JPH0878853A - Manufacture of multilayered printed wiring board - Google Patents
Manufacture of multilayered printed wiring boardInfo
- Publication number
- JPH0878853A JPH0878853A JP20782694A JP20782694A JPH0878853A JP H0878853 A JPH0878853 A JP H0878853A JP 20782694 A JP20782694 A JP 20782694A JP 20782694 A JP20782694 A JP 20782694A JP H0878853 A JPH0878853 A JP H0878853A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- prepreg
- inner layer
- equivalent
- layer circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、成形に要する時間を短
縮化した多層プリント配線板の製造方法に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer printed wiring board in which the time required for molding is shortened.
【0002】[0002]
【従来の技術】これまでの多層プリント配線板の製造方
法としては、一般的には、内層に積層される回路加工を
施された両面銅張積層板(以下、内層回路板という)の
両面に、熱硬化性樹脂を基材に塗布・含浸・乾燥させた
プリプレグを1枚以上直接重ね合わせ、さらにその上面
に金属箔を重ね合わせて、加熱した熱盤により長時間プ
レスするものであった。また、内層回路板の回路表面に
樹脂層を形成する多層プリント配線板の製造方法とし
て、特開昭53−132772公報、特開昭60−62
194公報、特開昭63−108796公報、特公平3
−65910公報等があげられるが、いずれの技術にお
いても、成形時のボイドを減少せしめることにより、耐
電圧性の向上、耐ハロー性の向上、熱放散性の向上、絶
縁層厚みの向上を目標とするものであった。2. Description of the Related Art As a conventional manufacturing method of a multilayer printed wiring board, generally, both sides of a circuit-processed double-sided copper clad laminate (hereinafter referred to as an inner layer circuit board) to be laminated on an inner layer are formed. One or more prepregs obtained by coating, impregnating, and drying a thermosetting resin on a substrate were directly laminated, and a metal foil was further laminated on the upper surface of the prepreg, which was then pressed by a heated heating plate for a long time. Further, as a method for manufacturing a multilayer printed wiring board in which a resin layer is formed on the circuit surface of an inner layer circuit board, there are disclosed in Japanese Patent Laid-Open Nos. 53-132772 and 60-62.
194, Japanese Patent Laid-Open No. 63-108796, Japanese Patent Publication No. 3
In each of the technologies, the goal is to improve the withstand voltage property, the halo resistance, the heat dissipation property, and the insulating layer thickness by reducing voids during molding. Was to be.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の方法は、生産性の向上、成形時間の短縮を目
的とするものではなく、これらに対する効果は認められ
なかった。このように従来技術ではなしえなかった多層
プリント配線板の生産性の向上が本発明の目的である。
本発明者らは、多層プリント配線板の成形性の問題、並
びに速硬化性を付与するためのプリプレグに含有される
樹脂組成物について鋭意研究を重ねた結果、本発明をな
すに至った。However, such conventional methods are not aimed at improving productivity and shortening molding time, and no effect on them has been recognized. As described above, it is an object of the present invention to improve the productivity of a multilayer printed wiring board, which cannot be achieved by the prior art.
The present inventors have conducted intensive studies on the problem of moldability of a multilayer printed wiring board and a resin composition contained in a prepreg for imparting a rapid curing property, and as a result, have achieved the present invention.
【0004】[0004]
【課題を解決するための手段】本発明は、内層回路板の
両面に、熱硬化性樹脂を基材に含浸、乾燥させたプリプ
レグを重ね合わせて積層プレスする多層プリント配線板
の製造方法において、前記内層回路板の両面に、熱硬化
型、光硬化型あるいは光熱併用型アンダーコート剤を塗
布し、内層回路の銅箔段差をなくするかあるいは減少せ
しめた後、その両面に、(a)エポキシ基を1分子中に
2個以上有するエポキシ樹脂、(b)多官能フェノー
ル、(c)ジシアンジアミン、及び(d)グアニド化合
物を含有する速硬化性プリプレグを重ね合わせて積層プ
レスすることを特徴とする多層プリント配線板の製造方
法である。The present invention provides a method for producing a multilayer printed wiring board in which a thermosetting resin is impregnated into a base material on both sides of an inner layer circuit board and dried prepregs are laminated and pressed. After applying a thermosetting, photocurable or photothermal combined undercoating agent to both sides of the inner layer circuit board to eliminate or reduce the step of the copper foil of the inner layer circuit, (a) epoxy is applied to both sides. A rapid-curing prepreg containing an epoxy resin having two or more groups in one molecule, (b) a polyfunctional phenol, (c) a dicyandiamine, and (d) a guanide compound is overlaid and laminated and pressed. And a method for manufacturing a multilayer printed wiring board.
【0005】アンダーコート剤の組成について言及す
る。熱硬化型のものとしては、エポキシ樹脂と芳香族ア
ミンを主成分とする常温で液状の樹脂あるいは固形の樹
脂を溶剤に溶解し液状化したもの、同様にエポキシ樹脂
と多官能ノボラックを主成分とする樹脂、エポキシ樹脂
とジシアンジアミドを主成分とする樹脂、ビスマレイミ
ドを主成分とする樹脂等が例示される。光硬化型のもの
としては光増感剤、光開始剤を含有した不飽和ポリエス
テル系樹脂、アクリレート系樹脂、メタクリレート系樹
脂等が例示される。また、光熱併用型のものとしては常
温で液状のグリシジルメタクリレートにエポキシ樹脂、
多官能ノボラックを溶解した樹脂等が例示される。これ
らは、銅箔との密着性、耐熱性、耐湿性、プリプレグと
の親和性等を考慮し、選択されるべきものであるが、熱
硬化型、光硬化型あるいは光熱併用型アンダーコート剤
であれば特に限定されるものではない。Reference will be made to the composition of the undercoat agent. As the thermosetting type, a resin which is liquid at room temperature or a solid resin containing an epoxy resin and an aromatic amine as main components and which is liquefied by dissolving in a solvent, likewise an epoxy resin and a polyfunctional novolac as main components. Examples of the resin include a resin, an epoxy resin and a resin containing dicyandiamide as a main component, and a resin containing bismaleimide as a main component. Examples of the photocurable resin include a photosensitizer, an unsaturated polyester resin containing a photoinitiator, an acrylate resin, and a methacrylate resin. Also, as a combination of light and heat, epoxy resin to glycidyl methacrylate that is liquid at room temperature,
Examples thereof include resins in which polyfunctional novolac is dissolved. These should be selected in consideration of adhesion with copper foil, heat resistance, moisture resistance, affinity with prepreg, etc., but are thermosetting, photocurable or photothermal combined undercoat agents. If there is, it is not particularly limited.
【0006】上記のアンダーコート剤の塗布方法として
は、ロールコーター、カーテンコーター、キャステイン
グ法、スピンナーコーター、デイップコーター、スクリ
ーン印刷等の方法があり、いづれの方法でも塗布は可能
である。As a method for applying the above-mentioned undercoat agent, there are methods such as a roll coater, a curtain coater, a casting method, a spinner coater, a dip coater and screen printing, and any of these methods can be applied.
【0007】アンダーコート剤の硬化状態について言及
する。硬化状態は、一般的に、全くの未硬化状態である
Aステージ状態、半硬化状態であるBステージ状態、さ
らに硬化をすすめたゲル状態、そして、完全硬化状態で
あるCステージ状態に分けることができるが、いずれの
状態であってもよい。The cured state of the undercoat agent will be mentioned. Generally, the cured state can be divided into an A stage state which is a completely uncured state, a B stage state which is a semi-cured state, a gel state in which further curing is promoted, and a C stage state which is a completely cured state. However, any state may be used.
【0008】次に、プリプレグの組成について言及す
る。本発明の重要なポイントは、アンダーコート剤によ
り予め内層回路間の凹部を埋め込まれ内層銅箔の段差が
ないか著しく減少されているため、従来のプリプレグに
必要とされていた前記凹部の充填機能が全く不要である
点である。従って、プリプレグの硬化性を、他の特性を
加味した上で、可能な限り速硬化にし生産性を向上でき
る。よって、プリプレグに含浸されるエポキシ樹脂を下
記に示される組成にすることにより、更に本発明の目的
である生産性向上を達成することができる。Next, the composition of the prepreg will be described. An important point of the present invention is that the recesses between the inner layer circuits are previously filled with the undercoating agent so that there is no step difference in the inner layer copper foil or it is significantly reduced. Is completely unnecessary. Therefore, the curability of the prepreg can be set as fast as possible in consideration of other characteristics, and the productivity can be improved. Therefore, by making the epoxy resin with which the prepreg is impregnated to have the composition shown below, it is possible to further improve the productivity, which is the object of the present invention.
【0009】即ち、そのエポキシ樹脂組成物は、(a)
エポキシ基を1分子中に2個以上有するエポキシ樹脂、
(b)多官能フェノール、(c)ジシアンジアミン、及
び(d)グアニド化合物を含有することを特徴とし、特
にプリプレグの硬化状態であるBステージ状態から最終
硬化いたる硬化速度が速いことが顕著な特性として挙げ
られる。That is, the epoxy resin composition is (a)
Epoxy resin having two or more epoxy groups in one molecule,
It is characterized by containing (b) a polyfunctional phenol, (c) dicyandiamine, and (d) a guanide compound, and it is particularly remarkable that the curing speed from the B stage state, which is the curing state of the prepreg, to the final curing is fast. It is mentioned as a characteristic.
【0010】エポキシ樹脂としては、従来より電気絶縁
用途に使用されてきたエポキシ基を2個以上有する任意
のものを使用でき、例えばビスフェノールA型エポキシ
樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノー
ルS型エポキシ樹脂、フェノールノボラック型エポキシ
樹脂、オルソクレゾールノボラック型エポキシ樹脂、イ
ソシアヌレート型エポキシ樹脂、あるいは3官能、4官
能のグリシジルアミン型エポキシ樹脂、ビフェニル骨格
を持ったエポキシ樹脂、ナフタレン骨格を持ったエポキ
シ樹脂、シクロペンタジエン骨格を持ったエポキシ樹
脂、リモネン骨格を持ったエポキシ樹脂等が挙げられ
る。更には、それらの臭素化物なども使用される。これ
らのものは単独もしくは何種類かを併用することもでき
る。As the epoxy resin, any epoxy resin having two or more epoxy groups conventionally used for electrical insulation can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin. , Phenol novolac type epoxy resin, orthocresol novolac type epoxy resin, isocyanurate type epoxy resin, or trifunctional or tetrafunctional glycidylamine type epoxy resin, biphenyl skeleton epoxy resin, naphthalene skeleton epoxy resin, cyclo Examples thereof include an epoxy resin having a pentadiene skeleton and an epoxy resin having a limonene skeleton. Further, their bromides and the like are also used. These may be used alone or in combination of several kinds.
【0011】多官能フェノールについては、分子中に1
個のフェノール性水酸基を有するフェノール、あるい
は、そのアルキル誘導体をホルムアルデヒドと酸性触媒
下で縮合して得られる多官能フェノール及び分子中に2
個の水酸基を有するフェノール化合物をホルムアルデヒ
ドと酸性触媒下で縮合して得られる多官能フェノール等
が該当する。前者としては、フェノールノボラック、o
−クレゾールノボラック、p−クレゾールノボラック、
p−tブチルフェノールノボラック、ハイドロキシナフ
タレンノボラック、ジハイドロキシナフタレンノボラッ
ク等が例示され、後者としては、ビスフェノールAノボ
ラック、ビスフェノールFノボラック、テルペン変性ノ
ボラック(油化シェルエポキシ(株)製YLH−40
2)が例示される。その他、ジシクロペンタジエン変性
フェノールノボラック(山陽国策パルプ(株)製DC−
100LL)、パラキシレン変性フェノールノボラック
(三井東圧(株)製XL−225LL)、ポリブタジエ
ン変性フェノールノボラック(日本石油(株)製PP−
700)等が例示される。For polyfunctional phenols, 1 in the molecule
Phenol having 1 phenolic hydroxyl group, or polyfunctional phenol obtained by condensing an alkyl derivative thereof with formaldehyde under acidic catalyst and 2 in the molecule
A polyfunctional phenol obtained by condensing a phenol compound having individual hydroxyl groups with formaldehyde under an acidic catalyst is applicable. As the former, phenol novolac, o
-Cresol novolac, p-cresol novolac,
Examples thereof include pt-butylphenol novolac, hydroxynaphthalene novolac, dihydroxynaphthalene novolac, and the latter include bisphenol A novolac, bisphenol F novolac, and terpene-modified novolac (YLH-40 manufactured by Yuka Shell Epoxy Co., Ltd.).
2) is exemplified. In addition, dicyclopentadiene modified phenol novolac (DC-manufactured by Sanyo Kokusaku Pulp Co., Ltd.)
100LL), para-xylene modified phenol novolak (XL-225LL manufactured by Mitsui Toatsu Co., Ltd.), polybutadiene modified phenol novolak (PP-manufactured by Nippon Oil Co., Ltd.).
700) and the like are exemplified.
【0012】ジシアンジアミドは、良好な銅箔との密着
性を付与するために添加される。グアニド化合物は、一
般にグアニジン構造を有する化合物を示し、1,3−ジ
フェニルグアニジン、ジ−オルソトリルグアニジン、ま
た、1−オルソトリルジグアニド、α−2,5−ジメチ
ルグアニド、α,ω−ジフェニルジグアニド、5−ヒド
ロキシナフチル−1−ジグアニド、フェニルジグアニ
ド、α,α’−ビスグアニルグアニジジノジフェニルエ
ーテル、p−クロロフェニルジグアニド、α−ベンジル
ジグアニド、α,ω−ジメチルジグアニド、α,α’−
ヘキサメチレンビス[ω−(p−クロロフェノール)]
ジグアニド、o−トリルジグアニド亜鉛塩、ジフェニル
ジグアニド鉄塩、フェニルジグアニド銅塩、ジグアニド
ニッケル塩、エチレンビスジグアニド塩酸塩、ラウリル
ジグアニド塩酸塩、フェニルジグアニドオキサレート、
1置換あるいは2置換のアルキル変性したフェニルジグ
アニド等が例示される。Dicyandiamide is added to impart good adhesion to the copper foil. The guanide compound generally refers to a compound having a guanidine structure, and includes 1,3-diphenylguanidine, di-orthotolylguanidine, 1-orthotolyldiguanide, α-2,5-dimethylguanide, α, ω-diphenyldigine. Anide, 5-hydroxynaphthyl-1-diguanide, phenyldiguanide, α, α′-bisguanylguanididinodiphenyl ether, p-chlorophenyldiguanide, α-benzyldiguanide, α, ω-dimethyldiguanide De, α, α'-
Hexamethylenebis [ω- (p-chlorophenol)]
Diguanide, o-tolyldiguanide zinc salt, diphenyldiguanide iron salt, phenyldiguanide copper salt, diguanide nickel salt, ethylenebisdiguanide hydrochloride, lauryldiguanide hydrochloride, phenyldiguanide oxalate,
Examples thereof include mono-substituted or di-substituted alkyl-modified phenyldiguanide and the like.
【0013】これらのグアニド化合物の特長は、エポキ
シ基と反応しエポキシ環が開環する時に非常に発熱が大
きいことにある。従って、加熱によりエポキシ樹脂と付
加重合をおこす反応系においては、反応が著しく促進さ
れる。走査型熱量計によりエポキシ樹脂の反応を調べる
と、グアニド化合物が存在しない系でのプリプレグ、例
えば、エポキシ樹脂、芳香族ポリアミン、ジシアンジア
ミドを組成物とするFR−4プリプレグでは、樹脂1m
gあたり20〜40mJと反応時の発熱量が少なく、且
つ、反応開始温度が約150℃、反応の活性温度が約1
70℃と高い。即ち、プレス成形時の昇温過程におい
て、反応が進みにくく、且つ完全硬化にいたるまでによ
り多くの熱量の供給が必要であることを示唆する。一
方、エポキシ樹脂、多官能フェノール、ジシアンジアミ
ド、グアニド化合物の系では、樹脂1mgあたり60〜
140mJと反応時の発熱量が多く、且つ、反応開始温
度が約130℃、反応の活性温度が約150℃と低い。
即ち、プレス成形時の昇温過程においてより低温で硬化
反応が起こり、発熱により反応がさらに促進され、短い
時間で硬化反応が終了することを示唆する。The advantage of these guanide compounds is that they generate a great amount of heat when they react with an epoxy group to open the epoxy ring. Therefore, the reaction is remarkably accelerated in the reaction system in which the addition polymerization is caused with the epoxy resin by heating. When the reaction of the epoxy resin was examined by a scanning calorimeter, the prepreg in the system in which no guanide compound was present, for example, FR-4 prepreg having an epoxy resin, an aromatic polyamine and dicyandiamide as a composition, had a resin content of 1 m.
20-40 mJ per gram, the amount of heat generated during the reaction is small, the reaction initiation temperature is about 150 ° C, and the reaction activation temperature is about 1
As high as 70 ° C. That is, it is suggested that the reaction is difficult to proceed in the temperature rising process at the time of press molding, and that a larger amount of heat needs to be supplied until complete curing. On the other hand, in the system of epoxy resin, polyfunctional phenol, dicyandiamide, guanide compound, 60 to 60
The amount of heat generated during the reaction was as high as 140 mJ, the reaction initiation temperature was about 130 ° C, and the reaction activation temperature was about 150 ° C.
That is, it is suggested that the curing reaction occurs at a lower temperature in the temperature rising process during press molding, the reaction is further promoted by heat generation, and the curing reaction ends in a short time.
【0014】配合量について言及する。多官能フェノー
ルについては、ガラス転移温度との関係で配合量が決定
される。即ち、エポキシ樹脂1当量に対し、0.5当量
未満の配合量であるとガラス転移温度が低く、多官能フ
ェノールの添加効果が十分に認められない。更に添加量
を増加した場合、1.0当量でほぼ最高のガラス転移温
度を示し、1.2当量まではガラス転移温度レベルは変
わらない。さらに増量した場合徐々ガラス転移温度が低
下し始める。従って、0.5〜1.2当量の範囲で配合
するのが適当と思われる。ジシアンジアミドの配合量に
ついては、銅箔との密着性、吸湿時の半田耐熱性を考慮
し決定される。即ち、エポキシ樹脂1当量に対し、0.
02当量未満の配合量であると、銅箔との密着性の向上
という観点から添加効果が小さく、O.4当量を越える
配合を行った場合、吸湿量が多くなり、多官能フェノー
ルの長所でもある吸湿処理後の半田耐熱性の低下の原因
になりやく、保存性低下の原因にもつながる。グアニド
化合物の配合量については、グアニド化合物1分子が有
するアミンが全て架橋反応に関与するとして当量を計算
すると、エポキシ樹脂1当量に対し、0.03当量以下
では発熱量が少なく、充分な速硬化性を得ることができ
ず、0.5当量を超える量を配合した場合、吸湿量が大
きくなり、ジシアンジアミド同様、半田耐熱性が低下す
る傾向にある。従って、0.03〜0.5当量の配合で
あることが望ましい。The blending amount will be mentioned. The blending amount of the polyfunctional phenol is determined in relation to the glass transition temperature. That is, when the compounding amount is less than 0.5 equivalent with respect to 1 equivalent of the epoxy resin, the glass transition temperature is low and the effect of adding the polyfunctional phenol is not sufficiently observed. When the amount added is further increased, the glass transition temperature is almost the highest at 1.0 equivalent, and the glass transition temperature level does not change up to 1.2 equivalent. When the amount is further increased, the glass transition temperature gradually begins to decrease. Therefore, it is considered to be suitable to mix in the range of 0.5 to 1.2 equivalents. The blending amount of dicyandiamide is determined in consideration of the adhesiveness to the copper foil and the solder heat resistance when absorbing moisture. That is, 0.
If the blending amount is less than 02 equivalents, the addition effect is small from the viewpoint of improving the adhesiveness to the copper foil, and the O. When the compounding amount exceeds 4 equivalents, the amount of moisture absorption increases, which easily causes the deterioration of solder heat resistance after moisture absorption treatment, which is also an advantage of the polyfunctional phenol, and also causes the deterioration of storage stability. Regarding the compounding amount of the guanide compound, when the equivalent amount is calculated assuming that all the amines contained in one molecule of the guanide compound participate in the crosslinking reaction, when the amount is 0.03 equivalent or less, the calorific value is small and the curing rate is sufficiently fast. However, when the amount exceeds 0.5 equivalent, the amount of moisture absorption becomes large, and the solder heat resistance tends to be lowered like dicyandiamide. Therefore, it is desirable that the content is 0.03 to 0.5 equivalent.
【0015】これら以外の配合物としては特に限定はし
ない。例えば、ガラスクロスとの密着性をあげるため
に、エポキシシラン、アミノシランに例示されるカップ
リング剤の添加、あるいは板厚精度を更に向上する目的
で、ポリブタジエンゴム系、ニトリル系ゴム、ニトリル
ブタジエンゴム、また、そのカルボン酸変性、アミン変
性ゴム等の添加が可能である。また、プリプレグのゲル
タイムの調整、また更なる速硬化性付与のため、イミダ
ゾール、アダクトイミダゾール、マイクロカプセル化硬
化促進剤、ホスフィン系、アミン系促進剤を添加するこ
とに特に制約はない。There are no particular restrictions on the composition other than these. For example, in order to improve the adhesion with glass cloth, epoxysilane, addition of a coupling agent exemplified by aminosilane, or for the purpose of further improving the plate thickness accuracy, polybutadiene rubber-based, nitrile-based rubber, nitrile-butadiene rubber, Further, it is possible to add a carboxylic acid-modified rubber, an amine-modified rubber or the like. In addition, there is no particular limitation on the addition of imidazole, adductimidazole, a microencapsulation curing accelerator, a phosphine-based accelerator, and an amine-based accelerator in order to adjust the gel time of the prepreg and to impart further rapid curing property.
【0016】[0016]
【作用】本発明の熱硬化型、光硬化型あるいは光熱併用
型アンダーコート剤を用いることにより、内層回路板の
上面にアンダーコート層を形成するため、回路間の凹部
を予め樹脂で充填させておくことができ、そのためプリ
プレグを重ね合わせて積層しても、未充填の欠点なく成
形することができる。したがって、従来内層回路の銅箔
残存率によって、プリプレグの樹脂量、加熱時の流動性
を変えていたが、その必要が全くなくなった。即ち、板
厚精度が内層回路の銅箔残存率に依存することがないた
め、数少ない種類のプリプレグにて対応することが可能
になり、よってプリプレグの製造は大量少品種とするこ
とが可能になった。更に、プリプレグの内層回路の凹部
(エッチング部)を埋めるのに要していた時間が全く必
要なくなり、且つ速硬化性プリプレグを用いることによ
り、従来1回の積層成形で120分から200分程度要
していた成形時間が、20分程度まで短縮することが可
能になった。その結果、製造コストが大幅に削減され、
品質管理,在庫管理に費やす工数も大幅に削減されるよ
うになる。By using the thermosetting, photocurable or photothermal combined undercoating agent of the present invention, an undercoat layer is formed on the upper surface of the inner layer circuit board, so that the recesses between the circuits are previously filled with resin. Therefore, even if the prepregs are superposed and laminated, the prepregs can be molded without any unfilled defect. Therefore, although the resin amount of the prepreg and the fluidity at the time of heating have been conventionally changed by the copper foil remaining rate of the inner layer circuit, this is no longer necessary. That is, since the plate thickness accuracy does not depend on the copper foil residual rate of the inner layer circuit, it is possible to support with a few types of prepregs, and thus it is possible to manufacture a large number of prepregs in a small variety. It was Further, the time required to fill the concave portion (etching portion) of the inner layer circuit of the prepreg is completely unnecessary, and by using the fast-curing prepreg, it takes about 120 to 200 minutes in the conventional one-time lamination molding. It has become possible to reduce the molding time that had been required to about 20 minutes. As a result, manufacturing costs are significantly reduced,
The man-hours for quality control and inventory control will also be greatly reduced.
【0017】また、当初予期しなかった効果であるが、
本発明の多層プリント配線板の製造方法により得られた
多層プリント配線板においては、従来の製造方法のもの
と比較して、樹脂のフローが小さいため、板厚精度が良
好で、アンダーコート剤の埋め込み効果により外層表面
の表面平滑性が高く、ファインパターン回路の形成が可
能である。In addition, an unexpected effect at first,
In the multilayer printed wiring board obtained by the method for producing a multilayer printed wiring board of the present invention, as compared with the conventional production method, the resin flow is small, so that the plate thickness accuracy is good and the undercoating agent Due to the embedding effect, the surface smoothness of the outer layer surface is high, and it is possible to form a fine pattern circuit.
【0018】[0018]
【実施例】以下、本発明を実施例にもとづき詳細に説明
する。EXAMPLES The present invention will be described in detail below based on examples.
【0019】(実施例1)ビスフェノールA型エポキシ
樹脂(エポキシ当量900)60重量部及びビスフェノ
ールA型エポキシ樹脂(エポキシ当量190)40重量
部をエチルカルビトール50重量部に溶解し、ジシアン
ジアミド10重量部と2−エチル−4−メチルイミダゾ
ール0.5重量部、タルク20重量部を添加した後、三
本ロールにて混練し、真空脱泡器により3mmHgの真
空度で5分間脱泡を行い、熱硬化型エポキシ樹脂アンダ
ーコート剤を得た。Example 1 60 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 900) and 40 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 190) were dissolved in 50 parts by weight of ethylcarbitol, and 10 parts by weight of dicyandiamide. After adding 0.5 parts by weight of 2-ethyl-4-methylimidazole and 20 parts by weight of talc, kneading with a three-roll mill, defoaming was performed for 5 minutes at a vacuum degree of 3 mmHg with a vacuum defoamer, and heat was applied. A curable epoxy resin undercoat agent was obtained.
【0020】次に、基材厚0.1mm、銅箔厚35μm
のガラスエポキシ両面銅張積層板を回路加工し、内層回
路板を作製した。次いで、一般的に黒処理と呼ばれる酸
化処理を施し、回路表面を粗化し、その片面に上記熱硬
化型エポキシ樹脂アンダーコート剤をスクリーン印刷
し、しかる後乾燥器内において130℃で2分間加熱さ
せた後、同様にして裏面にもアンダーコート剤を塗布
し、乾燥した。接触式厚み計により、アンダーコート剤
の塗布厚みを測定しところ、内層回路形成部位において
7μm、内層回路の内エッチング部位において30μm
であった。したがって、銅箔の厚みを測定したところ3
4μmであったため、段差は11μmであることが判明
した。Next, the substrate thickness is 0.1 mm and the copper foil thickness is 35 μm.
The glass epoxy double-sided copper-clad laminate of No. 2 was processed into a circuit to produce an inner layer circuit board. Then, an oxidation treatment generally called black treatment is applied to roughen the circuit surface, and the thermosetting epoxy resin undercoating agent is screen-printed on one surface thereof, and then heated in a dryer at 130 ° C. for 2 minutes. After that, the undercoat agent was applied to the back surface in the same manner and dried. The coating thickness of the undercoating agent was measured with a contact-type thickness meter, and it was 7 μm at the inner layer circuit forming portion and 30 μm at the inner etching portion of the inner layer circuit.
Met. Therefore, when the thickness of the copper foil was measured, it was 3
Since it was 4 μm, the step was found to be 11 μm.
【0021】更に、表1に示す組成比のエポキシ樹脂、
多官能フェノール、ジシアンジアミド及び1−オルソト
リルジグアニドから構成されるエポキシ樹脂組成物を基
材に含浸、乾燥処理したプリプレグ(180μm厚、樹
脂分42%)を上記の乾燥された熱硬化型樹脂アンダー
コート材を塗布した内層回路板の両面にそれぞれ1枚ず
つ重ね合わせ、その上面に厚さ18μmの銅箔を1枚ず
つ重ね、室温から加熱を始め、材料の昇温スピード18
℃/min、最高到達温度170℃で真空プレスにて成
形を行った。最高到達温度に達するのに要した時間は約
10分であった。Further, an epoxy resin having a composition ratio shown in Table 1,
A base material is impregnated with an epoxy resin composition composed of polyfunctional phenol, dicyandiamide, and 1-orthotolyldiguanide, and dried to obtain a prepreg (180 μm thick, resin content 42%). One sheet is laminated on each side of the inner layer circuit board coated with the undercoat material, and one copper foil with a thickness of 18 μm is laminated on the upper surface of the inner layer circuit board.
Molding was performed by a vacuum press at a maximum temperature of 170 ° C./° C./min. The time required to reach the maximum temperature was about 10 minutes.
【0022】成形に必要な加熱時間は、プレス加熱時間
とガラス転移温度との関係を調べ、加熱時間140分に
おけるプリプレグのガラス転移温度とほぼ同等のガラス
転移温度(±3℃)になるのに要した加熱時間を成形に
必要な加熱時間とした。従って、成形に必要な加熱時間
は、室温から最高到達温度への昇温時間と最高到達温度
における保持時間の和である。ガラス転移温度は粘弾性
法を用いた。なお、内層回路板のガラス転移温度は15
0±2℃であり、粘弾性法により、プリプレグのガラス
転移温度と内層回路板のガラス転移温度をピーク分離に
より分けることは可能である。その結果、成形に必要な
加熱時間は20分であり、その加熱時間における積層板
としての特性を表1に示す。Regarding the heating time required for molding, the relationship between the press heating time and the glass transition temperature was investigated, and the glass transition temperature (± 3 ° C.) was almost equal to the glass transition temperature of the prepreg at 140 minutes of heating time. The heating time required was the heating time required for molding. Therefore, the heating time required for molding is the sum of the temperature rising time from room temperature to the highest temperature and the holding time at the highest temperature. The viscoelastic method was used for the glass transition temperature. The glass transition temperature of the inner layer circuit board is 15
It is 0 ± 2 ° C., and the glass transition temperature of the prepreg and the glass transition temperature of the inner layer circuit board can be separated by peak separation by the viscoelastic method. As a result, the heating time required for molding was 20 minutes, and Table 1 shows the characteristics as a laminate during the heating time.
【0023】ここで、プリプレグの保存性については、
25℃、60%の温湿度雰囲気下においてプリプレグを
保管し、2週間おきに上記の成形条件により成形を行
い、エッチング外観を初期外観と比較をし判定した。プ
リプレグのライフが過ぎた場合、ボイド残りが発生する
ため、簡便な方法として外観のチェックにより充分判断
は可能である。Here, regarding the preservability of the prepreg,
The prepreg was stored in a temperature / humidity atmosphere of 25 ° C. and 60%, and molded every two weeks under the above-mentioned molding conditions, and the etching appearance was compared with the initial appearance and judged. When the life of the prepreg has passed, voids will remain, so it is possible to make a sufficient judgment by checking the appearance as a simple method.
【0024】(実施例2)フェノールノボラックメタク
リレート70重量部にプロポキシトリメチロールプロパ
ントリアクリレート30重量部を加え溶解した後、日本
チバガイギー(株)製イルガキュア651を5重量部、
N,N'−ジメチルアミノエチルメタクリレート3重量
部、p−メトキシフェノール0.1重量部、揺変剤とし
て日本アエロジル(株)製R−805を2重量部添加
し、撹拌混合した後、真空脱泡器により3mmHgの真
空度で5分間脱泡を行い、光硬化型エポキシ樹脂アンダ
ーコート剤を得た。Example 2 30 parts by weight of propoxytrimethylolpropane triacrylate was added to 70 parts by weight of phenol novolac methacrylate and dissolved, and then 5 parts by weight of Irgacure 651 manufactured by Ciba-Geigy Co., Ltd.,
3 parts by weight of N, N′-dimethylaminoethyl methacrylate, 0.1 part by weight of p-methoxyphenol, and 2 parts by weight of R-805 manufactured by Nippon Aerosil Co., Ltd. as a thixotropic agent were added, and mixed by stirring, followed by vacuum desorption. Defoaming was performed for 5 minutes at a vacuum degree of 3 mmHg by using a bubbler to obtain a photocurable epoxy resin undercoat agent.
【0025】実施例1と同様に作製した内層回路板の片
面に上記光硬化型アンダーコート剤をキャステイング法
で塗布し、しかる後UV硬化炉で硬化した。同様にして
裏面にもアンダーコート剤を塗布、硬化を行った。接触
式厚み計により、アンダーコート剤の塗布厚みを測定し
ところ、内層回路形成部位において3μm、内層回路の
内エッチング部位において34μmであった。したがっ
て、銅箔の厚みを測定したところ34μmであったた
め、段差は3μmであることが判明した。The above photocurable undercoat agent was applied to one surface of an inner layer circuit board prepared in the same manner as in Example 1 by a casting method, and then cured in a UV curing furnace. Similarly, an undercoating agent was applied to the back surface and cured. When the coating thickness of the undercoat agent was measured with a contact type thickness meter, it was 3 μm at the inner layer circuit forming portion and 34 μm at the inner etching portion of the inner layer circuit. Therefore, when the thickness of the copper foil was measured and found to be 34 μm, it was found that the step was 3 μm.
【0026】更に、表1に示す組成比のエポキシ樹脂、
多官能フェノール、ジシアンジアミド及びp−クロルフ
ェニルジグアニドから構成されるエポキシ樹脂組成物を
基材に含浸、乾燥処理したプリプレグ(180μm厚、
樹脂分42%)を上記アンダーコート材を塗布した内層
回路板の両面にそれぞれ1枚ずつ重ね合わせ、その上面
に厚さ18μmの銅箔を1枚ずつ重ね、室温から加熱を
始め、昇温速度18℃/min、最高到達温度170℃
で真空プレスにて成形を行った。その結果、成形に必要
な加熱時間は20分であり、その加熱時間における積層
板としての特性を表1にしめす。Further, an epoxy resin having a composition ratio shown in Table 1,
A prepreg (180 μm thick, obtained by impregnating a base material with an epoxy resin composition composed of polyfunctional phenol, dicyandiamide and p-chlorophenyldiguanide, and drying the same.
Resin content 42%) is laminated one by one on both sides of the inner layer circuit board coated with the above undercoat material, and one copper foil with a thickness of 18 μm is laminated on the upper surface thereof, and heating is started from room temperature, and the heating rate is increased. 18 ℃ / min, maximum temperature reached 170 ℃
It was molded by a vacuum press. As a result, the heating time required for molding was 20 minutes, and Table 1 shows the characteristics of the laminated plate during the heating time.
【0027】(実施例3)グリシジルメタクリレート3
0重量部にビスフェノールA型エポキシ樹脂(油化シェ
ルエポキシ(株)製エピコート1004)30重量部、
臭素化ノボラック型エポキシ樹脂(日本化薬(株)製B
REN−S)40重量部を加え溶解した後、日本チバガ
イギー(株)製 イルガキュア651 2重量部、o−ト
リルジグアニド5重量部、メタクリル酸−2−(ジメチ
ルアミノ)エチル1重量部、日本アエロジル(株)製R
ー8051重量部を添加し、撹拌混合した後、真空脱泡
器により3mmHgの真空度で5分間脱泡を行い、光熱
併用型エポキシ樹脂アンダーコート剤を得た。(Example 3) Glycidyl methacrylate 3
30 parts by weight of bisphenol A type epoxy resin (Epicoat 1004 manufactured by Yuka Shell Epoxy Co., Ltd.) in 0 parts by weight,
Brominated novolac type epoxy resin (B manufactured by Nippon Kayaku Co., Ltd.
40 parts by weight of REN-S) was added and dissolved, then 2 parts by weight of Irgacure 651 manufactured by Ciba-Geigy Co., Ltd., 5 parts by weight of o-tolyldiguanide, 1 part by weight of 2- (dimethylamino) ethyl methacrylate, Nippon Aerosil Co., Ltd. ) Made R
After adding -8051 parts by weight and stirring and mixing, defoaming was performed for 5 minutes at a vacuum degree of 3 mmHg by a vacuum defoaming device to obtain an epoxy resin undercoating agent for combined use with light and heat.
【0028】実施例1と同様に作製した内層回路板の片
面に上記光硬化型アンダーコート剤をキャステイング法
で塗布し、しかる後UV硬化炉で硬化した。同様にして
裏面にもアンダーコート剤を塗布、硬化を行った。接触
式厚み計により、アンダーコート剤の塗布厚みを測定し
ところ、内層回路形成部位において3μm、内層回路の
内エッチング部位において34μmであった。したがっ
て、銅箔の厚みを測定したところ34μmであったた
め、段差は3μmであることが判明した。The above-mentioned photocurable undercoating agent was applied to one surface of an inner layer circuit board prepared in the same manner as in Example 1 by a casting method, and then cured in a UV curing furnace. Similarly, an undercoating agent was applied to the back surface and cured. When the coating thickness of the undercoat agent was measured with a contact type thickness meter, it was 3 μm at the inner layer circuit forming portion and 34 μm at the inner etching portion of the inner layer circuit. Therefore, when the thickness of the copper foil was measured and found to be 34 μm, it was found that the step was 3 μm.
【0029】更に、表1に示す組成比のエポキシ樹脂、
多官能フェノール、ジシアンジアミド及びフェニルジグ
アニドから構成されるエポキシ樹脂組成物を基材に含
浸、乾燥処理したプリプレグ(180μm厚、樹脂分4
2%)を上記の乾燥された光硬化型樹脂アンダーコート
材を塗布した内層回路板の両面にそれぞれ1枚ずつ重ね
合わせ、その上面に厚さ18μmの銅箔を1枚ずつ重
ね、室温から加熱を始め、昇温速度18℃/min、最
高到達温度170℃で真空プレスにて成形を行った。そ
の結果、成形に必要な加熱時間は20分であり、その加
熱時間における積層板としての特性を表1にしめす。Further, an epoxy resin having a composition ratio shown in Table 1,
A base material impregnated with an epoxy resin composition composed of polyfunctional phenol, dicyandiamide and phenyldiguanide and dried to obtain a prepreg (180 μm thick, resin content 4
2%) is laminated on both sides of the inner layer circuit board coated with the above-mentioned dried photocurable resin undercoat material, and a copper foil having a thickness of 18 μm is laminated on the upper surface thereof and heated from room temperature. Then, molding was performed by a vacuum press at a temperature rising rate of 18 ° C./min and a maximum reached temperature of 170 ° C. As a result, the heating time required for molding was 20 minutes, and Table 1 shows the characteristics of the laminated plate during the heating time.
【0030】(比較例1)基材厚0.1mm、銅箔厚3
5μmのガラスエポキシ両面銅張積層板を回路加工し、
内層回路を作成した。次いで、一般的に黒処理と呼ばれ
る酸化処理を施し、回路表面を粗化し、内層回路板を作
製した。次に、エポキシ樹脂、多官能フェノール及びジ
シアンジアミドのみから構成されるエポキシ樹脂組成物
を基材に含浸、乾燥処理して得た通常のFR−4プリプ
レグ(180μm厚、樹脂分50%)を上記の内層回路
板の両面にそれぞれ1枚ずつ重ね合わせ、その上面に厚
さ18μmの銅箔を1枚ずつ重ね、室温から加熱を始
め、昇温速度2.7℃/min、最高到達温度170℃
で真空プレスにて成形を行った。最高到達温度に達する
のに要した時間は約60分であった。これは、プリプレ
グが内層回路間の凹部を埋めるのに充分な時間が必要で
あり、そのため、材料の昇温スピードを充分遅くする必
要があったためである。さらに、実施例1と同様に成形
に必要な加熱時間を調べたところ、約120分間の加熱
が必要なことが判明した。積層板特性については表1に
示す。Comparative Example 1 Base material thickness 0.1 mm, copper foil thickness 3
Circuit processing of 5μm glass epoxy double-sided copper clad laminate,
The inner layer circuit was created. Then, an oxidation treatment generally called black treatment was applied to roughen the circuit surface to produce an inner layer circuit board. Next, a conventional FR-4 prepreg (180 μm thick, resin content 50%) obtained by impregnating a base material with an epoxy resin composition composed only of an epoxy resin, a polyfunctional phenol and dicyandiamide, and drying it was prepared as described above. One sheet is laminated on each side of the inner layer circuit board, one sheet of copper foil with a thickness of 18 μm is laminated on the upper surface, heating is started from room temperature, heating rate is 2.7 ° C./min, maximum attainable temperature is 170 ° C.
It was molded by a vacuum press. The time required to reach the maximum temperature was about 60 minutes. This is because the prepreg needs a sufficient time to fill the recesses between the inner layer circuits, and therefore the temperature rising speed of the material needs to be sufficiently slowed. Further, when the heating time required for molding was examined in the same manner as in Example 1, it was found that heating for about 120 minutes was necessary. The laminated plate characteristics are shown in Table 1.
【0031】(比較例2)実施例1により作製されたア
ンダーコート剤を実施例1と全く同様な方法により内層
回路に塗布、乾燥をおこなった。次に、エポキシ樹脂、
多官能フェノール及びジシアンジアミドのみから構成さ
れるエポキシ樹脂組成物を基材に含浸、乾燥処理して得
た通常のFR−4プリプレグ(180μm厚、樹脂分4
2%)を上記内層回路板の両面にそれぞれ1枚ずつ重ね
合わせ、その上面に厚さ18μmの銅箔を1枚ずつ重
ね、室温から加熱を始め、昇温速度18℃/min、最
高到達温度170℃で真空プレスにて成形を行った。最
高到達温度に達するのに要した時間は約10分であり、
成形に必要な加熱時間は約60分であることが判明し
た。積層板特性については表1に示す。(Comparative Example 2) The undercoating agent prepared in Example 1 was applied to the inner layer circuit and dried in exactly the same manner as in Example 1. Next, epoxy resin,
Ordinary FR-4 prepreg (180 μm thick, resin component 4 was obtained by impregnating a base material with an epoxy resin composition composed only of polyfunctional phenol and dicyandiamide and drying the composition.
2%) is laminated on both sides of the above inner layer circuit board one by one, and one copper foil having a thickness of 18 μm is laminated on the upper surface thereof, and heating is started from room temperature, the temperature rising rate is 18 ° C./min, and the maximum reached temperature is reached. Molding was performed by a vacuum press at 170 ° C. It took about 10 minutes to reach the maximum temperature,
It was found that the heating time required for molding was about 60 minutes. The laminated plate characteristics are shown in Table 1.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【発明の効果】以上述べたように、内層回路板の両面に
予め熱硬化型、光硬化型あるいは光熱併用型アンダーコ
ート剤を塗布し、内層回路の銅箔段差をなくするかある
いは減少せしめるため、速硬化プリプレグとの組み合わ
せにより、従来の3倍ないし4倍の高生産性を達成する
ことが可能となった。同時に、内層回路の残存銅箔率に
よりプリプレグの樹脂分、ゲルタイム等を変える必要が
ないためため、プリプレグの品種が大幅に削減される。
また、現在莫大な工数をかけ、手作業で行っているプリ
プレグのセットの自動化への道が開かれる。As described above, in order to eliminate or reduce the step difference of the copper foil of the inner layer circuit by previously applying the thermosetting type, photocuring type or photothermal combination type undercoating agent on both surfaces of the inner layer circuit board. By combining with a fast-curing prepreg, it has become possible to achieve high productivity three to four times that of the conventional product. At the same time, it is not necessary to change the resin content, gel time, etc. of the prepreg depending on the residual copper foil rate of the inner layer circuit, so that the types of prepreg are greatly reduced.
In addition, it will open the way to the automation of the prepreg set that is currently performed by a huge amount of manpower.
Claims (2)
に、熱硬化性樹脂を基材に含浸、乾燥させたプリプレグ
を重ね合わせて積層プレスする多層プリント配線板の製
造方法において、前記回路加工された両面銅張積層板の
両面に、熱硬化型、光硬化型あるいは光熱併用型アンダ
ーコート剤を塗布し、内層回路の銅箔段差をなくするか
あるいは減少せしめた後、その両面に、(a)エポキシ
基を1分子中に2個以上有するエポキシ樹脂、(b)多
官能フェノール、(c)ジシアンジアミン、及び(d)
グアニド化合物を含有する速硬化性プリプレグを重ね合
わせて積層プレスすることを特徴とする多層プリント配
線板の製造方法。1. A method for producing a multilayer printed wiring board, comprising laminating and pressing a prepreg obtained by impregnating a base material with a thermosetting resin on both sides of a circuit-processed double-sided copper-clad laminate, and laminating and pressing the prepreg. On both sides of the processed double-sided copper clad laminate, a thermosetting type, a photocuring type or a photothermal combination type undercoating agent is applied to eliminate or reduce the step of the copper foil of the inner layer circuit, and then to both sides, (A) Epoxy resin having two or more epoxy groups in one molecule, (b) polyfunctional phenol, (c) dicyandiamine, and (d)
A method for producing a multilayer printed wiring board, characterized in that a rapid-curing prepreg containing a guanide compound is superposed and laminated and pressed.
脂組成物が、当量比において、(a)エポキシ基を1分
子中に2個以上有するエポキシ樹脂1当量に対し、
(b)多官能フェノール0.5〜1.2当量、(c)ジ
シアンジアミド0.02〜0.4当量、(d)グアニド
化合物 0.03〜0.5当量である請求項1記載の多
層プリント配線板の製造方法。2. The epoxy resin composition contained in the prepreg has an equivalent ratio of (a) to one equivalent of an epoxy resin having two or more epoxy groups in one molecule,
The multilayer print according to claim 1, wherein (b) polyfunctional phenol is 0.5 to 1.2 equivalents, (c) dicyandiamide is 0.02 to 0.4 equivalents, and (d) guanide compound is 0.03 to 0.5 equivalents. Wiring board manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20782694A JPH0878853A (en) | 1994-08-31 | 1994-08-31 | Manufacture of multilayered printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20782694A JPH0878853A (en) | 1994-08-31 | 1994-08-31 | Manufacture of multilayered printed wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0878853A true JPH0878853A (en) | 1996-03-22 |
Family
ID=16546159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20782694A Pending JPH0878853A (en) | 1994-08-31 | 1994-08-31 | Manufacture of multilayered printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0878853A (en) |
-
1994
- 1994-08-31 JP JP20782694A patent/JPH0878853A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1960192B1 (en) | Laminates for high speed and high frequency printed circuit boards | |
JP2000104033A (en) | Inter layer insulation adhesive for multi-layer printed wiring board and preparation of multi-layer printed- wiring board | |
JP2001072834A (en) | Resin composition for build-up process, insulating material for build-up process and build-up printed circuit | |
JPH0878853A (en) | Manufacture of multilayered printed wiring board | |
JP2908258B2 (en) | Light / thermosetting undercoat material and method for manufacturing multilayer printed wiring board | |
JPH1135916A (en) | Layer insulation adhesive for multilayer printed wiring board | |
JPH0870182A (en) | Manufacture of multilayer printed-wiring board | |
JPH08176324A (en) | Production of prepreg | |
JPH0870180A (en) | Manufacture of multilayer printed wiring board | |
JPH0878852A (en) | Manufacture of multilayered printed wiring board | |
JPH0870181A (en) | Manufacture of multilayer printed-wiring board | |
JPH0870179A (en) | Manufacture of multilayer printed-wiring board | |
US5981041A (en) | Multilayer printed circuit board and process for producing and using the same | |
JPH08148829A (en) | Manufacture of multilayered printed wiring board | |
JPH0832243A (en) | Production of multilayer printed wiring board | |
JPH08165333A (en) | Production of prepreg | |
JPH104270A (en) | Method of manufacturing multilayer printed wiring board | |
JPH11228669A (en) | Epoxy resin composition, prepreg, copper-clad laminate and multilayer laminate | |
JPH104268A (en) | Method of manufacturing multilayer printed wiring board | |
JP2911778B2 (en) | Manufacturing method of multilayer printed wiring board | |
JPH07297552A (en) | Manufacture of multilayer printed wiring board | |
JPH0864963A (en) | Manufacturing for multilayer printed circuit board | |
JP3056678B2 (en) | Manufacturing method of multilayer printed wiring board | |
JPH08165334A (en) | Production of prepreg | |
JPH09139579A (en) | Manufacture of multilayer printed wiring board |