JPH0879184A - Optical communication equipment - Google Patents

Optical communication equipment

Info

Publication number
JPH0879184A
JPH0879184A JP6234510A JP23451094A JPH0879184A JP H0879184 A JPH0879184 A JP H0879184A JP 6234510 A JP6234510 A JP 6234510A JP 23451094 A JP23451094 A JP 23451094A JP H0879184 A JPH0879184 A JP H0879184A
Authority
JP
Japan
Prior art keywords
light
optical
communication
signal
amplified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6234510A
Other languages
Japanese (ja)
Other versions
JP2829898B2 (en
Inventor
Tomohiro Araki
智宏 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Original Assignee
National Space Development Agency of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan filed Critical National Space Development Agency of Japan
Priority to JP6234510A priority Critical patent/JP2829898B2/en
Publication of JPH0879184A publication Critical patent/JPH0879184A/en
Application granted granted Critical
Publication of JP2829898B2 publication Critical patent/JP2829898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To make an optical communication equipment small and light by leading the detection signal of each photo diode of a four-quadrant photodetector to an operational amplifier part and calculating the deviation of the incidence direction or laser light to each light reception part and using a part of photo diodes as a light reception element for communication. CONSTITUTION: In the four-quadrant photodetector, laser light received by light reception parts 1 to 4 is led to optical amplifiers 9 to 12 through optical fibers 5 to 8 and is amplified in the stage of light. Amplified signal light is led to photo diodes 13 to 16 and is converted to electric signals, and they are processed in an operation processing part 17, and deviation detection signals of laser light made incident on light reception parts 1 to 4 are outputted. A direction control mirror not shown in Fig. is driven by these deviation signals to correct the deviation of incident laser light, and thus, acquisition and tracking operation are performed. An optical signal for communication is detected in the photo diode 16 and is converted to an electric signal and is amplified by an amplifier and is demodulated by a demodulator and is received.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、人工衛星等の宇宙機
相互間の連携通信に用いられるレーザ光による光通信装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication device using laser light used for cooperative communication between spacecraft such as artificial satellites.

【0002】[0002]

【従来の技術】人工衛星を始め、宇宙ステーション等の
各種宇宙機においては、相互に連携をとることが運用面
において重要であり、したがって通信面においてもそれ
らの宇宙機相互間の連携通信が要求されている。従来、
このような宇宙機相互間の連携通信は、電波を用いて行
われている。ところが地球観測衛星や宇宙ステーション
等の如く宇宙における活動が増加するに伴い、宇宙機相
互間で伝送すべき情報量も飛躍的に増大し、データ信号
速度が1〜10Gbps 程度必要とされている。しかし従来
の電波による通信方式では、混信を防止するための周波
数割当の問題や、アンテナ口径あるいは送信出力の限界
等から実用的には既に限界状態に達している。このため
レーザ光を用いた光通信方式が注目され、特に大気の影
響を受けない宇宙空間では宇宙機相互間の光通信方式は
有望視されている。ところで、宇宙機相互間の連携通信
に、このレーザ光による光通信方式を用いる場合、レー
ザ光のビーム幅は10-12 〜10-15 deg 程度と非常に狭
く、したがって通信回路設定時には通信の相手方からの
レーザビームを捕らえる捕捉動作、及び通信回線設定後
に相手方からのレーザビームを相手方の移動に応じて捕
捉し続ける追尾動作が必要となる。
2. Description of the Related Art In various spacecraft such as artificial satellites and space stations, it is important to cooperate with each other in terms of operation. Therefore, in terms of communication as well, cooperative communication between these spacecraft is required. Has been done. Conventionally,
Such cooperative communication between spacecraft is performed using radio waves. However, as the activities in space such as earth observation satellites and space stations increase, the amount of information to be transmitted between spacecraft also increases dramatically, and the data signal rate is required to be about 1 to 10 Gbps. However, the conventional radio-wave communication system has already reached a practical limit due to the problem of frequency allocation for preventing interference, the antenna aperture, the transmission output limit, and the like. Therefore, an optical communication system using laser light has been attracting attention, and an optical communication system between spacecrafts is regarded as promising especially in outer space that is not affected by the atmosphere. By the way, when this optical communication system using laser light is used for coordinated communication between spacecraft, the beam width of the laser light is very narrow, about 10 -12 to 10 -15 deg. It is necessary to perform a capturing operation for capturing the laser beam from the other party and a tracking operation for continuously capturing the laser beam from the other party according to the movement of the other party after setting the communication line.

【0003】このような捕捉・追尾動作を伴う光通信装
置においては、レーザビームを数万kmという遠距離の通
信相手と送受信を行うためにμrad オーダの高精度なビ
ーム制御を必要とする。このビーム制御のために用いる
センサとしては、従来、受光面を4つに分割した受光素
子である図3図に示すような4分割フォトダイオード
(QD)101 、あるいは図4に示すような4分割アバラ
ンシェフォトダイオード(QAPD)111 とが知られて
いる。4分割フォトダイオード101 は増幅作用をもたな
いが、4分割アバランシェフォトダイオード111 は、通
常のアバランシェフォトダイオードと同様に素子自体が
アバランシェ効果による電気的増幅機能をもっており、
図4に示すように、この4分割アバランシェフォトダイ
オードの各分割受光素子112 は、ノイズ低減のために図
3に示す4分割フォトダイオードの各分割受光素子102
よりも、相互の間隔を広くとっている。そして、数万km
という長距離を伝搬した光信号は拡散し、極めて弱くな
っているが、上記4分割受光素子を用い、4つの各分割
受光素子で受光した光量の差からレーザビームの入射方
向を検出し、指向制御ミラー等を制御し、捕捉・追尾動
作を行うようになっている。
In such an optical communication apparatus accompanied by the capturing / tracking operation, high-precision beam control on the order of μrad is required for transmitting / receiving a laser beam to / from a communication partner at a long distance of tens of thousands of kilometers. As a sensor used for this beam control, a four-division photodiode (QD) 101 as shown in FIG. 3 which is a light-receiving element having a light-receiving surface divided into four in the past, or a four-division photodiode as shown in FIG. An avalanche photodiode (QAPD) 111 is known. The four-divided photodiode 101 does not have an amplifying action, but the four-divided avalanche photodiode 111 has an electric amplification function by the avalanche effect, like the normal avalanche photodiode.
As shown in FIG. 4, each divided light receiving element 112 of this four-divided avalanche photodiode is divided into four divided light-receiving elements 102 of the four-divided photodiode shown in FIG. 3 for noise reduction.
The distance between them is wider than that. And tens of thousands of km
Although the optical signal propagated over a long distance is diffused and becomes extremely weak, the incident direction of the laser beam is detected from the difference in the amount of light received by each of the four divided light receiving elements by using the above four divided light receiving elements to direct the light. The control mirror and the like are controlled to perform a capturing / tracking operation.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記4分割
フォトダイオード(QD)は、一般的な受光素子である
フォトダイオードの受光面を4分割したものであり、一
般のフォトダイオードと同様に、小型で取り扱いが容易
であるが、増幅作用をもたないので、感度が悪いという
欠点がある。一方、4分割アバランシェフォトダイオー
ド(QAPD)は、前記4分割フォトダイオードとは異
なり、素子自体に増幅機能をもっているので感度は十分
であるが、増幅機能をもっているためにショットノイズ
の影響を強く受け、また増幅に必要な電気系により大き
さ及び重量が大となってしまうという問題点がある。
By the way, the above-mentioned four-division photodiode (QD) is obtained by dividing a light-receiving surface of a photodiode, which is a general light-receiving element, into four, and is small in size like a general photodiode. It is easy to handle, but since it has no amplification effect, it has the drawback of poor sensitivity. On the other hand, a 4-division avalanche photodiode (QAPD), unlike the 4-division photodiode, has sufficient sensitivity because it has an amplifying function in the element itself, but is strongly affected by shot noise because it has an amplifying function. Further, there is a problem that the size and weight become large due to the electric system required for amplification.

【0005】本発明は、従来の光通信装置に用いる4分
割フォトダイオードあるいは4分割アバランシェフォト
ダイオードの上記問題点を解消するためになされたもの
で、取り扱いの容易な一般的な受光系であるフォトダイ
オードを用いて、4分割アバランシェフォトダイオード
と同等の感度が得られるようにした4象限光検出器を備
えた光通信装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems of the four-division photodiode or the four-division avalanche photodiode used in the conventional optical communication device, and is a general photoreception system which is easy to handle. It is an object of the present invention to provide an optical communication device equipped with a four-quadrant photodetector that can obtain sensitivity equivalent to that of a four-divided avalanche photodiode by using a diode.

【0006】[0006]

【課題を解決するための手段及び作用】上記問題点を解
決するため、本発明は、人工衛星などの宇宙機に搭載さ
れ、該宇宙機相互間の連携通信を行うためのレーザ光に
よる光通信装置において、近接して配置された光学系か
らなる4つの受光部と、各受光部で受光された各レーザ
光を増幅するための光増幅器と、増幅された各光信号を
検出するための4つのフォトダイオードとで構成した追
尾・捕捉用4象限光検出器を備え、該追尾・捕捉用4象
限光検出器を構成する4つのフォトダイオードの一部を
通信用受光素子として兼用させるように構成するもので
ある。
In order to solve the above problems, the present invention is mounted on spacecraft such as artificial satellites, and optical communication by laser light for performing cooperative communication between the spacecrafts. In the device, four light-receiving sections each including an optical system arranged in close proximity, an optical amplifier for amplifying each laser beam received by each light-receiving section, and four for detecting each amplified optical signal. A four-quadrant photodetector for tracking / capturing, which is composed of two photodiodes, is configured so that a part of the four photodiodes constituting the four-quadrant photodetector for tracking / capturing can also be used as a light receiving element for communication. To do.

【0007】このように構成した光通信装置において
は、各受光部で受光された各レーザ光は、それぞれ光増
幅器で増幅されたのち、個別のフォトダイオードで検出
される。そして、追尾・捕捉用の制御信号として用いら
れ、またフォトダイオードの一部は通信用受光素子とし
ても用いられ、通信信号を検出する。したがって、取り
扱いの容易なフォトダイオードを用いて、4分割アバラ
ンシェフォトダイオードを用いた場合と同様の増幅され
た追尾・捕捉用の検出信号を得ることができる。またフ
ォトダイオードの一部を通信用受光素子として用いてい
るので、別個の通信用受光素子やビームスプリッタ等の
光学素子を必要とせず、使用部品の低減化により構成の
容易化、光学設計の容易化、並びに装置全体の小型軽量
化を計ることができる。
In the optical communication device configured as described above, each laser beam received by each light receiving section is amplified by an optical amplifier and then detected by an individual photodiode. Then, it is used as a control signal for tracking / capturing, and a part of the photodiode is also used as a light receiving element for communication to detect a communication signal. Therefore, it is possible to obtain an amplified detection signal for tracking / capturing similar to the case of using the quadrant avalanche photodiode by using the photodiode which is easy to handle. Also, because a part of the photodiode is used as a light receiving element for communication, there is no need for a separate optical element such as a light receiving element for communication or a beam splitter, and the number of parts used is reduced to simplify the configuration and facilitate optical design. It is possible to reduce the size and weight of the entire device.

【0008】[0008]

【実施例】次に実施例について説明する。図1は、本発
明に係る光通信装置の実施例における4象限光検出器部
分の構成を示す概略図である。図1において、1〜4
は、例えば直径0.5mm程度の光学レンズ系からなる受光
部で、それぞれ極めて近接して、例えば、0.1mm以下の
間隔をおいて配置されている。5〜8は光ファイバで、
一端は前記各受光部1〜4に接続され、他端はそれぞれ
光増幅器9〜12に接続されている。光増幅器9〜12とし
ては、半導体光増幅器(半導体レーザとほぼ同様の構造
を有し、自らは発振せず、光信号が入力するとこれを光
増幅する素子)などが用いられる。13〜16は、前記各光
増幅器9〜12で増幅された光信号を電気信号に変換する
ためのフォトダイオードであり、17は演算処理部で、前
記各フォトダイオード13〜16からの光電変換された検出
信号を受けて演算処理を行い、受光部1〜4への入射レ
ーザ光の入射方向のずれを検出し、図示しない指向制御
ミラーを駆動するための駆動装置への制御信号を送出す
るものである。
EXAMPLES Next, examples will be described. FIG. 1 is a schematic diagram showing a configuration of a four-quadrant photodetector portion in an embodiment of an optical communication device according to the present invention. 1 to 4 in FIG.
Are light-receiving portions made of, for example, an optical lens system having a diameter of about 0.5 mm, and are arranged extremely close to each other, for example, at intervals of 0.1 mm or less. 5 to 8 are optical fibers,
One end is connected to each of the light receiving units 1 to 4 and the other end is connected to the optical amplifiers 9 to 12, respectively. As the optical amplifiers 9 to 12, semiconductor optical amplifiers (elements having a structure similar to that of a semiconductor laser, which does not oscillate by itself but optically amplifies the optical signal when input) are used. Reference numerals 13 to 16 are photodiodes for converting the optical signals amplified by the optical amplifiers 9 to 12 into electric signals, and 17 is an arithmetic processing unit, which is photoelectrically converted from the photodiodes 13 to 16. Receiving the detection signal, performing arithmetic processing, detecting the deviation of the incident direction of the incident laser light to the light receiving units 1 to 4, and sending a control signal to a driving device for driving a directional control mirror (not shown). Is.

【0009】また、前記フォトダイオード13〜16のう
ち、例えばフォトダイオード16を通信用受光素子として
用い、該フォトダイオード16に導かれた光信号は通信用
光信号とし、フォトダイオード16で電気信号に変換した
のち、図2に示すように、アンプ18に導き増幅し復調器
19で復調し、受信を行うように構成されている。
Of the photodiodes 13 to 16, for example, the photodiode 16 is used as a light receiving element for communication, and the optical signal guided to the photodiode 16 is used as an optical signal for communication, and the photodiode 16 converts it into an electrical signal. After conversion, as shown in Fig. 2, it is led to the amplifier 18 for amplification and demodulation.
It is configured to demodulate at 19 and receive.

【0010】このように構成した実施例の4象限光検出
器においては、受光部1〜4で受光されたレーザ光は、
光ファイバ5〜8を介して光増幅器9〜12に導かれ、光
の段階で増幅される。増幅された信号光はフォトダイオ
ード13〜16に導かれ、電気信号に変換されて、演算処理
部17で演算処理が行われ、受光部1〜4への入射レーザ
光のずれ検出信号が出力される。このずれ検出信号によ
り、図示しない指向制御ミラーが駆動され、入射レーザ
光の入射方向のずれが補正され、これにより、捕捉・追
尾動作が行われる。
In the four-quadrant photodetector of the embodiment thus constructed, the laser light received by the light receiving sections 1 to 4 is
It is guided to the optical amplifiers 9 to 12 through the optical fibers 5 to 8 and is amplified at the stage of light. The amplified signal light is guided to the photodiodes 13 to 16 and converted into an electric signal, and arithmetic processing is performed by the arithmetic processing unit 17, and the deviation detection signal of the incident laser light to the light receiving units 1 to 4 is output. It A directivity control mirror (not shown) is driven by the shift detection signal, and the shift in the incident direction of the incident laser light is corrected, whereby the capture / tracking operation is performed.

【0011】また、前記フォトダイオード16において
は、更に通信用光信号が検出され、電気信号に変換され
たのち、アンプ18により増幅され、復調器19で復調して
受信が行われる。
In the photodiode 16, a communication optical signal is further detected, converted into an electric signal, amplified by an amplifier 18, demodulated by a demodulator 19 and received.

【0012】[0012]

【発明の効果】以上実施例に基づいて説明したように、
本発明によれば、低雑音の光増幅器とフォトダイオード
とを組み合わせて4象限光検出器を構成しているので、
ノイズが少なく、4分割アバランシェフォトダイオード
と同様の増幅された検出出力を得ることができ、また一
部のフォトダイオードを通信用受光素子として用いるの
で、使用部品の低減による構成の簡易化、並びに装置全
体の小型軽量化を計ることができる。
As described above on the basis of the embodiments,
According to the present invention, a low noise optical amplifier and a photodiode are combined to form a four-quadrant photodetector.
Since noise is small, an amplified detection output similar to that of a 4-division avalanche photodiode can be obtained, and part of the photodiodes is used as a light-receiving element for communication. The overall size and weight can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光通信装置の実施例の4象限光検
出器部分の構成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a 4-quadrant photodetector portion of an embodiment of an optical communication device according to the present invention.

【図2】図1に示した4象限光検出器に接続した通信信
号処理系を示す図である。
2 is a diagram showing a communication signal processing system connected to the four-quadrant photodetector shown in FIG.

【図3】従来の4分割フォトダイオードの構成例を示す
図である。
FIG. 3 is a diagram showing a configuration example of a conventional four-division photodiode.

【図4】従来の4分割アバランシェフォトダイオードの
構成例を示す図である。
FIG. 4 is a diagram showing a configuration example of a conventional 4-division avalanche photodiode.

【符号の説明】[Explanation of symbols]

1〜4 受光部 5〜8 光ファイバ 9〜12 光増幅器 13〜16 フォトダイオード 17 演算処理部 18 アンプ 19 復調器 1 to 4 light receiving unit 5 to 8 optical fiber 9 to 12 optical amplifier 13 to 16 photodiode 17 arithmetic processing unit 18 amplifier 19 demodulator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H04B 10/06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 人工衛星などの宇宙機に搭載され、該宇
宙機相互間の連携通信を行うためのレーザ光による光通
信装置において、近接して配置された光学系からなる4
つの受光部と、各受光部で受光された各レーザ光を増幅
するための光増幅器と、増幅された各光信号を検出する
ための4つのフォトダイオードとで構成した追尾・捕捉
用4象限光検出器を備え、該追尾・捕捉用4象限光検出
器を構成する4つのフォトダイオードの一部を通信用受
光素子として兼用させたことを特徴とする光通信装置。
1. An optical communication device using a laser beam, which is mounted on a spacecraft such as an artificial satellite and performs cooperative communication between the spacecraft, and comprises an optical system arranged close to each other.
Four quadrant light for tracking / capturing, which is composed of one light receiving section, an optical amplifier for amplifying each laser beam received by each light receiving section, and four photodiodes for detecting each amplified optical signal. An optical communication device comprising a detector, wherein a part of four photodiodes constituting the tracking / capturing four-quadrant photodetector is also used as a communication light receiving element.
JP6234510A 1994-09-05 1994-09-05 Optical communication device Expired - Fee Related JP2829898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234510A JP2829898B2 (en) 1994-09-05 1994-09-05 Optical communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234510A JP2829898B2 (en) 1994-09-05 1994-09-05 Optical communication device

Publications (2)

Publication Number Publication Date
JPH0879184A true JPH0879184A (en) 1996-03-22
JP2829898B2 JP2829898B2 (en) 1998-12-02

Family

ID=16972162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234510A Expired - Fee Related JP2829898B2 (en) 1994-09-05 1994-09-05 Optical communication device

Country Status (1)

Country Link
JP (1) JP2829898B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314487A (en) * 2001-04-16 2002-10-25 Telecommunication Advancement Organization Of Japan Free-space optical communications unit
WO2003063393A1 (en) * 2002-01-03 2003-07-31 Lumenlink, Co. Ltd. Alignment method of the optical transmitter and receiver in the optical wireless communication system
CN104618015A (en) * 2015-01-04 2015-05-13 西安应用光学研究所 Small atmosphere laser communication device and method
WO2021090481A1 (en) * 2019-11-08 2021-05-14 株式会社島津製作所 Optical communication device
WO2021090480A1 (en) * 2019-11-08 2021-05-14 株式会社島津製作所 Optical communication device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1997315A (en) * 2004-06-03 2007-07-11 西门子公司 Device for contactlessly transmitting signal and measured data

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439139A (en) * 1987-08-05 1989-02-09 Nat Space Dev Agency Optical communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439139A (en) * 1987-08-05 1989-02-09 Nat Space Dev Agency Optical communication system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002314487A (en) * 2001-04-16 2002-10-25 Telecommunication Advancement Organization Of Japan Free-space optical communications unit
JP4581111B2 (en) * 2001-04-16 2010-11-17 独立行政法人情報通信研究機構 Optical space communication device
WO2003063393A1 (en) * 2002-01-03 2003-07-31 Lumenlink, Co. Ltd. Alignment method of the optical transmitter and receiver in the optical wireless communication system
CN104618015A (en) * 2015-01-04 2015-05-13 西安应用光学研究所 Small atmosphere laser communication device and method
WO2021090481A1 (en) * 2019-11-08 2021-05-14 株式会社島津製作所 Optical communication device
WO2021090480A1 (en) * 2019-11-08 2021-05-14 株式会社島津製作所 Optical communication device
JPWO2021090481A1 (en) * 2019-11-08 2021-05-14
WO2021090514A1 (en) * 2019-11-08 2021-05-14 株式会社島津製作所 Optical communication device
JPWO2021090514A1 (en) * 2019-11-08 2021-05-14
US20220376796A1 (en) * 2019-11-08 2022-11-24 Shimadzu Corporation Optical communication device
EP4057527A4 (en) * 2019-11-08 2023-12-13 Shimadzu Corporation Optical communication device
US11929786B2 (en) 2019-11-08 2024-03-12 Shimadzu Corporation Optical communication device

Also Published As

Publication number Publication date
JP2829898B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US10903901B2 (en) Free space optical node with fiber bundle
US7397019B1 (en) Light sensor module, focused light sensor array, and an air vehicle so equipped
US7643755B2 (en) Optical receiver comprising a receiver photodetector integrated with an imaging array
CN111665486B (en) Laser radar system
US10892824B2 (en) Multi-spatial mode enabled PAT and AO terminal architecture for free-space optical communications
CN101672642B (en) Optical precision tracking detector based on double pyramidal rectangular pyramids
CN101098194B (en) Wide-angle income fiber receiving method for space light
KR20220087470A (en) Array-based free-space optical communication links
CN107040316A (en) A kind of inexpensive spatial coherence photoreceiver of multiple aperture and signal receiving demodulation method
CN110557201A (en) Multi-angle receiving device of underwater visible light communication mobile node
JPH0879184A (en) Optical communication equipment
EP0995969A3 (en) Semiconductor device, semiconductor laser and gyro
CN108988945B (en) Ultra-high-speed spatial laser communication receiving system with multi-core preposed optical amplification
CN105262541B (en) Aerial space-based radiofrequency signal optical fiber teletransmission time dissemination system
CN102664679A (en) Arrayed photoelectric detector in wireless laser communication device
US20050169646A1 (en) Lincoln distributed optical receiver array
CN114994710B (en) Dynamic range sectional control laser radar
CN218240398U (en) DTOF receiving arrangement, ranging system and robot
KR102637771B1 (en) Balanced photodetector for polarization measurement and receiver using the same
JPH0236622A (en) Optical heterodyne receiver
US20240162982A1 (en) Optical space communication device and optical space communication method
KR20160126154A (en) High resolution laser rader system using avalanche photodetector array
GB2191646A (en) Fibre optic transversal filter
CN117706283A (en) Partial discharge optical detection array device based on solar blind avalanche diode
JPS60135713A (en) Optical distance measuring device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees