇降動させる。
6A, 6B and 6C are motors 4A, 4B and 4
An impedance control device for issuing an electrode ascending / descending speed command to each of the motors 4A, 4B, 4C in order to individually ascend / descend the electrodes 3A, 3B, 3C by C. impedance r a a target, r b, r c is commanded, the electrodes a,
B, C and arcs and furnace molten slag impedance is respectively the impedance r a, including, r b, respective electrodes A to be held in r c, B, to move up and down the C.

【0015】演算装置7は、三相交流電源のトランス二
次側の電源電圧E(V)と、総投入電力Po (KW)
と、各電極A,B,Cへの所要電力分配比Pa : P
b : Pc=1:n:n(n>0)とから上記インピーダ
ンスra ,rb ,rc を次の式(2)により演算し各イ
ンピーダンス制御装置6A,6B,6Cに指示する。
The arithmetic unit 7 has a power supply voltage E (V) on the secondary side of the transformer of the three-phase AC power supply and a total input power P o (KW).
And the required power distribution ratio P a to each electrode A, B, C: P
b: P c = 1: n : n (n> 0) because the impedance r a, r b, the r c is calculated by the following equation (2) the impedance control unit 6A, 6B, it instructs the 6C.

【数7】 ただし、r,kは次の式(3),(4)より夫々求め
る。
(Equation 7) However, r and k are respectively calculated from the following equations (3) and (4).

【数8】 [Equation 8]

【数9】 [Equation 9]

【0016】一例として、電源電圧E=310v、総投
入電力Po =1200KW、電力分配比Pa : Pb
c =1:1.1:1.1(n=1.1)とするための
インピーダンスra ,rb ,rc を求めると次のとおり
である。
As an example, power supply voltage E = 310 v, total input power P o = 1200 KW, power distribution ratio P a : P b :
P c = 1: 1.1: 1.1 (n = 1.1) and the impedance for r a, r b, is as follows when determining the r c.

【数10】 [Equation 10]

【0017】要するに電極A側のインピーダンスra
55.6mΩ、電極B側,C側のインピーダンスは9
5.5mΩに保持されるように該各電極を昇降動させる
ことにより、電極Aによる投入電力は375KW、電極
B,Cによる投入電力は夫々412.5KWに制御され
総投入電力Po を1200KWとなるように制御でき
る。
In short, the impedance r a on the electrode A side is 55.6 mΩ, and the impedance on the electrode B side and C side is 9
By raising and lowering each of the electrodes so as to be held at 5.5 mΩ, the input power by the electrode A is controlled to 375 KW, the input power by the electrodes B and C is controlled to 412.5 KW, and the total input power P o is 1200 KW. Can be controlled.

【0018】次に上記一般式(2)〜(4)の算出につ
いて説明する。溶融炉の場合、炉用トランス1の2次側
の抵抗分がリアクタンス分に比して非常に大きいので、
リアクタンス分は無視して計算できる。トランス2次側
の等価回路およびそのY→△変換等価回路は図5の如く
となる。相回転をA→B→Cとする電源電圧(トランス
2次側電圧)は次の式(5)で表わされる。
Next, the calculation of the above general formulas (2) to (4) will be described. In the case of a melting furnace, the resistance component on the secondary side of the reactor transformer 1 is much larger than the reactance component.
The reactance can be ignored and calculated. The equivalent circuit on the secondary side of the transformer and its Y → Δ conversion equivalent circuit are as shown in FIG. The power supply voltage (transformer secondary side voltage) that makes the phase rotation A → B → C is expressed by the following equation (5).

【数11】 インピーダンスをY→△変換すると、[Equation 11] When the impedance is converted from Y to Δ,

【数12】 従って電極A,B,Cに流れる三相交流の各相の線電流
は、
[Equation 12] Therefore, the line current of each phase of the three-phase alternating current flowing through the electrodes A, B, C is

【数13】 で表される。[Equation 13] It is represented by.

【0019】一方、灰投入口に近い電極B,電極Cへは
等しく電力を投入することを考慮すれば、rb =rc
なる。また、電極A側のインピーダンスra をrとし、
aとrb (rc )との比をkとすると、
On the other hand, considering that electric power is equally applied to the electrodes B and C near the ash inlet, r b = r c . Further, the impedance r a on the electrode A side is r,
If the ratio of r a and r b (r c ) is k,

【数14】 電極B,Cは電極Aに比べてアーク長を長くすれば、ア
ークの幅射熱が未溶融灰に移行し、迅速な溶融が助長さ
れるのでra <rb (rc )となる。従ってk>1であ
る。上記式(9)は上記式(2)と同じである。
[Equation 14] If the electrodes B, C may lengthen the arc length as compared with the electrode A, Radiated heat of the arc is shifted to unmelted ashes, rapid melting is because it is conducive r a <r b (r c ). Therefore, k> 1. The above formula (9) is the same as the above formula (2).

【0020】また、式(6)に式(9)を代入してR1
〜R3 をkとrで表すと、
Further, by substituting the equation (9) into the equation (6), R 1
When R 3 is represented by k and r,

【数15】 (Equation 15)

【数16】 [Equation 16]

【数17】 [Equation 17]

【数18】 (Equation 18)

【0021】従って、電力分配比nを上記式(4)に代
入してkを求めると共に、式(3)に所要総投入電力P
o と電源電圧Eと上記kを代入してrを求め、式(2)
に代入することにより、各電極A側,B側,C側の目標
とするインピーダンスra ,rb ,rc を算出し、この
a ,rb ,rc を各インピーダンス制御装置6A,6
B,6Cに指示することにより過不足のない電力配分に
て操業し得る。
Therefore, the power distribution ratio n is substituted into the above equation (4) to obtain k, and the required total input power P is obtained in the equation (3).
Substituting o , the power supply voltage E and the above k to obtain r, the equation (2)
By substituting the respective electrodes A side, B side, the impedance is a target C side r a, calculates r b, r c, the r a, r b, the r c the impedance control unit 6A, 6
By instructing B and 6C, it is possible to operate with sufficient power distribution.

【0022】[0022]

【発明の効果】このように本発明によれば、三相交流を
電源とするアーク式灰溶融炉における各電極の電力配分
を常に適正に設定することができ、発生熱量の過不足に
よる効率低下や炉壁損耗をなくし得る有益な効果があ
る。
As described above, according to the present invention, it is possible to always properly set the power distribution of each electrode in an arc type ash melting furnace using a three-phase alternating current as a power source, and to reduce efficiency due to excess or deficiency of the amount of heat generated. It also has the beneficial effect of eliminating wear and tear on the furnace wall.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る三相アーク式灰溶融炉の電力制御
方法の一実施例を示すブロック図。
FIG. 1 is a block diagram showing an embodiment of a power control method for a three-phase arc ash melting furnace according to the present invention.

【図2】電極の配置例を示す炉体の平面図。FIG. 2 is a plan view of a furnace body showing an arrangement example of electrodes.

【図3】電極の配置例を示す炉体の縦断面図。FIG. 3 is a vertical cross-sectional view of a furnace body showing an arrangement example of electrodes.

【図4】電極の配置の他の例を示す炉体の平面図。FIG. 4 is a plan view of a furnace body showing another example of arrangement of electrodes.

【図5】トランス二次側の等価回路図。FIG. 5 is an equivalent circuit diagram of the transformer secondary side.

【図6】定インピーダンス制御方法を示すブロック図。FIG. 6 is a block diagram showing a constant impedance control method.

【符号の説明】[Explanation of symbols]

A,B,C 電極 1 炉用トランス 2 炉体 6A,6B,6C インピーダンス制御装置 ra ,rb ,rc インピーダンスA, B, C electrode 1 furnace transformer 2 furnace 6A, 6B, 6C impedance control unit r a, r b, r c impedance

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉内に垂下した3本の電極と溶融スラグ
との間で三相交流電源とするアーク放電をさせて炉内の
焼却灰を溶融させる定インピーダンス制御装置が各電極
に付加された三相アーク式灰溶融炉において、電源電圧
と、溶融に必要な総投入電力と、各電極への電力分配比
とから各相の目標とするインピーダンスを演算により求
めるようにしたことを特徴とする三相アーク式灰溶融炉
の電力制御方法。
1. A constant impedance control device for melting an incinerated ash in a furnace by performing arc discharge using a three-phase AC power supply between the three electrodes hanging in the furnace and the molten slag is added to each electrode. In the three-phase arc type ash melting furnace, the target impedance of each phase is calculated from the power supply voltage, the total input power required for melting, and the power distribution ratio to each electrode. Power control method for three-phase arc type ash melting furnace.
JP6162716A 1994-06-20 1994-06-20 Method for controlling power of three-phase arc type ash melting furnace Pending JPH088060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6162716A JPH088060A (en) 1994-06-20 1994-06-20 Method for controlling power of three-phase arc type ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6162716A JPH088060A (en) 1994-06-20 1994-06-20 Method for controlling power of three-phase arc type ash melting furnace

Publications (1)

Publication Number Publication Date
JPH088060A true JPH088060A (en) 1996-01-12

Family

ID=15759940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6162716A Pending JPH088060A (en) 1994-06-20 1994-06-20 Method for controlling power of three-phase arc type ash melting furnace

Country Status (1)

Country Link
JP (1) JPH088060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020679A (en) * 1997-03-26 2000-02-01 Nec Corporation Shadow mask type color cathode ray tube and shadow mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020679A (en) * 1997-03-26 2000-02-01 Nec Corporation Shadow mask type color cathode ray tube and shadow mask

Similar Documents

Publication Publication Date Title
ES2078430T3 (en) APPARATUS AND METHOD FOR CONTROLLING THE POWER SUPPLIED TO AN INDUCTIVE LOAD, SUCH AS AN OVEN.
WO1994024504A1 (en) Dc arc furnace
JPH088060A (en) Method for controlling power of three-phase arc type ash melting furnace
US20030048828A1 (en) Arc furnance with dc arc and ac joule heating
JP3617579B2 (en) DC ash melting furnace
RU2104450C1 (en) Method of electric melting and electric arc furnace for its realization
JP2903544B2 (en) Electrode control method in arc furnace
JP2002048317A (en) Interruption method for melting furnace and its apparatus
JP3198593B2 (en) Power control method for ash melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP3721569B2 (en) Ash melting furnace
JP3398341B2 (en) Electric resistance melting furnace
JPH05217671A (en) Speed changeover method for arc furnace electrode elevating/sinking device
JP2000077180A (en) Electrode controll method for three-phase alternating current electric furnace
JP6910741B2 (en) Electrode lifting device for arc furnace
JP2001250673A (en) Electrode lifting control device for ac arc furnace
JP2000346559A (en) Control apparatus and method for electrode for electric furnace
JP3534680B2 (en) Operation method of ash melting furnace
JPH0714674A (en) Control of ash fusion furnace
JP3317792B2 (en) Method for detecting boundary between molten slag layer and molten salt layer in electric resistance melting furnace
JP2955961B2 (en) Waste incineration ash melting furnace
JP2003279269A (en) Input electric power control method of electric furnace
JPH09105507A (en) Operating method for ash treating electric resistance melting furnace
JP2665296B2 (en) DC arc furnace voltage controller
JPH10318522A (en) Melting furnace for incineration residue of waste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111