JP2002048317A - Interruption method for melting furnace and its apparatus - Google Patents

Interruption method for melting furnace and its apparatus

Info

Publication number
JP2002048317A
JP2002048317A JP2000232556A JP2000232556A JP2002048317A JP 2002048317 A JP2002048317 A JP 2002048317A JP 2000232556 A JP2000232556 A JP 2000232556A JP 2000232556 A JP2000232556 A JP 2000232556A JP 2002048317 A JP2002048317 A JP 2002048317A
Authority
JP
Japan
Prior art keywords
furnace
temperature
melting furnace
refractory
cooling air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000232556A
Other languages
Japanese (ja)
Other versions
JP3722674B2 (en
Inventor
Shizuo Kataoka
静夫 片岡
Ryoji Samejima
良二 鮫島
Masaaki Kurata
昌明 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2000232556A priority Critical patent/JP3722674B2/en
Publication of JP2002048317A publication Critical patent/JP2002048317A/en
Application granted granted Critical
Publication of JP3722674B2 publication Critical patent/JP3722674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Abstract

PROBLEM TO BE SOLVED: To automatically achieve interruption of inactive gas supplied into a furnace and supply of cooling air into the furnace in response to refractory temperature, etc., and realizing maintenance work by a worker by automatically monitoring the refractory temperature and temperature in the furnace upon interrupting the melting furnace. SOLUTION: In a melting furnace where inactive gas I is supplied into a furnace to keep the inside of the furnace in reducing atmosphere, and a workpiece W to be melted that is supplied into the furnace is melted, a display lamp 17 is lighted with electric power generated by a thermoelement 16 embedded in a refractory 23 in the melting furnace to indicate that the melting furnace is running. Further, upon interruption of the melting furnace the display lamp 17 is extinguished when the refractory temperature and the temperature in the furnace are lowered to a temperature where maintenance work is ensured. Further, the refractory temperature, etc., are monitored from a current due to electric power generated by the thermoelement 16, and when the refractory temperature, etc., reach about 500 deg.C or lower upon the interruption of the melting furnace, the supply of the inactive gas I into the furnace is automatically interrupted and cooling air A is forced to enter the furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉内へ窒素ガス等
の不活性ガスを供給して炉内を還元性雰囲気にした状態
で運転すると共に、都市ごみや産業廃棄物等の焼却炉か
ら排出された焼却残渣や飛灰等の被溶融物を電気エネル
ギーにより溶融するようにした溶融炉に於いて、溶融炉
の立下げ時に耐火物温度及び炉内温度を自動監視し、炉
内へ供給している不活性ガスの停止や炉内への冷却用空
気の供給を耐火物温度及び炉内温度に応じて自動的に行
えるようにした溶融炉の立下げ方法及びその装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation in which an inert gas such as nitrogen gas is supplied into a furnace and the furnace is operated in a reducing atmosphere, and an incinerator for municipal solid waste or industrial waste is used. Automatically monitor refractory temperature and furnace temperature when the melting furnace is shut down in a melting furnace that melts the incinerated residue and fly ash discharged using electric energy. The present invention relates to a method and an apparatus for shutting down a melting furnace in which the stopping of inert gas and the supply of cooling air to the furnace can be automatically performed according to the refractory temperature and the furnace temperature.

【0002】[0002]

【従来の技術】近年、都市ごみ等の焼却炉から排出され
る焼却残渣や飛灰(以下被溶融物と云う)の減容化及び
無害化を図る為、被溶融物の溶融固化処理法が注目さ
れ、現実に実用に供されている。何故なら、被溶融物は
溶融固化することにより、その容積を1/2〜1/3に
減らすことができると共に、重金属等の有害物質の溶出
防止や溶融スラグの再利用、最終埋立処分場の延命等が
可能になるからである。
2. Description of the Related Art In recent years, in order to reduce the volume and harmlessness of incineration residues and fly ash (hereinafter referred to as "melted material") discharged from incinerators such as municipal solid waste, a method of melting and solidifying the molten material has been developed. Attention has been given to practical use. This is because the volume of the material to be melted can be reduced to 1/2 to 1/3 by solidifying it, preventing the elution of harmful substances such as heavy metals, reusing molten slag, and the final landfill site. This is because the life can be extended.

【0003】而して、前記被溶融物の溶融固化処理方法
には、プラズマ溶融炉やアーク溶融炉、電気抵抗炉等の
電気式溶融炉を使用し、電気エネルギーによって被溶融
物を溶融した後、これを水冷若しくは空冷により固化す
る方法と、表面溶融炉や旋回溶融炉、コークスベッド炉
等の燃焼式溶融炉を使用し、燃料の燃焼エネルギーによ
って被溶融物を溶融した後、これを水冷若しくは空冷に
より固化する方法とが多く利用されて居り、ごみ焼却処
理設備に発電設備が併置されている場合には、前者の電
気エネルギーを用いる方法が、又、発電設備が併置され
ていない場合には、後者の燃焼エネルギーを用いる方法
が夫々多く採用されている。
[0003] In the method of melting and solidifying the material to be melted, an electric melting furnace such as a plasma melting furnace, an arc melting furnace, or an electric resistance furnace is used. A method of solidifying this by water cooling or air cooling, and using a combustion melting furnace such as a surface melting furnace, a swirling melting furnace, a coke bed furnace, etc. The method of solidifying by air cooling is often used, and when the power generation equipment is installed in the waste incineration treatment equipment, the former method using electric energy is used, and when the power generation equipment is not installed, The latter method using combustion energy has been widely adopted.

【0004】図5は従前のごみ焼却処理設備に併置した
直流アーク放電黒鉛電極式プラズマ溶融炉の一例を示す
ものであり、図5に於いて、25は溶融炉本体、25a
は溶融スラグ流出口、26は黒鉛主電極、27は黒鉛ス
タート電極、28は炉底電極、29はタップホール、3
0は被溶融物Wのホッパ、31は被溶融物Wの供給装
置、32は熱電対、33は温度計、34は炉底冷却ファ
ン、35は直流電源装置、36は不活性ガス発生装置、
37は不活性ガス供給配管、38は燃焼室、39は冷却
塔、40は燃焼用空気ファン、41は排ガス冷却ファ
ン、42はバグフィルター、43は誘引通風機、44は
煙突、45は溶融飛灰コンベア、46は飛灰溜め、47
はスラグ水冷槽、48はスラグ搬出コンベア、49はス
ラグ溜め、50はスラグ冷却水冷却装置である。
FIG. 5 shows an example of a DC arc discharge graphite electrode type plasma melting furnace juxtaposed with a conventional refuse incineration plant. In FIG. 5, reference numeral 25 denotes a melting furnace main body and 25a.
Is a molten slag outlet, 26 is a graphite main electrode, 27 is a graphite start electrode, 28 is a furnace bottom electrode, 29 is a tap hole,
0 is a hopper for the melt W, 31 is a supply device for the melt W, 32 is a thermocouple, 33 is a thermometer, 34 is a furnace bottom cooling fan, 35 is a DC power supply, 36 is an inert gas generator,
37 is an inert gas supply pipe, 38 is a combustion chamber, 39 is a cooling tower, 40 is a combustion air fan, 41 is an exhaust gas cooling fan, 42 is a bag filter, 43 is an induction ventilator, 44 is a chimney, and 45 is melting and flying. Ash conveyor, 46 is fly ash pool, 47
Is a slag water cooling tank, 48 is a slag carry-out conveyor, 49 is a slag reservoir, and 50 is a slag cooling water cooling device.

【0005】而して、焼却残渣や飛灰等の被溶融物Wは
ホッパ30に貯えられ、供給装置31により溶融炉本体
25内へ連続的に供給される。溶融炉本体25には、炉
頂部より垂直且つ昇降可能に挿入された黒鉛主電極26
(−極)と、炉底に設置された炉底電極28(+極)と
が設けられて居り、両電極26,28間に印加された直
流電源装置35(容量約600〜1000KWh/T・
被溶融物)の直流電圧(200V〜350V)により両
電極26,28間にアークが発生し、アーク中にプラズ
マガスとして不活性ガスI(窒素ガス)を供給すること
によりプラズマが発生する。これによって、溶融炉本体
25内に供給された被溶融物Wは1300℃〜1500
℃に加熱されて溶融スラグSとなる。
[0005] The material W to be melted such as incineration residues and fly ash is stored in the hopper 30 and continuously supplied into the melting furnace main body 25 by the supply device 31. A graphite main electrode 26 vertically and vertically inserted from the top of the furnace is inserted into the melting furnace body 25.
(− Pole) and a furnace bottom electrode 28 (+ pole) installed on the furnace bottom, and a DC power supply 35 (capacity of about 600 to 1000 kWh / T ·) applied between the electrodes 26 and 28 is provided.
An arc is generated between the two electrodes 26 and 28 by the DC voltage (200 V to 350 V) of the material to be melted, and plasma is generated by supplying an inert gas I (nitrogen gas) as a plasma gas into the arc. Thereby, the material to be melted W supplied into the melting furnace main body 25 is from 1300 ° C. to 1500 ° C.
It is heated to ℃ and becomes molten slag S.

【0006】ところで、溶融前の被溶融物Wは導電性が
低い為、プラズマ溶融炉の始動時には黒鉛スタート電極
27を溶融炉本体25内へ挿入してこれを+電極とし、
これと黒鉛主電極26間へ通電することにより被溶融物
Wが溶融するのを待つ。そして、被溶融物Wが溶融する
と、その導電性が上昇する為、黒鉛スタート電極27を
炉底電極28へ切り換える。
Since the material to be melted W before melting has low conductivity, a graphite start electrode 27 is inserted into the melting furnace body 25 at the time of starting the plasma melting furnace, and is used as a positive electrode.
By energizing this and between the graphite main electrodes 26, the process waits for the melt W to melt. When the material to be melted W is melted, the conductivity of the material W is increased, so that the graphite start electrode 27 is switched to the furnace bottom electrode 28.

【0007】又、前記溶融炉本体25の内部は、溶融ス
ラグSへの重金属類の混入を低減したり、黒鉛主電極2
6等の酸化を防止する為に還元性雰囲気に保持されて居
り、その為にPSA窒素製造装置等の不活性ガス発生装
置36から不活性ガス供給配管37を介して窒素ガス等
の不活性ガスIが、中空筒状に形成した黒鉛主電極26
及び黒鉛スタート電極27の中空孔を通して、溶融炉本
体25内へ連続的に供給されている。不活性ガスIを溶
融炉本体25内へ供給する構成とするのは、Pb等の
重金属類が揮散し易く、スラグの品質が向上すること、
プラズマ放電領域を濃厚な不活性ガスIにより充満さ
せた方が、プラズマアークの発生や安定性等の所謂プラ
ズマ放電性が良好になると考えられること、黒鉛主電
極26や黒鉛スタート電極27の消耗がより少なくなる
と考えられること、等の理由によるものである。
Further, the inside of the melting furnace main body 25 reduces the mixing of heavy metals into the molten slag S and prevents the graphite main electrode 2 from being mixed.
6 is kept in a reducing atmosphere in order to prevent oxidation, etc. Therefore, an inert gas such as nitrogen gas is supplied from an inert gas generator 36 such as a PSA nitrogen production device via an inert gas supply pipe 37. I is a graphite main electrode 26 formed in a hollow cylindrical shape
And, it is continuously supplied into the melting furnace main body 25 through the hollow hole of the graphite start electrode 27. The configuration in which the inert gas I is supplied into the melting furnace main body 25 is such that heavy metals such as Pb are easily volatilized and the quality of the slag is improved;
It is considered that when the plasma discharge region is filled with the rich inert gas I, the so-called plasma discharge properties such as generation and stability of the plasma arc are improved, and consumption of the graphite main electrode 26 and the graphite start electrode 27 is reduced. This is because it is considered to be less.

【0008】更に、前記溶融炉本体25の炉底は、炉底
冷却ファン34からの冷風(空気)により空冷され、こ
れによって炉底電極28近傍の過度な温度上昇が防止さ
れている。又、溶融炉本体25そのものは、高温に耐え
る耐火物及びそれを覆う断熱材等により構成されて居
り、必要に応じて断熱材の外部に水冷ジャケットが設け
られている。
Further, the furnace bottom of the melting furnace main body 25 is air-cooled by cold air (air) from a furnace bottom cooling fan 34, thereby preventing an excessive temperature rise near the furnace bottom electrode 28. Further, the melting furnace body 25 itself is made of a refractory which can withstand high temperatures and a heat insulating material covering the same, and a water cooling jacket is provided outside the heat insulating material as necessary.

【0009】そして、被溶融物Wの溶融が開始される
と、その内部に存在した揮発成分や炭素の酸化により起
生した一酸化炭素等は、ガス体G(以下排ガスと云う)
となる。この排ガスG(ガス体)は、溶融スラグ流出口
25aの上部空間から燃焼室38内に入り、ここで燃焼
用空気ファン40により送入された燃焼用空気が加えら
れることにより、内部の未燃分が完全に燃焼された上、
冷却塔39や排ガス冷却ファン41からの冷却空気によ
って冷却された後、バグフィルター42を経て誘引通風
機43により煙突44へ排出される。尚、バグフィルタ
ー42で捕捉された溶融飛灰は、溶融飛灰コンベア45
により飛灰溜め46へ送られる。
When the melting of the material to be melted W is started, volatile components present therein, carbon monoxide generated by oxidation of carbon, and the like are converted into a gas G (hereinafter referred to as exhaust gas).
Becomes The exhaust gas G (gas body) enters the combustion chamber 38 from the upper space of the molten slag outlet 25a, where the combustion air sent by the combustion air fan 40 is added, so that uncombusted air inside the combustion chamber 38 is added. The minutes were completely burned,
After being cooled by the cooling air from the cooling tower 39 and the exhaust gas cooling fan 41, the air is discharged to the chimney 44 by the induction ventilator 43 through the bag filter 42. The molten fly ash captured by the bag filter 42 is supplied to a molten fly ash conveyor 45.
Is sent to the fly ash reservoir 46.

【0010】一方、被溶融物Wに含まれている鉄等の金
属類やガラス、砂等の不燃性成分は、プラズマアーク放
電による発生熱を供給されることによりその溶融点(1
100℃〜1250℃)を越える約1300℃〜150
0℃の高温度にまで加熱され、流動性を有する液体状の
溶融スラグSとなる。この溶融スラグSは、溶融スラグ
流出口25aより連続的に溢れ出し、冷却水を満したス
ラグ水冷槽47内へ落下することにより冷却されて水砕
スラグとなり、スラグ搬出コンベア48によってスラグ
溜め49へ排出される。尚、プラズマ溶融炉を停止する
際には、溶融炉本体25内の溶融スラグSが冷却・固化
してしまうのを防止する為、溶融スラグSの底部レベル
に設けたタップホール29より湯抜きを行い、溶融炉本
体25内は空状態にされる。
On the other hand, metals such as iron, non-combustible components such as glass and sand contained in the material W to be melted are supplied to the heat generated by the plasma arc discharge so that their melting points (1) are reduced.
100 ° C to 1250 ° C)
The molten slag S is heated to a high temperature of 0 ° C. and becomes a liquid molten slag S having fluidity. The molten slag S continuously overflows from the molten slag outflow port 25a, and is cooled by dropping into a slag water cooling tank 47 filled with cooling water to become granulated slag. Is discharged. When the plasma melting furnace is stopped, in order to prevent the molten slag S in the melting furnace main body 25 from cooling and solidifying, the molten metal is drained from a tap hole 29 provided at the bottom level of the molten slag S. Then, the inside of the melting furnace main body 25 is emptied.

【0011】[0011]

【発明が解決しようとする課題】ところで、上述したプ
ラズマ溶融炉では、焼損量を減少させる為、耐火物にカ
ーボン系耐火物(カーボン煉瓦等)を使用している。こ
のカーボン系耐火物を使用しているプラズマ溶融炉で
は、炉内に空気が流入すると耐火物の酸化消耗が激しく
なる為、炉内を還元性雰囲気にして運転する必要があ
る。又、プラズマ溶融炉の立下げ時にも、耐火物温度及
び炉内温度が500℃以下になるまでは炉内へ空気を流
入させず、炉内を還元性雰囲気に保つ必要がある。従っ
て、従来のプラズマ溶融炉では、炉内に窒素ガス等の不
活性ガスIを供給して炉内を還元性雰囲気にして運転し
ており、プラズマ溶融炉の立下げ時には耐火物温度及び
炉内温度が500℃以下になったことを確認してから、
不活性ガスIの供給を停止すると共に、冷却用空気の吹
き込みによる強制空冷或いは通風系統を止めて自然放冷
するようにしている。
In the plasma melting furnace described above, a carbon-based refractory (carbon brick, etc.) is used as a refractory in order to reduce the amount of burnout. In a plasma melting furnace using this carbon-based refractory, when air flows into the furnace, oxidative consumption of the refractory becomes severe. Therefore, it is necessary to operate the furnace in a reducing atmosphere. Further, even when the plasma melting furnace is shut down, it is necessary to keep the inside of the furnace in a reducing atmosphere without allowing air to flow into the furnace until the temperature of the refractory and the temperature in the furnace become 500 ° C. or less. Therefore, in the conventional plasma melting furnace, an inert gas I such as nitrogen gas is supplied into the furnace to operate the furnace in a reducing atmosphere. When the plasma melting furnace is shut down, the temperature of the refractory and the temperature in the furnace are reduced. After confirming that the temperature has dropped below 500 ° C,
The supply of the inert gas I is stopped, and forced air cooling by blowing cooling air or the ventilation system is stopped to allow natural cooling.

【0012】しかし、従来のプラズマ溶融炉に於いて
は、プラズマ溶融炉の立下げ時には運転員が熱電対32
及び温度計33により耐火物温度及び炉内温度を一々監
視しなければならず、作業性や取扱性に劣ると云う問題
があった。然も、耐火物温度や炉内温度の監視を熱電対
32で行う為には、プラズマ溶融炉の施工時に耐火物に
熱電対32を設置する為の穴を開ける必要があり、手数
がかかると云う問題もある。又、従来のプラズマ溶融炉
に於いては、プラズマ溶融炉の立下げ時には運転員が炉
内へ供給している窒素ガス等の不活性ガスIを手動操作
で止めるようしている為、耐火物温度や炉内温度が既に
500℃以下になっている場合でも、窒素ガス等の不活
性ガスIを炉内へ供給していることがある。その結果、
コストのかかる窒素ガス等の不活性ガスIの使用量が増
加し、ランニングコストが高騰すると云う問題がある。
更に、従来のプラズマ溶融炉に於いては、被溶融物Wの
溶融により高温の熱が発生しているが、その数十%が放
熱により損失している。又、従来のプラズマ溶融炉に於
いては、溶融炉本体25を形成する耐火物が数百度に達
している為、この熱を利用することも可能であるが、そ
の熱は殆どが無駄に捨てられており、利用されていない
のが現状である。そのうえ、従来のプラズマ溶融炉に於
いては、メンテナンス作業(例えば点検作業や保守作業
等)を行う際にプラズマ溶融炉の運転を停止していて
も、耐火物温度や炉内温度が高温に保たれている場合が
あり、このときに作業員が誤って点検口やマンホール等
を開けることがあり、安全性に劣ると云う問題がある。
However, in the conventional plasma melting furnace, when the plasma melting furnace is shut down, an operator operates the thermocouple 32.
In addition, the refractory temperature and the furnace temperature must be monitored one by one with the thermometer 33, and there is a problem that workability and handleability are poor. Of course, in order to monitor the temperature of the refractory and the temperature in the furnace with the thermocouple 32, it is necessary to make a hole for installing the thermocouple 32 on the refractory when constructing the plasma melting furnace. There is also a problem. Further, in the conventional plasma melting furnace, when the plasma melting furnace is shut down, an operator manually stops inert gas I such as nitrogen gas supplied to the furnace, so that the refractory Even when the temperature and the furnace temperature are already 500 ° C. or less, an inert gas I such as nitrogen gas may be supplied into the furnace. as a result,
There is a problem that the use amount of the inert gas I such as nitrogen gas which is expensive increases, and the running cost rises.
Further, in the conventional plasma melting furnace, high-temperature heat is generated due to melting of the material to be melted W, but several tens of the heat is lost due to heat radiation. Further, in the conventional plasma melting furnace, since the refractory forming the melting furnace body 25 has reached several hundred degrees, it is possible to use this heat, but most of the heat is wasted. It is currently not used. In addition, in conventional plasma melting furnaces, even when the operation of the plasma melting furnace is stopped during maintenance work (for example, inspection work or maintenance work), the temperature of the refractory and the temperature inside the furnace are kept high. The operator may accidentally open the inspection port or manhole at this time, and this poses a problem of poor safety.

【0013】本発明は、このような問題点に鑑みて為さ
れたものであり、その目的は、溶融炉の立下げ時に耐火
物温度及び炉内温度を自動監視し、炉内へ供給している
窒素ガス等の不活性ガスの停止や炉内への冷却用空気の
供給を耐火物温度及び炉内温度に応じて自動的に行える
と共に、作業員によるメンテナンス作業を安全に行える
ようにした溶融炉の立下げ方法及びその装置を提供する
ことにある。
The present invention has been made in view of the above problems, and has as its object to automatically monitor the temperature of a refractory and the temperature in a furnace when the melting furnace is shut down and supply the temperature to the furnace. In addition to automatically stopping the inert gas such as nitrogen gas and supplying cooling air to the furnace according to the temperature of the refractory and the furnace, melting is performed so that maintenance work by workers can be performed safely. It is an object of the present invention to provide a method for shutting down a furnace and a device therefor.

【0014】[0014]

【課題を解決するための手段】上記目的を達成する為
に、本発明の請求項1の発明は、炉内に不活性ガスを供
給して炉内を還元性雰囲気に保持すると共に、炉内に供
給した被溶融物を電気エネルギーにより溶融するように
した溶融炉に於いて、溶融炉の耐火物に埋設した熱エネ
ルギーを電気エネルギーに変換する熱電素子の発生電力
により表示灯を点灯させて溶融炉が運転中であることを
表示すると共に、溶融炉の立下げ時には耐火物温度及び
炉内温度が溶融炉のメンテナンス作業を行える温度まで
低下したときに表示灯が消灯するようにし、又、熱電素
子の発生電力による電流値から耐火物温度及び炉内温度
を監視し、溶融炉の立下げ時に耐火物温度及び炉内温度
が約500℃以下になったときに炉内への不活性ガスの
供給を自動的に停止すると共に、炉内へ冷却用空気を流
入させて空冷するようにしたことに特徴がある。
In order to achieve the above object, an invention according to claim 1 of the present invention is to supply an inert gas into a furnace to maintain the inside of the furnace in a reducing atmosphere, In the melting furnace where the material to be melted supplied is melted by electric energy, the indicator light is turned on by the electric power generated by the thermoelectric element that converts the heat energy embedded in the refractory of the melting furnace into electric energy and melts. In addition to indicating that the furnace is in operation, when the melting furnace is shut down, the indicator lamp is turned off when the temperature of the refractory and the temperature in the furnace have fallen to a temperature at which maintenance work of the melting furnace can be performed. The refractory temperature and the furnace temperature are monitored from the current value generated by the power generated by the element, and when the refractory temperature and the furnace temperature fall to about 500 ° C or less when the melting furnace is shut down, inert gas is introduced into the furnace. Automatically stop supply Rutotomoni, is characterized in that by introducing the cooling air into the furnace was set to be air-cooled.

【0015】本発明の請求項2の発明は、溶融炉の耐火
物に埋設された熱エネルギーを電気エネルギーに変換す
る熱電素子と、熱電素子の発生電力により点灯する表示
灯と、炉内へ不活性ガスを供給する不活性ガス供給配管
に介設された制御弁と、溶融炉内へ冷却用空気を供給す
る冷却用空気供給配管と、冷却用空気供給配管に接続さ
れた冷却用空気ファンと、制御弁及び冷却用空気ファン
を制御する制御器とから成り、熱電素子の発生電力量に
応じて表示灯を点灯又は消灯させると共に、熱電素子の
発生電力による電流値に基づいて制御器により制御弁及
び冷却用空気ファンを制御するようにしたことに特徴が
ある。
According to a second aspect of the present invention, there is provided a thermoelectric element for converting thermal energy buried in a refractory of a melting furnace into electric energy, an indicator light which is turned on by the power generated by the thermoelectric element, and A control valve interposed in an inert gas supply pipe for supplying active gas, a cooling air supply pipe for supplying cooling air into the melting furnace, and a cooling air fan connected to the cooling air supply pipe. , A control valve and a controller for controlling the cooling air fan. The indicator light is turned on or off according to the amount of power generated by the thermoelectric element, and is controlled by the controller based on the current value generated by the power generated by the thermoelectric element. It is characterized in that the valve and the cooling air fan are controlled.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。図1は本発明の実施の形態
に係る溶融炉の立下げ装置を還元性雰囲気で運転する直
流アーク放電黒鉛電極式のプラズマ溶融炉に設置したも
のであり、図1に於いて、1は溶融炉本体、2は被溶融
物供給口、3は溶融スラグ流出口、4は黒鉛主電極、5
は黒鉛スタート電極、6は炉底電極、7はタップホー
ル、8は被溶融物Wのホッパ、9は被溶融物Wの供給装
置、10は炉底冷却ファン、11は直流電源装置、12
は不活性ガス発生装置、13は不活性ガス供給配管、1
4は燃焼室、15は溶融炉の立下げ装置、16は熱電素
子、17は表示灯、18は制御弁、19は冷却用空気供
給配管、20は冷却用空気ファン、21は制御弁18の
制御器、22は冷却用空気ファン20の制御器である。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a melting apparatus for a melting furnace according to an embodiment of the present invention, which is installed in a plasma melting furnace of a DC arc discharge graphite electrode type operated in a reducing atmosphere. In FIG. Furnace body 2, melt supply port 3, melt slag outlet 4, graphite main electrode 5,
Is a graphite start electrode, 6 is a furnace bottom electrode, 7 is a tap hole, 8 is a hopper for the melt W, 9 is a supply device for the melt W, 10 is a furnace bottom cooling fan, 11 is a DC power supply, 12
Is an inert gas generator, 13 is an inert gas supply pipe, 1
4 is a combustion chamber, 15 is a melting furnace lowering device, 16 is a thermoelectric element, 17 is an indicator light, 18 is a control valve, 19 is a cooling air supply pipe, 20 is a cooling air fan, and 21 is a control valve 18. A controller 22 is a controller for the cooling air fan 20.

【0017】前記溶融炉本体1は、鋼板製のケーシング
(図示省略)及び耐食性・耐熱性等に優れた耐火物23
(例えばカーボン煉瓦等のカーボン系耐火物)等により
夫々形成された周壁1a、天井壁1b及び炉底1cから
構成されており、横断面形状が円形に形成されている。
又、溶融炉本体1の周壁1aには、焼却残渣や飛灰等の
被溶融物Wを炉内へ供給する為の被溶融物供給口2が形
成されている。この被溶融物供給口2には、スクリュー
フィーダー等の被溶融物Wの供給装置9が接続されてお
り、被溶融物Wを炉内へ定量的に連続供給できるように
なっている。更に、溶融炉本体1の周壁1aには、その
直径方向に於いて被溶融物供給口2と対向する位置に溶
融スラグ流出口3が形成されている。この溶融スラグ流
出口3は、炉内の溶融スラグS及び高温の燃焼排ガスG
を炉外へ排出させる為のものであり、スラグ水冷層(図
示省略)等のスラグ処理系及び燃焼室14等の排ガス処
理系に夫々連通状に接続されている。
The melting furnace body 1 includes a steel plate casing (not shown) and a refractory 23 having excellent corrosion resistance and heat resistance.
(For example, a carbon-based refractory such as a carbon brick) and the like, each of which is formed of a peripheral wall 1a, a ceiling wall 1b, and a furnace bottom 1c, and has a circular cross-sectional shape.
Further, on the peripheral wall 1a of the melting furnace main body 1, a melted material supply port 2 for supplying a melted material W such as incineration residues and fly ash into the furnace is formed. A supply device 9 for the melt W, such as a screw feeder, is connected to the melt supply port 2 so that the melt W can be continuously and quantitatively supplied into the furnace. Further, a molten slag outlet 3 is formed on the peripheral wall 1a of the melting furnace main body 1 at a position facing the melt supply port 2 in the diameter direction. The molten slag outflow port 3 is connected to the molten slag S in the furnace and the high-temperature flue gas G.
And is connected to a slag treatment system such as a slag water-cooled layer (not shown) and an exhaust gas treatment system such as the combustion chamber 14 in communication with each other.

【0018】そして、溶融炉本体1には、炉内にプラズ
マアークを発生させる為の黒鉛主電極4と黒鉛スタート
電極5と炉底電極6とが夫々設けられている。即ち、黒
鉛主電極4は、溶融炉本体1の天井壁1b中心部に昇降
自在に挿入支持されており、溶融スラグSとの間を一定
距離に保つように昇降操作されるようになっている。こ
の黒鉛主電極4は、直流電源装置11の陰極に接続され
ている。又、黒鉛スタート電極5は、溶融炉本体1の天
井壁1bの外周縁部に傾斜姿勢でもって進退移動自在に
挿入支持されており、先端部を炉内に突出させない放電
停止位置と先端部を黒鉛主電極4の先端部に近接させた
状態で炉内に突出する放電作用位置とに亘って昇降操作
されるようになっている。この黒鉛スタート電極5は、
直流電源装置11の陽極に接続されている。更に、炉底
電極6は、溶融炉本体1の炉底1cに設けられており、
直流電源装置11の陽極に接続されている。
The melting furnace body 1 is provided with a graphite main electrode 4, a graphite start electrode 5, and a furnace bottom electrode 6 for generating a plasma arc in the furnace. That is, the graphite main electrode 4 is inserted and supported in the center of the ceiling wall 1b of the melting furnace main body 1 so as to be able to move up and down, and is moved up and down so as to keep a constant distance from the molten slag S. . The graphite main electrode 4 is connected to the cathode of the DC power supply 11. The graphite start electrode 5 is inserted and supported on the outer peripheral edge of the ceiling wall 1b of the melting furnace main body 1 so as to be movable forward and backward with an inclined posture. The ascent / descent operation is performed over a discharge action position protruding into the furnace in a state of being close to the tip of the graphite main electrode 4. This graphite start electrode 5
Connected to the anode of DC power supply 11. Further, the furnace bottom electrode 6 is provided on the furnace bottom 1c of the melting furnace body 1,
Connected to the anode of DC power supply 11.

【0019】尚、黒鉛主電極4及び黒鉛スタート電極5
は、何れも円筒状に形成されており、炉内を還元性雰囲
気に保持するのに必要な窒素ガス等の不活性ガスIが不
活性ガス発生装置12から不活性ガス供給配管13を介
して各電極4,5の中空孔を通して炉内へ供給されるよ
うになっている。
The graphite main electrode 4 and the graphite start electrode 5
Are formed in a cylindrical shape, and an inert gas I such as nitrogen gas necessary for maintaining the inside of the furnace in a reducing atmosphere is supplied from an inert gas generator 12 through an inert gas supply pipe 13. The gas is supplied into the furnace through the hollow holes of the electrodes 4 and 5.

【0020】本発明の実施の形態に係るプラズマ溶融炉
の立下げ装置15は、プラズマ溶融炉の耐火物23(溶
融炉本体1の耐火物23)に埋設された熱エネルギーを
電気エネルギーに変換する熱電素子16と、熱電素子1
6の発生電力により点灯する表示灯17と、炉内へ窒素
ガス等の不活性ガスIを供給する不活性ガス供給配管1
3に介設された制御弁18と、炉内へ冷却用空気Aを供
給する冷却用空気供給配管19と、冷却用空気供給配管
19に接続された冷却用空気ファン20と、制御弁18
を制御する制御器21と、冷却用空気ファン20を制御
する制御器22等から構成されており、耐火物23に埋
設した熱電素子16の発生電力量に応じて表示灯17を
点灯又は消灯させると共に、熱電素子16の発生電力に
よる電流値に基づいて制御器21,22により制御弁1
8及び冷却用空気ファン20を夫々制御するようにした
ものである。
The plasma melting furnace lowering device 15 according to the embodiment of the present invention converts thermal energy buried in the refractory 23 of the plasma melting furnace (the refractory 23 of the melting furnace body 1) into electric energy. Thermoelectric element 16 and thermoelectric element 1
6, an indicator lamp 17 which is turned on by the generated power, and an inert gas supply pipe 1 for supplying an inert gas I such as nitrogen gas into the furnace.
3, a cooling air supply pipe 19 for supplying cooling air A into the furnace, a cooling air fan 20 connected to the cooling air supply pipe 19, and a control valve 18.
, A controller 22 for controlling the cooling air fan 20, and the like. The indicator lamp 17 is turned on or off according to the amount of power generated by the thermoelectric element 16 embedded in the refractory 23. At the same time, the controllers 21 and 22 control the control valve 1 based on the current value of the power generated by the thermoelectric element 16.
8 and the cooling air fan 20 are respectively controlled.

【0021】即ち、立下げ装置15は、溶融炉本体1の
耐火物23に埋設した熱電素子16の発生電力により表
示灯17を点灯させてプラズマ溶融炉が運転中であるこ
とを表示すると共に、プラズマ溶融炉の立下げ時には耐
火物温度及び炉内温度がプラズマ溶融炉のメンテナンス
作業(点検作業や保守作業、補修作業等)を行える温度
まで低下したときに表示灯17が消灯するようにし、
又、熱電素子16の発生電力による電流値から耐火物温
度及び炉内温度を自動監視し、プラズマ溶融炉の立下げ
時に耐火物温度及び炉内温度が約500℃以下になった
ときに制御器21により制御弁18を閉じて炉内への不
活性ガスIの供給を自動的に停止すると共に、制御器2
2により冷却用空気ファン20を作動させて炉内へ冷却
用空気Aを流入させるようにしたものである。
That is, the lowering device 15 turns on the indicator lamp 17 by the power generated by the thermoelectric element 16 embedded in the refractory 23 of the melting furnace main body 1 to indicate that the plasma melting furnace is operating, When the plasma melting furnace is shut down, the indicator lamp 17 is turned off when the temperature of the refractory and the temperature in the furnace decrease to a temperature at which maintenance work (inspection work, maintenance work, repair work, etc.) of the plasma melting furnace can be performed,
Also, the refractory temperature and the furnace temperature are automatically monitored from the current value generated by the power generated by the thermoelectric element 16, and the controller is controlled when the refractory temperature and the furnace temperature fall to about 500 ° C. or less when the plasma melting furnace is shut down. The control valve 18 is closed by 21 to automatically stop the supply of the inert gas I into the furnace.
2, the cooling air fan 20 is operated so that the cooling air A flows into the furnace.

【0022】前記熱電素子16は、図2及び図3に示す
如く、例えば鉄珪化物(FeSi2)にMn、Al、C
rの少なくとも一種を添加して成るP型の熱電材料16
a(Fe0.9Mn0.1Si2 モル組成比等)と、同じく鉄
珪化物(FeSi2 )にCo、B、P、Niの少なくと
も一種を添加して成るN型の熱電材料16b(Fe0. 95
Co0.05Si2 モル組成比等)とを略U字状に接合する
ことにより構成されている。この熱電素子16は、P型
の熱電材料16aとN型の熱電材料16bの接合部分1
6cを加熱し、この接合部分16cと熱電素子16の両
端部16dとの間に温度差を与えると、起電力が生じて
電流が流れるようになっている。このような熱電素子1
6の起電力の大きさは、高温部側である熱電素子16の
接合部分16cと低温部側である熱電素子16の両端部
16dとの温度差によって決まる。
As shown in FIGS. 2 and 3, for example, the thermoelectric element 16 is made of iron silicide (FeSi 2 ) containing Mn, Al, C
P-type thermoelectric material 16 to which at least one of r is added
a and (Fe 0.9 Mn 0.1 Si 2 molar ratio, etc.), also iron silicide (FeSi 2) to Co, B, P, at least one added comprising N-type thermoelectric material 16b of Ni (Fe 0. 95
(Co 0.05 Si 2 molar composition ratio, etc.) in a substantially U-shape. The thermoelectric element 16 has a joint portion 1 between a P-type thermoelectric material 16a and an N-type thermoelectric material 16b.
When 6c is heated and a temperature difference is applied between the joint 16c and both ends 16d of the thermoelectric element 16, an electromotive force is generated and current flows. Such a thermoelectric element 1
The magnitude of the electromotive force 6 is determined by the temperature difference between the junction 16c of the thermoelectric element 16 on the high-temperature side and the both ends 16d of the thermoelectric element 16 on the low-temperature side.

【0023】上述した熱電素子16は、図2及び図3に
示す如く、溶融炉本体1の周壁1aや天井壁1b等を構
成する耐火物23(カーボン煉瓦)に埋設固定されてお
り、低温部側となる両端部16dが耐火物23の外方へ
露出した状態となっている。この熱電素子16は、所定
の形状の耐火物23を形成する際に耐火物23に埋設さ
れている。そして、熱電素子16を埋設した耐火物23
は、熱電素子16の接合部分16cが炉の内側(図2の
右側)を向くように、又、熱電素子16の両端部16d
が炉の外側(図2の左側)を向くようにプラズマ溶融炉
の炉壁に嵌め込まれている。従って、プラズマ溶融炉の
耐火物23に埋設した熱電素子16に於いては、温度上
昇した耐火物23の熱の影響を受ける高温部側となる接
合部分16cと耐火物23の熱の影響をあまり受けない
低温部側と成る両端部16dとの温度差によって起電力
が生じ、熱電素子16の両端部16dに接続したリード
線24に電流が流れることになる。
The thermoelectric element 16 is embedded and fixed in a refractory 23 (carbon brick) constituting the peripheral wall 1a and the ceiling wall 1b of the melting furnace main body 1 as shown in FIGS. Both end portions 16d on the sides are exposed to the outside of the refractory 23. The thermoelectric element 16 is embedded in the refractory 23 when forming the refractory 23 having a predetermined shape. And the refractory 23 in which the thermoelectric element 16 is embedded
Is set so that the joining portion 16c of the thermoelectric element 16 faces the inside of the furnace (the right side in FIG. 2), and both ends 16d of the thermoelectric element 16
Is fitted to the furnace wall of the plasma melting furnace so as to face the outside of the furnace (left side in FIG. 2). Therefore, in the thermoelectric element 16 buried in the refractory 23 of the plasma melting furnace, the effect of the heat of the refractory 23 and the joining portion 16c on the high-temperature portion side which is affected by the heat of the refractory 23 whose temperature has increased is very small. An electromotive force is generated due to a temperature difference between both ends 16d on the low-temperature side, which is not affected, and a current flows through the lead wire 24 connected to both ends 16d of the thermoelectric element 16.

【0024】図4は4種類の熱電素子16を夫々埋設し
た耐火物23をプラズマ溶融炉の炉壁に嵌め込み、耐火
物23及び炉内を常温から約900℃まで加熱したとき
の各熱電素子16の熱電特性を表わしたものであり、耐
火物温度及び炉内温度と熱電素子16の出力の関係を示
すグラフである。このグラフからも明らかなように、耐
火物23に埋設した熱電素子16の出力の大きさによっ
て耐火物温度及び炉内温度を知ることができる。従っ
て、プラズマ溶融炉の運転時や立下げ時に耐火物23に
埋設した熱電素子16の発生電力による電流値の変化を
調べることによって、そのときの耐火物温度及び炉内温
度を監視することが可能となる。
FIG. 4 shows that the refractory 23 in which four types of thermoelectric elements 16 are embedded is fitted into the furnace wall of the plasma melting furnace, and the refractory 23 and the inside of the furnace are heated from room temperature to about 900 ° C. 3 is a graph showing the relationship between the output of the thermoelectric element 16 and the temperature of the refractory and the furnace. As is clear from this graph, the refractory temperature and the furnace temperature can be known from the magnitude of the output of the thermoelectric element 16 embedded in the refractory 23. Therefore, when the plasma melting furnace is operated or shut down, it is possible to monitor the refractory temperature and the furnace temperature at that time by examining the change in the current value due to the power generated by the thermoelectric element 16 embedded in the refractory 23. Becomes

【0025】前記表示灯17は、プラズマ溶融炉の運転
中に点灯してプラズマ溶融炉が運転中であることを作業
員に知らせると共に、プラズマ溶融炉の立下げ時に消灯
して耐火物温度及び炉内温度がメンテナンス作業(点検
作業や保守作業、補修作業等)を行える温度まで低下し
たことを作業員に知らせるものである。即ち、表示灯1
7は、リード線24を介して熱電素子16に接続されて
おり、プラズマ溶融炉の運転中には熱電素子16の発生
電力によって点灯し、又、プラズマ溶融炉の立下げ時に
は耐火物温度及び炉内温度が低下していき、これらの温
度がメンテナンス作業を行える温度になったときに発生
する電流値以下となったときに消灯するように構成され
ている。尚、この表示灯17には、従来公知のパトライ
トが使用されている。
The indicator lamp 17 is turned on during the operation of the plasma melting furnace to notify an operator that the plasma melting furnace is operating, and is turned off when the plasma melting furnace is shut down to turn off the refractory temperature and the furnace temperature. The operator is notified that the internal temperature has dropped to a temperature at which maintenance work (inspection work, maintenance work, repair work, etc.) can be performed. That is, the indicator light 1
Numeral 7 is connected to the thermoelectric element 16 via a lead wire 24, and is turned on by the power generated by the thermoelectric element 16 during operation of the plasma melting furnace. It is configured to turn off the light when the internal temperature decreases and the temperature becomes lower than the current value generated when the temperature reaches a temperature at which maintenance work can be performed. In addition, a conventionally known patrol light is used for the indicator light 17.

【0026】前記制御弁18は、不活性ガス発生装置1
2と溶融炉本体1内とを接続する不活性ガス供給配管1
3に介設されており、炉内へ窒素ガス等の不活性ガスI
を供給したり、或いは炉内へ供給される不活性ガスIを
停止したりするものである。この制御弁18には、電動
式の開閉弁が使用されている。
The control valve 18 is connected to the inert gas generator 1
Inert gas supply pipe 1 that connects 2 to the inside of the melting furnace body 1
3 and an inert gas I such as nitrogen gas is introduced into the furnace.
Or the inert gas I supplied to the furnace is stopped. The control valve 18 is an electric on-off valve.

【0027】前記制御弁18の制御器21は、リード線
24を介して熱電素子16に接続されており、プラズマ
溶融炉の立下げ時に耐火物温度及び炉内温度が所定の温
度以下(約500℃以下)になったときに制御弁18を
閉じるように制御するものである。この制御器21に
は、耐火物温度及び炉内温度が約500℃のときに発生
する電流値等が予め設定値として入力されており、検出
された値と比較して、必要と判断したときに制御弁18
を閉じるようになっている。即ち、制御器21は、熱電
素子16の発生電力による電流値から耐火物温度及び炉
内温度を自動的に検出しており、プラズマ溶融炉の立下
げ時に耐火物温度及び炉内温度が低下していき、これら
の温度が約500℃以下になったときに発生する電流値
以下となった時点で制御弁18を閉じるように構成され
ている。これにより、炉内への不活性ガスIの供給が自
動的に停止される。
The controller 21 of the control valve 18 is connected to the thermoelectric element 16 via a lead wire 24. When the plasma melting furnace is shut down, the refractory temperature and the furnace temperature are lower than a predetermined temperature (about 500). The control valve 18 is controlled so as to close when the temperature becomes equal to or lower than (° C.). In this controller 21, a current value or the like generated when the refractory temperature and the furnace temperature are about 500 ° C. is input in advance as a set value, and is compared with the detected value to determine when it is necessary. Control valve 18
Is to be closed. That is, the controller 21 automatically detects the refractory temperature and the furnace temperature from the current value generated by the power generated by the thermoelectric element 16, and the refractory temperature and the furnace temperature decrease when the plasma melting furnace is shut down. The control valve 18 is configured to be closed when the temperature becomes lower than the current value generated when the temperature becomes lower than about 500 ° C. Thereby, the supply of the inert gas I into the furnace is automatically stopped.

【0028】前記冷却用空気供給配管19は、炉内へ連
通するように溶融炉本体1に接続されており、プラズマ
溶融炉の立下げ時に炉内へ冷却用空気Aを流入させるも
のである。この冷却用空気供給配管19には、炉内へ冷
却用空気Aを強制的に送り込む為の冷却用空気ファン2
0が接続されている。
The cooling air supply pipe 19 is connected to the melting furnace main body 1 so as to communicate with the inside of the furnace, and allows the cooling air A to flow into the furnace when the plasma melting furnace is shut down. The cooling air supply pipe 19 has a cooling air fan 2 for forcibly sending cooling air A into the furnace.
0 is connected.

【0029】前記冷却用空気ファン20の制御器22
は、リード線24を介して熱電素子16に接続されてお
り、プラズマ溶融炉の立下げ時に耐火物温度及び炉内温
度が所定の温度以下(約500℃以下)になったときに
冷却用空気ファン20が作動するように制御するもので
ある。この制御器22には、耐火物温度及び炉内温度が
500℃のときに発生する電流値等が予め設定値として
入力されており、検出された値と比較して、必要と判断
したときに冷却用ファンを作動させるようになってい
る。即ち、制御器22は、熱電素子16の発生電力によ
る電流値から耐火物温度及び炉内温度を自動的に検出し
ており、プラズマ溶融炉の立下げ時に耐火物温度及び炉
内温度が低下していき、これらの温度が約500℃以下
になったときに発生する電流値以下となった時点で冷却
用ファンを作動させるように構成されている。これによ
り、炉内へ冷却用空気Aが送り込まれ、耐火物及び炉内
が強制的に空冷される。
The controller 22 of the cooling air fan 20
Is connected to the thermoelectric element 16 through the lead wire 24, and when the temperature of the refractory and the temperature in the furnace become lower than a predetermined temperature (about 500 ° C. or lower) when the plasma melting furnace is shut down, cooling air is supplied. This controls the fan 20 to operate. In the controller 22, a current value or the like generated when the refractory temperature and the furnace temperature are 500 ° C. is input in advance as a set value. The cooling fan is operated. That is, the controller 22 automatically detects the refractory temperature and the furnace temperature from the current value generated by the power generated by the thermoelectric element 16, and the refractory temperature and the furnace temperature decrease when the plasma melting furnace is shut down. The cooling fan is operated when the temperature becomes lower than a current value generated when the temperature becomes lower than about 500 ° C. Thereby, the cooling air A is sent into the furnace, and the refractory and the inside of the furnace are forcibly air-cooled.

【0030】而して、上述した立下げ装置15を設けた
プラズマ溶融炉の運転中に於いては、供給装置9により
溶融炉本体1内へ供給された焼却残渣や飛灰等の被溶融
物Wは、黒鉛主電極4と炉底電極6との間に発生するプ
ラズマアーク放電による熱エネルギーにより、溶融点
(1100℃〜1250℃)を越える温度にまで加熱さ
れ、1300℃〜1500℃の高温液体状の溶融スラグ
Sとなる。この溶融スラグSは、溶融スラグ流出口3か
らスラグ処理系へと順次溢流排出されて行く。又、溶融
炉本体1内で発生した高温の燃焼排ガスGは、溶融スラ
グ流出口3から排ガス処理系へと排出されて行く。この
プラズマ溶融炉は、その運転中に耐火物23に埋設した
熱電素子16の発生電力によって表示灯17が点灯し、
プラズマ溶融炉が運転中であることを表示する。これに
より、運転員は、プラズマ溶融炉が運転中であることを
簡単且つ確実に確認することができ、プラズマ溶融炉を
誤操作すると云うこともない。
During the operation of the plasma melting furnace provided with the above-mentioned lowering device 15, the melted material such as incineration residue and fly ash supplied into the melting furnace body 1 by the supply device 9 is provided. W is heated to a temperature exceeding a melting point (1100 ° C. to 1250 ° C.) by thermal energy due to plasma arc discharge generated between the graphite main electrode 4 and the furnace bottom electrode 6, and is heated to a high temperature of 1300 ° C. to 1500 ° C. It becomes a liquid molten slag S. The molten slag S overflows and is discharged from the molten slag outlet 3 to the slag processing system sequentially. The high-temperature combustion exhaust gas G generated in the melting furnace body 1 is discharged from the molten slag outlet 3 to the exhaust gas treatment system. During operation of the plasma melting furnace, the indicator lamp 17 is turned on by the power generated by the thermoelectric element 16 embedded in the refractory 23,
Indicates that the plasma melting furnace is operating. This allows the operator to easily and reliably confirm that the plasma melting furnace is in operation, and does not erroneously operate the plasma melting furnace.

【0031】一方、プラズマ溶融炉のメンテナンス作業
(点検作業や保守作業、補修作業等)時に溶融炉の立下
げ(溶融炉の運転停止)を行うと、耐火物温度及び炉内
温度が順次低下して行く。このとき、立下げ装置15に
於いては、耐火物23に埋設した熱電素子16の発生電
力による電流値から耐火物温度及び炉内温度が自動的に
検出されており、耐火物温度及び炉内温度が約500℃
のときに発生する電流値以下となった時点で、制御器2
1により制御弁18が自動的に閉じられて炉内への不活
性ガスIの供給を停止すると共に、制御器22により冷
却用空気ファン20が作動されて炉内へ冷却用空気Aを
流入させて強制的に空冷するようになっている。その結
果、プラズマ溶融炉は、不活性ガスIの停止や冷却用空
気Aの供給を手動で行う必要もなく、作業性や取扱性に
優れたものとなる。又、コストのかかる窒素ガス等の不
活性ガスIを不必要に炉内へ供給することがなく、不活
性ガスIの使用量が減少してランニングコストの低減を
図れる。更に、炉内へ冷却用空気Aを吹き込む時機が最
適なものとなり、カーボン系の耐火物23の酸化消耗を
防止することができる。
On the other hand, if the melting furnace is shut down (operation of the melting furnace is stopped) during maintenance work (inspection work, maintenance work, repair work, etc.) of the plasma melting furnace, the temperature of the refractory and the temperature in the furnace decrease sequentially. Go. At this time, in the lowering device 15, the refractory temperature and the furnace temperature are automatically detected from the current value generated by the thermoelectric element 16 embedded in the refractory 23, and the refractory temperature and the furnace temperature are detected. Temperature is about 500 ℃
When the current value becomes equal to or less than the current value generated at
1, the control valve 18 is automatically closed to stop the supply of the inert gas I into the furnace, and the cooling air fan 20 is operated by the controller 22 to flow the cooling air A into the furnace. Air cooling. As a result, the plasma melting furnace does not need to manually stop the inert gas I and supply the cooling air A, and is excellent in workability and handling. In addition, a costly inert gas I such as nitrogen gas is not unnecessarily supplied into the furnace, and the amount of the inert gas I used is reduced, so that the running cost can be reduced. Further, the time when the cooling air A is blown into the furnace becomes optimal, and the oxidative consumption of the carbon-based refractory 23 can be prevented.

【0032】そして、耐火物温度及び炉内温度がメンテ
ナンス作業を行える温度まで低下したら、耐火物23に
埋設した熱電素子16の発生電力も低下して表示灯17
が消灯し、耐火物温度及び炉内温度がメンテナンス作業
を行える温度にまで低下したことを作業員に知らせる。
これにより、作業員は、プラズマ溶融炉の温度がメンテ
ナンス作業を行える温度まで下がったと判断でき、メン
テナンス作業にとりかかる目安とできる。その結果、作
業員は、耐火物温度や炉内温度が高温に保たれているプ
ラズマ溶融炉の点検口やマンホール等を誤って開けると
云うことがなく、メンテナンス作業を安全に行える。
When the temperature of the refractory and the temperature in the furnace decrease to a temperature at which maintenance work can be performed, the power generated by the thermoelectric element 16 embedded in the refractory 23 also decreases, and the indicator lamp 17
Is turned off, and the operator is notified that the temperature of the refractory and the temperature in the furnace have decreased to a temperature at which maintenance work can be performed.
Thereby, the operator can determine that the temperature of the plasma melting furnace has dropped to a temperature at which the maintenance work can be performed, and can provide a guide to the maintenance work. As a result, the worker can safely perform maintenance work without erroneously opening an inspection port, a manhole, or the like of the plasma melting furnace in which the refractory temperature and the furnace temperature are maintained at high temperatures.

【0033】尚、上記実施の形態に於いては、溶融炉を
プラズマ溶融炉としているが、アーク溶融炉や電気抵抗
式溶融炉等へも本発明を適用できることは勿論である。
In the above embodiment, the melting furnace is a plasma melting furnace, but the present invention can of course be applied to an arc melting furnace, an electric resistance melting furnace and the like.

【0034】又、上記実施の形態に於いては、熱電素子
16の材料に鉄珪化物を使用するようにしたが、他の実
施の形態に於いては、熱電素子16の材料として鉄珪化
物の他にBiTe、Bi2Te3、Bi2Sb8Te15、P
bTe、GeTe(Bi)、AgSbTe2、InAs
(P)、Si−Ge、Si−Ge(GaP)、CrSi
2、MnSi1.73、CoSi等を使用しても良い。
In the above embodiment, iron silicide is used as the material of the thermoelectric element 16, but in other embodiments, iron silicide is used as the material of the thermoelectric element 16. Besides BiTe, Bi 2 Te 3 , Bi 2 Sb 8 Te 15 , P
bTe, GeTe (Bi), AgSbTe 2 , InAs
(P), Si-Ge, Si-Ge (GaP), CrSi
2 , MnSi 1.73 , CoSi or the like may be used.

【0035】更に、上記実施の形態に於いては、制御弁
18を制御する制御器21と冷却用空気ファン20を制
御する制御器22とを別々に設けるようにしたが、他の
実施の形態に於いては、一つの制御器(図示省略)で制
御弁18及び冷却用空気ファン20を制御するようにし
ても良い。
Further, in the above embodiment, the controller 21 for controlling the control valve 18 and the controller 22 for controlling the cooling air fan 20 are provided separately. In this case, the control valve 18 and the cooling air fan 20 may be controlled by one controller (not shown).

【0036】[0036]

【発明の効果】以上の説明からも明らかなように、本発
明の方法によれば、耐火物に埋設した熱電素子の発生電
力による電流値から耐火物温度及び炉内温度を自動監視
し、溶融炉の立下げ時に耐火物温度及び炉内温度が約5
00℃以下になったときに炉内への不活性ガスの供給を
自動的に停止すると共に、炉内へ冷却用空気を流入させ
て空冷するようにしている。その結果、溶融炉の立下げ
時に作業員が耐火物温度及び炉内温度を一々監視した
り、或いは作業員が不活性ガスの停止や冷却用空気の供
給を手動で行う必要もなく、作業性や取扱性に優れたも
のとなる。又、コストのかかる窒素ガス等の不活性ガス
を不必要に炉内へ供給することがなく、不活性ガスの使
用量が減少してランニングコストの低減を図れる。更
に、炉内へ冷却用空気を吹き込む時機が最適なものとな
り、カーボン系の耐火物の酸化消耗を防止することがで
きる。然も、熱電素子は耐火物の成形時に耐火物に予め
埋設される為、熱電対のように溶融炉の施工時に耐火物
に熱電対を設置する為の穴を開ける必要もなく、手数が
省けることになる。又、本発明の方法によれば、耐火物
に埋設した熱電素子の発生電力によって表示灯を点灯さ
せて溶融炉が運転中であることを表示すると共に、溶融
炉の立下げ時には耐火物温度及び炉内温度が溶融炉のメ
ンテナンス作業を行える温度まで低下したときに表示灯
が消灯するようにしている。その結果、運転員は、表示
灯の点灯を確認することによって溶融炉が運転中である
ことを簡単且つ確実に判断することができ、溶融炉を誤
操作すると云うことがない。又、作業員は、表示灯の消
灯を確認することによって溶融炉の温度がメンテナンス
作業を行える温度まで下がったと判断でき、メンテナン
ス作業にとりかかる目安とできる為、耐火物温度や炉内
温度が高温に保たれている溶融炉の点検口やマンホール
等を誤って開けると云うことがなく、メンテナンス作業
を安全に行える。
As is apparent from the above description, according to the method of the present invention, the refractory temperature and the furnace temperature are automatically monitored from the current value generated by the thermoelectric element buried in the refractory, and the melting temperature is determined. Refractory temperature and furnace temperature are about 5 when the furnace is shut down.
When the temperature becomes lower than 00 ° C., the supply of the inert gas into the furnace is automatically stopped, and cooling air is caused to flow into the furnace to cool the furnace. As a result, there is no need for the worker to monitor the refractory temperature and the furnace temperature one by one when the melting furnace is shut down, or to manually stop the inert gas or supply the cooling air. And excellent handleability. In addition, a costly inert gas such as nitrogen gas is not unnecessarily supplied into the furnace, and the amount of the inert gas used is reduced, so that the running cost can be reduced. Furthermore, the time when the cooling air is blown into the furnace becomes optimal, and the oxidation and consumption of the carbon-based refractory can be prevented. Of course, the thermoelectric element is buried in the refractory in advance when molding the refractory, so there is no need to make a hole for installing the thermocouple in the refractory at the time of construction of the melting furnace like a thermocouple, which saves trouble. Will be. Further, according to the method of the present invention, the indicator light is turned on by the generated power of the thermoelectric element embedded in the refractory to indicate that the melting furnace is operating, and the refractory temperature and the temperature when the melting furnace is shut down. The indicator light is turned off when the temperature in the furnace falls to a temperature at which maintenance work of the melting furnace can be performed. As a result, the operator can easily and reliably determine that the melting furnace is in operation by checking the lighting of the indicator lamp, and does not say that the melting furnace is erroneously operated. In addition, the worker can confirm that the temperature of the melting furnace has dropped to a temperature at which maintenance work can be performed by confirming that the indicator lamp is turned off, and this can be used as a guide for maintenance work. The maintenance work can be performed safely without inadvertently opening the inspection port or manhole of the maintained melting furnace.

【0037】本発明の装置によれば、上記した方法を好
適に実施することができる。然も、本発明の装置にあっ
ては、熱電素子により溶融炉の熱エネルギーを電気エネ
ルギーに変換し、この電気エネルギーにより表示灯を点
灯させるようにしている為、溶融炉の熱を有効利用する
ことができると共に、表示灯を点灯させる為の電源を新
たに設ける必要もない。
According to the apparatus of the present invention, the above-described method can be suitably performed. Of course, in the apparatus of the present invention, the heat energy of the melting furnace is converted into electric energy by the thermoelectric element, and the indicator light is turned on by the electric energy, so that the heat of the melting furnace is effectively used. In addition to this, it is not necessary to newly provide a power supply for turning on the indicator lamp.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を実施するプラズマ溶融炉を示
し、立下げ装置を設けたプラズマ溶融炉の概略縦断面図
である。
FIG. 1 is a schematic longitudinal sectional view of a plasma melting furnace in which a method of the present invention is carried out, and which is provided with a lowering device.

【図2】プラズマ溶融炉の炉壁の一部を示す概略拡大断
面図である。
FIG. 2 is a schematic enlarged sectional view showing a part of a furnace wall of the plasma melting furnace.

【図3】熱電素子を埋設した耐火物(カーボン系煉瓦)
の斜視図である。
Fig. 3 Refractory with embedded thermoelectric element (carbon brick)
It is a perspective view of.

【図4】熱電素子の熱電特性を示し、温度と出力の関係
を表わすグラフである。
FIG. 4 is a graph showing a thermoelectric characteristic of a thermoelectric element and showing a relationship between a temperature and an output.

【図5】従来のプラズマ溶融炉の概略縦断面図である。FIG. 5 is a schematic vertical sectional view of a conventional plasma melting furnace.

【符号の説明】[Explanation of symbols]

13は不活性ガス供給配管、15は立下げ装置、16は
熱電素子、17は表示灯、18は制御弁、19は冷却用
空気供給配管、20は冷却用空気ファン、21は制御弁
の制御器、22は冷却用空気ファンの制御器、23は耐
火物、Aは冷却用空気、Iは不活性ガス、Wは被溶融
物。
13 is an inert gas supply pipe, 15 is a falling device, 16 is a thermoelectric element, 17 is an indicator light, 18 is a control valve, 19 is a cooling air supply pipe, 20 is a cooling air fan, and 21 is a control valve. , 22 is a controller of a cooling air fan, 23 is a refractory, A is cooling air, I is an inert gas, and W is a material to be melted.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F27D 1/00 F27D 19/00 A 4K063 11/08 21/00 G 19/00 21/04 21/00 G01K 1/14 H 21/04 7/02 A G01K 1/14 B09B 3/00 ZAB 7/02 303L (72)発明者 倉田 昌明 兵庫県尼崎市金楽寺町2丁目2番33号 株 式会社タクマ内 Fターム(参考) 2F056 KA03 KA12 3K061 AA16 AB03 AC01 BA03 CA14 DA13 NB02 NB16 4D004 AA36 AA37 AB03 AC04 CA29 CB04 CB31 CB32 CB37 CB45 CC02 DA02 DA03 DA04 DA06 DA20 4K051 AA05 BH00 4K056 AA05 BB08 CA20 FA01 FA13 4K063 AA04 AA06 AA12 BA13 CA09 FA56 FA78 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F27D 1/00 F27D 19/00 A 4K063 11/08 21/00 G 19/00 21/04 21/00 G01K 1/14 H 21/04 7/02 A G01K 1/14 B09B 3/00 ZAB 7/02 303L (72) Inventor Masaaki Kurata 2-33 Kingara-cho, Amagasaki-shi, Hyogo F-term in Takuma Co., Ltd. (Ref.)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炉内に不活性ガスを供給して炉内を還元
性雰囲気に保持すると共に、炉内に供給した被溶融物を
電気エネルギーにより溶融するようにした溶融炉に於い
て、溶融炉の耐火物に埋設した熱エネルギーを電気エネ
ルギーに変換する熱電素子の発生電力により表示灯を点
灯させて溶融炉が運転中であることを表示すると共に、
溶融炉の立下げ時には耐火物温度及び炉内温度が溶融炉
のメンテナンス作業を行える温度まで低下したときに表
示灯が消灯するようにし、又、熱電素子の発生電力によ
る電流値から耐火物温度及び炉内温度を監視し、溶融炉
の立下げ時に耐火物温度及び炉内温度が約500℃以下
になったときに炉内への不活性ガスの供給を自動的に停
止すると共に、炉内へ冷却用空気を流入させて空冷する
ようにしたことを特徴とする溶融炉の立下げ方法。
In a melting furnace, an inert gas is supplied into the furnace to maintain the inside of the furnace in a reducing atmosphere, and the melt supplied into the furnace is melted by electric energy. The indicator light is turned on by the generated power of the thermoelectric element that converts the thermal energy buried in the refractory of the furnace into electric energy to indicate that the melting furnace is operating,
When the melting furnace is shut down, the indicator lamp is turned off when the temperature of the refractory and the temperature in the furnace are reduced to a temperature at which maintenance work of the melting furnace can be performed. Monitor the furnace temperature and automatically stop the supply of inert gas into the furnace when the refractory temperature and furnace temperature fall below about 500 ° C when the melting furnace is shut down. A method for shutting down a melting furnace, wherein air is cooled by flowing cooling air.
【請求項2】 溶融炉の耐火物に埋設された熱エネルギ
ーを電気エネルギーに変換する熱電素子と、熱電素子の
発生電力により点灯する表示灯と、炉内へ不活性ガスを
供給する不活性ガス供給配管に介設された制御弁と、溶
融炉内へ冷却用空気を供給する冷却用空気供給配管と、
冷却用空気供給配管に接続された冷却用空気ファンと、
制御弁及び冷却用空気ファンを制御する制御器とから成
り、熱電素子の発生電力量に応じて表示灯を点灯又は消
灯させると共に、熱電素子の発生電力による電流値に基
づいて制御器により制御弁及び冷却用空気ファンを制御
するようにしたことを特徴とする溶融炉の立下げ装置。
2. A thermoelectric element for converting thermal energy buried in a refractory of a melting furnace into electric energy, an indicator light turned on by electric power generated by the thermoelectric element, and an inert gas for supplying an inert gas into the furnace. A control valve interposed in the supply pipe, a cooling air supply pipe for supplying cooling air into the melting furnace,
A cooling air fan connected to the cooling air supply pipe,
A control valve and a controller for controlling the cooling air fan.The indicator light is turned on or off according to the amount of power generated by the thermoelectric element, and the control valve is controlled by the controller based on a current value generated by the power generated by the thermoelectric element. And a cooling air fan for controlling a cooling furnace.
JP2000232556A 2000-08-01 2000-08-01 Method and apparatus for lowering melting furnace Expired - Lifetime JP3722674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000232556A JP3722674B2 (en) 2000-08-01 2000-08-01 Method and apparatus for lowering melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000232556A JP3722674B2 (en) 2000-08-01 2000-08-01 Method and apparatus for lowering melting furnace

Publications (2)

Publication Number Publication Date
JP2002048317A true JP2002048317A (en) 2002-02-15
JP3722674B2 JP3722674B2 (en) 2005-11-30

Family

ID=18725223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232556A Expired - Lifetime JP3722674B2 (en) 2000-08-01 2000-08-01 Method and apparatus for lowering melting furnace

Country Status (1)

Country Link
JP (1) JP3722674B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035570A1 (en) * 2004-09-29 2006-04-06 Nippon Crucible Co., Ltd. Apparatus and method for heating treatment
JP2008249220A (en) * 2007-03-29 2008-10-16 Kawasaki Plant Systems Ltd Plasma melting furnace
JP2008261747A (en) * 2007-04-12 2008-10-30 Sumitomo Heavy Ind Ltd Boiler monitoring device
JP2008275203A (en) * 2007-04-26 2008-11-13 Nippon Steel Corp Method of detecting thickness of refractory and method of judging deterioration of refractory
JP2012181164A (en) * 2011-03-03 2012-09-20 Kobe Steel Ltd Method for evaluating residual thickness of refractory
CN103808161A (en) * 2014-01-28 2014-05-21 浙江大学 Ash sintering atmosphere furnace capable of automatically moving forwards and backwards and conducting online monitoring and operation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035570A1 (en) * 2004-09-29 2006-04-06 Nippon Crucible Co., Ltd. Apparatus and method for heating treatment
JPWO2006035570A1 (en) * 2004-09-29 2008-05-15 日本坩堝株式会社 Heat treatment apparatus and heat treatment method
JP4776541B2 (en) * 2004-09-29 2011-09-21 日本坩堝株式会社 Heat treatment apparatus and heat treatment method
JP2008249220A (en) * 2007-03-29 2008-10-16 Kawasaki Plant Systems Ltd Plasma melting furnace
JP2008261747A (en) * 2007-04-12 2008-10-30 Sumitomo Heavy Ind Ltd Boiler monitoring device
JP2008275203A (en) * 2007-04-26 2008-11-13 Nippon Steel Corp Method of detecting thickness of refractory and method of judging deterioration of refractory
JP2012181164A (en) * 2011-03-03 2012-09-20 Kobe Steel Ltd Method for evaluating residual thickness of refractory
CN103808161A (en) * 2014-01-28 2014-05-21 浙江大学 Ash sintering atmosphere furnace capable of automatically moving forwards and backwards and conducting online monitoring and operation method thereof
CN103808161B (en) * 2014-01-28 2016-04-20 浙江大学 A kind of automatic entrance-exit the grey sintering atmosphere stove of on-line monitoring and method of work thereof

Also Published As

Publication number Publication date
JP3722674B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP5261038B2 (en) In-furnace monitoring apparatus, in-furnace monitoring method, and furnace operation control method using the same
JP2002048317A (en) Interruption method for melting furnace and its apparatus
JP3746921B2 (en) Operation method of electric melting furnace
JP3590243B2 (en) Furnace wall cooling structure of electric melting furnace
JP4917950B2 (en) Plant operation control method by omnidirectional monitoring
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP3921706B2 (en) Electrode sealing device for ash melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP4667665B2 (en) Plasma ash melting furnace and operating method thereof
JP2002295979A (en) Structure of furnace wall of electric melting furnace and method for suppressing wear of fireproof material of furnace wall
JP3542074B2 (en) Automatic controller for electric resistance melting furnace
JP3576468B2 (en) Electric ash melting furnace and method for removing solids from electric ash melting furnace
JP3764641B2 (en) Electric melting furnace operation control method
JP2000249318A (en) Method and apparatus for secondary burning exhaust gas
JP3196918B2 (en) Waste melting method and waste melting equipment
JP4095774B2 (en) How to restart the plasma ash melting furnace
JP2001241625A (en) Incineration melting treatment device and method for radioactive waste
JP2000320826A (en) Structure of slag gate of blast furnace
JP2002162010A (en) Waste melting furnace
JP4972458B2 (en) Ash melting furnace combustion chamber
JP3542263B2 (en) Furnace wall structure of electric melting furnace
JP4285747B2 (en) Electric melting furnace operation control method
JP3714383B2 (en) Ash melting furnace and method of operating the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7