JPH0879935A - Plastic power cable jointing method - Google Patents

Plastic power cable jointing method

Info

Publication number
JPH0879935A
JPH0879935A JP6232013A JP23201394A JPH0879935A JP H0879935 A JPH0879935 A JP H0879935A JP 6232013 A JP6232013 A JP 6232013A JP 23201394 A JP23201394 A JP 23201394A JP H0879935 A JPH0879935 A JP H0879935A
Authority
JP
Japan
Prior art keywords
insulator
cable
insulator block
block
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6232013A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Inoue
喜之 井上
Tokuji Nakatani
篤司 中谷
Takaaki Hasegawa
隆章 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6232013A priority Critical patent/JPH0879935A/en
Publication of JPH0879935A publication Critical patent/JPH0879935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)
  • Processing Of Terminals (AREA)
  • Cable Accessories (AREA)

Abstract

PURPOSE: To obtain a plastic power cable jointing method employing an insulator block in which the bonding strength on the interface between the insulator block and a cable insulator is enhanced while eliminating corona discharge. CONSTITUTION: A tubular insulator block is applied to a conductor joint and the end part of cable insulator and then the insulator block is heated and pressed thus fusing and integrating the insulator block and the cable insulator. In such method for jointing a plastic power cable, the insulator block comprises a core metal pipe coated with a fluororesin and an insulation material is extruded on the core, having thermal conductivity of 5×10<-3> cal/sec/cm<2> / deg.C or above, between the inner and outer faces of the insulator block. It is cooled on the inside of the pipe upon finishing extrusion thus producing the insulator block being employed in plastic power cable joint.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高電圧で使用されるC
Vケーブル等のプラスチック電力ケーブルの絶縁体ブロ
ックを用いた接続方法に関するものである。
FIELD OF THE INVENTION The present invention relates to C used at high voltage.
The present invention relates to a connecting method using an insulator block of a plastic power cable such as a V cable.

【0002】[0002]

【従来の技術】従来、高電圧で使用されるCVケーブル
等のプラスチック電力ケーブルの接続は、導体接続部上
にケーブル絶縁体と同一ないしは類似の絶縁材料を押出
成形し、その後必要に応じて架橋を施す、いわゆる押出
モールド型接続方法が一般的であった。
2. Description of the Related Art Conventionally, for connecting a plastic power cable such as a CV cable used at high voltage, an insulating material which is the same as or similar to the cable insulator is extruded on a conductor connecting portion and then cross-linked if necessary. The so-called extrusion mold type connection method of performing

【0003】一方近年、例えば特公平6-64845 号、特開
平 5-76125号公報に示されるように、従来接続場所で押
出成形していた材料を、あらかじめ工場内で成形加工し
て円筒状の絶縁体ブロックを作製し、現地でこの絶縁体
ブロックを導体接続部及び接続すべきケーブル絶縁体端
部上に装着し、この絶縁体ブロックを加熱加圧してケー
ブル絶縁体と融着一体化する、いわゆるブロックモール
ド型接続方法が提案されている。
On the other hand, in recent years, as disclosed in, for example, Japanese Patent Publication No. 6-64845 and Japanese Patent Laid-Open No. 5-76125, a material which has been extruded at a connecting place is formed into a cylindrical shape by being preformed in a factory. An insulator block is produced, and the insulator block is mounted on the conductor connecting portion and the end portion of the cable insulator to be connected on site, and the insulator block is heated and pressed to be fused and integrated with the cable insulator, A so-called block mold type connection method has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ようなブロックモールド型接続方法では、外部半導電層
除去後のケーブル絶縁体上にあらかじめ成形された絶縁
体ブロックを挿通しておくため、外部半導電層除去後の
ケーブル絶縁体とあらかじめ成形された絶縁ブロックの
内径の間には隙間が必要となる。このため、加熱融着し
た場合、押出モールド型接続方法に比べてケーブル絶縁
体との界面が接着しにくく、課電時に当該部分でコロナ
放電が生じ破壊に至るという問題があった。
However, in the block mold type connecting method as described above, since the preformed insulator block is inserted on the cable insulator after the removal of the outer semiconductive layer, the outer semiconductive layer is inserted. A gap is required between the cable insulator after removing the conductive layer and the inner diameter of the preformed insulating block. For this reason, in the case of heat fusion, the interface with the cable insulator is less likely to adhere than in the extrusion mold type connection method, and there is a problem that corona discharge occurs at the relevant portion during voltage application and leads to destruction.

【0005】[0005]

【課題を解決するための手段】本発明は上述の問題点を
解消し、界面の接着が良好で、コロナ放電の発生がない
プラスチック電力ケーブルの接続方法を提供するもの
で、その特徴は、絶縁体ブロックが、中芯が金属パイプ
の上にフッ素系樹脂を被覆したものであり、その内面と
外面との間の熱伝導率が5×10-3cal/sec /cm2 /℃
以上である中芯の上に絶縁材料を押出成形して製造され
たものであり、かつ押出終了後の冷却時にパイプ内側か
ら冷却されたものを用いることにある。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a method for connecting a plastic power cable which has good interface adhesion and does not generate corona discharge. The core of the body block is a metal pipe coated with a fluororesin, and the thermal conductivity between the inner surface and the outer surface is 5 × 10 -3 cal / sec / cm 2 / ° C.
It is intended to use the one manufactured by extruding the insulating material on the core as described above and cooled from the inside of the pipe at the time of cooling after the completion of the extrusion.

【0006】[0006]

【作用】本発明者らは上記の問題について鋭意検討した
結果、絶縁体ブロックが大きな残留収縮歪みをもつよう
に作製すればよいとの結論を得た。そこで、大きな残留
収縮歪みをもつように絶縁体ブロックの作製方法を検討
した。その結果、以下の二つの要件を満たすパイプ状の
中芯の上に絶縁材料を押出成形し、かつ押出終了後の冷
却時にパイプ内側から冷却して作製することにより、所
望の大きな残留収縮歪みが得られることを見出した。 (1)中芯が金属パイプの上にフッ素系樹脂を被覆して
なること。 (2)中芯の内面と外面との間の熱伝導率が5×10-3ca
l/sec /cm2 /℃以上であること。 即ち、絶縁体ブロックを形成する未反応の架橋ポリエチ
レン絶縁体に比べ、冷却時の収縮度合いが小さな金属パ
イプを主体とした中芯を用い、かつパイプ内側から素早
く冷却することで大きな残留収縮歪みが得られる。
As a result of intensive studies on the above problems, the present inventors have concluded that the insulator block should be manufactured so as to have a large residual shrinkage strain. Therefore, a method of manufacturing an insulator block having a large residual shrinkage strain was examined. As a result, a desired large residual shrinkage strain can be obtained by extruding an insulating material on a pipe-shaped core that satisfies the following two requirements and cooling the inside of the pipe during cooling after the extrusion. It was found that it can be obtained. (1) The core has a metal pipe coated with a fluororesin. (2) The thermal conductivity between the inner surface and the outer surface of the core is 5 × 10 -3 ca.
l / sec / cm 2 / ° C or higher. That is, compared with unreacted cross-linked polyethylene insulation that forms the insulation block, a large residual shrinkage strain can be obtained by using a core mainly composed of a metal pipe whose shrinkage degree is small at the time of cooling and rapidly cooling from the inside can get.

【0007】ここで中芯が金属パイプの上に樹脂を被覆
した理由は、中芯の表面が金属では、その上に押出成形
する未反応の架橋ポリエチレン材料との硬度差が大きす
ぎ、中芯を抜き取る場合に絶縁体ブロック内面に傷がつ
くことが避けられないためである。又被覆する樹脂とし
てフッ素系樹脂を用いる理由は、未反応の架橋ポリエチ
レン樹脂との剥離が極めて容易であり、除去する際に絶
縁体ブロック内面を傷めにくいためである。一方、中芯
の内面と外面との間の熱伝導率を5×10-3cal/sec /
cm2 /℃とした理由は、内側から素早く冷却するために
内面の熱伝達をよくするためである。
Here, the reason why the core coats the metal pipe with the resin is that when the core has a metal surface, the hardness difference between the core and the unreacted cross-linked polyethylene material extruded thereon is too large, and This is because it is unavoidable that the inner surface of the insulator block is damaged when the cable is removed. The reason why the fluorine-based resin is used as the coating resin is that it is very easy to peel off from the unreacted cross-linked polyethylene resin and the inner surface of the insulating block is not easily damaged when the resin is removed. On the other hand, the thermal conductivity between the inner surface and the outer surface of the core is 5 × 10 -3 cal / sec /
The reason for using cm 2 / ° C is to improve heat transfer on the inner surface for quick cooling from the inside.

【0008】[0008]

【実施例】ステンレスパイプ上にフッ素樹脂を被覆した
中芯をセットした金型内に、架橋ポリエチレンコンパウ
ンドを 120°で押出して未反応の架橋ポリエチレンブロ
ックを作製した。この時、フッ素樹脂の被覆厚みを変え
て架橋ポリエチレンブロックを作製した。又それぞれの
場合にパイプ内部に約20℃の風を流して冷却した場合
と、密閉したまま冷却した場合の2条件について行っ
た。
Example A crosslinked polyethylene compound was extruded at 120 ° into a mold in which a core coated with a fluororesin was set on a stainless steel pipe to prepare an unreacted crosslinked polyethylene block. At this time, the cross-linked polyethylene block was produced by changing the coating thickness of the fluororesin. Further, in each case, two conditions were performed, namely, cooling by blowing a wind of about 20 ° C. inside the pipe and cooling with the airtight.

【0009】これらの架橋ポリエチレンブロックを外部
半導電層を削り取ったCVケーブルコア上に被せ、さら
にその上に半導電性の熱収縮チューブを被せて外部半導
電層を形成して架橋缶を被せ、窒素ガス5kg/cm2 加圧
下で加熱モールドを行った。なお、この際、絶縁体ブロ
ックの内径と外部半導電層を削り取った径のケーブル外
形との差が直径にして6mmとなるように削り取り量を調
整した。上記モールド終了後、界面の接着状態を光学顕
微鏡で観察し、界面の剥離の有無を評価した。以上の実
験条件と結果を表1に示す。
These crosslinked polyethylene blocks are covered on a CV cable core from which the outer semiconductive layer has been scraped off, and a semiconductive heat-shrinkable tube is further formed thereon to form an outer semiconductive layer, which is then covered with a crosslinked can. Heat molding was performed under a nitrogen gas pressure of 5 kg / cm 2 . At this time, the scraping amount was adjusted so that the difference between the inner diameter of the insulator block and the outer diameter of the cable obtained by scraping the outer semiconductive layer was 6 mm in diameter. After the completion of the molding, the state of adhesion at the interface was observed with an optical microscope to evaluate the presence or absence of interface peeling. Table 1 shows the above experimental conditions and results.

【0010】[0010]

【表1】 [Table 1]

【0011】表1の結果より、熱伝導率が5×10-3cal
/sec /cm2 /℃以上でかつ中芯のパイプの内面から冷
却を行った場合には界面に剥離が生じないことがわかっ
た。熱伝導率の違いがブロック作製時の冷却速さに影響
してこのような結果を得ていることは、パイプ内冷却を
行っていない場合は、熱伝導電率によらずいずれも界面
に剥離が認められたことより明らかである。なお比較例
5では中芯にフッ素樹脂層を設けずに加工したが、中芯
を抜き取る際に絶縁体ブロック内面に傷がついた。この
傷はモールド後にも剥離として残ることが認められた。
From the results shown in Table 1, the thermal conductivity is 5 × 10 -3 cal
It was found that peeling did not occur at the interface when cooling was performed from the inner surface of the pipe having a core of / sec / cm 2 / ° C or higher and having a core. The fact that the difference in thermal conductivity affects the cooling speed at the time of manufacturing the block and obtained such results is that when cooling in the pipe is not performed, peeling occurs at the interface regardless of the thermal conductivity. It is clear from the fact that In Comparative Example 5, the core was processed without providing the fluororesin layer, but the inner surface of the insulator block was scratched when the core was removed. It was confirmed that this scratch remained as peeling even after molding.

【0012】[0012]

【発明の効果】以上説明したように、本発明のプラスチ
ック電力ケーブルの接続方法によれば、絶縁体ブロック
とケーブル絶縁体との接着が良好でその界面に剥離がな
く、この部分でコロナ放電を生じることがなく、良好な
接続部が得られる。
As described above, according to the method for connecting a plastic power cable of the present invention, the insulation block and the cable insulation are well adhered to each other and there is no peeling at the interface, and corona discharge occurs at this portion. A good connection can be obtained without any occurrence.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 導体接続部及び接続すべきケーブル絶縁
体端部上に円筒状の絶縁体ブロックを装着し、該絶縁体
ブロックを加熱加圧してケーブル絶縁体と融着一体化す
るプラスチック電力ケーブルの接続方法において、上記
絶縁体ブロックが、中芯が金属パイプの上にフッ素系樹
脂を被覆したものであり、その内面と外面との間の熱伝
導率が5×10-3cal/sec /cm2 /℃以上である中芯の
上に絶縁材料を押出成形して製造されたものであり、か
つ押出終了後の冷却時にパイプ内側から冷却して作製さ
れたものであることを特徴とするプラスチック電力ケー
ブルの接続方法。
1. A plastic power cable in which a cylindrical insulator block is mounted on a conductor connecting portion and an end portion of a cable insulator to be connected, and the insulator block is heated and pressed to be fused and integrated with the cable insulator. In the connection method of No. 3, the insulator block has a metal core coated with a fluororesin on a metal pipe, and the thermal conductivity between the inner surface and the outer surface is 5 × 10 −3 cal / sec / Characterized by being manufactured by extruding an insulating material onto a core having a cm 2 / ° C or higher, and by being cooled from the inside of the pipe at the time of cooling after the end of extrusion. How to connect a plastic power cable.
JP6232013A 1994-08-31 1994-08-31 Plastic power cable jointing method Pending JPH0879935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6232013A JPH0879935A (en) 1994-08-31 1994-08-31 Plastic power cable jointing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6232013A JPH0879935A (en) 1994-08-31 1994-08-31 Plastic power cable jointing method

Publications (1)

Publication Number Publication Date
JPH0879935A true JPH0879935A (en) 1996-03-22

Family

ID=16932593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6232013A Pending JPH0879935A (en) 1994-08-31 1994-08-31 Plastic power cable jointing method

Country Status (1)

Country Link
JP (1) JPH0879935A (en)

Similar Documents

Publication Publication Date Title
US4304616A (en) Radially shrinkable sleeves
CN110993154A (en) Ultrahigh-pressure submarine cable soft joint and manufacturing method thereof
JPH0475604B2 (en)
GB2030014A (en) Method of connecting cables
JPH10117425A (en) Tubular elastic cover
CN220253504U (en) Submarine cable factory joint
JPH0879935A (en) Plastic power cable jointing method
US4032380A (en) Method of joining of insulated high-voltage cables
JPH0870519A (en) Connecting method for plastic power cable
JP3833849B2 (en) Method for producing composite organic insulator or composite organic insulator pipe
JP2903215B2 (en) Cable mold joint method
CN111082275A (en) Welding process and welding structure for power cable intermediate joint
FI66999C (en) SAETT VIDAR SCARVES AV EN CABLE WITH ISOLERING AV TVAERBUNDEN POYETEN ELLER ANNAN TVAERBUNDEN POLYMER
JP3012515B2 (en) CV cable insulation connection method
JP4309077B2 (en) CV cable mold heating tube and CV cable terminal processing method.
JP2002170436A (en) Cross-linked polyethylene electric cable and its manufacturing method
JP3469759B2 (en) Method of cross-linking reinforcing insulation layer at mold connection of cross-linked polyethylene cable
JP2016185669A (en) Rubber-molding die, method for production of rubber molded article, and method for production of normal temperature-shrinkable tube
JP2864184B2 (en) Surface finishing method of cable insulation at the connection end of cross-linked polyethylene insulated cable
JPH0613581Y2 (en) Silicone rubber composite heat-shrinkable tube
CN114566312A (en) Polypropylene cable and insulating layer repairing method and application thereof
JPH0458711A (en) Method for forming connecting section of cross-linked polyethylene insulated power cable
JP3139719B2 (en) Connection method of cross-linked polyethylene insulated power cable
JPH11127516A (en) Extrusion mold connecting construction method for cross-linking polyethylene power cable
JP2598850B2 (en) Method of manufacturing power cable connection