JPH0878730A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method

Info

Publication number
JPH0878730A
JPH0878730A JP23214794A JP23214794A JPH0878730A JP H0878730 A JPH0878730 A JP H0878730A JP 23214794 A JP23214794 A JP 23214794A JP 23214794 A JP23214794 A JP 23214794A JP H0878730 A JPH0878730 A JP H0878730A
Authority
JP
Japan
Prior art keywords
substrate
cathode electrode
semiconductor
anode electrode
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23214794A
Other languages
Japanese (ja)
Other versions
JP3164478B2 (en
Inventor
Katsunobu Kitada
勝信 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23214794A priority Critical patent/JP3164478B2/en
Publication of JPH0878730A publication Critical patent/JPH0878730A/en
Application granted granted Critical
Publication of JP3164478B2 publication Critical patent/JP3164478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE: To reduce cost for wiring or assembling by simplifying a manufacturing step and further flip chipping by a method wherein materials of an anode electrode and a cathode electrode are made commonly to obtain a stable ohmic contact. CONSTITUTION: A cathode electrode 5b and an anode electrode 5a are formed of the same material. The cathode electrode 5b is connected with a surface side of an n type silicone substrate 2 and the anode electrode 5a is connected with a p type contact layer 3d of a semiconductor element 3 formed on a surface of the substrate 2. A semiconductor element constituting the semiconductor element 3 is doped as a dopant in a connection part with the cathode electrode 5b of the substrate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子にオーミッ
ク接触する電極を備える半導体装置とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having an electrode in ohmic contact with a semiconductor element and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図4に示す半導体発光装置101は、n
型シリコン(Si)基板102と、その基板102の表
面側に形成されるLED103のアレイと、その基板1
02の裏面に接続されるカソード電極104と、そのL
ED103のp型コンタクト層103dに接続されるア
ノード電極105と、そのLED103と基板102と
を覆うパッシベーション膜106とを備える。そのLE
D103は、ガリウム砒素(GaAs)等から構成され
るバッファ層103a、n型半導体層103b、p型半
導体層103cおよび前記p型コンタクト層103dを
有する。
2. Description of the Related Art A semiconductor light emitting device 101 shown in FIG.
Type silicon (Si) substrate 102, an array of LEDs 103 formed on the front surface side of the substrate 102, and its substrate 1
02, the cathode electrode 104 connected to the back surface of
An anode electrode 105 connected to the p-type contact layer 103d of the ED 103 and a passivation film 106 that covers the LED 103 and the substrate 102 are provided. That LE
D103 has a buffer layer 103a made of gallium arsenide (GaAs), an n-type semiconductor layer 103b, a p-type semiconductor layer 103c, and the p-type contact layer 103d.

【0003】そのp型コンタクト層103dはp型半導
体層103cよりも高濃度にアクセプタがドープされて
キャリヤ濃度が1×1019cm-3程度とされることで、
アノード電極105との間に流れるトンネル電流の割合
が熱電子放射電流の割合よりも大きくされ、アノード電
極105とのオーミック接触が図られている。そのアノ
ード電極105の材料は、比較的に仕事関数の大きな金
(Au)、銀(Ag)、白金(Pt)等であってショッ
トキー障壁高さを比較的低くするものだけでなく、比較
的に仕事関数の小さな金ゲルマニウム(AuGe)であ
って障壁高さを比較的高くするものも用いられる。
The p-type contact layer 103d is doped with an acceptor at a higher concentration than the p-type semiconductor layer 103c and has a carrier concentration of about 1 × 10 19 cm −3 .
The ratio of the tunnel current flowing between the anode electrode 105 and the anode electrode 105 is made higher than that of the thermionic emission current, and ohmic contact with the anode electrode 105 is achieved. The material of the anode electrode 105 is not limited to gold (Au), silver (Ag), platinum (Pt), etc. having a relatively large work function and making the Schottky barrier height relatively low, and Further, gold germanium (AuGe) having a small work function and having a relatively high barrier height is also used.

【0004】一方、n型シリコン基板102はn型半導
体層103bよりも高濃度にドナーをドープされるが、
結晶性を保ちながらの高濃度ドープは技術的に確立され
ていないため、そのキャリヤ濃度は1×1018cm-3
度でp型コンタクト層103dに比べてトンネル電流の
割合が少ないので、カソード電極104の材料は、比較
的に仕事関数の小さいアルミニウム(Al)系のものや
金アンチモン(AuSb)等が主に用いられ、障壁高さ
を比較的低くしてカソード電極104とのオーミック接
触を図っている。
On the other hand, the n-type silicon substrate 102 is doped with the donor at a higher concentration than the n-type semiconductor layer 103b.
Since high-concentration doping while maintaining crystallinity has not been technically established, its carrier concentration is about 1 × 10 18 cm −3 and the ratio of tunneling current is smaller than that of the p-type contact layer 103d. The material of 104 is mainly aluminum (Al) -based material having a relatively small work function, gold antimony (AuSb), or the like, and has a relatively low barrier height to achieve ohmic contact with the cathode electrode 104. ing.

【0005】すなわち、従来のn型シリコン基板とp型
コンタクト層とは、互いに極性が異なる異種の半導体で
あるため、最適なオーミック接触が得られる電極材料は
異なり、アノード電極とカソード電極の材料を共通化し
たのでは安定なオーミック接触を得ることはできなかっ
た。
That is, since the conventional n-type silicon substrate and p-type contact layer are different kinds of semiconductors having different polarities from each other, the electrode materials that can obtain the optimum ohmic contact are different, and the materials of the anode electrode and the cathode electrode are different. It was not possible to obtain a stable ohmic contact by making it common.

【0006】[0006]

【発明が解決しようとする課題】上記のような半導体装
置においては、基板の表面側にアノード電極があって裏
面側にカソード電極があるため、アノード電極の形成工
程とカソード電極の形成工程とは別個独立の2工程に分
ける必要があり、また、回路に実装するにはワイヤーボ
ンダーによりアノード電極を配線に接続する必要がある
ので配線および組立のためのコストが大きなものであ
る。
In the above semiconductor device, since the anode electrode is on the front surface side of the substrate and the cathode electrode is on the back surface side, the anode electrode forming step and the cathode electrode forming step are different from each other. The cost for wiring and assembly is large because it is necessary to divide into two separate and independent steps, and to mount it on a circuit, it is necessary to connect the anode electrode to the wiring by a wire bonder.

【0007】そこで、基板の表面側にカソード電極を接
続することでマイクロバンプボンディング法等が可能な
フリップチップとし、半導体素子を回路の配線側に向け
て実装するフェイスダウン方式を採用することが提案さ
れている。
Therefore, it is proposed to adopt a face-down method in which a semiconductor chip is mounted toward the wiring side of a circuit by using a flip chip capable of performing a micro bump bonding method or the like by connecting a cathode electrode to the front surface side of a substrate. Has been done.

【0008】しかし、基板の表面側にアノード電極とカ
ソード電極の双方を形成しても、アノード電極の材料と
カソード電極の材料とが異なると、電極形成工程を充分
に短縮することはできない。すなわち、図3の(1)に
示すように、基板102の表面上にLED103を形成
し、そのLED103と基板102とをパッシベーショ
ン膜106により覆った後に、図3の(2)に示すよう
に、p型コンタクト層103dを露出させるためにパッ
シベーション膜106にコンタクトホール106aを形
成し、次に図3の(3)に示すように、蒸着等によりア
ノード電極105を形成し、次に図3の(4)に示すよ
うに、基板102の一部を露出させるためにパッシベー
ション膜106にコンタクトホール106bを形成し、
しかる後に図3の(5)に示すように、蒸着等によりカ
ソード電極104を形成する必要がある。
However, even if both the anode electrode and the cathode electrode are formed on the surface side of the substrate, if the anode electrode material and the cathode electrode material are different, the electrode forming process cannot be shortened sufficiently. That is, as shown in (1) of FIG. 3, after forming the LED 103 on the surface of the substrate 102 and covering the LED 103 and the substrate 102 with the passivation film 106, as shown in (2) of FIG. A contact hole 106a is formed in the passivation film 106 to expose the p-type contact layer 103d, and then an anode electrode 105 is formed by vapor deposition or the like as shown in (3) of FIG. 4), a contact hole 106b is formed in the passivation film 106 to expose a part of the substrate 102,
Thereafter, as shown in (5) of FIG. 3, it is necessary to form the cathode electrode 104 by vapor deposition or the like.

【0009】本発明は、上記従来技術の問題を解決する
ことのできる半導体装置とその製造方法を提供すること
を目的とする。
An object of the present invention is to provide a semiconductor device and a method of manufacturing the same which can solve the above-mentioned problems of the prior art.

【0010】[0010]

【課題を解決するための手段】本発明は、n型シリコン
基板と、その基板の表面側に形成される半導体素子と、
その基板に接続されるカソード電極と、その半導体素子
のp型コンタクト層に接続されるアノード電極とを備え
る半導体装置において、そのカソード電極の材料とアノ
ード電極の材料とは同一とされ、そのカソード電極は基
板の表面側に接続され、その基板のカソード電極との接
続部に、その半導体素子を構成する半導体元素がドーパ
ントとしてドープされていることを特徴とする。
The present invention provides an n-type silicon substrate, a semiconductor element formed on the front surface side of the substrate,
In a semiconductor device including a cathode electrode connected to the substrate and an anode electrode connected to the p-type contact layer of the semiconductor element, the material of the cathode electrode and the material of the anode electrode are the same, and the cathode electrode Is connected to the front surface side of the substrate, and the semiconductor element forming the semiconductor element is doped as a dopant into the connection portion with the cathode electrode of the substrate.

【0011】本発明方法は、n型シリコン基板の表面側
に半導体結晶を成長させるに際し、その半導体結晶の構
成元素をドーパントとして基板の表面側にドープする工
程と、その半導体結晶の成長層を半導体素子となる部分
を除いて除去する工程と、その成長層が除去された基板
の表面にカソード電極を接続すると同時に、その半導体
素子のp型コンタクト層にそのカソード電極と同一材料
のアノード電極を接続する工程とを備えることを特徴と
する。
According to the method of the present invention, when growing a semiconductor crystal on the surface side of an n-type silicon substrate, a step of doping the surface side of the substrate with a constituent element of the semiconductor crystal as a dopant, and a growth layer of the semiconductor crystal is used as a semiconductor. The step of removing except the portion to be the element, and connecting the cathode electrode to the surface of the substrate from which the growth layer has been removed, and at the same time, connecting the anode electrode of the same material as the cathode electrode to the p-type contact layer of the semiconductor element And a step of performing.

【0012】[0012]

【作用】本発明は、n型シリコン基板側に半導体素子を
形成する場合において、その半導体素子の構成元素をそ
の基板のドーパントとして機能させ得ることに着目した
ことに基づく。すなわち、n型シリコン基板のカソード
電極との接続部にドーパントがドープされることによ
り、その接続部におけるキャリヤ濃度が高くされ、カソ
ード電極と基板との間に流れるトンネル電流の割合が増
加する。これにより、カソード電極の材料をアノード電
極の材料と同一としても、基板との間で安定したオーミ
ック接触を得ることが可能になる。また、アノード電極
とカソード電極とは共に基板の表面側にあって材料は同
一なので、両電極を同時に形成することが可能になる。
しかも、その基板にドープされるドーパントは、その半
導体素子を構成する元素であるので、その半導体素子の
製造工程を煩雑化することなくドープすることができ
る。また、仕事関数の比較的大きな材料を両電極の材料
として用いることで、一般的にn型に比べオーミック接
触を得にくいp型コンタクト層につき、アノード電極と
の障壁を低くしてオーミック接触を安定して得ることが
可能になり、また、基板とカソード電極との障壁は高く
なってもトンネル効果によりオーミック接触を確保でき
る。
The present invention is based on the fact that, when a semiconductor element is formed on the n-type silicon substrate side, the constituent elements of the semiconductor element can function as the dopant of the substrate. That is, by doping the connecting portion of the n-type silicon substrate with the cathode electrode with a dopant, the carrier concentration in the connecting portion is increased, and the ratio of the tunnel current flowing between the cathode electrode and the substrate is increased. This makes it possible to obtain stable ohmic contact with the substrate even if the material of the cathode electrode is the same as the material of the anode electrode. Further, since both the anode electrode and the cathode electrode are on the front surface side of the substrate and made of the same material, both electrodes can be formed at the same time.
Moreover, since the dopant with which the substrate is doped is an element that constitutes the semiconductor element, it can be doped without complicating the manufacturing process of the semiconductor element. In addition, by using a material having a relatively large work function as a material for both electrodes, the p-type contact layer, which is generally harder to obtain ohmic contact than n-type, lowers the barrier with the anode electrode and stabilizes ohmic contact. Further, even if the barrier between the substrate and the cathode electrode is high, the ohmic contact can be secured by the tunnel effect.

【0013】[0013]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1の(3)に示す半導体発光装置1は、
基板2の表面に形成されたメサ形状のLED3を備えて
いる。その基板2は、後述のn形半導体層3bよりも高
濃度に不純物をドープされてキャリヤ濃度が1×1018
cm-3程度とされたn型Siにより構成される。そのL
ED3は、その基板2の表面上にエピタキシャル成長さ
せた半導体結晶のエピタキシャル層を、LED3になる
部分を残してエッチングすることで成形される。各LE
D3は、例えばGaAs、ガリウム砒素リン(GaAs
P)、ガリウムリン(GaP)、アルミニウムガリウム
砒素(AlGaAs)、インジウムガリウム砒素(In
GaAs)等の半導体結晶の成長層であって、バッファ
層3a、n形半導体層3b、p形半導体層3cおよびp
形半導体層3cよりも高濃度に不純物をドープされたp
型コンタクト層3dとで構成される。そのLED3と基
板2の表面とは窒化ケイ素(SiNX )等のパッシベー
ション膜4により覆われる。各LED3の上面におい
て、p型コンタクト層3dはパッシベーション膜4から
露出され、その露出部にアノード電極5aが接続され
る。また、基板2の表面一部がパッシベーション膜4か
ら露出され、その露出部にカソード電極5bが接続され
る。両電極5a、5bを介し電流が印加されることでL
ED3は発光する。そのLED3を基板2の表面に列を
なして形成することで、例えばページプリンタの感光ド
ラム上に各LED3に対応するドットを潜像として形成
するのに利用できる。
A semiconductor light emitting device 1 shown in (3) of FIG.
A mesa-shaped LED 3 formed on the surface of the substrate 2 is provided. The substrate 2 is doped with impurities at a higher concentration than the n-type semiconductor layer 3b described later, and has a carrier concentration of 1 × 10 18.
It is composed of n-type Si of about cm −3 . That L
The ED 3 is formed by etching an epitaxial layer of a semiconductor crystal epitaxially grown on the surface of the substrate 2 while leaving a portion to be the LED 3. Each LE
D3 is, for example, GaAs, gallium arsenide phosphide (GaAs
P), gallium phosphide (GaP), aluminum gallium arsenide (AlGaAs), indium gallium arsenide (In)
A growth layer of a semiconductor crystal such as GaAs, which is a buffer layer 3a, an n-type semiconductor layer 3b, a p-type semiconductor layer 3c and a p-type semiconductor layer 3c.
P doped with impurities at a concentration higher than that of the semiconductor layer 3c
And the mold contact layer 3d. The LED 3 and the surface of the substrate 2 are covered with a passivation film 4 such as silicon nitride (SiN x ). On the upper surface of each LED 3, the p-type contact layer 3d is exposed from the passivation film 4, and the anode electrode 5a is connected to the exposed portion. Further, a part of the surface of the substrate 2 is exposed from the passivation film 4, and the cathode electrode 5b is connected to the exposed portion. By applying a current through both electrodes 5a and 5b, L
ED3 emits light. By forming the LEDs 3 in rows on the surface of the substrate 2, it is possible to use, for example, to form dots corresponding to the LEDs 3 as latent images on the photosensitive drum of the page printer.

【0015】各LED3は、例えば図2に示すようなM
OCVD(有機金属気相エピタキシー)装置20により
製造される。そのMOCVD装置20は、石英製のリア
クタ21と、このリアクタ21にバルブ22を介し配管
接続されるAl( CH3 ) 3の供給源29と、Ga (C
3 ) 3 の供給源30と、AsH3 の供給源31と、Z
n( CH3 ) 2 の供給源32と、SiH4 の供給源33
と、In (CH5 ) 3の供給源34と、キャリアガスと
して用いられるH2 の供給源35と、そのH2の純化装
置36と、そのリアクタ21の内部を加熱するために用
いられる高周波コイル37と、そのリアクタ21の内部
でシリコン基板2を支持する支持体38と、そのリアク
タ21からの排出ガスの処理装置39とを備えている。
Each LED 3 has, for example, an M as shown in FIG.
It is manufactured by an OCVD (metal organic vapor phase epitaxy) apparatus 20. The MOCVD apparatus 20 includes a quartz reactor 21, an Al (CH 3 ) 3 supply source 29 connected to the reactor 21 via a valve 22, and a Ga (C 3
H 3 ) 3 supply source 30, AsH 3 supply source 31, Z
n (CH 3 ) 2 supply source 32 and SiH 4 supply source 33
A source 34 of In (CH 5 ) 3, a source 35 of H 2 used as a carrier gas, a purifier 36 of H 2 thereof, and a high frequency coil used to heat the inside of the reactor 21. 37, a support 38 that supports the silicon substrate 2 inside the reactor 21, and a treatment device 39 for the exhaust gas from the reactor 21.

【0016】そのMOCVD装置20によってLED3
を形成するには、まず、その基板2の表面上にLED3
を構成する半導体結晶を成長させるに際し、その半導体
結晶の構成元素をドーパントとして基板2の表面側にド
ープする。例えば、その半導体結晶をGaAsとする場
合、砒素(As)をドーパントとしてドープする。この
際、特にAsをドープする操作は不要で、LED3を構
成するGaAs等の半導体結晶を成長させるためにAs
3 を供給すれば、Asをドープできる。しかる後に、
その基板2の表面にバッファ層3aを構成する半導体結
晶をエピタキシャル成長させる。例えば、GaAsの成
長層の温度を昇降させるサイクルを複数回繰り返して熱
応力を加えたり、InGaAsの成長層とGaAsの成
長層とを交互に複数回繰り返して成長させることで歪超
格子層を形成し、転位を低減すること等で形成する。そ
のバッファ層3を構成する半導体結晶の上にn型半導体
層3b、p型半導体層3cおよびp型コンタクト層3d
を構成する半導体結晶をエピタキシャル成長させる。そ
の際、キャリヤ密度の制御のためにドーパントとアクセ
プタがドープされる。例えば、AsH3 、Ga( C
3 ) 3 およびAl( CH3 ) 3 をリアクタ21に供給
してAlGaAs結晶を成長させる際、n形半導体層3
bに対応する結晶成長箇所ではSiH4 ガスをリアクタ
21に供給してSiをドープし、p形半導体層3cおよ
びp型コンタクト層3dに対応する結晶成長箇所ではZ
n( CH3 ) 2 をリアクタ21に供給することでZnを
ドープする。
The MOCVD apparatus 20 allows the LED 3
In order to form the LED, first, the LED 3 is formed on the surface of the substrate 2.
When growing the semiconductor crystal that constitutes the above, the surface side of the substrate 2 is doped with the constituent element of the semiconductor crystal as a dopant. For example, when the semiconductor crystal is GaAs, arsenic (As) is used as a dopant. At this time, an operation of doping As is not particularly necessary, and As is grown in order to grow a semiconductor crystal such as GaAs forming the LED 3.
If H 3 is supplied, As can be doped. After that,
A semiconductor crystal forming the buffer layer 3a is epitaxially grown on the surface of the substrate 2. For example, a strained superlattice layer is formed by repeating the cycle of raising and lowering the temperature of the growth layer of GaAs a plurality of times to apply thermal stress, or alternately repeating the growth layers of InGaAs and the growth layer of GaAs a plurality of times to grow. Then, it is formed by reducing dislocations. The n-type semiconductor layer 3b, the p-type semiconductor layer 3c, and the p-type contact layer 3d are formed on the semiconductor crystal forming the buffer layer 3.
Epitaxially grow the semiconductor crystal constituting the. At that time, the dopant and the acceptor are doped to control the carrier density. For example, AsH 3 , Ga (C
When H 3 ) 3 and Al (CH 3 ) 3 are supplied to the reactor 21 to grow an AlGaAs crystal, the n-type semiconductor layer 3
SiH 4 gas is supplied to the reactor 21 at the crystal growth portion corresponding to b to dope Si, and Z is added at the crystal growth portion corresponding to the p-type semiconductor layer 3c and the p-type contact layer 3d.
Zn is doped by supplying n (CH 3 ) 2 to the reactor 21.

【0017】次に、図1の(1)に示すように、その基
板2上の半導体結晶の成長層をメサ形状にエッチングし
てLED3とし、そのLED3と基板2とをパッシベー
ション膜4によって被覆する。次に、図1の(2)に示
すように、p型コンタクト層3dを露出させるためのコ
ンタクトホール4aと基板2の表面一部を露出させるた
めのコンタクトホール4bとをパッシベーション膜4に
形成する。しかる後に、図1の(3)に示すように、蒸
着等によりアノード電極5aとカソード電極5bとを形
成する。両電極5a、5bの材料は同一とされ、例え
ば、Au、金クロム(AuCr)、金亜鉛(AuZ
n)、銀(Ag)、インジウム銀(InAg)等を用い
ることができる。
Next, as shown in FIG. 1A, the semiconductor crystal growth layer on the substrate 2 is etched into a mesa shape to form an LED 3, and the LED 3 and the substrate 2 are covered with a passivation film 4. . Next, as shown in (2) of FIG. 1, a contact hole 4a for exposing the p-type contact layer 3d and a contact hole 4b for exposing a part of the surface of the substrate 2 are formed in the passivation film 4. . Thereafter, as shown in FIG. 1C, the anode electrode 5a and the cathode electrode 5b are formed by vapor deposition or the like. The electrodes 5a and 5b are made of the same material, for example, Au, gold chrome (AuCr), gold zinc (AuZ).
n), silver (Ag), indium silver (InAg), or the like can be used.

【0018】上記構成によれば、基板2のカソード電極
5bとの接続部にAsがドーパントとしてドープされる
ことにより、その接続部におけるキャリヤ濃度が高くさ
れ、カソード電極5bと基板2との間に流れるトンネル
電流の割合が増加する。なお、その基板2のカソード電
極5bとの接続部におけるキャリヤ濃度は8×1018
-3以上とするのが好ましい。これにより、カソード電
極5bの材料をアノード電極5aの材料と同一として
も、基板2との間で安定したオーミック接触を得ること
ができる。また、アノード電極5aとカソード電極5b
とは共に基板2の表面側にあって材料は同一なので、両
電極5a、5bを同時に形成することができる。しか
も、その基板2のカソード電極5bとの接続部にドープ
されるドーパントは、LED3を構成する半導体元素で
あるAsなので、そのLED3の形成時に製造工程を煩
雑化することなくドープすることができる。また、仕事
関数の大きな(0.8eV以上)Au等の材料とCr、
W、Ti等の半導体層との密着性に優れた材料との合金
を両電極5a、5bの材料として用いることで、一般的
にn型に比べオーミック接触を得にくいp型コンタクト
層3dにつき、アノード電極5aとの障壁を低くしてオ
ーミック接触を安定して得ることができ、また、基板2
とカソード電極5bとの障壁は高くなってもトンネル効
果によりオーミック接触を確保できる。
According to the above structure, the connection portion of the substrate 2 with the cathode electrode 5b is doped with As as a dopant, so that the carrier concentration in the connection portion is increased, and the connection portion between the cathode electrode 5b and the substrate 2 is increased. The proportion of tunneling current that flows increases. The carrier concentration at the connection portion of the substrate 2 with the cathode electrode 5b is 8 × 10 18 c.
It is preferably m -3 or more. Thereby, even if the material of the cathode electrode 5b is the same as the material of the anode electrode 5a, stable ohmic contact with the substrate 2 can be obtained. In addition, the anode electrode 5a and the cathode electrode 5b
Since both are on the front surface side of the substrate 2 and made of the same material, both electrodes 5a and 5b can be formed simultaneously. Moreover, since the dopant that is doped into the connection portion of the substrate 2 with the cathode electrode 5b is As, which is a semiconductor element that constitutes the LED 3, it can be doped without complicating the manufacturing process when the LED 3 is formed. In addition, a material having a large work function (0.8 eV or more) such as Au and Cr,
By using an alloy with a material having excellent adhesion to a semiconductor layer such as W and Ti as a material for both electrodes 5a and 5b, the p-type contact layer 3d, which is generally harder to obtain ohmic contact than n-type, By lowering the barrier with the anode electrode 5a, ohmic contact can be stably obtained, and the substrate 2
Even if the barrier between the cathode electrode 5b and the cathode electrode 5b becomes high, ohmic contact can be secured by the tunnel effect.

【0019】なお、本発明は上記実施例に限定されな
い。例えば、上記実施例では半導体結晶としてGaAs
結晶を成長させる際にAsをドーパントとして基板の表
面側にドープしたが、GaP結晶を成長させる際にPを
ドープさせたり、ガリウムアンチモン(GaSb)結晶
を成長させる際にSbをドープさせたり等してもよい。
また、半導体結晶の成長方法もMOCVDに限定され
ず、分子線エピタキシー(MBE)や液相エピタキシー
(LPE)等によるものであってもよい。さらに、Si
基板上に形成される半導体素子もLEDに限定されず、
例えばAlGaAsやInGaAsの結晶から構成され
るレーザーであってもよい。
The present invention is not limited to the above embodiment. For example, in the above embodiment, GaAs is used as the semiconductor crystal.
Although the surface side of the substrate was doped with As as a dopant when growing the crystal, P was doped when growing the GaP crystal, or Sb was doped when growing the gallium antimony (GaSb) crystal. May be.
The method for growing the semiconductor crystal is not limited to MOCVD, and may be molecular beam epitaxy (MBE) or liquid phase epitaxy (LPE). Furthermore, Si
The semiconductor element formed on the substrate is not limited to the LED,
For example, a laser made of AlGaAs or InGaAs crystal may be used.

【0020】[0020]

【発明の効果】本発明の半導体装置によれば、アノード
電極とカソード電極の材料を共通化して安定なオーミッ
ク接触を得ることができるので、製造工程を簡単化する
と共にフリップチップ化することで配線および組立のた
めのコストを低減でき、本発明方法によれば本発明の半
導体装置を製造できる。
According to the semiconductor device of the present invention, the materials of the anode electrode and the cathode electrode can be made common and stable ohmic contact can be obtained. Therefore, the manufacturing process can be simplified and the wiring can be realized by flip chip formation. Further, the cost for assembling can be reduced, and the semiconductor device of the present invention can be manufactured by the method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】(1)〜(3)は本発明の実施例の半導体発光
装置の製造工程を示す断面図
1A to 1C are cross-sectional views showing a manufacturing process of a semiconductor light emitting device according to an embodiment of the present invention.

【図2】MOCVD装置の一構成例を示す図FIG. 2 is a diagram showing a configuration example of a MOCVD apparatus.

【図3】(1)〜(5)は従来の半導体発光装置の製造
工程を示す断面図
3 (1) to (5) are cross-sectional views showing manufacturing steps of a conventional semiconductor light emitting device.

【図4】従来の半導体発光装置の断面図FIG. 4 is a sectional view of a conventional semiconductor light emitting device.

【符号の説明】[Explanation of symbols]

1 半導体発光装置 2 n型シリコン基板 3 LED(半導体素子) 3d p型コンタクト層 5a アノード電極 5b カソード電極 1 semiconductor light-emitting device 2 n-type silicon substrate 3 LED (semiconductor element) 3d p-type contact layer 5a anode electrode 5b cathode electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 n型シリコン基板と、その基板の表面側
に形成される半導体素子と、その基板に接続されるカソ
ード電極と、その半導体素子のp型コンタクト層に接続
されるアノード電極とを備える半導体装置において、そ
のカソード電極の材料とアノード電極の材料とは同一と
され、そのカソード電極は基板の表面側に接続され、そ
の基板のカソード電極との接続部に、その半導体素子を
構成する半導体元素がドーパントとしてドープされてい
る半導体装置。
1. An n-type silicon substrate, a semiconductor element formed on the front surface side of the substrate, a cathode electrode connected to the substrate, and an anode electrode connected to the p-type contact layer of the semiconductor element. In the provided semiconductor device, the material of the cathode electrode and the material of the anode electrode are the same, the cathode electrode is connected to the front surface side of the substrate, and the semiconductor element is formed at the connection portion of the substrate with the cathode electrode. A semiconductor device in which a semiconductor element is doped as a dopant.
【請求項2】 n型シリコン基板の表面側に半導体結晶
を成長させるに際し、その半導体結晶の構成元素をドー
パントとして基板の表面側にドープする工程と、その半
導体結晶の成長層を半導体素子となる部分を除いて除去
する工程と、その成長層が除去された基板の表面にカソ
ード電極を接続すると同時に、その半導体素子のp型コ
ンタクト層にそのカソード電極と同一材料のアノード電
極を接続する工程とを備える半導体装置の製造方法。
2. When growing a semiconductor crystal on the surface side of an n-type silicon substrate, a step of doping the surface side of the substrate with a constituent element of the semiconductor crystal as a dopant, and a growth layer of the semiconductor crystal are used as a semiconductor element. A step of removing except the portion, and a step of connecting a cathode electrode to the surface of the substrate from which the growth layer has been removed, and at the same time connecting an anode electrode of the same material as the cathode electrode to the p-type contact layer of the semiconductor element. A method for manufacturing a semiconductor device, comprising:
JP23214794A 1994-08-31 1994-08-31 Semiconductor device and method of manufacturing the same Expired - Fee Related JP3164478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23214794A JP3164478B2 (en) 1994-08-31 1994-08-31 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23214794A JP3164478B2 (en) 1994-08-31 1994-08-31 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0878730A true JPH0878730A (en) 1996-03-22
JP3164478B2 JP3164478B2 (en) 2001-05-08

Family

ID=16934737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23214794A Expired - Fee Related JP3164478B2 (en) 1994-08-31 1994-08-31 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3164478B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881686A2 (en) 1997-05-28 1998-12-02 Oki Electric Industry Company, Limited LED array and LED printer head
JP2001044498A (en) * 1999-07-28 2001-02-16 Nichia Chem Ind Ltd Nitride semiconductor light-emitting device
WO2002061855A1 (en) * 2001-01-31 2002-08-08 Shin-Etsu Handotai Co.,Ltd. Light emitting device
JP2015005745A (en) * 2013-06-18 2015-01-08 エルジー イノテック カンパニー リミテッド Light emitting device and lighting system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881686A2 (en) 1997-05-28 1998-12-02 Oki Electric Industry Company, Limited LED array and LED printer head
EP0881686A3 (en) * 1997-05-28 2000-04-19 Oki Data Corporation LED array and LED printer head
US6388696B1 (en) 1997-05-28 2002-05-14 Oki Electric Industry Co., Ltd Led array, and led printer head
JP2001044498A (en) * 1999-07-28 2001-02-16 Nichia Chem Ind Ltd Nitride semiconductor light-emitting device
WO2002061855A1 (en) * 2001-01-31 2002-08-08 Shin-Etsu Handotai Co.,Ltd. Light emitting device
JP2002232005A (en) * 2001-01-31 2002-08-16 Shin Etsu Handotai Co Ltd Light emitting element
US6847056B2 (en) 2001-01-31 2005-01-25 Shin-Etsu Handotai Co., Ltd. Light emitting device
JP2015005745A (en) * 2013-06-18 2015-01-08 エルジー イノテック カンパニー リミテッド Light emitting device and lighting system

Also Published As

Publication number Publication date
JP3164478B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP4135550B2 (en) Semiconductor light emitting device
US6023076A (en) Group III nitride compound semiconductor light emitting device having a current path between electrodes
US5804839A (en) III-V nitride compound semiconductor device and method for fabricating the same
US20020070125A1 (en) Method for lift-off of epitaxially grown semiconductors by electrochemical anodic etching
JP3511213B2 (en) Optical semiconductor device
JP3164478B2 (en) Semiconductor device and method of manufacturing the same
JPH08293623A (en) Method of manufacturing light emitting diode
JPH08274358A (en) Iii-v compound semiconductor solar cell
JPH0897466A (en) Light emitting device
JP3311946B2 (en) Light emitting diode array
JP3717284B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING ELEMENT ARRAY, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
JPH07254731A (en) Light emitting element
JP3140123B2 (en) Semiconductor light emitting device
JP2948967B2 (en) Semiconductor light emitting device
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2002246645A (en) Group iii nitride semiconductor light emitting diode
JPH0770756B2 (en) Method for manufacturing light emitting diode array
JPH09172198A (en) Light emitting diode and its manufacture
JP3236649B2 (en) Semiconductor light emitting device
JP3723314B2 (en) Semiconductor light emitting device
JP3426834B2 (en) Method for manufacturing light emitting diode array
JP2912782B2 (en) Semiconductor light emitting device
JP3042566B2 (en) Manufacturing method of GaP-based light emitting device substrate
JP3420417B2 (en) Light emitting diode array
JPH11112023A (en) Semiconductor light emitting device and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees