JPH0879446A - Image input device - Google Patents

Image input device

Info

Publication number
JPH0879446A
JPH0879446A JP6214797A JP21479794A JPH0879446A JP H0879446 A JPH0879446 A JP H0879446A JP 6214797 A JP6214797 A JP 6214797A JP 21479794 A JP21479794 A JP 21479794A JP H0879446 A JPH0879446 A JP H0879446A
Authority
JP
Japan
Prior art keywords
light source
light
input device
optical system
image input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6214797A
Other languages
Japanese (ja)
Inventor
Takafumi Ito
尊文 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP6214797A priority Critical patent/JPH0879446A/en
Publication of JPH0879446A publication Critical patent/JPH0879446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Heads (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PURPOSE: To enable a color image input device miniaturizing/accelerating or energy saving/performance improving by considerably improving the irradiation efficiency of a light source without using a light shielding layer by using a convergent rod array lens array. CONSTITUTION: Concerning the image input device composed of an optical system 13 for picking up the image of an original plane 11, photoelectric converting element arranged on the image forming plane of this optical system 13 and light source 12 with which the original plane 11 is irradiated, the light source 12 arranging a light emitting body such as an LED or a fluorescent body on a base substrate 15 is arranged between the original plane 11 and the optical system (convergent rod lens array) 13 and the optical system 13 picks up the image of the original plane 11 through the gap with the light emitting body of the light source 12. The arrangement of the light emitting body is optimized from the light emitting efficiency of the light emitting body/the polarizing sensitivity of a solid-state imaging device 14/the distance from the original plane to the light emitting body or the like so that the most efficient arrangement can be provided out of the view field of the convergent rod lens array 13. Besides when a fluorescent display tube is used for the light source 12, dispersion in the quantity of light is reduced. Further, the base substrate 15 or cover glass can be used as a reading plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画像入力装置に関する
もので、特にカラー画像入力装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image input device, and more particularly to a color image input device.

【0002】[0002]

【従来の技術】縮小光学系画像系画像入力装置あるいは
密着型画像入力装置に用いられる光源は、一般的に小型
・定電圧・直流駆動・高信頼性等の理由からLED光源
がもちいられている。
2. Description of the Related Art As a light source used in a reduction optical system image input device or a contact type image input device, an LED light source is generally used because of its small size, constant voltage, DC drive and high reliability. .

【0003】しかし、近年、携帯機器の普及による画像
入力装置の小型化需要あるいはカラーコピア・カラース
キャナ等のカラー画像入力機器等のカラー画像入力装置
の需要が高まっている。
However, in recent years, there has been an increasing demand for miniaturization of image input devices due to the spread of portable devices or for color image input devices such as color image input devices such as color copiers and color scanners.

【0004】従来のLED光源を用いる場合、光源を斜
め約45゜の角度で原稿面を照射し、光学系で固体撮像
素子へ結像させる。この場合、光源を斜めに配置するた
め横方向への広がりが必要となり小型化に限界があっ
た。
When a conventional LED light source is used, the light source illuminates the original surface at an angle of about 45 ° and an image is formed on a solid-state image pickup device by an optical system. In this case, since the light sources are arranged obliquely, it is necessary to expand in the lateral direction, which limits the miniaturization.

【0005】またカラー画像入力装置として一般に紹介
されているものは、(1)光電変換素子上にカラーフィ
ルターを形成したカラー光電変換素子を用いたもの、
(2)カラーフィルタを機械的に切り換える方式のも
の、(3)3色の光源を用いるものがある。
The color image input device generally introduced is (1) a device using a color photoelectric conversion element in which a color filter is formed on the photoelectric conversion element,
There are (2) a system in which color filters are mechanically switched, and (3) a system in which light sources of three colors are used.

【0006】(1)、(2)のカラーフィルターを用い
る方法は、固体撮像素子の受光光量がカラーフィルター
にて約40〜50%減衰するため、通常よりも明るい光
学系・光源を用いなければ出力の低下・階調の低下とな
る。しかし、光学系を大きくすると部品が大型化し、光
源を明るくすると光源の大型化・発熱の問題がある。
In the method using the color filters of (1) and (2), the amount of light received by the solid-state image pickup element is attenuated by about 40 to 50% in the color filter, and therefore an optical system / light source that is brighter than usual must be used. Output and gradation will decrease. However, if the optical system is made large, the parts become large, and if the light source is made bright, the light source becomes large and heat is generated.

【0007】また、カラーフィルタの製造工程の追加あ
るいは、カラーフィルタ切り換え機構の追加があり生産
性に優れず高価なものとなっている。
Further, since a color filter manufacturing process is added or a color filter switching mechanism is added, the productivity is low and the cost is high.

【0008】(3)の3色の光源を用いる方式の読み取
り装置は、前述の二方式と異なりカラーフィルターを用
いないため、受光する光の減衰はなく、色の切り換えも
光源にて切り換えられるため機構も簡単な構成でできる
が、光源を3個使用するため装置が大きくなり、発熱量
も多く、高価になる。
The reading device of the type (3) using a three-color light source does not use a color filter unlike the above-mentioned two types, so that the received light is not attenuated and the color can be switched by the light source. Although the mechanism can be a simple structure, since three light sources are used, the device becomes large, the amount of heat generated is large, and the cost is high.

【0009】また、消費電力が小さく小型が可能なLE
Dは青色発光輝度が不十分で実用化できないため光源と
して冷陰極管や蛍光管が使用されるがその点灯電圧は数
百〜1kボルトといった高電圧が必要であり、点灯装置
の大型化し高電圧に対する制御が複雑化する。
Further, LE which consumes less power and can be miniaturized
Since D has insufficient blue emission brightness and cannot be put to practical use, a cold cathode tube or a fluorescent tube is used as a light source, but a high voltage of several hundred to 1 kV is required for its lighting voltage, and the lighting device becomes large and high voltage is applied. The control for is complicated.

【0010】これらの問題点を鑑みて、たとえば特公平
5−32943にあるようにアパーチャを設けた蛍光表
示管をダハミラーレンズアレイと組合せた例があるが、
ダハミラーレンズアレイと組み合わせるため装置が大型
化する、アパーチャの幅が狭いため結像光学系の光学軸
と精度よく合わせなければならない、あるいはアパーチ
ャを蛍光表示管内に作らなければならないといった欠点
から実用化には至っていない。
In view of these problems, there is an example in which a fluorescent display tube provided with an aperture is combined with a roof mirror lens array as in Japanese Patent Publication No. 5-32943, for example.
Practical use due to the drawbacks that the device becomes large because it is combined with the Dach mirror lens array, the aperture width is narrow, and it must be accurately aligned with the optical axis of the imaging optical system, or that the aperture must be made inside the fluorescent display tube. Has not reached.

【0011】また、この技術を縮小光学系画像入力装置
に応用した例を図5に示す。51は原稿、53は赤、
青、緑の3色発光できる蛍光表示管、52は縮小光学レ
ンズ、54は固体撮像装置、55は蛍光表示管のベース
基板、56は遮光層(アパーチャ)、57は反射板。発
光体によって照射された原稿51の面は反射板57で反
射し、レンズ52によって縮小され、固体撮像素子に結
像される。
FIG. 5 shows an example in which this technique is applied to a reduction optical system image input device. 51 is a manuscript, 53 is red,
A fluorescent display tube capable of emitting three colors of blue and green, a reduction optical lens 52, a solid-state imaging device 54, a base substrate of the fluorescent display tube 55, a light shielding layer (aperture) 56, and a reflector 57. The surface of the document 51 illuminated by the light-emitting body is reflected by the reflection plate 57, reduced by the lens 52, and focused on the solid-state image sensor.

【0012】縮小光学系の一般的な例として、物像間距
離300mm・縮小率1:9・原稿幅216mmとする
と、その包括角度は約43.6゜となる。縮小光学系の
場合、縮小光学レンズ52は固体撮像素子54の主走査
方向に原稿幅以上の範囲を撮像する。この場合、副走査
方向の撮像範囲は包括角度43.6゜に近い範囲で撮像
されるため発光体はレンズの撮像範囲内に配置しなけれ
ばならない。発光体をレンズの撮像範囲内に配置すると
発光体から直接光が固体撮像素子54に照射されてしま
い解像力に影響を及ぼすためその光路に遮光層(アパー
チャ)56を配置しなければならない。光源の配置に際
しては該遮光層(アパーチャ)56の位置と光学系の撮
像位置を調整しなければならず繁雑となる。また、縮小
光学系では装置全体が大型化するという欠点も有する。
As a general example of the reduction optical system, if the object-image distance is 300 mm, the reduction ratio is 1: 9, and the document width is 216 mm, the inclusion angle is about 43.6 °. In the case of a reduction optical system, the reduction optical lens 52 captures an image in the main scanning direction of the solid-state image sensor 54 over a range equal to or larger than the document width. In this case, since the image pickup range in the sub-scanning direction is imaged in the range close to the inclusion angle of 43.6 °, the light emitter must be arranged within the image pickup range of the lens. When the light emitter is arranged within the image pickup range of the lens, light is directly emitted from the light emitter to the solid-state image pickup element 54 and affects the resolution, so that a light shielding layer (aperture) 56 must be arranged in the optical path. When arranging the light source, the position of the light shielding layer (aperture) 56 and the imaging position of the optical system must be adjusted, which is complicated. Further, the reduction optical system has a drawback that the entire apparatus becomes large.

【0013】[0013]

【発明が解決しようとする課題】以上述べてきたように
従来の画像入力装置では、装置の大型化・カラー化の問
題(光源・生産性)などがある。
As described above, the conventional image input device has problems such as enlargement and colorization of the device (light source / productivity).

【0014】そこで、本発明は従来技術の欠点を解決す
るものであり、その目的とするところは、小型・軽量で
あり、カラー対応も容易な画像入力装置を供給すること
にある。
Therefore, the present invention solves the drawbacks of the prior art, and an object of the present invention is to provide an image input device which is small in size and light in weight, and which can easily cope with colors.

【0015】[0015]

【課題を解決するための手段】[Means for Solving the Problems]

(手段1)原稿面を撮像する光学系と、この光学系の結
像面に配置された光電変換素子と、原稿面を照射する光
源からなる画像入力装置において、前記光学系は前記光
源の発光体の間を通して原稿面を撮像する集束性ロッド
レンズアレイであることを特徴とする。
(Means 1) In an image input device including an optical system for picking up an image of a document surface, a photoelectric conversion element arranged on the image plane of the optical system, and a light source for illuminating the document surface, the optical system emits light from the light source. It is characterized by a converging rod lens array that captures an image of a document surface through the body.

【0016】(手段2)前記光源の発光体を配置したベ
ース基板を原稿読み取り面としたことを特徴とする。
(Means 2) The present invention is characterized in that the base substrate on which the luminous body of the light source is arranged serves as a document reading surface.

【0017】(手段3)前記光源が蛍光表示管であり、
該ベース基板またはカバーガラスを原稿読み取り面とし
たことを特徴とする。
(Means 3) The light source is a fluorescent display tube,
The base substrate or the cover glass is used as a document reading surface.

【0018】[0018]

【作用】本発明は、光源を原稿面と平行に配置し、視野
域の狭いロッドレンズアレイと組合わせることにより原
稿面を効率的に照射するものである。すなわち、光源を
原稿面に対して平行に配して原稿面までの距離を可能な
かぎり近づける。そのとき、視野域の狭いロッドレンズ
アレイを用いると迷光を避けるための遮光層やアパーチ
ャを設けることなく光源の発光体と原稿面を近づけるこ
とができる。
According to the present invention, the light source is arranged in parallel with the document surface and is combined with the rod lens array having a narrow visual field to efficiently illuminate the document surface. That is, the light source is arranged in parallel with the document surface to make the distance to the document surface as close as possible. At this time, if a rod lens array with a narrow field of view is used, the light-emitting body of the light source and the document surface can be brought close to each other without providing a light-shielding layer or aperture for avoiding stray light.

【0019】とくに、蛍光表示管を光源としてもちいる
と、発光体が均一に発光するため光量のばらつきが小さ
い、ベース基板またはカバーガラスを読み取り面にでき
る、カラー対応ができるといった特徴を有し、本発明に
適している。
In particular, when a fluorescent display tube is used as a light source, the light-emitting body emits light uniformly, so that there is little variation in the amount of light, the base substrate or cover glass can be used as the reading surface, and color compatibility is possible. Suitable for the present invention.

【0020】[0020]

【実施例】図1に本発明の密着型画像入力装置の断面図
を示す。11は原稿、12は光源、13は集束性ロッド
レンズアレイ(等倍正立結像レンズアレイ)、14は固
体撮像素子。集束性ロッドレンズアレイ13は光源12
によって照射された原稿11の面を該光源の発光体を配
したベース基板15を通して撮像し、固体撮像素子14
に結像させる。光源12のベース基板15は原稿読み取
り面を兼ねている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view of a contact type image input device of the present invention. Reference numeral 11 is a document, 12 is a light source, 13 is a converging rod lens array (equal magnification erecting imaging lens array), and 14 is a solid-state image sensor. The converging rod lens array 13 is a light source 12
The surface of the original 11 illuminated by the image is imaged through the base substrate 15 on which the light emitter of the light source is arranged,
Image. The base substrate 15 of the light source 12 also serves as a document reading surface.

【0021】発光体としては、ベース基板にLEDを配
置したもの、あるいは蛍光体を配置した蛍光表示管等を
もちいる。またカラー化する場合は、赤・緑・青の三色
発光の発光の光源とする。
As the light-emitting body, one in which LEDs are arranged on the base substrate, or a fluorescent display tube in which a phosphor is arranged is used. For colorization, use a light source that emits red, green, and blue light.

【0022】図2に本発明の1実施例として、カラー画
像入力装置の光源として使用する蛍光表示管の例を示
す。25はベース基板、22R,22G,22Bは赤・
緑・青各色の蛍光体(アノード電極)、23はフィラメ
ント(カソード電極)、24はカバーガラスを示す。
FIG. 2 shows an example of a fluorescent display tube used as a light source of a color image input device as one embodiment of the present invention. 25 is a base substrate, 22R, 22G and 22B are red.
Green and blue phosphors (anode electrodes), 23 is a filament (cathode electrode), and 24 is a cover glass.

【0023】赤の蛍光体22Rは660nmの波長域、
緑の蛍光体22Gは530nmの波長域、青の蛍光体2
2Bは450nmの波長域の蛍光体を使用する。
The red phosphor 22R has a wavelength range of 660 nm,
The green phosphor 22G has a wavelength range of 530 nm, and the blue phosphor 2
2B uses a phosphor in the wavelength region of 450 nm.

【0024】固体撮像素子は白黒用の固体撮像素子と同
一のもので、原稿面の1走査線に対して固体撮像素子は
3回走査する。3回の走査時にはそれぞれ赤、緑、青の
各色の波長の光が光源より原稿に照射れる。走査方法と
しては、1ラインずつ光源の光を切り換えていく線順
次、または各色の光源で1面読み込む面順次のいずれで
あっても対応できる。
The solid-state image pickup device is the same as the solid-state image pickup device for black and white, and the solid-state image pickup device scans three times with respect to one scanning line on the document surface. During scanning three times, light of wavelengths of red, green, and blue are emitted from the light source onto the document. The scanning method can be either line sequential in which the light from the light source is switched line by line or surface sequential in which one surface is read by each color light source.

【0025】開口角15゜、ファイバ径0.86mmの
集束性ロッドレンズアレイ21を用いた場合、その視野
域は約3.2mmである。図2においてこの視野域27
(図中破線にて示した範囲)には発光体を配置しない。
この視野域外から入射する発光体の光は、集束性ロッド
レンズ21に対する入射角が15゜以上になるためロッ
ドレンズ21には入射されない。すなわち、発光体22
から直接集束性ロッドレンズアレイに入射する光は15
゜以上の入射角となるため入射されず、15゜以下であ
る集束性ロッドレンズアレイ21の撮像する視野域27
の光のみが該レンズ21に入射し固体撮像素子に結像さ
れる。従って、発光体は集束性ロッドレンズの視野域2
7の端部より外側に配置する。たとえば、視野域3.2
mm、蛍光体幅1.5mm、蛍光体間のギャップ0.2
5mmとすれば蛍光体は9.7mmの幅内に形成される
ので全体として幅15mm程度、高さ25mm(集束性
ロッドレンズの物像面間距離)、長さ230mm(読み
取り幅)の画像入力装置におさめることができる。これ
は、従来のカラー画像入力装置の半分以下の容積であ
る。
When the converging rod lens array 21 having an aperture angle of 15 ° and a fiber diameter of 0.86 mm is used, the field of view thereof is about 3.2 mm. This visual field 27 in FIG.
No illuminant is arranged in the range indicated by the broken line in the figure.
The light emitted from the light-emitting body from outside the field of view is not incident on the rod lens 21 because the incident angle on the converging rod lens 21 is 15 ° or more. That is, the light emitter 22
The light directly incident on the converging rod lens array is 15
Since the incident angle is not less than 15 °, it is not incident, and the field of view 27 of the converging rod lens array 21 is 15 ° or less.
Only the light enters the lens 21 and forms an image on the solid-state image sensor. Therefore, the luminous body is the field of view 2 of the focusing rod lens.
It is arranged outside the end of 7. For example, the field of view 3.2
mm, phosphor width 1.5 mm, gap between phosphors 0.2
If the distance is 5 mm, the phosphor is formed within a width of 9.7 mm, so the overall width is about 15 mm, the height is 25 mm (the distance between the image planes of the focusing rod lens), and the length is 230 mm (reading width). Can be stored in the device. This is less than half the volume of conventional color image input devices.

【0026】また、光源の発光体の配列は、固体撮像素
子の分光感度と発光体の発光効率からその配列を決定す
る。固体撮像素子の分光感度がよく発光効率のよい波長
の発光体を外側に、固体撮像素子の分光感度が低く発光
効率の悪い波長の発光体を内側に配置する。固体撮像素
子としてアモルファスシリコンフォトダイオード、光源
として蛍光表示管を光源として用いる場合は、図4に示
すように固体撮像素子の分光感度は青と赤が低く、光源
発光効率は一般的に青が悪い。従って、青と赤はレンズ
の撮像位置に対し近い距離となる内側に配置して照射効
率をよくする。分光感度がよく発光効率のよい緑を外側
に配置する。緑はレンズの撮像位置から遠いため光量ム
ラがでやすいので両側から照射する。
The arrangement of the light emitters of the light source is determined from the spectral sensitivity of the solid-state image pickup element and the luminous efficiency of the light emitters. A light-emitting body having a wavelength with good spectral sensitivity and good emission efficiency of the solid-state image pickup element is arranged on the outside, and a light-emitting body with wavelength having low spectral sensitivity of the solid-state image pickup element and poor emission efficiency is arranged inside. When an amorphous silicon photodiode is used as the solid-state image sensor and a fluorescent display tube is used as the light source, the solid-state image sensor has a low spectral sensitivity of blue and red, and the light emission efficiency of the light source is generally blue. . Therefore, blue and red are arranged inside so as to be close to the image pickup position of the lens to improve the irradiation efficiency. Green with good spectral sensitivity and good luminous efficiency is placed outside. Since green is far from the image pickup position of the lens, uneven light amount is likely to occur, and therefore irradiation is performed from both sides.

【0027】蛍光表示管は公知のとおり、高真空中でフ
ィラメントより放出された熱電子をアノードに印加した
数ボルト〜数十ボルトの正電圧で加速してアノード上に
塗布された蛍光体を励起し発光させるものである。従っ
て、蛍光表示管の輝度は、蛍光体の発光効率とフィラメ
ントからの熱電子の放出量と印加電圧による。そこで、
蛍光表示管のフィラメント23はアノード電極上に塗布
された各々の蛍光体22G,22R,22B,22Gに
対してつねに2本ずつ対向するように配置し、各々の蛍
光体22とフィラメント23の位置関係を同等にする。
このことによりフィラメントより放出される熱電子の量
が各蛍光体に対して均一になり、かつ複数本のフィラメ
ントを配置することにより十分な熱電子の放出をさせる
ことができる。
As is well known, in a fluorescent display tube, thermoelectrons emitted from a filament in a high vacuum are accelerated by a positive voltage of several volts to several tens of volts applied to the anode to excite the phosphor coated on the anode. And emit light. Therefore, the brightness of the fluorescent display tube depends on the luminous efficiency of the phosphor, the amount of thermoelectrons emitted from the filament, and the applied voltage. Therefore,
The filaments 23 of the fluorescent display tube are arranged so that two filaments 23G, 22R, 22B, 22G coated on the anode electrode are always opposed to each other, and the positional relationship between each filament 22 and the filament 23 is arranged. Are made equal.
As a result, the amount of thermoelectrons emitted from the filament becomes uniform with respect to each phosphor, and sufficient thermoelectrons can be emitted by disposing a plurality of filaments.

【0028】蛍光体蛍光表示管の点灯制御はアノード電
極の制御のみで行い、発光させる蛍光体に寄与するフィ
ラメントはつねに通電状態としておく。これは、フィラ
メントに通電してから熱電子が発生するまで数秒もかか
り、フィラメント(カソード電極)の制御では光源の高
速切り換えができないためである。フィラメントはつね
に通電状態にしておき、アノード電極の制御のみで発光
を制御すれば1μsec以下の速度で光源の点灯をきり
かえられ、線順次読み取り等に必要な光源の高速切り換
えに対応できる。
Lighting control of the phosphor fluorescent display tube is performed only by controlling the anode electrode, and the filaments that contribute to the phosphor to emit light are always energized. This is because it takes several seconds after the filament is energized to generate thermoelectrons, and the light source cannot be switched at high speed by controlling the filament (cathode electrode). If the filament is always energized and the light emission is controlled only by controlling the anode electrode, the light source can be switched on at a speed of 1 μsec or less, and high-speed switching of the light source required for line sequential reading or the like can be supported.

【0029】また、蛍光表示管の蛍光体は固体撮像素子
の有効読取り幅に対して1mm以上長く配置し、端部の
輝度のばらつきが固体撮像素子の出力に影響しないよう
にする。このような配置にすることにより赤、緑、青の
各色はほぼ同一の位置から原稿を効率的に、かつ有効読
取り範囲を均一に照射し、その光量の不均一性は10%
以下である。発光体から撮像面までの距離は約2mmと
非常に近いため発光光量の損失が小さい。これは、従来
のLED光源では光量不均一性が15〜20%照射位置
が7〜10mmであるのに比べれば飛躍的な技術改良で
ある。
Further, the fluorescent substance of the fluorescent display tube is arranged longer than the effective reading width of the solid-state image pickup device by 1 mm or more so that the variation in the luminance at the end does not affect the output of the solid-state image pickup device. With this arrangement, the red, green, and blue colors efficiently irradiate the original from almost the same position and uniformly illuminate the effective reading range, and the unevenness of the light amount is 10%.
It is the following. Since the distance from the light emitter to the image pickup surface is very close to about 2 mm, the loss of the emitted light amount is small. This is a dramatic technical improvement as compared with the conventional LED light source in which the light amount nonuniformity is 15 to 20% and the irradiation position is 7 to 10 mm.

【0030】図3に別の実施例をしめす。この実施例に
示す光源32はガラス等の透明なベース基板35上に発
光体を配置した光源でもよいし、光が通過する部分をス
リット状に形成した絶縁性のベース基板上に発光体を配
置した光源でもよい。あるいは、集束性ロッドレンズア
レイの視野域を避けた位置に複数の光源を原稿面に平行
配置してもよい。ベース基板35は前記実施例と異なり
集束性ロッドレンズアレイ33側に配置する。ベース基
板35を集束性ロッドレンズアレイ33側に配すと、撮
像面から発光体の距離が遠くなるため、発光体の照射効
率はやや落ちるが発光体を集束性ロッドレンズアレイの
視野域が狭くなる位置に配置できるので光源の幅を小さ
くできる。本発明の画像入力装置は、光源を原稿面に対
し平行に配置するため、装置の幅寸法は光源の幅が支配
的である。従って、光源の幅が小さくなると装置全体の
小型化も可能である。例えば、発光体を配置するベース
基板の厚みを1.0mmとすれば、集束性ロッドレンズ
アレイの視野域に影響する範囲は約1.4mmとなり前
記実施例の図2に示した視野域27よりも1.8mm幅
を狭くできる。
FIG. 3 shows another embodiment. The light source 32 shown in this embodiment may be a light source in which a light emitting body is arranged on a transparent base substrate 35 such as glass, or the light emitting body is arranged on an insulating base substrate in which a portion through which light passes is formed in a slit shape. It may be a light source. Alternatively, a plurality of light sources may be arranged in parallel with the document surface at a position avoiding the visual field of the converging rod lens array. Unlike the above-described embodiment, the base substrate 35 is arranged on the side of the focusing rod lens array 33. When the base substrate 35 is arranged on the side of the converging rod lens array 33, since the distance of the luminous body from the imaging surface becomes large, the irradiation efficiency of the luminous body is slightly lowered, but the visual field of the condensing rod lens array is narrow. The width of the light source can be reduced because it can be arranged at any position. In the image input device of the present invention, the light source is arranged in parallel to the document surface, so that the width dimension of the device is dominated by the width of the light source. Therefore, if the width of the light source is reduced, the size of the entire device can be reduced. For example, if the thickness of the base substrate on which the light emitters are arranged is 1.0 mm, the range that affects the field of view of the converging rod lens array is about 1.4 mm, which is smaller than the field of view 27 shown in FIG. Also, the width can be narrowed by 1.8 mm.

【0031】光源32として蛍光表示管を用いれば、図
3に示すように蛍光表示管のカバーガラスが原稿読み取
り面を兼ねることができる。蛍光表示管は一般的に静電
気対策としてカバーガラス面に透明導電体層を配してい
る。蛍光表示管のカバーガラスを読み取り面として使用
すれば、原稿読み取り時に発生する静電気による紙粉の
堆積を防止でき、また静電気による半導体素子の破壊も
防ぐことができる。
If a fluorescent display tube is used as the light source 32, the cover glass of the fluorescent display tube can also serve as the original reading surface, as shown in FIG. Fluorescent display tubes generally have a transparent conductor layer on the cover glass surface as a measure against static electricity. If the cover glass of the fluorescent display tube is used as the reading surface, it is possible to prevent the accumulation of paper powder due to static electricity generated when reading an original, and to prevent the destruction of the semiconductor element due to static electricity.

【0032】また、発光体としてLEDを使用する場合
は、図1に示す実施例では原稿と発光体の距離が近すぎ
て発光体付近と発光体から離れた位置での照度差が大き
く、光量のムラがおおきくなりすぎるため、図3に示す
実施例のほうが望ましい。
When an LED is used as the light emitting body, in the embodiment shown in FIG. 1, the distance between the original and the light emitting body is too close, and the illuminance difference between the vicinity of the light emitting body and the position away from the light emitting body is large, and the light amount is large. 3 is more preferable because the unevenness of 2 is too large.

【0033】本発明は、今後需要が拡大するカラー画像
入力装置について説明してきたが、光源の色を選べば、
白黒(例えば、白や緑の光源色)あるいは数色のみ(例
えば、赤や青)のワンポイントカラーの画像入力装置に
も応用できる。
Although the present invention has been described with respect to a color image input device whose demand will increase in the future, if the color of the light source is selected,
It can also be applied to a one-point color image input device of black and white (for example, white or green light source color) or only a few colors (for example, red or blue).

【0034】また、光源として3色発光が可能・比較的
低電圧である・信頼性が高い・応答速度が早い等の理由
から主に蛍光表示管を例に実施例を説明してきたが、発
光体としてLED、EL等を集束性ロッドレンズアレイ
の視野域にかからないようにベース基板上に配置した光
源を利用しても本発明の多大なる効果がえられる。
Further, the embodiment has been mainly described by taking the fluorescent display tube as an example for the reason that it can emit three colors as a light source, has a relatively low voltage, has high reliability, and has a fast response speed. Even if a light source in which LEDs, EL, etc. are arranged on the base substrate so as not to cover the field of view of the converging rod lens array is used as the body, the great effects of the present invention can be obtained.

【0035】[0035]

【発明の効果】以上述べた如く、本発明によれば、以下
の如く多大な効果をもたらす。
As described above, according to the present invention, the following great effects are brought about.

【0036】1)光源を原稿読み取り面とレンズの間に
配置し、集束性ロッドレンズアレイにて原稿面を撮像す
ることにより光源及び画像入力装置の小型化をもたらし
た。
1) The light source is arranged between the document reading surface and the lens, and the document surface is imaged by the converging rod lens array, thereby reducing the size of the light source and the image input device.

【0037】2)光源より発光する光を効率的に原稿面
に照射できるので固体撮像素子のダイナミックレンジを
広く使用でき、高速化も可能とした。
2) Since the surface of the original can be efficiently irradiated with the light emitted from the light source, the dynamic range of the solid-state image pickup device can be widely used and the speed can be increased.

【0038】3)また、照明効率を上げたことにより光
源の発光輝度を減らすことも可能なため、光源の消費電
力を減らすことが可能である。
3) Further, since the light emission brightness of the light source can be reduced by increasing the illumination efficiency, it is possible to reduce the power consumption of the light source.

【0039】4)蛍光表示管を用いることにより、赤・
緑・青の三色発光による小型化・高輝度発光・均一発光
・高信頼性のカラー画像入力装置がえられる。
4) By using a fluorescent display tube,
A compact, high-brightness emission, uniform emission, and highly reliable color image input device can be obtained by emitting three colors of green and blue.

【0040】5)集束性ロッドレンズアレイをレンズと
して使用するため、光学軸上に遮光層を配すことなく前
述の効果を奏でる画像入力装置を供給できる。
5) Since the converging rod lens array is used as a lens, it is possible to provide an image input device which achieves the above-mentioned effects without disposing a light shielding layer on the optical axis.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の密着型画像入力装置の断面図。FIG. 1 is a cross-sectional view of a contact image input device of the present invention.

【図2】 本発明の画像入力装置に光源として使用する
蛍光表示管の断面図。
FIG. 2 is a cross-sectional view of a fluorescent display tube used as a light source in the image input device of the present invention.

【図3】 本発明の別の密着型画像入力装置の断面図。FIG. 3 is a sectional view of another contact-type image input device of the present invention.

【図4】 アモルファスフォトダイオードの分光感度を
示す図。
FIG. 4 is a diagram showing the spectral sensitivity of an amorphous photodiode.

【図5】 縮小光学系画像入力装置の断面図。FIG. 5 is a cross-sectional view of a reduction optical system image input device.

【図6】 従来のカラー画像入力装置を示す構成図。FIG. 6 is a configuration diagram showing a conventional color image input device.

【図7】 従来の密着型画像入力装置を示す構成図。FIG. 7 is a configuration diagram showing a conventional contact-type image input device.

【符号の説明】[Explanation of symbols]

11.原稿 12.光源 13.集束性ロッドレンズアレイ 14.固体撮像素子 21.集束性ロッドレンズアレイ 22.蛍光表示管のアノード電極(蛍光体) 23.蛍光表示管のカソード電極(フィラメント) 24.カバーガラス 25.ベース基板 26.端子 31.51.61.71.原稿 32.53.62.72.光源 33.73. 集束性ロッドレンズアレイ 34.54.64.74.固体撮像素子 52.63.縮小レンズ 56.遮光層 11. Manuscript 12. Light source 13. Focusing rod lens array 14. Solid-state image sensor 21. Focusing rod lens array 22. Anode electrode (phosphor) of fluorescent display tube 23. Cathode electrode (filament) of a fluorescent display tube 24. Cover glass 25. Base substrate 26. Terminal 31.51.61.71. Manuscript 32.53.62.72. Light source 33.73. Focusing Rod Lens Array 34.54.64.74. Solid-state image sensor 52.63. Reduction lens 56. Shading layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】原稿面を撮像する光学系と、この光学系の
結像面に配置された光電変換素子と、原稿面を照射する
光源からなる画像入力装置において、 前記光学系は前記光源の中の発光体の間を通して原稿面
を撮像する集束性ロッドレンズアレイであることを特徴
とする画像入力装置。
1. An image input device comprising an optical system for picking up an image of a document surface, a photoelectric conversion element arranged on an image forming surface of the optical system, and a light source for illuminating the document surface, wherein the optical system is the light source. An image input device, which is a converging rod lens array that captures an image of a document surface through a light emitter inside.
【請求項2】前記光源の発光体を配置したベース基板
は、原稿読み取り面であることを特徴とする請求項1記
載の画像入力装置。
2. The image input device according to claim 1, wherein the base substrate on which the light emitter of the light source is arranged is a document reading surface.
【請求項3】前記光源は蛍光表示管であり、該ベース基
板またはカバーガラスを原稿読み取り面としたことを特
徴とする請求項1記載の画像入力装置。
3. The image input device according to claim 1, wherein the light source is a fluorescent display tube, and the base substrate or the cover glass serves as a document reading surface.
JP6214797A 1994-09-08 1994-09-08 Image input device Pending JPH0879446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6214797A JPH0879446A (en) 1994-09-08 1994-09-08 Image input device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6214797A JPH0879446A (en) 1994-09-08 1994-09-08 Image input device

Publications (1)

Publication Number Publication Date
JPH0879446A true JPH0879446A (en) 1996-03-22

Family

ID=16661689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6214797A Pending JPH0879446A (en) 1994-09-08 1994-09-08 Image input device

Country Status (1)

Country Link
JP (1) JPH0879446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354132A (en) * 1999-06-10 2000-12-19 Matsushita Graphic Communication Systems Inc Image reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354132A (en) * 1999-06-10 2000-12-19 Matsushita Graphic Communication Systems Inc Image reader

Similar Documents

Publication Publication Date Title
US6139174A (en) Light source assembly for scanning devices utilizing light emitting diodes
US4594527A (en) Vacuum fluorescent lamp having a flat geometry
JPH0927886A (en) Electroluminescence device as light source for scanner
US6765701B2 (en) Film scanner with uniformized infrared light by utilizing a cold cathode fluorescent lamp
US20030010892A1 (en) Imaging system using identical or nearly-identical scanning and viewing illuminations
US5525866A (en) Edge emitter as a directional line source
JP4091712B2 (en) Image reading device
JP2000115470A (en) Original reader
JPS6311833B2 (en)
JPH0879446A (en) Image input device
JPH11317108A (en) Lighting apparatus, and image reading apparatus and image forming apparatus using the lighting apparatus
US7315405B2 (en) Image forming apparatus and image scanning method
JPH04248246A (en) Lighting device and image input device
JPS62203466A (en) Original reader
JPH05328025A (en) Original reader
JPS58212255A (en) Reader of color original
JPH05189601A (en) Image input device
JP3492842B2 (en) Image reading device
JP2003309707A (en) Image reader
US5422537A (en) Illumination unit and image reading apparatus
JPS5821974A (en) Color original reader
JPH11317854A (en) Image reader and color image reader using the reader
JPH1198331A (en) Image irradiation device and image reader using the device
JP2003348297A (en) Contact type image sensor and image reader
JPH1032680A (en) Image reader and fluorescent lamp

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050704

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050928

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207