JPH0878183A - Static eliminator - Google Patents

Static eliminator

Info

Publication number
JPH0878183A
JPH0878183A JP21139994A JP21139994A JPH0878183A JP H0878183 A JPH0878183 A JP H0878183A JP 21139994 A JP21139994 A JP 21139994A JP 21139994 A JP21139994 A JP 21139994A JP H0878183 A JPH0878183 A JP H0878183A
Authority
JP
Japan
Prior art keywords
current
high voltage
positive
negative
effective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21139994A
Other languages
Japanese (ja)
Other versions
JP3647905B2 (en
Inventor
Takashi Harada
隆 原田
Isao Sugano
功 菅野
Kenkichi Izumi
健吉 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shishido Electrostatic Ltd
Original Assignee
Shishido Electrostatic Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishido Electrostatic Ltd filed Critical Shishido Electrostatic Ltd
Priority to JP21139994A priority Critical patent/JP3647905B2/en
Publication of JPH0878183A publication Critical patent/JPH0878183A/en
Application granted granted Critical
Publication of JP3647905B2 publication Critical patent/JP3647905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

PURPOSE: To detect an inter-electrode reactive current or a reactive current between an electrode and an equipment body to precisely control ion generation by providing an external ground part and an external grounding resistor, and entirely gently increasing and decreasing the high voltage imparted to each discharge electrode. CONSTITUTION: A positive side effective static eliminating current I1+ carried form a positive side discharge electrode 1 to the outer part of a static eliminator is reflexed from an external ground part 10 to the electrode 1 through an external grounding resistor 11, a discharge current detecting resistor 8 and the secondary side coil of a positive side transformer 5. The negative side effective static eliminating current I1- carried from the outer part of the static eliminating device to a negative side discharge electrode 2 is refluxed to the part 10 through the resistor 11. While the overall time change of both high voltages V+ , V- imparted to each electrode 1, 2 are made relatively gentle, the voltages V+ , V- are controlled so that either one of the voltages V+ , V- is minutely fluctuated by a minute time. Thus, the positive and negative side effective static eliminating currents I1+ , I1- and the positive and negative side electrode-cage body reactive currents I2+ , I2- can be detected by a prescribed expression, and ion generation can be precisely controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、帯電体の除電を行う除
電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static eliminator for neutralizing a charged body.

【0002】[0002]

【従来の技術】帯電体の除電を行う除電装置は、例えば
正側放電電極に正側高電圧生成回路から正側トランスを
介して正の高電圧を付与すると共に、正側放電電極と並
設された負側放電電極に負側高電圧生成回路から負側ト
ランスを介して負の高電圧を付与し、これにより各放電
電極を放電させて正負のイオンを大気中に生成し、その
正負の生成イオンにより帯電体を除電する。かかる除電
装置にあっては、各高電圧生成回路やトランスは、金属
等の導体材料あるいはプラスチック等の絶縁材料から成
る筐体に収納され、その筐体から各放電電極が外方に突
出される。また、筐体の内部に収納した高電圧生成回路
やトランス等の回路は、通常、筐体外部の適所に設けた
外部接地部に接地され、特に、筐体が導電材料から成る
場合には、該筐体を介して外部接地部に接地される。
2. Description of the Related Art A static eliminator for eliminating static electricity from a charged body applies a positive high voltage to a positive side discharge electrode from a positive side high voltage generation circuit via a positive side transformer and is installed in parallel with the positive side discharge electrode. A negative high voltage is applied from the negative side high voltage generation circuit to the generated negative side discharge electrode via the negative side transformer, whereby each discharge electrode is discharged to generate positive and negative ions in the atmosphere, and the positive and negative The charged ions are removed by the generated ions. In such a static eliminator, each high voltage generating circuit and transformer are housed in a casing made of a conductive material such as metal or an insulating material such as plastic, and the discharge electrodes are projected outward from the casing. . Further, circuits such as a high-voltage generation circuit and a transformer housed inside the housing are usually grounded to an external grounding portion provided at a proper place outside the housing, and particularly when the housing is made of a conductive material, It is grounded to an external grounding part through the housing.

【0003】この種の除電装置を用いて帯電体の除電を
確実に行うためには、各放電電極の放電による正負のイ
オン生成量のバランス(所謂、イオンバランス)をとる
必要があるが、正負のイオン生成量は、各放電電極に付
与する高電圧を一定としても、一般に、各放電電極の汚
れの程度や、大気状態等の環境条件、あるいは筐体が導
電材料であるか絶縁材料であるか等によって変化する。
このため、何等かの手法により正負のイオン生成量を時
々刻々把握し、それに応じて各高電圧生成回路により各
放電電極に付与する高電圧を制御してイオンバランスを
制御する必要がある。
In order to surely remove the charge of the charged body by using this type of charge removing device, it is necessary to balance the positive and negative ion generation amounts (so-called ion balance) due to the discharge of each discharge electrode. In general, the amount of generated ions is constant even if the high voltage applied to each discharge electrode is constant, the degree of contamination of each discharge electrode, environmental conditions such as atmospheric conditions, or the casing is made of a conductive material or an insulating material. It changes depending on the situation.
Therefore, it is necessary to control the ion balance by grasping the positive and negative ion generation amounts momentarily by some method and controlling the high voltage applied to each discharge electrode by each high voltage generation circuit accordingly.

【0004】そして、このようなイオンバランス制御を
行う除電装置としては、例えば特開平3−266398
号公報に開示されているものが知られている。
As a static eliminator for performing such ion balance control, for example, Japanese Patent Laid-Open No. 3-266398.
The one disclosed in the publication is known.

【0005】この除電装置においては、正側放電電極と
負側放電電極との中間に、正イオンの生成量と負イオン
の生成量との差に相当するイオン電流を検出するための
針状の電流検出電極を配置している。そして、イオンバ
ランスを制御するに際しては、正側放電電極と負側放電
電極とに交互に正の高電圧及び負の高電圧を高電圧生成
回路から付与し、各々の高電圧の付与時に前記電流検出
電極を介してイオン電流を検出する。
In this static eliminator, a needle-like needle for detecting an ion current corresponding to the difference between the amount of positive ions and the amount of negative ions is provided between the positive side discharge electrode and the negative side discharge electrode. A current detection electrode is arranged. Then, when controlling the ion balance, a positive high voltage and a negative high voltage are alternately applied to the positive side discharge electrode and the negative side discharge electrode from the high voltage generating circuit, and the current is applied when each high voltage is applied. Ion current is detected through the detection electrode.

【0006】この場合、一方の放電電極に高電圧を付与
している際には、他方の放電電極への高電圧の付与は休
止しているので、各々の高電圧の付与時に検出されるイ
オン電流は、各放電電極の放電によるイオン生成量に相
当する。そこで、上記除電装置においては、各々の高電
圧の付与時に検出されたイオン電流を正負各々のイオン
生成量として把握する共にそれらを互いに比較し、それ
らの大小関係に応じて、両者を一致させるように一方の
高電圧生成回路あるいは両高電圧生成回路による高電圧
を増減させることによりイオンバランスを制御するよう
にしている。
In this case, when the high voltage is applied to one discharge electrode, the application of the high voltage to the other discharge electrode is stopped, so that the ions detected at the time of applying each high voltage The electric current corresponds to the amount of ions produced by the discharge of each discharge electrode. Therefore, in the static eliminator, the ion currents detected at the time of applying each high voltage are grasped as positive and negative ion generation amounts, and they are compared with each other, and both are matched according to their magnitude relationship. In addition, the ion balance is controlled by increasing or decreasing the high voltage generated by one high voltage generating circuit or both high voltage generating circuits.

【0007】尚、この除電装置においては、上記のよう
に正側放電電極と負側放電電極とに正の高電圧及び負の
高電圧を高電圧生成回路から交互に継続的に付与するパ
ルス除電モードと、両放電電極に正負の高電圧を同時に
継続的に付与する直流除電モードとを選択可能としてい
るが、直流除電モードにおいても、イオンバランスを制
御するに際しては、周期的にパルス除電モードを実行し
て上記のようにイオンバランスを制御するようにしてい
る。また、この除電装置においては、各々の高電圧の付
与時に検出されたイオン電流が所定値を下回った場合
に、放電を停止せしめたり、各放電電極の清掃が必要で
ある旨の警報を発するようにしている。
In this static eliminator, as described above, the pulse static erasing is performed in which a positive high voltage and a negative high voltage are alternately and continuously applied from the high voltage generating circuit to the positive side discharge electrode and the negative side discharge electrode. It is possible to select the mode and the DC static elimination mode in which a positive and negative high voltage is continuously applied to both discharge electrodes simultaneously.However, even in the DC static elimination mode, when controlling the ion balance, the pulse static elimination mode is selected periodically. It is executed to control the ion balance as described above. Further, in this static eliminator, when the ionic current detected at the time of applying each high voltage falls below a predetermined value, the discharge is stopped or an alarm indicating that cleaning of each discharge electrode is necessary is issued. I have to.

【0008】しかしながら、かかる除電装置にあって
は、次のような不都合があった。
However, the static eliminator has the following disadvantages.

【0009】すなわち、電流検出電極を介して検出され
るイオン電流は、各放電電極の放電時に生成される正負
の総イオンのごく一部の生成イオンによる微小な電流で
あり、そのようなイオン電流は、必ずしも総イオン生成
量に相当するものとは限らず、また、電流検出電極の汚
れや、大気状態等の環境条件の影響を受けやすい。従っ
て、電流検出電極を介して検出される正負のイオン電流
のバランスをとっても、正負のイオン生成量が全体とし
てバランスしているとは限らない。さらに、電流検出電
極は、細い針状のもので、筐体の外方に突出されるた
め、折れ曲がり易く、そのような損傷を受けた場合に
は、正負いずれかのイオン電流が多く検出されることと
なって、イオンバランスを制御することはできない。
That is, the ion current detected through the current detection electrode is a minute current due to a small amount of generated ions of the positive and negative total ions generated at the time of discharge of each discharge electrode. Does not always correspond to the total amount of generated ions, and is easily affected by environmental conditions such as dirt on the current detection electrodes and atmospheric conditions. Therefore, even if the positive and negative ion currents detected through the current detection electrodes are balanced, the positive and negative ion generation amounts are not always balanced as a whole. Further, since the current detection electrode is a thin needle-like electrode and is projected to the outside of the housing, it is easily bent, and if it is damaged in this way, a large amount of positive or negative ion current is detected. As a result, the ion balance cannot be controlled.

【0010】また、正負の総イオン電流あるいは総イオ
ン生成量は、基本的には各放電電極を流れる放電電流に
応じたものとなるのであるが、本発明者等の知見によれ
ば、一般に、各放電電極の放電電流には、両放電電極の
前方に配置される帯電体に到達し得る、換言すれば帯電
体の除電に寄与するイオンを生成する有効除電電流の他
に、両放電電極間で流れる電極間電流があり、さらに筐
体が導電材料から成る場合には、各放電電極と筐体との
間で流れる電極・筐体間電流がある。この場合、該電極
・筐体間電流や電極間電流は、それぞれ電極・筐体間及
び電極間で流れるイオンを生成することとなるので、そ
れらの電流は、除電に寄与するイオンを生成しない無効
電流である。従って、帯電体の除電を確実に行うべくイ
オンバランスを制御するためには、本来、前記有効除電
電流により生成される正負のイオンの総量をバランスさ
せる必要がある。
Further, the positive and negative total ion current or the total ion generation amount basically depends on the discharge current flowing through each discharge electrode. However, according to the knowledge of the present inventors, generally, The discharge current of each discharge electrode can reach the charged body disposed in front of both discharge electrodes, in other words, the effective charge removal current that generates ions that contribute to charge removal of the charged body, as well as between the discharge electrodes. There is a current between the electrodes that flows in the case, and when the case is made of a conductive material, there is a current between the electrodes and the case that flows between each discharge electrode and the case. In this case, the current between the electrodes and the case and the current between the electrodes generate ions that flow between the electrodes and the case and between the electrodes, respectively, so that these currents do not generate ions that contribute to static elimination. It is an electric current. Therefore, in order to control the ion balance in order to surely remove the charge from the charged body, it is necessary to balance the total amount of positive and negative ions generated by the effective charge removing current.

【0011】しかるに、前記公報の除電装置にあって
は、前記電流検出電極が単に両放電電極の中間に配置さ
れているだけなので、該電流検出電極により検出される
イオン電流には、前記有効除電電流だけでなく、電極・
筐体間無効電流や電極間無効電流の一部も含まれてしま
う場合が多く、従って、イオンバランスの制御を的確に
行うことが困難なものであった。
However, in the static eliminator of the above publication, the current detection electrode is simply arranged between the two discharge electrodes, so that the effective static neutralization is applied to the ion current detected by the current detection electrode. Not only the current, but the electrode
In many cases, a part of the reactive current between the housings and the reactive current between the electrodes is also included, so that it is difficult to accurately control the ion balance.

【0012】[0012]

【発明が解決しようとする課題】本発明は除電装置の改
良を目的とし、正側及び負側の放電電極を流れる放電電
流のうち、帯電体の除電に実質的に寄与する正負のイオ
ンを生成する有効除電電流を検出することができ、これ
により、除電に寄与する正負のイオンの生成を的確に制
御することができる除電装置を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION The present invention aims to improve a static eliminator, and produces positive and negative ions which substantially contribute to the static elimination of a charged body in the discharge current flowing through the positive and negative discharge electrodes. It is an object of the present invention to provide a static eliminator that can detect an effective static elimination current that is generated and that can accurately control the generation of positive and negative ions that contribute to static elimination.

【0013】さらに、電極間で流れる電極間無効電流や
電極・筐体間で流れる電極・筐体間無効電流をも検出す
ることができる除電装置を提供することを目的とする。
Another object of the present invention is to provide a static eliminator capable of detecting a reactive current between electrodes flowing between electrodes and a reactive current between electrodes and a casing flowing between electrodes and a casing.

【0014】さらに、有効除電電流や無効電流を簡単な
構成で検出することができる除電装置を提供することを
目的とする。
Another object of the present invention is to provide a static eliminator capable of detecting the effective static elimination current and the reactive current with a simple structure.

【0015】さらに、検出された有効除電電流を基に正
負の生成イオンのイオンバランスを的確且つ確実に制御
することができ得る除電装置を提供することを目的とす
る。
Another object of the present invention is to provide a static eliminator capable of accurately and surely controlling the ion balance of positive and negative generated ions based on the detected effective static elimination current.

【0016】さらに、検出された有効除電電流や無効電
流を基に装置の作動状態を的確に監視することができ得
る除電装置を提供することを目的とする。
Another object of the present invention is to provide a static eliminator capable of accurately monitoring the operating state of the device based on the detected effective static elimination current or reactive current.

【0017】[0017]

【課題を解決するための手段】本発明の第1の態様は、
前記の目的を達成するために、正側放電電極及び負側放
電電極と、各放電電極にそれぞれ二次側コイルの一端を
接続してなる正側トランス及び負側トランスと、各トラ
ンスを介して各放電電極に正の高電圧及び負の高電圧を
生成・付与する正側高電圧生成回路及び負側高電圧生成
回路と、前記放電電極を外方に向けて該放電電極、前記
トランス及び高電圧生成回路を収納した導電材料から成
る筐体とを備えた除電装置において、前記正側トランス
及び負側トランスの二次側コイルの接地端である他端を
互いに接続せしめると共に、その接続部を前記筐体の外
部の外部接地部に外部接地用抵抗を介して接続し、さら
に、両トランスの二次側コイルの接地端の接続部に前記
筐体を接続し、各放電電極の放電時に流れる電流のう
ち、除電に寄与するイオンを生成する正側有効除電電流
(I1+) 及び負側有効除電電流(I1-)の差(Ia=I
1+−I1-)を前記外部接地用抵抗に生じる電圧により検
出する有効電流差分検出手段と、前記各放電電極に前記
各高電圧生成回路により付与される正側高電圧(V+
及び負側高電圧(V- )の時間的変化率(dV+ /dt
及びdV- /dt)が
The first aspect of the present invention is as follows.
In order to achieve the above-mentioned object, a positive side discharge electrode and a negative side discharge electrode, a positive side transformer and a negative side transformer in which one end of a secondary side coil is connected to each discharge electrode, and a transformer A positive-side high-voltage generating circuit and a negative-side high-voltage generating circuit that generate and apply a positive high voltage and a negative high voltage to each discharge electrode, and the discharge electrode facing outward, the transformer, and the high voltage. In a static eliminator provided with a case made of a conductive material that houses a voltage generation circuit, the other ends of the secondary side coils of the positive side transformer and the negative side transformer, which are the ground ends, are connected to each other, and the connecting portion is connected. It is connected to an external grounding portion outside the casing through an external grounding resistance, and further, the casing is connected to a connecting portion of the grounding ends of the secondary side coils of both transformers, and flows when each discharge electrode discharges. Of the current, contributes to static elimination Difference positive effective charge removing current generates an on (I 1+) and negative effective charge removing current (I 1-) (Ia = I
1+ −I 1− ) by means of an effective current difference detecting means for detecting the voltage generated in the external grounding resistance, and a positive side high voltage (V + ) applied to each discharge electrode by each high voltage generating circuit.
And the rate of change of the negative high voltage (V ) with time (dV + / dt
And dV - / dt) is

【0018】[0018]

【数11】 [Equation 11]

【0019】の関係を微小時間づづ繰り返し満たし、且
つ、該微小時間内における前記正側高電圧(V+ )及び
負側高電圧(V- )の変化量(ΔV+ ,ΔV- )が ΔV+ ≪V+ 及びΔV- ≪V- ……(2) の関係を満たすように各高電圧生成回路を制御する高電
圧制御手段と、前記微小時間内において前記有効電流差
分検出手段により得られた両有効除電電流(I1+
1-)の差(Ia)の時間的変化率(dIa/dt)を
求める微分手段と、前記両有効除電電流(I1+,I1-
の一方の有効除電電流(I1+又はI1-)を
The relationship ( 1 ) is repeatedly satisfied for each minute time, and the change amounts (ΔV + , ΔV ) of the positive side high voltage (V + ) and the negative side high voltage (V ) within the minute time are ΔV +. «V + and ΔV - «V - a high voltage control means for controlling each high voltage generating circuit so as to satisfy the relation ... (2), both obtained by the effective current difference detection means in said short time Effective static elimination current (I 1+ ,
Differentiating means for obtaining the temporal change rate (dIa / dt) of the difference (Ia) of I 1− ) and the effective static elimination currents (I 1+ , I 1− )
One of the effective static elimination current (I 1+ or I 1- )

【0020】[0020]

【数12】 [Equation 12]

【0021】の関係式を用いて求める第1の有効除電電
流検出手段と、他方の有効除電電流(I1-又はI1+
を、前記有効電流差分検出手段により得られた両有効除
電電流(I1+,I1-)の差(Ia=I1+−I1-)と前記
第1の有効除電電流検出手段により得られた正側有効除
電電流(I1+) 又は負側有効除電電流(I1-)とから減
算演算又は加算演算により求める第2の有効除電電流検
出手段とを備え、各有効除電電流検出手段により得られ
た各有効除電電流(I1+,I1-)を制御することによ
り、除電に寄与する正負のイオンの生成を制御すること
を特徴とする。
The first effective static elimination current detecting means and the other effective static elimination current (I 1− or I 1+ ) obtained by using the relational expression of
Is obtained by the difference (Ia = I 1+ −I 1− ) between both effective static elimination currents (I 1+ , I 1− ) obtained by the effective current difference detecting means and the first effective static elimination current detecting means. Second effective static charge elimination current detection means for obtaining by subtraction calculation or addition calculation from the positive side effective static charge elimination current (I 1+ ) or negative side effective static charge elimination current (I 1− ) By controlling each effective static elimination current (I 1+ , I 1− ) obtained by the above, generation of positive and negative ions contributing to static elimination is controlled.

【0022】さらに、前記両トランスの二次側コイルの
接地端の接続部に前記筐体を筐体接地用抵抗を介して接
続し、各放電電極の放電時に流れる電流のうち、正側放
電電極及び負側放電電極と前記筐体との間でそれぞれ流
れる正側電極・筐体間無効電流(I2+)及び負側電極・
筐体間無効電流(I2-)の差(Ib=I2+−I2-)を前
記筐体接地用抵抗に生じる電圧により検出する電極・筐
体間無効電流差分検出手段と、前記微小時間内において
前記電極・筐体間無効電流差分検出手段により得られた
両電極・筐体間無効電流(I2+,I2-)の差(Ib)の
時間的変化率(dIb/dt)を求める第2の微分手段
と、前記両電極・筐体間無効電流(I2+,I2-)の一方
の電極・筐体間無効電流(I1+又はI2-)を
Further, the casing is connected to the connection portion of the grounding ends of the secondary side coils of both the transformers via a casing grounding resistance, and the positive side discharge electrode of the current flowing at the time of discharge of each discharge electrode is connected. And a positive side electrode flowing between the negative side discharge electrode and the case, a reactive current (I 2+ ) between the case and the negative side electrode, respectively.
An electrode / chassis reactive current difference detection means for detecting a difference (Ib = I 2+ −I 2− ) in the reactive current (I 2 − ) between the casings by the voltage generated in the casing grounding resistance, and the minute Temporal change rate (dIb / dt) of the difference (Ib) between the reactive currents (I 2+ , I 2− ) between the electrodes and the housing obtained by the reactive current difference detecting means between the electrodes and the housing within the time. A second differentiating means for obtaining the reactive current (I 1+ or I 2− ) between one of the electrodes and the casing (I 2+ , I 2− )

【0023】[0023]

【数13】 [Equation 13]

【0024】の関係式を用いて求める第1の電極・筐体
間無効電流検出手段と他方の電極・筐体間無効電流(I
2-又はI2+)を、前記電極・筐体間無効電流差分検出手
段により得られた両電極・筐体間無効電流(I2+
2-)の差(Ib=I2+−I2-)と前記第1の電極・筐
体間無効電流検出手段により得られた正側電極・筐体間
無効電流(I2+) 又は負側電極・筐体間無効電流
(I2-)とから減算演算又は加算演算により求める第2
の電極・筐体間無効電流検出手段とを備えたことを特徴
とする。
The first electrode-chassis reactive current detecting means and the other electrode-chassis reactive current (I
2- or I 2+ ) is a reactive current (I 2+ , I 2+ ,
I 2 − ) difference (Ib = I 2+ −I 2 − ) and the positive electrode-chassis reactive current (I 2+ ) obtained by the first electrode-chassis reactive current detection means, or Second obtained by subtraction calculation or addition calculation from the negative current between the negative electrode and the housing (I 2− ).
And a reactive current detecting means between the electrode and the case.

【0025】さらに、少なくとも前記両放電電極のうち
の一方の放電電極の全放電電流(I S+又はIS-)を検出
する放電電流検出手段と、該放電電流検出手段により得
られた全放電電流(IS+又はIS-)からこれに対応する
前記有効除電電流(I1+又はI1-)及び電極・筐体間無
効電流(I2+又はI2-)を減算することにより前記両放
電電極間で流れる電極間無効電流(I3 )を求める電極
間無効電流検出手段とを備えたことを特徴とする。
Further, at least one of the discharge electrodes
Total discharge current (I S +Or IS-) Is detected
And a discharge current detecting means for
Total discharge current (IS +Or IS-) To respond to this
The effective static elimination current (I1+Or I1-) And no electrode / case
Effective current (I2+Or I2-) By subtracting
Electrode reactive current (I3) Seeking electrode
And a reactive current detecting means.

【0026】また、本発明の第2の態様は前記の目的を
達成するために、正側放電電極及び負側放電電極と、各
放電電極にそれぞれ二次側コイルの一端を接続してなる
正側トランス及び負側トランスと、各トランスを介して
各放電電極に正の高電圧及び負の高電圧を生成・付与す
る正側高電圧生成回路及び負側高電圧生成回路と、前記
放電電極を外方に向けて該放電電極、前記トランス及び
高電圧生成回路を収納した導電材料から成る筐体とを備
えた除電装置において、前記正側トランス及び負側トラ
ンスの二次側コイルの接地端である他端を直列に接続さ
れた一対の外部接地用抵抗を介して互いに接続すると共
に、両外部接地用抵抗の中点を前記筐体の外部の外部接
地部に接続し、さらに、少なくとも一方のトランスの二
次側コイルの接地端と前記外部接地用抵抗との接続部に
前記筐体を接続し、各放電電極の放電時に流れる電流の
うち、除電に寄与するイオンを生成する正側有効除電電
流(I1+) 及び負側有効除電電流(I1-)の差(Ia=
1+−I1-)を前記一対の外部接地用抵抗にそれぞれ生
じる電圧の差により検出する有効電流差分検出手段と、
前記各放電電極に前記各高電圧生成回路により付与され
る正側高電圧(V+ )及び負側高電圧(V- )の時間的
変化率(dV+ /dt及びdV- /dt)が
In order to achieve the above-mentioned object, the second aspect of the present invention comprises a positive side discharge electrode and a negative side discharge electrode, and a positive side discharge electrode connected to one end of a secondary side coil. A side transformer and a negative side transformer, a positive side high voltage generation circuit and a negative side high voltage generation circuit that generate and apply a positive high voltage and a negative high voltage to each discharge electrode through each transformer, and the discharge electrode. In a static eliminator provided with the discharge electrode, the transformer, and a housing made of a conductive material that accommodates a high-voltage generating circuit facing outward, at a grounding end of a secondary coil of the positive transformer and the negative transformer. The other ends are connected to each other through a pair of external grounding resistors connected in series, and the middle point of both external grounding resistors is connected to an external external grounding portion of the casing, and at least one of Grounding the secondary coil of the transformer And the connecting the housing to the connecting portion of the external grounding resistance, among the current flowing during the discharge of each discharge electrode, the positive effective charge removing current for generating the ions contributing to the neutralization (I 1+) and negative Effective static elimination current (I 1- ) difference (Ia =
I 1+ −I 1− ) based on the difference in voltage generated between the pair of external grounding resistors, and an effective current difference detecting means,
The temporal change rates (dV + / dt and dV / dt) of the positive side high voltage (V + ) and the negative side high voltage (V ) applied to the discharge electrodes by the high voltage generating circuits are

【0027】[0027]

【数14】 [Equation 14]

【0028】の関係を微小時間づづ繰り返し満たし、且
つ、該微小時間内における前記正側高電圧(V+ )及び
負側高電圧(V- )の変化量(ΔV+ ,ΔV- )が ΔV+ ≪V+ 及びΔV- ≪V- ……(2) の関係を満たすように各高電圧生成回路を制御する高電
圧制御手段と、前記微小時間内において前記有効電流差
分検出手段により得られた両有効除電電流(I1+
1-)の差(Ia)の時間的変化率(dIa/dt)を
求める微分手段と、前記両有効除電電流(I1+,I1-
の一方の有効除電電流(I1+又はI1-)を
The relationship of (3) is repeatedly satisfied for each minute time, and the change amounts (ΔV + , ΔV ) of the positive side high voltage (V + ) and the negative side high voltage (V ) within the minute time are ΔV + «V + and ΔV - «V - a high voltage control means for controlling each high voltage generating circuit so as to satisfy the relation ... (2), both obtained by the effective current difference detection means in said short time Effective static elimination current (I 1+ ,
Differentiating means for obtaining the temporal change rate (dIa / dt) of the difference (Ia) of I 1− ) and the effective static elimination currents (I 1+ , I 1− )
One of the effective static elimination current (I 1+ or I 1- )

【0029】[0029]

【数15】 (Equation 15)

【0030】の関係式を用いて求める第1の有効除電電
流検出手段と、他方の有効除電電流(I1-又はI1+
を、前記有効電流差分検出手段により得られた両有効除
電電流(I1+,I1-)の差(Ia=I1+−I1-)と前記
第1の有効除電電流検出手段により得られた正側有効除
電電流(I1+) 又は負側有効除電電流(I1-)とから減
算演算又は加算演算により求める第2の有効除電電流検
出手段とを備え、各有効除電電流検出手段により得られ
た各有効除電電流(I1+,I1-)を制御することによ
り、除電に寄与する正負のイオンの生成を制御すること
を特徴とする。
The first effective static elimination current detection means and the other effective static elimination current (I 1− or I 1+ ) obtained by using the relational expression of
Is obtained by the difference (Ia = I 1+ −I 1− ) between both effective static elimination currents (I 1+ , I 1− ) obtained by the effective current difference detecting means and the first effective static elimination current detecting means. Second effective static charge elimination current detection means for obtaining by subtraction calculation or addition calculation from the positive side effective static charge elimination current (I 1+ ) or negative side effective static charge elimination current (I 1− ) By controlling each effective static elimination current (I 1+ , I 1− ) obtained by the above, generation of positive and negative ions contributing to static elimination is controlled.

【0031】さらに、前記両トランスの二次側コイルの
接地端と前記一対の外部接地用抵抗との接続部にそれぞ
れ各別の筐体接地用抵抗を介して前記筐体を接続し、各
放電電極の放電時に流れる電流のうち、正側放電電極及
び負側放電電極と前記筐体との間でそれぞれ流れる正側
電極・筐体間無効電流(I2+)及び負側電極・筐体間無
効電流(I2-)の差(Ib=I2+−I2-)を前記各筐体
接地用抵抗に生じる電圧の差により検出する電極・筐体
間無効電流差分検出手段と、前記微小時間内において前
記電極・筐体間無効電流差分検出手段により得られた両
電極・筐体間無効電流(I2+,I2-)の差(Ib)の時
間的変化率(dIb/dt)を求める第2の微分手段
と、前記両電極・筐体間無効電流(I2+,I2-)の一方
の電極・筐体間無効電流(I2+又はI2-)を
Further, the casings are connected to the connecting portions of the grounding ends of the secondary side coils of both the transformers and the pair of external grounding resistors through the respective casing grounding resistors, and each discharge is performed. Among the currents that flow when the electrodes are discharged, the reactive current (I 2+ ) between the positive side electrode and the case and the negative side electrode and the case that respectively flow between the positive side discharge electrode and the negative side discharge electrode and the case. An electrode / casing reactive current difference detecting means for detecting a difference (Ib = I 2+ −I 2− ) in the reactive current (I 2− ) based on a voltage difference generated in the resistance for grounding each casing, and the minute Temporal change rate (dIb / dt) of the difference (Ib) between the reactive currents (I 2+ , I 2− ) between the electrodes and the housing obtained by the reactive current difference detecting means between the electrodes and the housing within the time. a second differentiating means for obtaining the said two electrodes, the inter-chassis reactive current (I 2+, I 2-) one electrode-housing of Disable current (I 2+ or I 2-)

【0032】[0032]

【数16】 [Equation 16]

【0033】の関係式を用いて求める第1の電極・筐体
間無効電流検出手段と、他方の電極・筐体間無効電流
を、前記電極・筐体間無効電流差分検出手段により得ら
れた両電極・筐体間無効電流(I2+,I2-)の差(Ib
=I2+−I2-)と前記第1の電極・筐体間無効電流検出
手段により得られた正側電極・筐体間無効電流(I2+)
又は負側電極・筐体間無効電流(I2-)とから減算演算
又は加算演算により求める第2の電極・筐体間無効電流
検出手段とを備えたことを特徴とする。
The first electrode-chassis reactive current detection means and the other electrode-chassis reactive current obtained by using the relational expression of are obtained by the electrode-chassis reactive current difference detection means. Difference (Ib) between reactive currents (I 2+ , I 2 − ) between both electrodes and case
= I 2+ −I 2− ) and the reactive current between the positive electrode and the housing (I 2+ ) obtained by the first-electrode-to-housing reactive current detection means.
Alternatively, it is provided with a second electrode-casing reactive current detection means which is obtained by subtraction calculation or addition calculation from the negative side electrode-casing reactive current (I 2− ).

【0034】さらに、少なくとも前記両放電電極のうち
の一方の放電電極の全放電電流(I S+又はIS-)を検出
する放電電流検出手段と、該放電電流検出手段により得
られた全放電電流(IS+又はIS-)からこれに対応する
前記有効除電電流(I1+又はI1-)及び電極・筐体間無
効電流(I2+又はI2-)を減算することにより前記両放
電電極間で流れる電極間無効電流(I3 )を求める電極
間無効電流検出手段とを備えたことを特徴とする。
Further, at least one of the discharge electrodes
Total discharge current (I S +Or IS-) Is detected
And a discharge current detecting means for
Total discharge current (IS +Or IS-) To respond to this
The effective static elimination current (I1+Or I1-) And no electrode / case
Effective current (I2+Or I2-) By subtracting
Electrode reactive current (I3) Seeking electrode
And a reactive current detecting means.

【0035】また、本発明の第3の態様は前記の目的を
達成するために、正側放電電極及び負側放電電極と、各
放電電極にそれぞれ二次側コイルの一端を接続してなる
正側トランス及び負側トランスと、各トランスを介して
各放電電極に正の高電圧及び負の高電圧を生成・付与す
る正側高電圧生成回路及び負側高電圧生成回路と、前記
放電電極を外方に向けて該放電電極、前記トランス及び
高電圧生成回路を収納した絶縁材料から成る筐体とを備
えた除電装置において、前記正側トランス及び負側トラ
ンスの二次側コイルの接地端である他端を互いに接続せ
しめると共に、その接続部を前記筐体の外部の外部接地
部に外部接地用抵抗を介して接続し、各放電電極の放電
時に流れる電流のうち、除電に寄与するイオンを生成す
る正側有効除電電流(I1+) 及び負側有効除電電流(I
1-)の差(Ia=I1+−I1-)を前記外部接地用抵抗に
生じる電圧により検出する有効電流差分検出手段と、前
記各放電電極に前記各高電圧生成回路により付与される
正側高電圧(V+ )及び負側高電圧(V- )の時間的変
化率(dV+ /dt及びdV- /dt)が
In order to achieve the above-mentioned object, a third aspect of the present invention is a positive side discharge electrode and a negative side discharge electrode, and a positive side discharge electrode connected to one end of a secondary side coil. A side transformer and a negative side transformer, a positive side high voltage generation circuit and a negative side high voltage generation circuit that generate and apply a positive high voltage and a negative high voltage to each discharge electrode through each transformer, and the discharge electrode. In a static eliminator provided with the discharge electrode, the transformer, and a housing made of an insulating material that houses a high-voltage generation circuit toward the outside, at a grounding end of a secondary coil of the positive transformer and the negative transformer. While connecting the other ends to each other, the connecting portion is connected to an external grounding portion outside the casing via an external grounding resistance, and among the currents flowing at the time of discharge of each discharge electrode, ions that contribute to static elimination are selected. Positive side effective charge removal to be generated (I 1+) and negative effective charge removing current (I
1− ) difference (Ia = I 1+ −I 1− ) is detected by the voltage generated in the external grounding resistor, and the high voltage generating circuit is provided to each discharge electrode. The positive side high voltage (V + ) and the negative side high voltage (V ) change rate with time (dV + / dt and dV / dt)

【0036】[0036]

【数17】 [Equation 17]

【0037】の関係を微小時間づづ繰り返し満たし、且
つ、該微小時間内における前記正側高電圧(V+ )及び
負側高電圧(V- )の変化量(ΔV+ ,ΔV- )が ΔV+ ≪V+ 及びΔV- ≪V- ……(2) の関係を満たすように各高電圧生成回路を制御する高電
圧制御手段と、前記微小時間内において前記有効電流差
分検出手段により得られた両有効除電電流(I1+
1-)の差(Ia)の時間的変化率(dIa/dt)を
求める微分手段と、前記両有効除電電流(I1+,I1-
の一方の有効除電電流(I1+又はI1-)を
The above relationship is repeatedly satisfied for each minute time, and the change amounts (ΔV + , ΔV ) of the positive side high voltage (V + ) and the negative side high voltage (V ) within the minute time are ΔV +. «V + and ΔV - «V - a high voltage control means for controlling each high voltage generating circuit so as to satisfy the relation ... (2), both obtained by the effective current difference detection means in said short time Effective static elimination current (I 1+ ,
Differentiating means for obtaining the temporal change rate (dIa / dt) of the difference (Ia) of I 1− ) and the effective static elimination currents (I 1+ , I 1− )
One of the effective static elimination current (I 1+ or I 1- )

【0038】[0038]

【数18】 (Equation 18)

【0039】の関係式を用いて求める第1の有効除電電
流検出手段と、他方の有効除電電流(I1-又はI1+
を、前記有効電流差分検出手段により得られた両有効除
電電流(I1+,I1-)の差(Ia=I1+−I1-)と、前
記第1の有効除電電流検出手段により得られた正側有効
除電電流(I1+) 又は負側有効除電電流(I1-)とから
減算演算又は加算演算により求める第2の有効除電電流
検出手段を備え、各有効除電電流検出手段により得られ
た各有効除電電流(I1+,I1-)を制御することによ
り、除電に寄与する正負のイオンの生成を制御すること
を特徴とする。
The first effective static elimination current detecting means and the other effective static elimination current (I 1− or I 1+ ) obtained by using the relational expression of
By the difference (Ia = I 1+ −I 1− ) between both effective static elimination currents (I 1+ , I 1− ) obtained by the effective current difference detection means, and the first effective static elimination current detection means. A second effective static elimination current detection means for obtaining by subtraction calculation or addition calculation from the obtained positive side effective static elimination current (I 1+ ) or negative side effective static elimination current (I 1− ) is provided, and each effective static elimination current detection means is provided. By controlling each effective static elimination current (I 1+ , I 1− ) obtained by the above, generation of positive and negative ions contributing to static elimination is controlled.

【0040】また、本発明の第4の態様は前記の目的を
達成するために、正側放電電極及び負側放電電極と、各
放電電極にそれぞれ二次側コイルの一端を接続してなる
正側トランス及び負側トランスと、各トランスを介して
各放電電極に正の高電圧及び負の高電圧を生成・付与す
る正側高電圧生成回路及び負側高電圧生成回路と、前記
放電電極を外方に向けて該放電電極、前記トランス及び
高電圧生成回路を収納した絶縁材料から成る筐体とを備
えた除電装置において、前記正側トランス及び負側トラ
ンスの二次側コイルの接地端である他端を直列に接続さ
れた一対の外部接地用抵抗を介して互いに接続すると共
に、両外部接地用抵抗の中点を前記筐体の外部の外部接
地部に接続し、各放電電極の放電時に流れる電流のう
ち、除電に寄与するイオンを生成する正側有効除電電流
(I1+) 及び負側有効除電電流(I1-)の差(Ia=I
1+−I1-)を前記一対の外部接地用抵抗に生じる電圧の
差により検出する有効電流差分検出手段と、前記各放電
電極に前記各高電圧生成回路により付与される正側高電
圧(V+ )及び負側高電圧(V- )の時間的変化率(d
+ /dt及びdV- /dt)が
Further, in order to achieve the above-mentioned object, the fourth aspect of the present invention is a positive side discharge electrode and a negative side discharge electrode, and a positive side electrode formed by connecting one end of a secondary side coil to each discharge electrode. A side transformer and a negative side transformer, a positive side high voltage generation circuit and a negative side high voltage generation circuit that generate and apply a positive high voltage and a negative high voltage to each discharge electrode through each transformer, and the discharge electrode. In a static eliminator provided with the discharge electrode, the transformer, and a housing made of an insulating material that houses a high-voltage generation circuit toward the outside, at a grounding end of a secondary coil of the positive transformer and the negative transformer. The other ends are connected to each other through a pair of external grounding resistors connected in series, and the middle point of both external grounding resistors is connected to an external grounding portion outside the casing to discharge each discharge electrode. Of the current that flows sometimes, contributes to static elimination Difference positive effective charge removing current generates an on (I 1+) and negative effective charge removing current (I 1-) (Ia = I
1+ −I 1− ) based on the difference between the voltages generated in the pair of external grounding resistors, and the positive high voltage ( + ) applied to the discharge electrodes by the high voltage generating circuits. V +) and the negative side high voltage (V - temporal change rate of) (d
V + / dt and dV - / dt) is

【0041】[0041]

【数19】 [Formula 19]

【0042】の関係を微小時間づづ繰り返し満たし、且
つ、該微小時間内における前記正側高電圧(V+ )及び
負側高電圧(V- )の変化量(ΔV+ ,ΔV- )が ΔV+ ≪V+ 及びΔV- ≪V- ……(2) の関係を満たすように各高電圧生成回路を制御する高電
圧制御手段と、前記微小時間内において前記有効電流差
分検出手段により得られた両有効除電電流(I1+
1-)の差(Ia)の時間的変化率(dIa/dt)を
求める微分手段と、前記両有効除電電流(I1+,I1-
の一方の有効除電電流(I1+又はI1-)を
The relationship of (3) is repeatedly satisfied for each minute time, and the change amounts (ΔV + , ΔV ) of the positive side high voltage (V + ) and the negative side high voltage (V ) within the minute time are ΔV +. «V + and ΔV - «V - a high voltage control means for controlling each high voltage generating circuit so as to satisfy the relation ... (2), both obtained by the effective current difference detection means in said short time Effective static elimination current (I 1+ ,
Differentiating means for obtaining the temporal change rate (dIa / dt) of the difference (Ia) of I 1− ) and the effective static elimination currents (I 1+ , I 1− )
One of the effective static elimination current (I 1+ or I 1- )

【0043】[0043]

【数20】 [Equation 20]

【0044】の関係式を用いて求める第1の有効除電電
流検出手段と、他方の有効除電電流(I1-又はI1+
を、前記有効電流差分検出手段により得られた両有効除
電電流(I1+,I1-)の差(Ia=I1+−I1-)と前記
第1の有効除電電流検出手段により得られた正側有効除
電電流(I1+) 又は負側有効除電電流(I1-)とから減
算演算又は加算演算により求める第2の有効除電電流検
出手段を備え、各有効除電電流検出手段により得られた
各有効除電電流(I1+,I1-)を制御することにより、
除電に寄与する正負のイオンの生成を制御することを特
徴とする。
The first effective static elimination current detecting means and the other effective static elimination current (I 1− or I 1+ ) obtained by using the relational expression of
Is obtained by the difference (Ia = I 1+ −I 1− ) between both effective static elimination currents (I 1+ , I 1− ) obtained by the effective current difference detecting means and the first effective static elimination current detecting means. A second effective static elimination current detecting means for obtaining by subtraction calculation or addition calculation from the positive side effective static elimination current (I 1+ ) or negative side effective static elimination current (I 1- ) is provided. By controlling each of the obtained effective static elimination currents (I 1+ , I 1- ),
It is characterized by controlling the generation of positive and negative ions that contribute to static elimination.

【0045】さらに、前記の第3又は第4の態様におい
て、少なくとも前記両放電電極のうちの一方の放電電極
の全放電電流(IS+又はIS-)を検出する放電電流検出
手段と、該放電電流検出手段により得られた全放電電流
(IS+又はIS-)から前記有効除電電流(I1+又は
1-)を減算することにより前記両放電電極間で流れる
電極間無効電流(I3 )を求める電極間無効電流検出手
段とを備えたことを特徴とする。
Further, in the third or fourth aspect, there is provided discharge current detecting means for detecting the total discharge current (I S + or I S- ) of at least one of the discharge electrodes, and By subtracting the effective static elimination current (I 1+ or I 1- ) from the total discharge current (I S + or I S- ) obtained by the discharge current detection means, the inter-electrode reactive current ( I 3 ), and an inter-electrode reactive current detecting means.

【0046】また、前記の各態様において、前記各高電
圧生成回路は、前記高電圧制御手段から与えられる正側
高電圧指示値及び負側高電圧指示値に応じた高電圧(V
+ ,V- )を生成する回路であって、前記高電圧制御手
段は、前記正側高電圧指示値及び負側高電圧指示値を前
記微小時間を含む小時間内において略一定として生成す
る正側指示値生成手段及び負側指示値生成手段と、該正
側指示値生成手段又は負側指示値生成手段により生成さ
れた正側高電圧指示値又は負側高電圧指示値に微小変動
を前記微小時間づづ繰り返し生ぜしめる指示値加工手段
とを備え、該指示値加工手段により微小変動を生ぜしめ
た正側高電圧指示値又は負側高電圧指示値をこれに対応
する高電圧生成回路に付与すると共に、他の高電圧指示
値をこれに対応する高電圧生成回路に前記負側指示値生
成手段又は正側指示値生成手段から付与することによ
り、前記(1),(2)の関係を満たすように各高電圧
生成回路を制御することを特徴とする。
Further, in each of the above aspects, each of the high-voltage generating circuits has a high voltage (V) corresponding to the positive-side high-voltage instruction value and the negative-side high-voltage instruction value provided from the high-voltage control means.
+ , V ), wherein the high-voltage control means generates the positive-side high-voltage instruction value and the negative-side high-voltage instruction value as substantially constant within a small time including the minute time. The side instruction value generating means and the negative side instruction value generating means, and the minute fluctuations in the positive side high voltage instruction value or the negative side high voltage instruction value generated by the positive side instruction value generating means or the negative side instruction value generating means. And a positive side high voltage instruction value or a negative side high voltage instruction value, which causes a minute fluctuation by the instruction value processing means, is applied to the corresponding high voltage generation circuit. At the same time, another high voltage instruction value is given to the corresponding high voltage generation circuit from the negative side instruction value generating means or the positive side instruction value generating means, whereby the relationship of (1) and (2) is satisfied. Control each high-voltage generation circuit to meet And wherein the door.

【0047】さらに、前記指示値加工手段による前記正
側高電圧指示値又は負側高電圧指示値の微小変動は、前
記(3),(4)の関係式における正側高電圧(V+
とその時間的変化率dV+ /dtとの比の値又は負側高
電圧(V- )とその時間的変化率dV- /dtとの比の
値が一定となる指数関数的微小変動であり、前記第1の
有効除電電流検出手段は、前記(3),(4)の関係式
における前記比の値を一定値として、前記微分手段によ
り得られた前記時間的変化率(dIa/dt)により前
記正側有効除電電流(I1+) 又は負側有効除電電流(I
1-)を求めることを特徴とする。
Further, the minute fluctuation of the positive side high voltage instruction value or the negative side high voltage instruction value by the instruction value processing means is caused by the positive side high voltage (V + ) in the relational expressions (3) and (4).
And the ratio of the temporal change rate dV + / dt or the ratio of the negative high voltage (V ) to the temporal change rate dV / dt is an exponential minute fluctuation. The first effective static elimination current detecting means sets the value of the ratio in the relational expressions (3) and (4) to a constant value, and the temporal change rate (dIa / dt) obtained by the differentiating means. Depending on the positive side effective static elimination current (I 1+ ) or the negative side effective static elimination current (I
1- ) is required.

【0048】さらに、前記正側指示値生成手段及び負側
指示値生成手段は、前記正側高電圧指示値及び負側高電
圧指示値をこれに対応したレベルの指示値信号として生
成し、前記指示値加工手段は、抵抗及びコンデンサから
成る時定数回路を用いて前記指示値信号のレベルに指数
関数的微小変動を生ぜしめることを特徴とする。
Further, the positive side instruction value generating means and the negative side instruction value generating means generate the positive side high voltage instruction value and the negative side high voltage instruction value as an instruction value signal of a level corresponding to the positive side high voltage instruction value and the negative side high voltage instruction value, respectively. The indicator value processing means is characterized in that a time constant circuit composed of a resistor and a capacitor is used to cause an exponential minute fluctuation in the level of the indicator value signal.

【0049】[0049]

【作用】本発明の第1の態様によれば、前記両放電電極
の放電時には、前記外部接地用抵抗に前記正側有効除電
電流(I1+)及び負側有効除電電流(I1-)の差(Ia
=I1+−I1-)に相当する電流が流れる(詳細は後述の
実施例で説明する)。このため、前記有効電流差分検出
手段により前記外部接地用抵抗の電圧を検出すること
で、両有効除電電流の差(Ia)が検出される。また、
前記高電圧制御手段により、前記(1),(2)の関係
を満たすように前記各高電圧生成回路を制御すると、前
記(3)又は(4)の関係式が成立する(詳細は後述の
実施例で説明する)。従って、前記微分手段により、両
有効除電電流の差(Ia)の時間的変化率(dIa/d
t)を求めれば、その時間的変化率(dIa/dt)か
ら前記(3)又は(4)の関係式を用いて正側有効除電
電流(I1+)及び負側有効除電電流(I1-)の一方を求
めることが可能となり、また、その求めた一方の有効除
電電流(I1+又はI1-)と、前記両有効除電電流の差
(Ia)とから減算演算又は加算演算により他方の有効
除電電流(I1-又はI1+)を求めることが可能となる。
そして、このようにして求められた各有効除電電流は、
除電に寄与する正負各々のイオンの総生成量を示すもの
であるので、その求めた有効除電電流を制御することに
より、除電に寄与する正負各々のイオンの生成を制御す
ることが可能となる。
According to the first aspect of the present invention, the positive effective discharge current (I 1+ ) and the negative effective discharge current (I 1- ) are applied to the external grounding resistor when the discharge electrodes are discharged. Difference of (Ia
= I 1+ -I 1- ) (current will be described later in detail in the embodiments). Therefore, by detecting the voltage of the external grounding resistor by the effective current difference detecting means, the difference (Ia) between the two effective charge eliminating currents is detected. Also,
When the high voltage control circuit controls each of the high voltage generation circuits so as to satisfy the relationships (1) and (2), the relational expression (3) or (4) is satisfied (details will be described later). Examples will be described). Therefore, by the differentiating means, the temporal change rate (dIa / d) of the difference (Ia) between the two effective static elimination currents.
If t) is obtained, the positive side effective static elimination current (I 1+ ) and the negative side effective static elimination current (I 1 ) are calculated from the temporal change rate (dIa / dt) using the relational expression of (3) or (4). - ) Of one of the obtained effective static elimination currents (I 1+ or I 1- ) and the difference (Ia) between the two effective static elimination currents can be calculated by subtraction or addition. It is possible to obtain the other effective charge removal current (I 1− or I 1+ ).
Then, each effective static elimination current obtained in this way is
Since it indicates the total amount of positive and negative ions contributing to static elimination, it is possible to control the generation of positive and negative ions contributing to static elimination by controlling the obtained effective static elimination current.

【0050】尚、前記(3),(4)式における高電圧
(V+ 又はV- )とその時間的変化率(dV+ /dt又
はdV- /dt)との比の値は、直接的に求めること
も、あるいは後述するように一定値とすることも可能で
ある。
The value of the ratio between the high voltage (V + or V ) and the time rate of change (dV + / dt or dV / dt) in the equations (3) and (4) is directly It is also possible to obtain a constant value or a constant value as described later.

【0051】この場合、さらに、前記筐体接地用抵抗を
設けたときには、該筐体接地用抵抗に、前記正側電極・
筐体間無効電流(I2+)及び負側電極・筐体間無効電流
(I 2-)の差(Ib=I2+−I2-)に相当する電流が流
れる(詳細は後述の実施例で説明する)。このため、前
記電極・筐体間無効電流差分検出手段により前記筐体接
地用抵抗の電圧を検出することで、両電極・筐体間無効
電流の差(Ib)が検出される。そして、前記(1),
(2)の条件下では、前記(5)又は(6)の関係式が
成立する(詳細は後述の実施例で説明する)。従って、
前記第2の微分手段により、両電極・筐体間無効電流の
差(Ib)の時間的変化率(dIb/dt)を求めれ
ば、その時間的変化率(dIb/dt)から前記(5)
又は(6)の関係式を用いて正側電極・筐体間無効電流
(I2+)及び負側電極・筐体間無効電流(I2-)の一方
を求めることが可能となり、また、その求めた一方の電
極・筐体間無効電流(I2+又はI2-)と、前記両電極・
筐体間無効電流の差(Ib)とから減算演算又は加算演
算により他方の電極・筐体間無効電流(I2-又はI2+
を求めることが可能となる。
In this case, the housing grounding resistor is further added.
When provided, the positive electrode /
Reactive current between enclosures (I2+) And the negative current between the negative electrode and the housing
(I 2-) Difference (Ib = I2+-I2-Current equivalent to
(Details will be described in Examples below). Because of this, before
The case is connected to the case by the means for detecting the reactive current difference between the electrode and the case.
By detecting the voltage of the earth resistance, invalid between both electrodes and the case
The current difference (Ib) is detected. Then, the above (1),
Under the condition of (2), the relational expression of the above (5) or (6) is
It is established (details will be described in the examples below). Therefore,
By the second differentiating means, the reactive current between both electrodes and the housing is
Find the temporal change rate (dIb / dt) of the difference (Ib)
For example, from the time change rate (dIb / dt),
Or using the relational expression of (6), the reactive current between the positive electrode and the case
(I2+) And the negative current between the negative electrode and the housing (I2-) One side
It is possible to obtain the
Reactive current between pole and case (I2+Or I2-) And both electrodes
Subtraction operation or addition operation from the difference (Ib) of reactive current between cases
The reactive current (I2-Or I2+)
It becomes possible to ask.

【0052】さらに、少なくとも前記両放電電極のうち
の一方の放電電極の全放電電流(I S+又はIS-)を検出
する放電電流検出手段とを備えたときには、前記のよう
に得られた有効除電電流(I1+又はI1-)及び電極・筐
体間無効電流(I2+又はI2-)を放電電流検出手段によ
り得られた全放電電流(IS+又はIS-)から減算するこ
とで、電極間無効電流(I3 )を求めることが可能とな
る。
Further, at least one of the discharge electrodes
Total discharge current (I S +Or IS-) Is detected
And a discharge current detecting means for
Effective static elimination current (I1+Or I1-) And electrode / casing
Interbody reactive current (I2+Or I2-) By the discharge current detection means
Total discharge current (IS +Or IS-) Can be subtracted from
And the reactive current between electrodes (I3) Is possible
It

【0053】次に、本発明の第2の態様によれば、前記
一対の外部接地用抵抗の電圧の差が、前記正側有効除電
電流(I1+)及び負側有効除電電流(I1-)の差(Ia
=I 1+−I1-)に相当するものとなる(詳細は後述の実
施例で説明する)。このため、前記有効電流差分検出手
段により前記一対の外部接地用抵抗の電圧の差を検出す
ることで、両有効除電電流の差(Ia)が検出される。
そして、この場合においても、前記(1),(2)の条
件下で前記(3)又は(4)の関係式が成立し、従っ
て、前記第1の態様と同様に各有効除電電流(I1-,I
1+)を求めることが可能となる。そして、該有効除電電
流(I1-,I1+)を制御することで、除電に寄与する正
負のイオンの生成を制御することが可能となる。
Next, according to a second aspect of the present invention,
The difference in voltage between the pair of external grounding resistors is
Current (I1+) And the negative side effective static elimination current (I1-) Difference (Ia
= I 1+-I1-) (Details described later
Explained in the example). Therefore, the active current difference detection
A step detects the voltage difference between the pair of external grounding resistors.
By doing so, the difference (Ia) between the two effective charge eliminating currents is detected.
Even in this case, the above-mentioned conditions (1) and (2)
Under the conditions, the relational expression of (3) or (4) is established and
Then, as in the first aspect, each effective static elimination current (I1-, I
1+) Can be obtained. And the effective charge removal
Flow (I1-, I1+) Is controlled to positively contribute to static elimination.
It is possible to control the production of negative ions.

【0054】この場合、さらに、前記両トランスの二次
側コイルの接地端と前記一対の外部接地用抵抗との接続
部にそれぞれ各別の筐体接地用抵抗を介して前記筐体を
接続したときには、各筐体接地用抵抗の電圧の差が、前
記正側電極・筐体間無効電流(I2+)及び負側電極・筐
体間無効電流(I2-)の差(Ib=I2+−I2-)に相当
するものとなる(詳細は後述の実施例で説明する)。そ
して、このように両電極・筐体間無効電流の差(Ib)
が求まれば、前記第1の態様と同様に、前記(1),
(2)の条件下で前記(5),(6)の関係式等を用い
て各電極・筐体間無効電流(I2-,I2+)を求めること
が可能となる。
In this case, furthermore, the casings are connected to the connecting portions of the grounding ends of the secondary side coils of the both transformers and the pair of external grounding resistors through the respective casing grounding resistors. Sometimes, the difference in voltage between the resistors for grounding the casings is the difference (Ib = I) between the reactive current (I 2+ ) between the positive electrode and the casing and the reactive current (I 2− ) between the negative electrode and the casing. 2 + -I 2− ) (details will be described in Examples below). Then, in this way, the difference (Ib) in the reactive current between both electrodes and the housing
If the above is obtained, the above (1),
Under the condition of (2), it becomes possible to obtain the reactive current (I 2− , I 2+ ) between each electrode and the housing by using the relational expressions of (5) and (6).

【0055】また、上記のように各有効除電電流
(I1-,I1+)及び各電極・筐体間無効電流(I2-,I
2+)が求まれば、前記第1の態様と同様に、いずれか一
方の放電電極の全放電電流(IS+又はIS-)を検出する
ことで、電極間無効電流(I3 )を求めることが可能と
なる。また、前記第1の態様と同様に、各放電電極の全
放電電流(IS+及びIS-)を検出すれば、その全放電電
流(IS+,IS-)と有効除電電流(I1-,I1+)とから
各放電電極の総無効電流を求めることが可能となる。
Further, as described above, each effective static elimination current (I 1- , I 1+ ) and each electrode-chassis reactive current (I 2- , I).
2+ ) is obtained, the inter-electrode reactive current (I 3 ) is detected by detecting the total discharge current (I S + or I S− ) of either one of the discharge electrodes, as in the first aspect. It becomes possible to ask. Further, if the total discharge current (I S + and I S- ) of each discharge electrode is detected as in the case of the first aspect, the total discharge current (I S + , I S- ) and the effective discharge current (I 1 - , I 1+ ) makes it possible to obtain the total reactive current of each discharge electrode.

【0056】尚、本発明の前記第1及び第2の態様にお
いて、各放電電極の全放電電流(I S+,IS-)は、例え
ば該放電電極に対応するトランスの二次側コイルに直列
に接続された放電電流検出用抵抗を備えることで、該放
電電流検出用抵抗に生じる電圧により全放電電流
(IS+,IS-)を検出することが可能である。あるい
は、本発明の第2の態様にあっては、前記一対の筐体接
地用抵抗を備えたときには、例えば互いに同じトランス
の二次側コイルの接地端に接続された一方の外部接地用
抵抗及び筐体接地用抵抗に生じる電圧の和により該トラ
ンス側の放電電極の全放電電流(IS+又はIS-)を検出
することが可能である。
In the first and second aspects of the present invention,
And the total discharge current (I S +, IS-) Is an analogy
For example, in series with the secondary coil of the transformer corresponding to the discharge electrode.
A discharge current detection resistor connected to the
Total discharge current due to voltage generated in resistance for current detection
(IS +, IS-) Can be detected. There
In the second aspect of the present invention, is the pair of housing contacts.
When equipped with a ground resistance, for example, the same transformer
For external grounding of one side connected to the grounding end of the secondary coil of
The sum of the voltage generated in the resistance and the resistance for grounding the chassis
Total discharge current (IS +Or IS-) Is detected
It is possible to

【0057】また、本発明の第1及び第2の態様におい
て、各放電電極の全放電電流(IS+及びIS-)の両者を
検出すれば、その各全放電電流(IS+,IS-)から前述
のように得られる各有効除電電流(I1+,I1-)を減算
することにより、各電極・筺体間無効電流(I2+
2-)と電極間無効電流(I3 )とを併せた各放電電極
の総無効電流を求めることが可能となる。
Further, in the first and second aspects of the present invention, if both of the total discharge currents (I S + and I S- ) of the respective discharge electrodes are detected, the respective total discharge currents (I S + , I S + ) are detected. - ) Is subtracted from each effective static elimination current (I 1+ , I 1- ) obtained as described above to obtain a reactive current (I 2+ , I 2+ , between the electrodes and the housing ) .
It is possible to obtain the total reactive current of each discharge electrode, which is a combination of I 2− ) and the interelectrode reactive current (I 3 ).

【0058】次に、本発明の第3の態様によれば、前記
外部接地用抵抗には、前記第1の態様と同様に、前記正
側有効除電電流(I1+)及び負側有効除電電流(I1-
の差(Ia=I1+−I1-)に相当する電流が流れ、該外
部接地用抵抗の電圧により両有効除電電流の差(Ia=
1+−I1-)が検出される。従って、前記第1の態様と
同様に、前記(1),(2)の条件下で前記(3),
(4)の関係式等を用いて各有効除電電流(I1-
1+)を求めることが可能となる。そして、該有効除電
電流(I1-,I1+)を制御することで、除電に寄与する
正負のイオンの生成を制御することが可能となる。尚、
この場合には、筐体は絶縁材料から成るので、電極・筐
体間に電流は流れず、該筐体を前記トランス等と接続す
る必要はない。
Next, according to a third aspect of the present invention, the positive side effective static elimination current (I 1+ ) and the negative side effective static elimination are applied to the external grounding resistor, as in the first aspect. Current (I 1- )
Current (Ia = I 1+ −I 1− ) corresponding to the difference (Ia = I 1+ −I 1− )
I 1+ −I 1− ) is detected. Therefore, similar to the first aspect, under the conditions (1) and (2), the (3),
Each effective static elimination current (I 1- ,
I 1+ ) can be obtained. Then, by controlling the effective charge removal currents (I 1− , I 1+ ), it becomes possible to control the generation of positive and negative ions that contribute to charge removal. still,
In this case, since the case is made of an insulating material, no current flows between the electrode and the case, and it is not necessary to connect the case to the transformer or the like.

【0059】また、本発明の第4の態様によれば、前記
一対の外部接地用抵抗の電圧の差は、前記第2の態様と
同様に、前記正側有効除電電流(I1+)及び負側有効除
電電流(I1-)の差(Ia=I1+−I1-)に相当するも
のとなり、両外部接地用抵抗の電圧の差により両有効除
電電流の差(Ia=I1+−I1-)が検出される。従っ
て、前記第1、2又は3の態様と同様に、前記(1),
(2)の条件下で前記(3),(4)の関係式等を用い
て各有効除電電流(I1-,I1+)を求めることが可能と
なる。そして、該有効除電電流(I1-,I1+)を制御す
ることで、除電に寄与する正負のイオンの生成を制御す
ることが可能となる。尚、この場合にも、前記第3の態
様と同様に、電極・筐体間に電流は流れず、該筐体を前
記トランス等と接続する必要はない。
Further, according to the fourth aspect of the present invention, the difference in voltage between the pair of external grounding resistors is the same as in the second aspect, and the positive side effective static elimination current (I 1+ ) and It corresponds to the difference (Ia = I 1+ −I 1− ) between the negative side effective static elimination currents (I 1− ), and the difference between the two effective static elimination currents (Ia = I 1 −) due to the voltage difference between the two external grounding resistors + −I 1− ) is detected. Therefore, similar to the first, second or third aspect, the above (1),
Under the condition of (2), it becomes possible to obtain each effective static elimination current (I 1− , I 1+ ) using the relational expressions of (3) and (4). Then, by controlling the effective charge removal currents (I 1− , I 1+ ), it becomes possible to control the generation of positive and negative ions that contribute to charge removal. In this case as well, as in the third aspect, no current flows between the electrode and the case, and it is not necessary to connect the case to the transformer or the like.

【0060】さらに、これらの第3または第4の態様に
おいて、少なくとも前記両放電電極のうちの一方の放電
電極の全放電電流(IS+又はIS-)を検出する放電電流
検出手段とを備えたときには、全放電電流(IS+又はI
S-)から有効除電電流(I1-又はI1+)を減算すること
で、電極間無効電流(I3 )を求めることが可能とな
る。
Further, in the third or fourth aspect, discharge current detecting means for detecting the total discharge current (I S + or I S- ) of at least one of the discharge electrodes is provided. The total discharge current (I S + or I
By subtracting the effective static elimination current (I 1− or I 1+ ) from S− ), the interelectrode reactive current (I 3 ) can be obtained.

【0061】尚、本発明の第3又は第4の態様におい
て、各放電電極の全放電電流(IS+,IS-)は、例えば
該放電電極に対応するトランスの二次側コイルに直列に
接続された放電電流検出用抵抗を備えることで、該放電
電流検出用抵抗に生じる電圧により全放電電流(IS+
S-)を検出することが可能である。あるいは、第4の
態様においては、各外部接地用抵抗に生じる電圧により
各放電電極の全放電電流(IS+,IS-)を検出すること
も可能である。
In the third or fourth aspect of the present invention, the total discharge current (I S + , I S- ) of each discharge electrode is, for example, serially connected to the secondary coil of the transformer corresponding to the discharge electrode. By providing the connected discharge current detection resistor, the total discharge current (I S + ,
I S- ) can be detected. Alternatively, in the fourth aspect, it is possible to detect the total discharge current (I S + , I S− ) of each discharge electrode by the voltage generated in each external grounding resistance.

【0062】また、前記の各態様において、例えば前記
(3),(4)の関係式における正側高電圧(V+ )と
その時間的変化率dV+ /dtとの比の値又は負側高電
圧(V- )とその時間的変化率dV- /dtとの比の値
が少なくとも前記微小時間内において一定となるよう
に、該微小時間内において指数関数的に正側高電圧(V
+ )又は負側高電圧(V- )を変化せしめるようにすれ
ば、前記(3),(4)の関係式における上記の比の値
をあらかじめ一定値としておくことが可能となる。この
ようにすれば、上記の比の値を逐次求めずとも、前記両
有効除電電流の差(Ia)の時間的変化率(dIa/d
t)から簡単に一方の有効除電電流(I1-又はI1+)を
求めることが可能となり、このことは、前記(5),
(6)の関係式を用いて電極・筐体間無効電流(I2-
はI2+)を求める場合も同様である。
In each of the above aspects, for example, the above
Positive side high voltage (V in the relational expressions (3) and (4)+)When
The rate of change dV with time+Value of ratio with / dt or negative high voltage
Pressure (V-) And its rate of change dV with time-Value of ratio with / dt
Is constant at least within the minute time
In addition, the positive high voltage (V
+) Or negative high voltage (V-) To change
For example, the value of the above ratio in the relational expressions (3) and (4) above
Can be set to a constant value in advance. this
By doing so, both of the above
Rate of change (dIa / d) of the difference (Ia) in effective static elimination current
From t), one effective static elimination current (I1-Or I1+)
It is possible to obtain this, which is described in (5),
Using the relational expression (6), the reactive current (I2-or
Is I2+) Is also the same.

【0063】次に、本発明の前記の各態様において、前
記各高電圧生成回路は、前記高電圧制御手段から与えら
れる正側高電圧指示値及び負側高電圧指示値に応じた高
電圧(V+ ,V- )を生成する回路であるときには、前
記正側及び負側指示値生成手段により前記正側高電圧指
示値及び負側高電圧指示値を前記微小時間を含む小時間
内において略一定として生成すると共に、生成された正
側高電圧指示値又は負側高電圧指示値に前記指示値加工
手段により微小変動を前記微小時間づづ繰り返し生ぜし
める。そして、微小変動を生ぜしめた正側高電圧指示値
又は負側高電圧指示値を対応する高電圧生成回路に付与
すると共に、他の高電圧生成回路に対応する高電圧指示
値を前記負側指示値生成手段又は正側指示値生成手段か
ら付与する。このようにすることにより、比較的簡単な
構成で各高電圧生成回路を前記(1),(2)の関係を
満たすように制御することが可能となる。
Next, in each of the above aspects of the present invention, each of the high voltage generating circuits outputs a high voltage (a high voltage corresponding to the positive side high voltage instruction value and the negative side high voltage instruction value provided from the high voltage control means). V +, V -) when a circuit for generating the substantially within a small time including the minute time the positive high voltage instruction value and the negative side high voltage instruction value by the positive and negative indication value generating means The value is generated as a constant value, and minute fluctuations are repeatedly generated in the generated positive side high voltage instruction value or negative side high voltage instruction value by the instruction value processing means at the minute time intervals. Then, the positive side high voltage instruction value or the negative side high voltage instruction value that causes a minute change is given to the corresponding high voltage generation circuit, and the high voltage instruction value corresponding to another high voltage generation circuit is given to the negative side. It is given from the instruction value generating means or the positive side instruction value generating means. By doing so, it becomes possible to control each high voltage generation circuit so as to satisfy the relationships (1) and (2) with a relatively simple configuration.

【0064】この場合、前記正側高電圧指示値又は負側
高電圧指示値の微小変動を指数関数的微小変動とするこ
とで、前記(3),(4)の関係式における正側高電圧
(V + )とその時間的変化率dV+ /dtとの比の値又
は負側高電圧(V- )とその時間的変化率dV- /dt
との比の値が一定値となり、従って、前記第1の有効除
電電流検出手段は、前述したように、両有効除電電流の
差(Ia)の時間的変化率(dIa/dt)から極めて
簡単に一方の有効除電電流(I1-又はI1+)を求めるこ
とが可能となる。このことは、前記第1の電極・筐体間
無効電流検出手段を備え、電極・筐体間無効電流を前記
(5),(6)の関係式を用いて求める場合においても
同様である。
In this case, the positive side high voltage indication value or the negative side
The minute fluctuations of the high voltage indication value may be regarded as exponential minute fluctuations.
And the positive high voltage in the relational expressions (3) and (4) above.
(V +) And its rate of change dV with time+Value of ratio with / dt
Is the negative high voltage (V-) And its rate of change dV with time-/ Dt
The value of the ratio of
As described above, the electric current detecting means is provided with
From the time rate of change of difference (Ia) (dIa / dt),
One of the effective static elimination currents (I1-Or I1+)
And are possible. This means that between the first electrode and the housing
Equipped with reactive current detection means,
Even when using the relational expressions (5) and (6)
It is the same.

【0065】上記のような指数関数的微小変動は、抵抗
及びコンデンサから成る時定数回路を用いれば簡単な回
路構成で生ぜしめることが可能である。
The exponential minute fluctuation as described above can be generated with a simple circuit configuration by using a time constant circuit composed of a resistor and a capacitor.

【0066】尚、前記(3),(4)の関係式における
正側高電圧(V+ )とその時間的変化率dV+ /dtと
の比の値又は負側高電圧(V- )とその時間的変化率d
-/dtとの比の値は、前記指示値加工手段により微
小変動を生ぜしめた正側高電圧指示値又は負側高電圧指
示値の前記微小時間内における時間的変化率と、該微小
時間内における前記正側高電圧指示値又は負側高電圧指
示値との比の値であるので、該比の値を演算により求め
ることも可能である。そして、このように該比の値を演
算により求めれば、その求めた比の値を、両有効除電電
流の差(Ia)の時間的変化率(dIa/dt)に乗算
することで、前記(3),(4)の関係式により一方の
有効除電電流(I1-又はI1+)を求めることが可能とな
る。このことは、前記電極・筐体間無効電流を前記
(5),(6)の関係式を用いて求める場合においても
同様である。
[0066] Incidentally, the (3), (4) the relationship positive side high voltage (V +) and the ratio of the values or negative high voltage and the temporal change rate dV + / dt in the formula - (V) and The temporal change rate d
The value of the ratio to V / dt is the temporal change rate in the minute time of the positive side high voltage instruction value or the negative side high voltage instruction value that causes the minute variation by the instruction value processing means, and Since it is the value of the ratio to the positive side high voltage instruction value or the negative side high voltage instruction value within the time, it is also possible to obtain the value of the ratio by calculation. Then, if the value of the ratio is calculated in this way, the calculated ratio value is multiplied by the rate of temporal change (dIa / dt) of the difference (Ia) between the two effective static elimination currents to obtain the above ( One of the effective static elimination currents (I 1− or I 1+ ) can be obtained by the relational expressions 3) and (4). This also applies to the case where the reactive current between the electrode and the housing is obtained using the relational expressions (5) and (6).

【0067】また、前記の各態様において前記指示値生
成手段及び指示値加工手段を備えたときには、例えば次
のようにして正負のイオンの生成を制御することが可能
となる。すなわち、例えば前記高電圧制御手段に対して
正側有効除電電流及び負側有効除電電流の設定値を指示
すると共に、その設定値と各有効除電電流(I1+及びI
1-)との大小関係に応じてそれらの偏差を解消する向き
に増減するように前記正側高電圧指示値及び負側高電圧
指示値を生成する。この時、該正側高電圧指示値及び負
側高電圧指示値が前記微小時間を含む小時間内において
略一定となるように該高電圧指示値及び負側高電圧指示
値を緩やかに増減させる。このようにすることにより、
正側有効除電電流及び負側有効除電電流を求めるのに必
要な前記(1),(2)の条件を満たしつつ、各有効除
電電流を設定値に制御することが可能となり、従って、
除電に寄与する正負のイオンの生成量を各有効除電電流
の設定値で示される生成量に制御することが可能とな
る。
When each of the above modes is provided with the indicated value generating means and the indicated value processing means, the generation of positive and negative ions can be controlled as follows, for example. That is, for example, the set value of the positive side effective static elimination current and the negative side effective static elimination current is instructed to the high voltage control means, and the set value and each effective static elimination current (I 1+ and I
1- ), the positive-side high-voltage instruction value and the negative-side high-voltage instruction value are generated so as to increase or decrease in the direction in which the deviations are eliminated. At this time, the high-voltage instruction value and the negative-side high-voltage instruction value are gradually increased and decreased so that the positive-side high-voltage instruction value and the negative-side high-voltage instruction value become substantially constant within a small time including the minute time. . By doing this,
While satisfying the conditions (1) and (2) necessary for obtaining the positive side effective static elimination current and the negative side effective static elimination current, it becomes possible to control each effective static elimination current to the set value.
It is possible to control the generation amount of positive and negative ions that contribute to static elimination to the generation amount indicated by the set value of each effective static elimination current.

【0068】この場合、特に、正側有効除電電流
(I1+)及び負側有効除電電流(I1-)によりそれぞれ
生成される正イオン及び負イオンが所定の比率で均衡す
る割合でもって、正側有効除電電流(I1+)及び負側有
効除電電流(I1-)の設定値を設定すれば、除電に寄与
する正負のイオンの総生成量をバランスさせることが可
能となり、従って、帯電体の除電を確実に行うことが可
能となる。
In this case, in particular, the positive and negative ions generated by the positive side effective static elimination current (I 1+ ) and the negative side effective static elimination current (I 1- ) are balanced at a predetermined ratio. By setting the set values of the positive side effective static elimination current (I 1+ ) and the negative side effective static elimination current (I 1− ), it is possible to balance the total amount of positive and negative ions that contribute to the elimination of static electricity. It is possible to surely remove the charge from the charged body.

【0069】また、前記の各態様において前記指示値生
成手段及び指示値加工手段を備えたときには、例えば前
記各高電圧指示値が所定の設定値を越えたとき、警報を
発するようにすることで、各放電電極の汚れ等の異常の
有無を監視することが可能となる。
Further, in each of the above aspects, when the indicator value generating means and the indicator value processing means are provided, for example, when each of the high voltage instruction values exceeds a predetermined set value, an alarm is issued. It is possible to monitor whether or not there is an abnormality such as dirt on each discharge electrode.

【0070】さらに、前記各電極・筐体間無効電流や電
極間無効電流を検出する場合において、各電極・筐体間
無効電流や電極間無効電流が所定の設定値を越えたと
き、警報を発するようにしてもよい。
Further, in the case of detecting the reactive current between the electrodes and the case or the reactive current between the electrodes, when the reactive current between the electrodes and the case or the reactive current between the electrodes exceeds a predetermined set value, an alarm is issued. You may make it emit.

【0071】[0071]

【実施例】まず、本発明の第1乃至第4の各態様の基本
原理を図1乃至図4を参照して説明する。図1乃至図4
はそれぞれ本発明の第1の態様、第2の態様、第3の態
様及び第4の態様の除電装置の基本構成を説明するため
の説明図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the basic principle of each of the first to fourth aspects of the present invention will be described with reference to FIGS. 1 to 4
FIG. 3 is an explanatory diagram for explaining a basic configuration of the static eliminator according to the first aspect, the second aspect, the third aspect, and the fourth aspect of the present invention, respectively.

【0072】図1を参照して、1,2はそれぞれ正側放
電電極及び負側放電電極、3,4はそれぞれ正側放電電
極1及び負側放電電極2に正側トランス5及び負側トラ
ンス6を介して正の高電圧V+ 及び負の高電圧V- を生
成・付与する正側高電圧生成回路及び負側高電圧生成回
路、7は放電電極1,2、高電圧生成回路3,4及びト
ランス5,6を収納した筐体である。この場合、筐体7
は金属等の導電材料からなるものであり、放電電極1,
2は、筐体7の前面部に設けられた開口(図示しない)
を介して所定の間隔を存して筐体7の外方前方に向けら
れている。該開口には網(図示しない)が取着されてい
る。
Referring to FIG. 1, reference numerals 1 and 2 denote a positive side discharge electrode and a negative side discharge electrode, and 3 and 4 denote a positive side discharge electrode 1 and a negative side discharge electrode 2, respectively, and a positive side transformer 5 and a negative side transformer. A positive side high voltage generation circuit and a negative side high voltage generation circuit that generate and give a positive high voltage V + and a negative high voltage V via 6, and 7 are discharge electrodes 1 and 2, high voltage generation circuits 3 and 3. It is a housing that houses 4 and transformers 5 and 6. In this case, the housing 7
Is made of a conductive material such as metal, and the discharge electrode 1,
2 is an opening (not shown) provided on the front surface of the housing 7.
Is directed to the outside and the front of the housing 7 with a predetermined space therebetween. A mesh (not shown) is attached to the opening.

【0073】各トランス5,6の二次側コイルの一端に
は、それぞれ放電電極1,2が接続され、各トランス
5,6の二次側コイルの接地端である他端は、それに各
々直列に接続された放電電流検出用抵抗8,9を介して
接続されている。
The discharge electrodes 1 and 2 are connected to one ends of the secondary side coils of the transformers 5 and 6, respectively, and the other ends of the secondary side coils of the transformers 5 and 6 which are grounding ends are respectively connected in series. It is connected via the discharge current detection resistors 8 and 9 connected to.

【0074】そして、両トランス5,6の二次側コイル
の接続点である放電電流検出用抵抗8,9の中点は、筐
体7外部の適所に設けられた外部接地部10に外部接地
用抵抗11を介して接続され、さらに、筐体7に筐体接
地用抵抗12を介して接続されている。
The middle point of the discharge current detecting resistors 8 and 9, which is the connection point of the secondary side coils of both transformers 5 and 6, is externally grounded to an external grounding portion 10 provided at a proper position outside the housing 7. It is connected via a housing resistor 11 and is further connected to the housing 7 via a housing grounding resistance 12.

【0075】尚、放電電極1,2の中間には、これらの
放電電極1,2の前方に向かって送風する図示しない送
風ファンが設けられている。
A blower fan (not shown) that blows air toward the front of the discharge electrodes 1 and 2 is provided in the middle of the discharge electrodes 1 and 2.

【0076】このような構成の除電装置において、各高
電圧生成回路3,4により各放電電極1,2に正の高電
圧V+ 及び負の高電圧V- を付与すると、各放電電極
1,2が放電し、その放電により大気中に正負のイオン
が生成される。そして、その正負の生成イオンが両放電
電極1,2の前方に配置される帯電体(図示しない)に
到達し、また、帯電体に到達する正負のイオンの生成量
のバランスがとれておれば、帯電体が除電される。
In the static eliminator having such a structure, when the positive high voltage V + and the negative high voltage V are applied to the discharge electrodes 1 and 2 by the high voltage generation circuits 3 and 4, respectively. 2 is discharged, and positive and negative ions are generated in the atmosphere by the discharge. Then, if the positive and negative generated ions reach the charged body (not shown) arranged in front of the discharge electrodes 1 and 2, and if the generation amount of the positive and negative ions reaching the charged body is balanced. , The charged body is discharged.

【0077】この場合、各放電電極1,2の放電により
生成される正負のイオンの全生成量は、基本的には、各
放電電極1,2に対応して大気中で流れる放電電流(イ
オン電流)に応じたものとなるのであるが、各放電電極
1,2に流れる全放電電流I S+,IS-には、各放電電極
1,2と導体材料からなる筐体7との間でイオン電流あ
るいは漏れ電流として流れる正側電極・筐体間無効電流
2+及び負側電極・筐体間無効電流I2-と、両放電電極
1,2間でイオン電流あるいは漏れ電流として流れる電
極間無効電流I3 と、これらの無効電流I2+,I2-,I
3 を除いた正側有効除電電流I1+及び負側有効除電電流
1-とが含まれる。すなわち、 IS+=I1++I2++I3 ……(7) IS-=I1-+I2-+I3 ……(8) そして、前記の無効電流I2+,I2-,I3 は、各放電電
極1,2と筐体7との間、あるいは両放電電極1,2の
間で流れるイオンを生成するにすぎないものであるか
ら、帯電体の除電に寄与するイオンを生成することはな
い。また、前記各有効除電電流I1+,I1-は、各放電電
極1,2と除電装置の外部との間でイオン電流として流
れるものであるから、各有効除電電流I1+,I1-に対応
して生成される正負のイオンは、帯電体の除電に寄与し
得る(帯電体に到達し得る)ものとなる。そして、この
ように帯電体の除電に寄与する正負のイオンの生成量は
各有効除電電流I1+,I1-に応じたものとなる。
In this case, the discharge of each discharge electrode 1, 2
Basically, the total amount of positive and negative ions produced is
The discharge current (I
It depends on the on-current), but each discharge electrode
Total discharge current I flowing through 1 and 2 S +, IS-Each discharge electrode
Ion current between the 1 and 2 and the housing 7 made of a conductive material.
Reactive current between positive electrode and case that flows as leakage current
I2+And reactive current I between negative electrode and housing2-And both discharge electrodes
The electric current flowing as an ionic current or a leakage current between 1 and 2
Interelectrode reactive current I3And these reactive currents I2+, I2-, I
3Positive side effective static elimination current I excluding1+And negative side effective static elimination current
I1-And are included. That is, IS += I1++ I2++ I3…… (7) IS-= I1-+ I2-+ I3(8) Then, the above reactive current I2+, I2-, I3Is each discharge
Between the electrodes 1 and 2 and the housing 7, or between the discharge electrodes 1 and 2
Is it only to generate ions flowing between them?
Do not generate ions that contribute to the charge removal of the charged body.
Yes. In addition, each effective static elimination current I1+, I1-Is each discharge
An ion current flows between the poles 1 and 2 and the outside of the static eliminator.
Therefore, each effective static elimination current I1+, I1-Corresponding to
The positive and negative ions generated in this way contribute to the charge removal of the charged body.
It can be obtained (can reach the charged body). And this
The amount of positive and negative ions that contribute to the charge removal of the charged body is
Each effective static elimination current I1+, I1-According to.

【0078】従って、各有効除電電流I1+,I1-を検出
すれば、帯電体の除電に寄与する正負のイオンの生成量
を把握・監視することができ、また、各有効除電電流I
1+,I1-を制御することで、除電に寄与する正負のイオ
ンの生成量を制御することができることとなる。
Therefore, by detecting the respective effective static elimination currents I 1+ and I 1- , it is possible to grasp and monitor the production amount of positive and negative ions that contribute to the static elimination of the charged body, and the effective static elimination currents I
By controlling 1+ and I 1− , it is possible to control the amount of positive and negative ions that contribute to static elimination.

【0079】一方、前記の構成の除電装置において、図
1に示すように、各放電電極1,2を流れる全放電電流
S+,IS-は、それぞれ放電電流検出用抵抗8,9を流
れる。そして、これらの抵抗8,9に全放電電流IS+
S-に比例した電圧が生じ、従って、各抵抗8,9の電
圧により全放電電流IS+,IS-が検出される。
On the other hand, in the static eliminator having the above structure, as shown in FIG. 1, the total discharge currents I S + and I S- flowing through the discharge electrodes 1 and 2 flow through the discharge current detecting resistors 8 and 9, respectively. . Then, the total discharge current I S + ,
A voltage proportional to I S- is generated, so that the total discharge currents I S + and I S- are detected by the voltages of the resistors 8 and 9.

【0080】また、正側放電電極1から除電装置の外部
に流れる正側有効除電電流I1+は、外部接地部10から
外部接地用抵抗11、放電電流検出用抵抗8及び正側ト
ランス5の二次側コイルを介して正側放電電極1に還流
する。同様に、除電装置の外部から負側放電電極2に流
れる負側有効除電電流I1-は、外部接地用抵抗11を介
して外部接地部10に還流する。従って、外部接地用抵
抗11には、両有効除電電流I1+,I1-の差分の電流I
aが流れる。すなわち、 Ia=I1+−I1- ……(9) そして、外部接地用抵抗11には両有効除電電流I1+
1-の差分の電流Iaに比例した電圧が生じ、該抵抗1
1の電圧により電流Iaが検出される。
The positive effective discharge current I 1+ flowing from the positive discharge electrode 1 to the outside of the static eliminator is supplied from the external ground portion 10 to the external ground resistor 11, the discharge current detection resistor 8 and the positive transformer 5. It flows back to the positive side discharge electrode 1 via the secondary side coil. Similarly, the negative effective discharge current I 1− flowing from the outside of the static eliminator to the negative discharge electrode 2 flows back to the external ground portion 10 via the external ground resistor 11. Therefore, the external grounding resistor 11 has a current I which is the difference between the effective static elimination currents I 1+ and I 1-.
a flows. That is, Ia = I 1+ −I 1− (9) Then, the effective grounding currents I 1+ ,
A voltage proportional to the current Ia which is the difference of I 1− is generated, and the resistance 1
The current Ia is detected by the voltage of 1.

【0081】また、正側放電電極1から筐体7に流れる
正側電極・筐体間無効電流I2+は、筐体7から筐体接地
用抵抗12、放電電流検出用抵抗8及び正側トランス5
の二次側コイルを介して正側放電電極1に還流する。同
様に、筐体7から負側放電電極2に流れる負側電極・筐
体間無効電流I2-は、筐体接地用抵抗12を介して筐体
7に還流する。従って、筐体接地用抵抗12には、両電
極・筐体間無効電流I 2+,I2-の差分の電流Ibが流れ
る。すなわち、 Ib=I2+−I2- ……(10) そして、筐体接地用抵抗12には両電極・筐体間無効電
流I2+,I2-の差分の電流Ibに比例した電圧が生じ、
該抵抗12の電圧により電流Ibが検出される。
Further, the current flows from the positive side discharge electrode 1 to the housing 7.
Reactive current between positive electrode and case I2+Is the case 7 to the case ground
Resistor 12, discharge current detection resistor 8 and positive side transformer 5
And returns to the positive side discharge electrode 1 via the secondary side coil. same
Similarly, the negative side electrode / casing flowing from the casing 7 to the negative side discharge electrode 2
Body reactive current I2-Is the housing via the housing grounding resistor 12.
Reflux to 7. Therefore, the housing grounding resistor 12 is
Reactive current between pole and case I 2+, I2-The difference current Ib flows
It That is, Ib = I2+-I2- ...... (10) Then, the casing grounding resistor 12 has a reactive voltage between both electrodes and the casing.
Flow I2+, I2-A voltage proportional to the current Ib of the difference of
The current Ib is detected by the voltage of the resistor 12.

【0082】尚、正側放電電極1から負側放電電極2に
流れる電極間無効電流I3 は、負側トランス6の二次側
コイル、放電電流検出用抵抗9,8及び正側トランス5
の二次側コイルを介して正側放電電極1に還流する。
The inter-electrode reactive current I 3 flowing from the positive side discharge electrode 1 to the negative side discharge electrode 2 is the secondary side coil of the negative side transformer 6, the discharge current detecting resistors 9 and 8 and the positive side transformer 5.
And returns to the positive side discharge electrode 1 via the secondary side coil.

【0083】ところで、一般に、各放電電極1,2に付
与される正負の高電圧V+ ,V- を増減すると、それに
応じて各有効除電電流I1+,I1-等の放電電流は増減す
るのであるが、この場合、正負の高電圧V+ ,V- の変
化量(増減量)ΔV+ ,ΔV - が高電圧V+ ,V- の大
きさに比して充分小さい範囲では、正負の高電圧V+
- の増減に比例して各有効除電電流I1+,I1-等の放
電電流が増減すると考えられる。そして、その場合の比
例定数は、正負の高電圧V+ ,V- が変化する微小時間
内では一定に維持されると考えられる。
By the way, in general, each discharge electrode 1, 2
Positive and negative high voltage V applied+, V-Increase or decrease the
Depending on each effective static elimination current I1+, I1-The discharge current of
In this case, positive and negative high voltage V+, V-Strange
Amount (increase / decrease) ΔV+, ΔV -Is high voltage V+, V-Large
In the range that is sufficiently smaller than the threshold value, the positive and negative high voltage V+,
V-Each effective static elimination current I in proportion to the increase or decrease of1+, I1-Release of etc.
It is considered that the electric current increases and decreases. And the ratio in that case
An example constant is positive or negative high voltage V+, V-Minute change time
It is considered to be kept constant within.

【0084】すなわち、上記のような条件の基では、次
の(11)〜(14)式が成り立つ。
That is, under the above conditions, the following expressions (11) to (14) are established.

【0085】I1+=k1 ・V+ ……(11) I2+=k2 ・V+ ……(12) I1-=k3 ・V- ……(13) I2-=k4 ・V- ……(14) 尚、k1 〜k4 はそれぞれ一定の比例定数である。[0085] I 1+ = k 1 · V + ...... (11) I 2+ = k 2 · V + ...... (12) I 1- = k 3 · V - ...... (13) I 2- = k 4 · V (14) In addition, k 1 to k 4 are constant proportional constants.

【0086】そこで、これらの(11)〜(14)式を
前記(9),(10)式に代入すると、 Ia=k1 ・V+ −k3 ・V- ……(15) Ib=k2 ・V+ −k4 ・V- ……(16) が得られ、さらに、(15),(16)式の両辺を時間
で微分すると、
Then, substituting these equations (11) to (14) into the equations (9) and (10), Ia = k 1 · V + −k 3 · V (15) Ib = k 2 · V + −k 4 · V ... (16) is obtained, and further, when both sides of the equations (15) and (16) are differentiated with respect to time,

【0087】[0087]

【数21】 [Equation 21]

【0088】が得られる。ここで、前記の条件の基で、
例えば(dV+ /dt)≫(dV- /dt)とすると、
(17),(18)式の右辺の第2項を無視することが
でき、従って、(17),(18)式は、
Is obtained. Here, under the above conditions,
For example, if (dV + / dt) >> (dV / dt),
The second term on the right-hand side of equations (17) and (18) can be ignored, and therefore equations (17) and (18) are

【0089】[0089]

【数22】 [Equation 22]

【0090】となる。従って、前記(11),(19)
式の組、並びに(12),(20)式の組からそれぞ
れ、前記(3),(5)の関係式が得られる。
## EQU10 ## Therefore, the above (11), (19)
The relational expressions (3) and (5) are obtained from the expression set and the expression (12) and (20) sets, respectively.

【0091】尚、例えば(dV+ /dt)≪(dV-
dt)とした場合には、上記の場合と同様にして、前記
(4),(6)の関係式が得られる。
Incidentally, for example, (dV + / dt) << (dV /
dt), the relational expressions (4) and (6) are obtained in the same manner as in the above case.

【0092】従って、各放電電極1,2に付与する高電
圧V+ ,V- の時間的変化率dV+/dt及びdV-
dt)が前記(1)の関係式を前記(11)〜(14)
式の比例関係が成り立つような微小時間づつ繰り返し満
たし、且つ、該微小時間内における高電圧V+ ,V-
変化量ΔV+ ,ΔV- が、前記(2)式の関係を満たす
ように、換言すれば、高電圧V+ ,V- の両者の全体的
な時間的変化を比較的緩やかなものとしつつ、いずれか
一方の高電圧V+ ,V- に微小時間づづ微小変動が生じ
るように高電圧V+ ,V- を制御してやれば、前記
(3),(5)式、あるいは(4),(6)式を用いて
正側有効除電電流I1+及び正側電極・筐体間無効電流I
2+、あるいは負側有効除電電流I1-及び負側電極・筐体
間無効電流I 2-を時々刻々検出することができることと
なる。
Therefore, the high voltage applied to each discharge electrode 1, 2
Pressure V+, V-Change rate dV of+/ Dt and dV-/
dt) is the above-mentioned relational expression of (1) above (11)-(14)
Repeated in small time increments so that the proportional relationship of the equation holds.
In addition, the high voltage V within the minute time+, V-of
Change ΔV+, ΔV-Satisfies the relationship of the above formula (2)
In other words, in other words, the high voltage V+, V-Overall of both
One of the two
One high voltage V+, V-A minute fluctuation occurs in a minute time
High voltage V+, V-If you control
Using equations (3) and (5) or equations (4) and (6)
Positive side effective static elimination current I1+And the reactive current I between the positive electrode and the housing
2+, Or negative side effective static elimination current I1-And negative electrode / case
Reactive current I 2-Can be detected momentarily and
Become.

【0093】この場合、(3),(4)式における“d
Ia/dt”は前記外部接地用抵抗11の電圧により検
出される電流Iaの時間的変化率を前記微小時間内にお
いて求めることで得られ、また、(5),(6)式にお
ける“dIb/dt”は前記筐体接地用抵抗12の電圧
により検出される電流Ibの時間的変化率を前記微小時
間内において求めることで得られる。尚、詳細は後述す
るが、(3),(5)式における“V+ ”と“dV+
dt”との比の値(以下、比の値K+ と称する)や、
(4),(6)式における“V- ”と“dV- /dt”
との比の値(以下、比の値K- と称する)は、あらかじ
め所定の一定値としておくことが可能である。
In this case, "d" in the equations (3) and (4)
Ia / dt "can be obtained by obtaining the temporal change rate of the current Ia detected by the voltage of the external grounding resistor 11 within the minute time, and" dIb / "in the equations (5) and (6). dt ″ can be obtained by obtaining the temporal change rate of the current Ib detected by the voltage of the housing grounding resistor 12 within the minute time. Details will be described later, but (3) and (5). "V + " and "dV + / in the formula
dt "ratio value (hereinafter referred to as ratio value K + ),
“V ” and “dV / dt” in the equations (4) and (6)
The value of the ratio (hereinafter, referred to as the ratio value K ) can be set to a predetermined constant value in advance.

【0094】このように一方の有効除電電流I1+又はI
1-と、一方の電極・筐体間無効電流I2+又はI2-とを検
出すれば、前記(9),(10)式を用いて他方の有効
除電電流I1-又はI1+と、他方の電極・筐体間無効電流
2-又はI2+とを求めることができ、さらに、前記
(7),(8)式のいずれか一方を用いて電極間無効電
流I3 を求めることができる。すなわち、(dV+ /d
t)≫(dV- /dt)として正側の有効除電電流I1+
や電極・筐体間無効電流I2+を(3),(5)式を用い
て求めた場合には、負側の有効除電電流I1-や電極・筐
体間無効電流I2-は、次の(22),(23)式の減算
演算により求まる。
In this way, one effective static elimination current I 1+ or I
If 1− and one of the electrodes / housing reactive current I 2+ or I 2− are detected, the other effective static elimination current I 1− or I 1+ is calculated by using the equations (9) and (10). And the reactive current I 2− or I 2+ between the other electrode and the housing can be obtained, and further, the reactive current I 3 between the electrodes can be calculated by using either one of the equations (7) and (8). You can ask. That is, (dV + / d
t) >> (dV / dt) and the effective static elimination current I 1+ on the positive side
When the reactive current I 2+ between the electrodes and the housing is obtained by using the equations (3) and (5), the effective static elimination current I 1− on the negative side and the reactive current I 2 − between the electrodes and the housing are , (22) and (23) are subtracted.

【0095】I1-=I1+−Ia ……(22) I2-=I2+−Ib ……(23) 同様に、(dV+ /dt)≪(dV- /dt)として負
側の有効除電電流I1-や電極・筐体間無効電流I2-
(3),(5)式を用いて求めた場合には、正側の有効
除電電流I1+や電極・筐体間無効電流I2+は、次の(2
4),(25)式の加算演算により求まる。
I 1− = I 1+ −Ia (22) I 2 − = I 2+ −Ib (23) Similarly, (dV + / dt) << (dV / dt) is set on the negative side. When the effective static elimination current I 1− and the reactive current I 2 − between the electrode and the casing are calculated by using the equations (3) and (5), the effective static elimination current I 1+ on the positive side and the electrode / casing are calculated. The reactive current I 2+ between
4) and (25) are added.

【0096】I1+=I1-+Ia ……(24) I2+=I2-+Ib ……(25) さらに、電極間無効電流I3 は、次の(26),(2
7)式のいずれか一方のの演算により求まる。
I 1+ = I 1- + Ia (24) I 2+ = I 2 + + Ib (25) Further, the inter-electrode reactive current I 3 is given by the following (26), (2)
It is obtained by the operation of either one of the expressions 7).

【0097】I3 =IS+−I1+−I2+ ……(26) I3 =IS-−I1-−I2- ……(27) この場合、(22)〜(27)式における“Ia”や
“Ib”、“IS+”、“IS-”は、それぞれ外部接地用
抵抗11、筐体接地用抵抗12、放電電流検出用抵抗
8,9に生じる電圧により検出される。
I 3 = I S + −I 1+ −I 2+ (26) I 3 = I S− −I 1 − −I 2 ··· (27) In this case, (22) to (27) “Ia”, “Ib”, “I S + ”, and “I S- ” in the equation are detected by the voltages generated in the external ground resistance 11, the housing ground resistance 12, and the discharge current detection resistances 8 and 9, respectively. It

【0098】上記のように、両有効除電電流I1+,I1-
が判れば、それにより、除電に寄与する正負のイオンの
生成量を把握することができ、従って、前記(1),
(2)の条件を満たしつつ、両有効除電電流I1+,I1-
を制御する(この制御は各高電圧生成回路3,4が生成
する高電圧V+ ,V- を増減制御することで行われる)
ことで、除電に寄与する正負のイオンの生成量を制御す
ることができる。さらに、電極・筐体間無効電流I2+
2-や、電極間無効電流I3 が判れば、放電状態の良否
等を監視することができる。これが、本発明の第1の態
様の基本原理である。
As described above, both effective static elimination currents I 1+ , I 1-
If it is known, it is possible to grasp the amount of positive and negative ions that contribute to charge removal. Therefore, the above (1),
While satisfying the condition (2), both effective static elimination currents I 1+ , I 1-
(This control is performed by increasing / decreasing the high voltages V + and V generated by the high voltage generating circuits 3 and 4).
As a result, the amount of positive and negative ions that contribute to charge removal can be controlled. Furthermore, the reactive current I 2+ between the electrode and the housing,
If I 2− and the inter-electrode reactive current I 3 are known, the quality of the discharge state can be monitored. This is the basic principle of the first aspect of the present invention.

【0099】ところで、(3)〜(6)式を用いて一方
の有効除電電流I1+又はI1-と、一方の電極・筐体間無
効電流I2+又はI2-とを求めるために必要な前記比の値
+,K- は、これらに対応する高電圧V+ ,V- に適
切な微小変動を生ぜしめることであらかじめ所定の一定
値としておくことができる。すなわち、例えば(3),
(5)式を用いる場合(dV+ /dt≫dV- /dtの
場合)において、前記微小時間内で高電圧V+ の時間的
微小変動を示す関数を例えば V+ =A+ ・exp(−t/τ)……(28) とする。ここで、tは時間、Aは時刻t=0における高
電圧V+ の大きさ、τは任意の時定数である。このよう
にすると、dV+ /dt=(−1/τ)・V+ であるか
ら、前記比の値K+ は、定数(=−τ)となり、従っ
て、(3),(6)式は、次のように簡略化される。
By the way, in order to obtain one of the effective static elimination currents I 1+ or I 1- and one of the electrodes-casing reactive currents I 2+ or I 2 -by using the equations (3) to (6). The ratio values K + and K necessary for the above can be set to predetermined constant values in advance by causing appropriate minute fluctuations in the corresponding high voltages V + and V . That is, for example, (3),
When the equation (5) is used (dV + / dt >> dV / dt), a function showing a temporal minute fluctuation of the high voltage V + within the minute time is, for example, V + = A + · exp (- t / τ) (28) Here, t is time, A is the magnitude of the high voltage V + at time t = 0, and τ is an arbitrary time constant. By doing so, since dV + / dt = (− 1 / τ) · V + , the value K + of the ratio becomes a constant (= −τ), and therefore equations (3) and (6) are , Is simplified as follows.

【0100】[0100]

【数23】 [Equation 23]

【0101】同様に、(4),(6)式を用いる場合
(dV+ /dt≪dV- /dtの場合)においては、前
記微小時間内で高電圧V- の時間的微小変動を示す関数
を例えば V- =A- ・exp(−t/τ)……(29) とすれば、(4),(6)式は次のように簡略化され
る。
Similarly, when the equations (4) and (6) are used (dV + / dt << dV / dt), a function showing a temporal minute fluctuation of the high voltage V within the minute time. Where V = A · exp (−t / τ) (29), the equations (4) and (6) can be simplified as follows.

【0102】[0102]

【数24】 [Equation 24]

【0103】従って、前記微小時間内における高電圧V
+ ,V- のいずれか一方に生ぜしめる時間的微小変動を
上記(28),(29)式で示したような指数関数的微
小変動としてやれば、外部接地用抵抗11を流れる電流
Iaや筐体接地用抵抗12を流れる電流Ibの時間的変
化率のみから、上記(3)’〜(6)’式を用いて一方
の有効除電電流I1+又はI1-と、一方の電極・筐体間無
効電流I2+又はI2-とを簡単に求めることができる。
尚、(3)’〜(6)’式における時定数τ(=K+
はK- )は単なる定数であるので、これを省略し、電流
Iaや電流Ibの時間的変化率そのものを、それぞれ有
効除電電流I1+又はI1-と、電極・筐体間無効電流I2+
又はI2-とに相当するものとして求めてもよい。
Therefore, the high voltage V within the minute time is
+, V - the (28) the temporal fine fluctuations give rise to either one of, if Shiteyare exponential slight change as shown in (29), the current Ia or housing through the external grounding resistor 11 Based on only the rate of change over time of the current Ib flowing through the body-grounding resistor 12, one of the effective static elimination currents I 1+ or I 1− and one of the electrodes / casing is calculated using the above equations (3) ′ to (6) ′ The body reactive current I 2+ or I 2− can be easily obtained.
Since the time constant τ (= K + or K ) in the expressions (3) ′ to (6) ′ is a simple constant, it is omitted, and the time change rate itself of the current Ia and the current Ib is respectively calculated. Effective static elimination current I 1+ or I 1- and reactive current I 2+ between electrode and housing
Alternatively, it may be calculated as equivalent to I 2− .

【0104】尚、詳細は後述するが、前記(3)〜
(6)式における前記比の値K+ ,K-を随時求めるこ
とにより、(3)〜(6)式を直接的に使用して一方の
有効除電電流I1+又はI1-と、一方の電極・筐体間無効
電流I2+又はI2-とを求めることも可能である。
The details will be described later, but the above (3)-
By obtaining the ratio values K + and K in the expression (6) at any time, one of the effective static elimination currents I 1+ or I 1− and one of the expressions (3) to (6) can be directly used. It is also possible to obtain the reactive current I 2+ or I 2− between the electrode and the case of.

【0105】以上の説明においては、有効除電電流
1+,I1-に加えて、電極・筐体間無効電流I2+,I2-
及び電極間無効電流I3 の全てを求める場合について説
明したが、帯電体の除電を行う上で特に重要なものは、
有効除電電流I1+,I1-であるから、該有効除電電流I
1+,I1-のみを求めるようにしてもよい。この場合に
は、前述したことから明らかなように、前記放電電流検
出用抵抗8,9及び筐体接地用抵抗12は必要ではな
く、これらの抵抗8,9,12の部分を短絡し、外部接
地用抵抗11のみを備えるようにすればよい。これは、
外部接地用抵抗11を流れる電流Iaさえ検出できれ
ば、有効除電電流I1+,I1-を求めることができるから
である。
In the above description, in addition to the effective static elimination currents I 1+ and I 1− , the reactive currents I 2+ and I 2− between the electrode and the casing are also included.
The case where all of the inter-electrode reactive current I 3 is obtained has been described. What is particularly important for removing the charge from the charged body is
Since the effective static elimination currents I 1+ and I 1- , the effective static elimination current I
It is also possible to obtain only 1+ and I 1− . In this case, as is clear from the above, the discharge current detecting resistors 8 and 9 and the housing grounding resistor 12 are not necessary, and the resistors 8, 9 and 12 are short-circuited to Only the grounding resistor 11 may be provided. this is,
This is because the effective static elimination currents I 1+ and I 1− can be obtained if only the current Ia flowing through the external grounding resistor 11 can be detected.

【0106】また、例えば有効除電電流I1+,I1-に加
えて、電極・筐体間無効電流I2+,I2-のみを求めるよ
うにしてもよい。この場合には、前述したことから明ら
かなように、前記放電電流検出用抵抗8,9は必要では
なく、これらの抵抗8,9,部分を短絡し、外部接地用
抵抗11及び筐体接地用抵抗12のみを備えるようにす
ればよい。これは、それらの抵抗11,12を流れる電
流Ia,Ibさえ検出できれば、有効除電電流I1+,I
1-と電極・筐体間無効電流I2+,I2-を求めることがで
きるからである。
Further, for example, in addition to the effective static elimination currents I 1+ and I 1− , only the reactive currents I 2+ and I 2− between the electrodes and the casing may be obtained. In this case, as is clear from the above description, the discharge current detecting resistors 8 and 9 are not necessary, but these resistors 8 and 9 are short-circuited, and the external grounding resistor 11 and the chassis grounding are used. Only the resistor 12 should be provided. This is because if only the currents Ia and Ib flowing through the resistors 11 and 12 can be detected, the effective static elimination currents I 1+ and I 1+ are obtained .
This is because it is possible to obtain 1− and the reactive currents I 2+ and I 2− between the electrodes and the housing.

【0107】また、有効除電電流I1+,I1-に加えて、
電極・筐体間無効電流I2+,I2-及び電極間無効電流I
3 の全てを求める場合においても、放電電流検出用抵抗
8,9はのいずれか一方は必要ではなく、いずれか一方
の放電電流検出用抵抗8,9の部分を短絡してもよい。
これは、外部接地用抵抗11及び筐体接地用抵抗12を
流れる電流Ia,Ibさえ検出できれば、有効除電電流
1+,I1-と電極・筐体間無効電流I2+,I2-を求める
ことができ、さらに、いずれか一方の放電電極1,2の
全放電電流IS+,IS-を検出すれば、前記(26),
(27)式のいずれか一方を用いて電極間無効電流I3
を求めることができるからである。
In addition to the effective static elimination currents I 1+ and I 1- ,
Electrode / casing reactive current I 2+ , I 2− and electrode reactive current I
Even in the case of obtaining all of 3 , it is not necessary to provide either one of the discharge current detecting resistors 8 and 9, and a portion of either one of the discharge current detecting resistors 8 and 9 may be short-circuited.
This is because if only the currents Ia and Ib flowing through the external grounding resistance 11 and the housing grounding resistance 12 can be detected, the effective static elimination currents I 1+ and I 1− and the reactive currents I 2+ and I 2− between the electrodes and the housing are detected. If the total discharge currents I S + and I S− of either one of the discharge electrodes 1 and 2 are detected, the above (26),
Using either one of the equations (27), the reactive current between electrodes I 3
Because you can ask.

【0108】さらに、有効除電電流I1+,I1-に加え
て、各放電電極1,2における総無効電流(=I2++I
3 及びI2-+I3 )を求めるようにしてもよい。この場
合には、筐体接地用抵抗12は必要ではなく、その抵抗
12の部分を短絡し、外部接地用抵抗11と両放電電流
検出用抵抗8,9のみを備えればよい。これは、外部接
地用抵抗12を流れる電流Iaから求められる各有効除
電電流I1+,I1-を、各放電電流検出用抵抗8,9を流
れる全放電電流IS+,IS-から減算すれば、各放電電極
1,2における総無効電流(=I2++I3 及びI2-+I
3 )求めることができるからである。
Further, in addition to the effective static elimination currents I 1+ and I 1- , the total reactive current (= I 2+ + I) in each discharge electrode 1, 2.
3 and I 2− + I 3 ) may be obtained. In this case, the housing grounding resistor 12 is not necessary, and it suffices to short the part of the resistor 12 and provide only the external grounding resistor 11 and both discharge current detecting resistors 8 and 9. This is to subtract the effective static elimination currents I 1+ and I 1− obtained from the current Ia flowing through the external grounding resistor 12 from the total discharge currents I S + and I S− flowing through the discharge current detecting resistors 8 and 9. Then, the total reactive current (= I 2+ + I 3 and I 2 − + I in each discharge electrode 1, 2 )
3 ) You can ask.

【0109】次に、図2を参照して本発明の第2の態様
の基本原理を説明する。
Next, the basic principle of the second aspect of the present invention will be described with reference to FIG.

【0110】同図において、この除電装置は、図1の除
電装置と同一構成の放電電極1,2と、高電圧生成回路
3,4と、トランス5,6と、放電電極1,2、高電圧
生成回路3,4及びトランス5を収納した導電材料から
成る筐体7とを備えている。そして、この除電装置にあ
っては、直列に接続された一対の外部接地用抵抗13,
14を備え、これらの抵抗13,14の抵抗13側に
は、正側トランス5の二次側コイルの接地端が接続さ
れ、抵抗14側には、負側トランス6の二次側コイルの
接地端が接続されている。そして、外部接地用抵抗1
3,14の中点は外部接地部10に短絡接続されてい
る。
In this figure, this static eliminator comprises discharge electrodes 1 and 2 having the same structure as the static eliminator of FIG. 1, high voltage generating circuits 3 and 4, transformers 5 and 6, discharge electrodes 1 and 2, and a high voltage. It is provided with a case 7 made of a conductive material that houses the voltage generation circuits 3 and 4 and the transformer 5. In this static eliminator, a pair of external grounding resistors 13 connected in series,
The grounding end of the secondary coil of the positive side transformer 5 is connected to the resistor 13 side of these resistors 13 and 14, and the grounding of the secondary side coil of the negative side transformer 6 is connected to the resistor 14 side. The ends are connected. And the external grounding resistor 1
The middle points of 3 and 14 are short-circuited to the external ground portion 10.

【0111】また、直列に接続された一対の筐体接地用
抵抗15,16が外部接地用抵抗13,14に並列に接
続され、これらの筐体接地用抵抗15,16の中点は導
電材料からなる筐体7に短絡接続されている。従って、
筐体7は、各トランス5,6の二次側コイルの接地端側
に各別の抵抗15,16を介して接続されている。
A pair of case grounding resistors 15 and 16 connected in series are connected in parallel to the external grounding resistors 13 and 14, and the middle point of these case grounding resistors 15 and 16 is made of a conductive material. It is short-circuited to the housing 7 made of. Therefore,
The housing 7 is connected to the grounding ends of the secondary side coils of the transformers 5 and 6 via separate resistors 15 and 16, respectively.

【0112】かかる構成の除電装置にあっては、同図を
参照して明らかなように、外部接地用抵抗13,14の
中点に、正側有効除電電流I1+及び負側有効除電電流I
1-の差分の電流Ia(=I1+−I1-)が外部接地部10
から流れる。また、筐体接地用抵抗15,16の中点
に、正側電極・筐体間無効電流I2+及び負側電極・筐体
間無効電流I2-の差分の電流Ib(=I2+−I2-)が筐
体7から流れる。尚、電極間無効電流I3 は外部接地用
抵抗13,14及び筐体接地用抵抗15,16の両者に
流れる。
In the static eliminator having such a configuration, as is apparent with reference to the figure, the positive side effective static erasing current I 1+ and the negative side effective static erasing current are provided at the midpoints of the external grounding resistors 13 and 14. I
1 of the difference between the current Ia (= I 1+ -I 1-) is external ground 10
Flowing from. In addition, at the midpoint of the resistors 15 and 16 for grounding the casing, a current Ib (= I 2+) which is a difference between the reactive current I 2+ between the positive electrode and the casing and the reactive current I 2− between the negative electrode and the casing is provided. -I 2- ) flows from the housing 7. The interelectrode reactive current I 3 flows through both the external grounding resistors 13 and 14 and the chassis grounding resistors 15 and 16.

【0113】ここで、同図に示すように、各外部接地用
抵抗13,14及び各筐体接地用抵抗15,16に流れ
る電流をそれぞれIc,Id,Ie,Ifとすると、キ
ルヒホッフの法則により、 Ia=Ic−Id ……(30) Ib=Ie−If ……(31) となる。従って、各外部接地用抵抗13,14に生じる
電圧の差を検出することで、(30)式に従って電流I
aが検出され、また、各筐体接地用抵抗15,16に生
じる電圧の差を検出することで、(31)式に従って電
流Ibが検出される。
Here, as shown in the figure, assuming that the currents flowing through the external grounding resistors 13 and 14 and the chassis grounding resistors 15 and 16 are Ic, Id, Ie, and If respectively, according to Kirchhoff's law. , Ia = Ic-Id (30) Ib = Ie-If (31) Therefore, by detecting the difference between the voltages generated in the external grounding resistors 13 and 14, the current I
The current Ib is detected according to the equation (31) by detecting a and detecting the difference between the voltages generated in the housing grounding resistors 15 and 16.

【0114】そして、このように電流Ia,Ibが検出
されれば、前記図1の除電装置について説明した手法と
全く同一の手法により、各有効除電電流I1+,I1-、各
電極・筐体間無効電流I2+,I2-及び電極間無効電流I
3 を求めることができる。尚、この場合、電極間無効電
流I3 を求めるために必要ないずれか一方の放電電極
1,2の全放電電流IS+又はIS-は、前記電流Ic〜I
dを用いて、 IS+=Ic+Ie ……(32) IS-=Id+If ……(33) と表されるので、例えば外部接地用抵抗13及び筐体接
地用抵抗15に生じる電圧の和により全放電電流IS+
検出され、また、外部接地用抵抗14及び筐体接地用抵
抗16に生じる電圧の和により全放電電流IS-が検出さ
れる。あるいは、前記図1の除電装置の場合と同様に放
電電流検出用抵抗を各トランス5,6の二次側コイルに
直列に接続し、それらの放電電流検出用抵抗に生じる電
圧により全放電電流IS+,IS-を検出することも可能で
ある。
If the currents Ia and Ib are detected in this manner, the effective static elimination currents I 1+ , I 1- , the electrodes, and the electrodes are removed by the same method as that described for the static eliminator of FIG. Inter-casing reactive currents I 2+ , I 2- and inter - electrode reactive current I
You can ask for 3 . In this case, the total discharge current I S + or I S− of either one of the discharge electrodes 1 and 2 required to obtain the inter-electrode reactive current I 3 is the above currents Ic to Ic.
Since d is expressed as I S + = Ic + Ie (32) I S- = Id + If (33), the total voltage is generated, for example, by the sum of the voltages generated in the external grounding resistor 13 and the chassis grounding resistor 15. The discharge current I S + is detected, and the total discharge current I S− is detected by the sum of the voltages generated in the external grounding resistor 14 and the chassis grounding resistor 16. Alternatively, as in the case of the static eliminator of FIG. 1, the discharge current detecting resistors are connected in series to the secondary side coils of the transformers 5 and 6, and the total discharge current I is generated by the voltages generated in the discharge current detecting resistors. It is also possible to detect S + and IS- .

【0115】従って、図2の除電装置においても、除電
に寄与する正負のイオンの生成量の制御や放電状態の良
否の監視を行うことができることとなる。これが、本発
明の第2の態様の基本原理である。
Therefore, also in the static eliminator of FIG. 2, it is possible to control the generation amount of positive and negative ions contributing to static elimination and monitor the quality of the discharge state. This is the basic principle of the second aspect of the present invention.

【0116】尚、上記の説明においては、有効除電電流
1+,I1-に加えて、電極・筐体間無効電流I2+,I2-
及び電極間無効電流I3 の全てを求める場合について説
明したが、前記図1の除電装置の場合と同様に、有効除
電電流I1+,I1-のみを求めるようにしてもよい。この
場合には、筐体接地用抵抗15,16の両者あるいはい
ずれか一方は必要でなく、例えば筐体接地用抵抗15,
16のいずれか一方の部分を短絡し、あるいは、筐体接
地用抵抗15,16の両者を削除して、外部接地用抵抗
13,14のいずれか一方の抵抗側で筐体7をいずれか
一方のトランス5又は6の二次側コイルの接地端に接続
すればよい。このようにしても、上記(30)式に従っ
て、電流Iaを検出することができ、従って、各有効除
電電流I 1+,I1-を求めることができる。
In the above description, the effective static elimination current
I1+, I1-In addition to the reactive current I between the electrode and the housing2+, I2-
And reactive current between electrodes I3The case of seeking all of
As mentioned above, as in the case of the static eliminator of FIG.
Current I1+, I1-You may ask only for. this
In some cases, both of the chassis grounding resistors 15 and 16 or
Either one of them is not necessary. For example, the case grounding resistor 15,
Either one of 16 parts is short-circuited, or
Both the ground resistors 15 and 16 are deleted, and the external ground resistor
Either one of the housings 13 and 14 has the resistance side
Connect to the ground end of the secondary coil of one transformer 5 or 6
do it. Even in this way, according to the above equation (30),
Therefore, the current Ia can be detected.
Current I 1+, I1-Can be asked.

【0117】また、例えば有効除電電流I1+,I1-に加
えて、電極・筐体間無効電流I2+,I2-のみを求めるよ
うにしてもよい。この場合には、外部接地用抵抗13,
14と筐体接地用抵抗15,16の両者が必要である。
Further, for example, in addition to the effective static elimination currents I 1+ and I 1− , only the reactive currents I 2+ and I 2− between the electrodes and the casing may be obtained. In this case, the external grounding resistor 13,
Both 14 and the housing grounding resistors 15 and 16 are required.

【0118】さらに、有効除電電流I1+,I1-に加え
て、各放電電極1,2における総無効電流(=I2++I
3 及びI2-+I3 )を求めるようにしてもよい。この場
合には、筐体接地用抵抗15,16の両者あるいはいず
れか一方は必要ではなく、例えば筐体接地用抵抗15,
16のいずれか一方の部分を短絡し、あるいは、筐体接
地用抵抗15,16の両者を削除して、外部接地用抵抗
13,14のいずれか一方の抵抗側で筐体7をいずれか
一方のトランス5又は6の二次側コイルの接地端に接続
してもよい。但し、筐体接地用抵抗15,16のいずれ
か一方の部分を短絡した場合には、その短絡した側の放
電電極1又は2については、放電電流検出用抵抗等を用
いて全放電電流IS+又はIS-を検出する必要がある。ま
た、筐体接地用抵抗15,16の両者を削除した場合に
は、筐体7を接続したトランス5又は6側の放電電極1
又は2については放電電流検出用抵抗等を用いて全放電
電流IS+又はIS-を検出する必要がある。そして、他方
の全放電電流IS+又はIS-は、それに対応する側の外部
接地用抵抗13又は14の電圧により検出される。
Furthermore, in addition to the effective static elimination currents I 1+ and I 1- , the total reactive current (= I 2+ + I) in each discharge electrode 1, 2.
3 and I 2− + I 3 ) may be obtained. In this case, neither or both of the housing grounding resistors 15 and 16 are necessary, and for example, the housing grounding resistors 15 and 16 are not necessary.
Either one of the parts of 16 is short-circuited, or both of the housing grounding resistors 15 and 16 are deleted, and one of the housings 7 is connected to one of the external grounding resistors 13 and 14. It may be connected to the ground end of the secondary coil of the transformer 5 or 6. However, when either one of the casing grounding resistors 15 and 16 is short-circuited, the discharge current detection resistor or the like is used for the discharge electrode 1 or 2 on the short-circuited side, and the total discharge current I S + is used. Or it is necessary to detect I S- . Further, when both the casing grounding resistors 15 and 16 are removed, the discharge electrode 1 on the transformer 5 or 6 side connected to the casing 7
For or 2, it is necessary to detect the total discharge current I S + or I S- using a discharge current detection resistor or the like. The other total discharge current I S + or I S- is detected by the voltage of the external grounding resistor 13 or 14 on the corresponding side.

【0119】次に、図3を参照して本発明の第3の態様
の基本原理を説明する。
Next, the basic principle of the third aspect of the present invention will be described with reference to FIG.

【0120】図3において、この除電装置は、図1の除
電装置と同一構成の放電電極1,2と、高電圧生成回路
3,4と、トランス5,6と、放電電極1,2、高電圧
生成回路3,4及びトランス5を収納した筐体7とを備
えている。この場合、筐体7は、プラスチック等の絶縁
材料から成るものである。そして、該除電装置において
は、図1の除電装置と同一の接続構成でもって、外部接
地用抵抗11及び放電電流検出用抵抗8,9が備えられ
ている。
In FIG. 3, this static eliminator comprises discharge electrodes 1 and 2 having the same structure as the static eliminator of FIG. 1, high voltage generation circuits 3 and 4, transformers 5 and 6, discharge electrodes 1 and 2, and a high voltage. It is provided with a housing 7 that houses the voltage generation circuits 3 and 4 and the transformer 5. In this case, the housing 7 is made of an insulating material such as plastic. The static eliminator is provided with the external grounding resistor 11 and the discharge current detecting resistors 8 and 9 with the same connection configuration as the static eliminator of FIG.

【0121】かかる構成の除電装置にあっては、筐体7
が絶縁材料から成るため、電極・筐体間無効電流は流れ
ず、各放電電極1,2の全放電電流IS+,IS-は、各有
効除電電流I1+,I1-と電極間無効電流I3 とを併せた
ものとなる。そして、この点を除き、図1の除電装置の
場合と同様の手法でもって、各有効除電電流I1+,I 1-
と電極間無効電流I3 とが求められる。
In the static eliminator having such a structure, the housing 7
Since it is made of an insulating material, reactive current flows between the electrode and the housing.
The total discharge current I of each discharge electrode 1, 2.S +, IS-Is each
Effective static elimination current I1+, I1-And reactive current between electrodes I3Combined with
Will be things. Excluding this point, the static eliminator of FIG.
In the same manner as in the case, each effective static elimination current I1+, I 1-
And reactive current between electrodes I3Is required.

【0122】すなわち、外部接地用抵抗11に生じる電
圧により、両有効除電電流I1+,I 1-の差分の電流Ia
が検出され、それにより、図1の除電装置の場合と全く
同一の手法でもって、各有効除電電流I1+,I1-が求め
られる。また、いずれか一方の放電電流検出用抵抗8又
は9に生じる電圧により検出される一方の放電電極1又
は2の全放電電流IS+又はIS-からそれに対応する有効
除電電流I1+又はI1-を減算することで、電極間無効電
流I3 が求められる。この減算演算は、前記(26)又
は(27)式においてI2+=I2-=0としたものであ
る。
That is, the voltage generated in the external grounding resistor 11 is
Both effective static elimination currents I by pressure1+, I 1-Difference current Ia
Is detected, which is completely different from the case of the static eliminator of FIG.
With the same method, each effective static elimination current I1+, I1-Wanted
To be In addition, either one of the discharge current detection resistors 8 or
Is one of the discharge electrodes 1 or 2 detected by the voltage generated at 9.
Is the total discharge current I of 2S +Or IS-From the corresponding valid
Static elimination current I1+Or I1-By subtracting
Flow I3Is required. This subtraction operation is the same as (26) or
In the equation (27) is I2+= I2-= 0
It

【0123】従って、図3の除電装置においても、除電
に寄与する正負のイオンの生成量の制御や放電状態の良
否の監視を行うことができることとなる。これが、本発
明の第3の態様の基本原理である。
Therefore, also in the static eliminator of FIG. 3, it is possible to control the amount of positive and negative ions that contribute to static elimination and monitor the quality of the discharge state. This is the basic principle of the third aspect of the present invention.

【0124】尚、図1の除電装置について説明したこと
から明らかなように、両有効除電電流I1+,I1-のみを
求める場合には、放電電流検出用抵抗8,9は不要であ
る。また、電極間無効電流I3 を求める場合であって
も、放電電流検出用抵抗8,9のいずれか一方のみを備
えておけば充分である。
As is clear from the description of the static eliminator of FIG. 1, the discharge current detecting resistors 8 and 9 are not necessary when only the effective static neutralization currents I 1+ and I 1- are obtained. . Further, even when the reactive current I 3 between electrodes is obtained, it is sufficient to provide only one of the discharge current detecting resistors 8 and 9.

【0125】次に、図4を参照して本発明の第4の態様
の基本原理を説明する。
Next, the basic principle of the fourth aspect of the present invention will be described with reference to FIG.

【0126】図4において、この除電装置は、図2の除
電装置と同一構成の放電電極1,2と、高電圧生成回路
3,4と、トランス5,6と、放電電極1,2、高電圧
生成回路3,4及びトランス5を収納した筐体7とを備
えている。この場合、筐体7は、図3の除電装置と同様
に、プラスチック等の絶縁材料から成るものである。そ
して、該除電装置においては、図2の除電装置と同一の
接続構成でもって、一対の外部接地用抵抗13,14が
備えられている。
In FIG. 4, this static eliminator comprises discharge electrodes 1 and 2 having the same structure as the static eliminator of FIG. 2, high voltage generation circuits 3 and 4, transformers 5 and 6, discharge electrodes 1 and 2, and a high voltage. It is provided with a housing 7 that houses the voltage generation circuits 3 and 4 and the transformer 5. In this case, the housing 7 is made of an insulating material such as plastic, like the static eliminator of FIG. The static eliminator is provided with a pair of external grounding resistors 13 and 14 with the same connection configuration as the static eliminator of FIG.

【0127】かかる構成の除電装置にあっては、図3の
除電装置と同様に電極・筐体間無効電流は流れず、この
点を除き、図2の除電装置の場合と同様の手法でもっ
て、各有効除電電流I1+,I1-と電極間無効電流I3
が求められる。
In the static eliminator having such a structure, the reactive current between the electrode and the housing does not flow like the static eliminator of FIG. 3. Except this point, the static eliminator of the static eliminator of FIG. , The effective static elimination currents I 1+ , I 1− and the interelectrode reactive current I 3 are obtained.

【0128】すなわち、各外部接地用抵抗13,14に
生じる電圧の差により、両有効除電電流I1+,I1-の差
分の電流Iaが検出され、それにより、図1及び図2の
除電装置の場合と全く同一の手法でもって、各有効除電
電流I1+,I1-が求められる。また、明らかにIS+=I
c、IS-=Idであるので、いずれか一方の外部接地用
抵抗13又は14に生じる電圧により一方の放電電極1
又は2の全放電電流I S+又はIS-が検出され、該全放電
電流IS+又はIS-からそれに対応する有効除電電流I1+
又はI1-を減算することで、電極間無効電流I3 が求め
られる。
That is, the external grounding resistors 13 and 14 have
Due to the generated voltage difference, both effective static elimination currents I1+, I1-Difference
Minute current Ia is detected, which results in
Each effective static elimination is performed by the same method as in the static elimination device.
Current I1+, I1-Is required. Also, obviously IS += I
c, IS-= Id, so either one is for external grounding
One of the discharge electrodes 1 depends on the voltage generated in the resistor 13 or 14.
Or the total discharge current I of 2 S +Or IS-Detected, the full discharge
Current IS +Or IS-To the effective static elimination current I corresponding to1+
Or I1-By subtracting3Wanted
To be

【0129】従って、図4の除電装置においても、除電
に寄与する正負のイオンの生成量の制御や放電状態の良
否の監視を行うことができることとなる。これが、本発
明の第4の態様の基本原理である。
Therefore, also in the static eliminator of FIG. 4, it is possible to control the amount of positive and negative ions that contribute to static elimination and monitor the quality of the discharge state. This is the basic principle of the fourth aspect of the present invention.

【0130】以上説明した本発明の第1乃至第4の態様
の基本原理を基礎として、次に、本発明の第1の態様の
さらに具体的な実施例を図1並びに図5及び図6を参照
して説明する。図5は本実施例の除電装置の回路構成
図、図6は本実施例の除電装置の作動を説明するための
線図である。
Based on the basic principles of the first to fourth aspects of the present invention described above, a more specific embodiment of the first aspect of the present invention will now be described with reference to FIGS. 1, 5 and 6. It will be described with reference to FIG. FIG. 5 is a circuit configuration diagram of the static eliminator of the present embodiment, and FIG. 6 is a diagram for explaining the operation of the static eliminator of the present embodiment.

【0131】図5を参照して、本実施例の除電装置は、
図1に示した除電装置と基本構成は同一であり、正側及
び負側放電電極1,2と、正側及び負側高電圧生成回路
3,4と、正側及び負側トランス5,6と、導電材料か
ら成る筐体7と、放電電流検出用抵抗8,9と、外部接
地用抵抗11と、筐体接地用抵抗12とが備えられてお
り、これらの接続構成は図1の除電装置と同一である。
尚、各高電圧生成回路3,4の接地部は、それに対応す
るトランス5,6の二次側コイルの接地端に接続されて
いる。また、各高電圧生成回路3,4は、これに後述す
る高電圧指示値信号(電圧信号)を付与することによ
り、該高電圧指示値信号のレベルに比例した正負の高電
圧V+ ,V- を各トランス5,6を介して各放電電極
1,2に生成・付与するものである。
With reference to FIG. 5, the static eliminator of this embodiment is
The static eliminator shown in FIG. 1 has the same basic configuration as that of the positive and negative discharge electrodes 1 and 2, the positive and negative high voltage generating circuits 3 and 4, and the positive and negative transformers 5 and 6. 1, a casing 7 made of a conductive material, discharge current detection resistors 8 and 9, an external grounding resistor 11, and a casing grounding resistor 12 are provided. It is the same as the device.
The grounding portions of the high voltage generating circuits 3 and 4 are connected to the grounding ends of the secondary side coils of the transformers 5 and 6 corresponding thereto. Further, each of the high voltage generation circuits 3 and 4 gives a high voltage instruction value signal (voltage signal), which will be described later, to the positive and negative high voltages V + , V proportional to the level of the high voltage instruction value signal. - a is for generating and applying to each of the discharge electrodes 1 and 2 through the transformers 5 and 6.

【0132】また、本実施例の除電装置は、外部接地用
抵抗11の電圧により前記両有効除電電流I1+,I1-
差分の電流Iaを検出する有効電流差分検出手段17
と、電流Iaの時間的変化率dIa/dtを求める微分
器(第1の微分手段)18と、筐体接地用抵抗12の電
圧により前記両電極・筐体間無効電流I2+,I2-の差分
の電流Ibを検出する電極・筐体間無効電流差分検出手
段19と、電流Ibの時間的変化率dIb/dtを求め
る微分器(第2の微分手段)20と、前記(1),
(2)の条件を満たすように高電圧生成回路3,4をそ
れぞれ制御しつつ、除電に寄与する正負のイオンの生成
を制御する正側及び負側高電圧制御手段21,22と、
各高電圧制御手段21,22に対して各有効除電電流I
1+,I1-の設定値を与える設定手段である正側及び負側
設定器23,24と、各有効除電電流I 1+,I1-をそれ
ぞれ求める第1及び第2の有効除電電流検出手段25,
26と、各電極・筐体間無効電流I2+,I2-をそれぞれ
求める第1及び第2の電極・筐体間無効電流検出手段2
7,28と、各放電電流検出用抵抗8,9の電圧により
各放電電極1,2の全放電電流IS+,IS-をそれぞれ検
出する正側及び負側放電電流検出手段29,30と、前
記電極間無効電流I3 を求める電極間無効電流検出手段
31と、各有効除電電流I1+,I1-、各電極・筐体間無
効電流I2+,I2-及び電極間無効電流I3 がそれぞれ所
定の設定値を越えたとき、警報を発する警報手段32,
33,34,35,36とを備えている。
The static eliminator of this embodiment is for external grounding.
Both effective static elimination currents I depending on the voltage of the resistor 111+, I1-of
Active current difference detection means 17 for detecting the difference current Ia
And the derivative for obtaining the temporal change rate dIa / dt of the current Ia
Device (first differentiating means) 18 and the housing grounding resistor 12
The reactive current I between the both electrodes and the housing due to the pressure2+, I2-Difference of
Electrode / casing reactive current difference detector for detecting the current Ib
The step 19 and the time change rate dIb / dt of the current Ib are obtained.
Differentiator (second differentiating means) 20, and (1),
The high voltage generation circuits 3 and 4 are set so that the condition (2) is satisfied.
Generation of positive and negative ions that contribute to static elimination while controlling each
Positive side and negative side high voltage control means 21 and 22 for controlling
Each effective static elimination current I for each high voltage control means 21, 22
1+, I1-Positive side and negative side which are setting means for giving the set value of
The setters 23 and 24 and each effective static elimination current I 1+, I1-The it
First and second effective static elimination current detecting means 25, which are obtained respectively
26 and reactive current I between each electrode and the case2+, I2-Each
First and second electrode-casing reactive current detection means 2 to be obtained
7, 28 and the voltage of each discharge current detection resistor 8, 9
Total discharge current I of each discharge electrode 1 and 2S +, IS-Inspect each
Positive side and negative side discharge current detecting means 29 and 30 to be output, and
Reactive current between electrodes I3Means for detecting reactive current between electrodes
31 and each effective static elimination current I1+, I1-Between each electrode and housing
Effective current I2+, I2-And reactive current between electrodes I3Each place
An alarm means 32 for issuing an alarm when a predetermined set value is exceeded,
33, 34, 35, 36.

【0133】尚、本実施例においては、高電圧制御手段
21,22は、前記(1)の条件において、dV+ /d
t≫dV- /dtとなるように高電圧生成回路3,4を
それぞれ制御する。また、前記の各手段17〜36を構
成する後述の回路は全て筐体7に接地されている。図5
において、筐体7への接地を示すときは、斜線付の□記
号を用いて示した。
In the present embodiment, the high voltage control means 21 and 22 are dV + / d under the condition (1).
The high voltage generation circuits 3 and 4 are controlled so that t >> dV / dt. Further, all the circuits to be described later, which compose the respective means 17 to 36, are grounded to the housing 7. Figure 5
In FIG. 5, the grounding to the housing 7 is indicated by using a square symbol with diagonal lines.

【0134】前記有効電流差分検出手段17は、外部接
地用抵抗11の両端にそれぞれ接続された一対のフィル
タ37,37と、これらのフィルタ37,37の出力を
入力とする差動増幅器38とにより構成されている。電
流Iaにより外部接地用抵抗11の両端に生じる電位信
号は、フィルタ37,37によりノイズ成分を除去され
た後、差動増幅器38に入力され、該差動増幅器38
は、それらの電位信号のレベル差、すなわち外部接地用
抵抗11に生じる電圧を所定のゲインでもって増幅して
出力する。これにより、差動増幅器38から両有効除電
電流I1+,I1-の差分の電流Iaに比例したレベルの電
圧信号Vaが得られ、該電流Iaが検出される。
The active current difference detecting means 17 is composed of a pair of filters 37, 37 respectively connected to both ends of the external grounding resistor 11 and a differential amplifier 38 having the outputs of these filters 37, 37 as inputs. It is configured. The potential signal generated at both ends of the external grounding resistor 11 by the current Ia is input to the differential amplifier 38 after the noise components are removed by the filters 37, 37, and the differential amplifier 38 is supplied.
Amplify the level difference between the potential signals, that is, the voltage generated in the external grounding resistor 11 with a predetermined gain and output the amplified voltage. As a result, the voltage signal Va having a level proportional to the current Ia which is the difference between the effective static elimination currents I 1+ and I 1− is obtained from the differential amplifier 38, and the current Ia is detected.

【0135】これと同様に、前記各放電電流検出手段2
9,30は、各放電電流検出用抵抗8,9の両端にそれ
ぞれ接続されたフィルタ対39,40と、各対のフィル
タ39,40の出力を入力とする差動増幅器41,42
とにより構成され、各差動増幅器41,42からそれぞ
れ全放電電流IS+,IS-に比例したレベルの電圧信号V
S+,VS-を得る構成としている。
Similarly, each discharge current detecting means 2
Reference numerals 9 and 30 denote filter pairs 39 and 40 respectively connected to both ends of the discharge current detecting resistors 8 and 9, and differential amplifiers 41 and 42 having outputs of the filters 39 and 40 of each pair as inputs.
And a voltage signal V of a level proportional to the total discharge currents I S + and I S- from the differential amplifiers 41 and 42, respectively.
S + and V S- are obtained.

【0136】また、前記電極・筐体間無効電流差分検出
手段19は、筐体接地用抵抗12の筐体7に接続した一
端と反対側の他端に接続された単一のフィルタ43と、
該フィルタ43の出力を入力とする増幅器44とにより
構成され、増幅器44から両電極・筐体間無効電流
2+,I2-の差分の電流Ibに比例したレベルの電圧信
号Vbを得る構成としている。この場合、筐体接地用抵
抗12、フィルタ43及び増幅器44は筐体7に接地さ
れているので、上記のように単一のフィルタ43と通常
的な増幅器44とを用いて電極・筐体間無効電流差分検
出手段19が構成される。
The electrode / chassis reactive current difference detection means 19 includes a single filter 43 connected to one end of the casing grounding resistor 12 connected to the casing 7 and the other end opposite thereto.
An amplifier 44 which receives the output of the filter 43 as an input, and obtains from the amplifier 44 a voltage signal Vb having a level proportional to the current Ib which is the difference between the reactive currents I 2+ and I 2− between the electrodes and the housing. I am trying. In this case, the housing grounding resistor 12, the filter 43, and the amplifier 44 are grounded to the housing 7. Therefore, as described above, the single filter 43 and the normal amplifier 44 are used to connect between the electrodes and the housing. The reactive current difference detection means 19 is configured.

【0137】尚、前記各フィルタ37、39、40、4
3は、図5に示すように抵抗及びコンデンサから成る同
一構成のものである。
The filters 37, 39, 40 and 4 are used.
As shown in FIG. 5, 3 has the same structure including a resistor and a capacitor.

【0138】負側高電圧制御手段22は、後述するよう
に与えられる負側有効除電電流I1-の検出値とその設定
値とを比較する比較器(比較手段)45と、比較器45
の出力から負側高電圧生成回路4の高電圧指示値を示す
負側高電圧指示値信号(電圧信号)VC1- を生成する負
側指示値生成手段46とを備えている。
The negative side high voltage control means 22 is a comparator (comparing means) 45 for comparing the detected value of the negative side effective static elimination current I 1− given thereto and the set value thereof, as will be described later, and the comparator 45.
From the output of the negative side high voltage generation circuit 4 to generate a negative side high voltage instruction value signal (voltage signal) V C1− indicating the high voltage instruction value.

【0139】比較器45は、負側有効除電電流I1+の検
出値及びその設定値の大小関係に応じて高低2値レベル
の電圧信号を出力するものであり、より詳細には、負側
有効除電電流I1-の検出値が設定値よりも小さいときに
は高レベルの電圧信号を出力し、これと逆の場合には、
低レベルの電圧信号を出力する。
The comparator 45 outputs a voltage signal of high and low binary levels according to the magnitude relationship between the detected value of the negative side effective static elimination current I 1+ and its set value. More specifically, the negative side When the detected value of the effective static elimination current I 1- is smaller than the set value, a high-level voltage signal is output, and in the opposite case,
It outputs a low level voltage signal.

【0140】負側指示値生成手段46は、比較器45の
出力側に接続された抵抗48及びコンデンサ49から成
る時定数回路により構成され、コンデンサ49の電圧を
負側高電圧指示値信号VC1- として生成する。このよう
な構成において、負側高電圧指示値信号VC1- のレベル
は、負側有効除電電流I1-の検出値が設定値よりも小さ
くなると増加し、逆に負側有効除電電流I1-の検出値が
設定値よりも大きくなると減少し、基本的には負側有効
除電電流I1-の検出値が設定値に一致するレベルに収束
するように、抵抗48の抵抗値及びコンデンサ49の容
量により定まる時定数でもって増減する。ここで、上記
時定数は比較的大きめ(本実施例では例えば1秒程度)
に設定されており、その時定数よりも充分短い時間内に
おいては、負側高電圧指示値信号VC1- のレベルは略一
定に維持され、上記の増減は比較的緩やかに行われる。
The negative side instruction value generating means 46 is composed of a time constant circuit consisting of a resistor 48 and a capacitor 49 connected to the output side of the comparator 45, and the voltage of the capacitor 49 is set to the negative side high voltage instruction value signal V C1. -Generate as. In such a configuration, the level of the negative-side high-voltage instruction value signal V C1- increases when the detected value of the negative-side effective static elimination current I 1- becomes smaller than the set value, and conversely, the negative-side effective static elimination current I 1- It decreases when the detected value of becomes larger than the set value, and basically, the resistance value of the resistor 48 and the capacitor 49 are set so that the detected value of the negative side effective static elimination current I 1− converges to a level that matches the set value. Increase or decrease with a time constant determined by the capacity of. Here, the time constant is relatively large (for example, about 1 second in this embodiment).
Is set, and within a time period sufficiently shorter than the time constant, the level of the negative side high voltage instruction value signal V C1− is maintained substantially constant, and the above-mentioned increase / decrease is performed relatively gently.

【0141】本実施例においては、上記のように生成さ
れる負側高電圧指示値信号VC1+ のレベルは負側高電圧
生成回路4が負側放電電極2に付与する高電圧V- の大
きさを規定するものであり、基本的には、負側高電圧指
示値信号VC1- を負側高電圧生成回路4に付与すること
で、該高電圧生成回路4は、負側高電圧指示値信号V
C1- のレベルに比例した大きさの負の高電圧V- を放電
電極2に付与する。ところが、本実施例においては、前
記比較器45や抵抗48及びコンデンサ49から成る時
定数回路の接地レベルは筐体7の電位であるのに対し、
負側高電圧生成回路4の接地レベル(=負側トランス6
の二次側コイルの接地端のレベル)は筐体7の電位と相
違し、それらの接地レベルの電位差分だけ、負側高電圧
指示値信号VC1- のレベルを補正して負側高電圧生成回
路4に付与する必要がある。
In the present embodiment, it is generated as described above.
Negative side high voltage indication value signal VC1 +Level is negative high voltage
High voltage V applied to the negative discharge electrode 2 by the generation circuit 4-Large
The negative side high voltage finger is basically specified.
Indication signal VC1-To the negative side high voltage generation circuit 4
Then, the high voltage generation circuit 4 operates the negative high voltage indication value signal V
C1-Negative voltage V of a magnitude proportional to the level of-Discharge
It is applied to the electrode 2. However, in this embodiment,
When composed of comparator 45, resistor 48 and capacitor 49
While the ground level of the constant circuit is the potential of the case 7,
Ground level of negative side high voltage generation circuit 4 (= negative side transformer 6
The level of the grounding end of the secondary coil of the
No, the negative side high voltage only by the potential difference of their ground level
Indicator value signal VC1-Of the negative side high voltage generation
It is necessary to add it to the road 4.

【0142】このため、本実施例においては、前記負側
高電圧制御手段22は、上記の補正を行うための加算器
50を備えている。この加算器50は、前記負側高電圧
指示値信号VC1- と、前記負側放電電流検出手段30の
一対のフィルタ40,40のうち、高電圧生成回路4の
接地部側に接続されたフィルタ40の出力信号とが入力
され、それらの高電圧指示値信号VC1- のレベルとフィ
ルタ40の出力信号のレベルとを加算してなる信号を最
終的な負側高電圧指示値信号VC2- として高電圧生成回
路4に付与する。この場合、上記フィルタ40の出力信
号のレベルは、筐体7の電位レベルに対する高電圧生成
回路4の接地部の電位レベルを示すものであり、上記の
加算により得られた負側高電圧指示値信号VC2- を高電
圧生成回路4に付与することで、該高電圧生成回路4
は、負側指示値生成手段46により生成された負側高電
圧指示値信号VC1- のレベルに比例した大きさの負の高
電圧V- を放電電極2に付与する。
Therefore, in the present embodiment, the negative side high voltage control means 22 is provided with the adder 50 for performing the above correction. The adder 50 is connected to the negative side high voltage instruction value signal V C1− and the ground side of the high voltage generation circuit 4 of the pair of filters 40, 40 of the negative side discharge current detection means 30. The output signal of the filter 40 is input, and a signal obtained by adding the level of the high voltage instruction value signal V C1- and the level of the output signal of the filter 40 is the final negative high voltage instruction value signal V C2. It is given to the high voltage generation circuit 4 as-. In this case, the level of the output signal of the filter 40 indicates the potential level of the ground portion of the high voltage generation circuit 4 with respect to the potential level of the housing 7, and the negative side high voltage instruction value obtained by the above addition. By applying the signal V C2- to the high voltage generation circuit 4, the high voltage generation circuit 4
Applies a negative high voltage V having a magnitude proportional to the level of the negative side high voltage instruction value signal V C1 − generated by the negative side instruction value generating means 46 to the discharge electrode 2.

【0143】これにより、放電電極2に付与される負の
高電圧V- は、負側有効除電電流I 1-の検出値が設定値
に一致するように制御される。そして、このとき、前記
抵抗48及びコンデンサ49から成る回路の時定数に較
べて充分短い時間内においては略一定で、従って、前記
(2)の条件におけるΔV- ≪V- の関係が満たされる
こととなる。
As a result, the negative voltage applied to the discharge electrode 2
High voltage V-Is the negative side effective static elimination current I 1-Is the set value
Controlled to match. And at this time,
Compare the time constant of the circuit consisting of the resistor 48 and the capacitor 49.
All of them are almost constant within a sufficiently short time.
ΔV under the condition (2)-≪V-The relationship of
It will be.

【0144】正側高電圧制御手段21は、後述するよう
に与えられる正側有効除電電流I1+の検出値及びその設
定値を比較する比較器(比較手段)51と、比較器51
の出力から正側高電圧生成回路3の高電圧指示値を示す
正側高電圧指示値信号(電圧信号)VC1+ を生成する正
側指示値生成手段52と、正側高電圧指示値信号に指数
関数的な微小変動を微小時間づづ繰り返し生ぜしめる指
示値加工手段53と、正側高電圧指示値信号VC1+ に微
小変動を生ぜしめてなる指示値信号VC2+ のレベルを補
正する加算器54とを備えている。
The positive-side high-voltage control means 21 is a comparator (comparing means) 51 for comparing the detected value of the positive-side effective static elimination current I 1+ given as described later and its set value, and the comparator 51.
From the output of the positive side high voltage generation circuit 3 to a positive side high voltage instruction value signal (voltage signal) V C1 + indicating the high voltage instruction value, and a positive side high voltage instruction value signal. An instruction value processing means 53 that repeatedly generates minute exponential fluctuations for a minute time, and an adder 54 that corrects the level of the instruction value signal V C2 + that causes minute fluctuations in the positive-side high-voltage instruction value signal V C1 +. Is equipped with.

【0145】正側指示値生成手段52は、前記負側指示
値生成手段46と同様に抵抗55及びコンデンサ56か
ら成る時定数回路により構成され、負側の場合と同様
に、比較器51とにより、正側高電圧指示値信号VC1+
を生成する。すなわち、正側指示値生成手段52により
生成される正側高電圧指示値信号VC1+ は、正側有効除
電電流I1+の検出値がその設定値に一致するレベルに収
束するように、抵抗55の抵抗値及びコンデンサ56の
容量により定まる時定数でもって増減する。ここで、上
記時定数は負側指示値生成手段46の時定数と同一(1
秒程度)とされており、その時定数よりも充分短い時間
内においては、正側高電圧指示値信号VC1 + のレベルは
略一定に維持され、上記の増減は比較的緩やかに行われ
る。
The positive side instruction value generating means 52 is composed of a time constant circuit composed of a resistor 55 and a capacitor 56, similarly to the negative side instruction value generating means 46, and by the comparator 51 as in the case of the negative side. , Positive side high voltage indication value signal V C1 +
Generate That is, the positive side high voltage instruction value signal V C1 + generated by the positive side instruction value generating means 52 is a resistor so that the detected value of the positive side effective static elimination current I 1+ converges to a level that matches the set value. It increases or decreases with a time constant determined by the resistance value of 55 and the capacity of the capacitor 56. Here, the time constant is the same as the time constant of the negative side instruction value generating means 46 (1
Within a time period sufficiently shorter than the time constant, the level of the positive side high voltage instruction value signal V C1 + is maintained substantially constant, and the above-mentioned increase / decrease is performed relatively gently.

【0146】本実施例においては、基本的には、該正側
高電圧指示値信号VC1+ のレベルは正側高電圧生成回路
3は正側放電電極1に付与する高電圧V+ の大きさを規
定するものである。
In the present embodiment, the level of the positive side high voltage indicating value signal V C1 + is basically the magnitude of the high voltage V + applied to the positive side discharge electrode 1 by the positive side high voltage generating circuit 3. Is defined.

【0147】指示値加工手段53は、正側全放電電流I
S+を示す前記差動増幅器41の電圧信号VS+のレベルと
前記正側高電圧指示値信号VC1+ のレベルとを比較する
ヒステリシス付比較器57と、該比較器57の出力側に
接続された抵抗58及びコンデンサ59から成る時定数
回路とにより構成されている。この場合、ヒステリシス
付比較器57は、基本的には、電圧信号VS+のレベルが
正側高電圧指示値信号VC1+ のレベルより小さいときに
は高レベルの信号を出力し、正側高電圧指示値信号V
C1+ のレベル以上に達すると低レベルの信号を出力する
ものであるが、一旦、低レベルの信号を出力すると、電
圧信号VS+のレベルが正側高電圧指示値信号VC1+ より
所定のヒステリシス巾だけ小さくなるまでは、低レベル
の信号の出力を継続するものである。また、抵抗58及
びコンデンサ59から成る回路の時定数は、前記正側指
示値生成手段52の時定数よりも充分小さなもの(本実
施例では例えば、0.1秒)とされている。
The indicated value processing means 53 determines the positive side total discharge current I.
A comparator with hysteresis 57 for comparing the level of the voltage signal V S + of the differential amplifier 41 indicating the S + with the level of the positive side high voltage instruction value signal V C1 + , and the output side of the comparator 57 are connected. A time constant circuit including a resistor 58 and a capacitor 59. In this case, the comparator with hysteresis 57 basically outputs a high level signal when the level of the voltage signal V S + is lower than the level of the positive side high voltage instruction value signal V C1 + , and the positive side high voltage instruction value. Signal V
When it reaches the level of C1 + or higher, it outputs a low level signal. However, once the low level signal is output, the level of the voltage signal V S + is higher than the positive side high voltage instruction value signal V C1 + by a predetermined hysteresis width. The output of the low level signal is continued until it becomes smaller. The time constant of the circuit including the resistor 58 and the capacitor 59 is sufficiently smaller than the time constant of the positive side instruction value generating means 52 (for example, 0.1 second in this embodiment).

【0148】指示値加工手段53は、後述するようにか
かる構成により、コンデンサ56の電圧を、前記正側高
電圧指示値信号VC1+ に指数関数的微小変動を生ぜしめ
た正側高電圧指示値信号VC2+ として生成する。
The instruction value processing means 53 has the above-described configuration so that the voltage of the capacitor 56 changes the voltage of the capacitor 56 to the positive high voltage instruction value by causing the positive high voltage instruction value signal V C1 + to undergo exponentially minute fluctuations. Generate as signal V C2 + .

【0149】前記加算器54は、負側の加算器50と同
様に、指示値加工手段53により得られた正側高電圧指
示値信号VC2+ のレベルを正側高電圧生成回路3に対応
するレベルに補正するもので、前記正側放電電流検出手
段29の一対のフィルタ39,39のうち、高電圧生成
回路3の接地部側に接続されたフィルタ39の出力信号
のレベルを正側高電圧指示値信号VC2+ のレベルに加算
し、その加算により得られた信号を最終的な正側高電圧
指示値信号VC3+ として高電圧生成回路3に付与する。
これにより、高電圧生成回路3は、指示値加工手段53
により得られた正側高電圧指示値信号VC2+ のレベルに
比例した大きさの正の高電圧V+ を放電電極1に付与す
る。
Like the negative-side adder 50, the adder 54 corresponds to the positive-side high-voltage generation circuit 3 with the level of the positive-side high-voltage instruction value signal V C2 + obtained by the instruction-value processing means 53. The level of the output signal of the filter 39 connected to the ground side of the high voltage generation circuit 3 of the pair of filters 39, 39 of the positive side discharge current detection means 29 is corrected to the positive side high voltage. It is added to the level of the instruction value signal V C2 + , and the signal obtained by the addition is given to the high voltage generation circuit 3 as the final positive side high voltage instruction value signal V C3 + .
As a result, the high voltage generation circuit 3 causes the indicated value processing means 53 to operate.
The positive high voltage V + having a magnitude proportional to the level of the positive side high voltage indicating value signal V C2 + obtained by the above is applied to the discharge electrode 1.

【0150】このような正側高電圧制御手段21の構成
において、指示値加工手段53は、正側指示値生成手段
52により生成された正側高電圧指示値信号VC1+ に次
のように指数関数的微小変動を生ぜしめる。
In the configuration of the positive side high voltage control means 21 as described above, the instruction value processing means 53 uses the positive side high voltage instruction value signal V C1 + generated by the positive side instruction value generating means 52 as an index as follows. It produces functional small fluctuations.

【0151】すなわち、正側高電圧指示値信号VC1+
略一定とみなせる短い時間内において、前記ヒステリシ
ス付比較器57に入力される電圧信号VS+(これは正側
全放電電流IS+に相当する)は、高電圧V+ に比例し、
従って、該電圧信号VS+のレベルは、指示値加工手段5
3により生成される正側高電圧指示値信号VC2+ のレベ
ルに対応したものとなる。そして、該比較器57と抵抗
58及びコンデンサ59からなる時定数回路とにより構
成された指示値加工手段53にあっては、コンデンサ5
9の電圧は、基本的には、電圧信号VS+のレベルが正側
指示値生成手段52により生成された正側高電圧指示値
信号VC1+ のレベルに一致するようなレベルに制御され
るのであるが、このとき、比較器57が前述したような
ヒステリシス特性を有するものであると共に、抵抗58
及びコンデンサ59からなる回路の時定数が小さいた
め、図6に示すように、正側高電圧指示値信号VC1+
レベルが略一定とみなせる時間内においても微小時間づ
つ断続的にコンデンサ59の充放電が繰り返される。そ
して、このとき、コンデンサ59の充放電は、指数関数
的に行われるので、コンデンサ59の電圧は、正側指示
値生成手段52により生成された正側高電圧指示値信号
C1+ に指数関数的な変動を生ぜしめた形の信号とな
り、また、比較器57のヒステリシス巾を比較的小さな
ものとしておくことで、該変動は微小なものとなる。
That is, within a short time in which the positive side high voltage indicating value signal V C1 + can be regarded as substantially constant, the voltage signal V S + input to the comparator with hysteresis 57 (this corresponds to the positive side total discharge current I S +) . Is proportional to the high voltage V + ,
Therefore, the level of the voltage signal V S + is determined by the indicated value processing means 5
3 corresponds to the level of the positive side high voltage instruction value signal V C2 + . In the indicated value processing means 53 composed of the comparator 57 and the time constant circuit including the resistor 58 and the capacitor 59, the capacitor 5
The voltage of 9 is basically controlled to a level such that the level of the voltage signal V S + matches the level of the positive side high voltage instruction value signal V C1 + generated by the positive side instruction value generating means 52. However, at this time, the comparator 57 has the hysteresis characteristic as described above, and the resistor 58 is provided.
Since the time constant of the circuit composed of the capacitor 59 and the capacitor 59 is small, as shown in FIG. 6, the capacitor 59 is intermittently charged every minute time even during the time when the level of the positive side high voltage instruction value signal V C1 + can be regarded as substantially constant. The discharge is repeated. Then, at this time, since the capacitor 59 is charged and discharged exponentially, the voltage of the capacitor 59 is exponentially added to the positive side high voltage instruction value signal V C1 + generated by the positive side instruction value generating means 52. The signal becomes a signal having a large variation, and by making the hysteresis width of the comparator 57 relatively small, the variation becomes minute.

【0152】これにより、コンデンサ59の電圧は、正
側指示値生成手段52により生成された正側高電圧指示
値信号VC1+ に指数関数的な微小変動を微小時間づつ繰
り返し生ぜしめてなる正側高電圧指示値信号VC2+ とし
て生成され、そのレベルに比例した正の高電圧V+ が放
電電極1に付与される。そして、このとき、正側指示値
生成手段52が生成する正側高電圧指示値信号VC1+
前記負側高電圧指示値信号VC1- と同様にその変化が緩
やかなものであるため、前記(2)の条件におけるΔV
+ ≪V+ の関係と共に、前記(1)の条件におけるdV
+ /dt≫dV - /dtの関係が満たされることとな
る。
As a result, the voltage of the capacitor 59 is positive.
Positive side high voltage instruction generated by the side instruction value generating means 52
Value signal VC1 +The exponential small fluctuation is repeated every minute
Positive side high voltage indication value signal V that is generated by returningC2 +age
Generated by the positive high voltage V proportional to the level+Let go
It is applied to the electrode 1. And at this time, the positive side indicated value
Positive side high voltage instruction value signal V generated by the generation means 52C1 +Is
The negative side high voltage instruction value signal VC1-The change is similar to
Since it is soft, ΔV under the condition (2) above
+≪V+And the relationship of dV under the above condition (1)
+/ Dt >> dV -The relationship of / dt should be satisfied.
It

【0153】前記各微分器18,20は、それぞれ前記
電流Ia,Ibを示す差動増幅器38の電圧信号Va及
び増幅器44の電圧信号Vbを微分して出力するもの
で、各電流Ia,Ibの時間的変化率dIa/dt,d
Ib/dtに対応したレベルの電圧信号を出力する。こ
の場合、各微分器18,20は積分器付のものであり、
電圧信号Va,Vbに含まれる細かいパルス状のものは
除去されるようになっている。また、各微分器18,2
0の出力は、実際の微分値に対して正負の極性が反転す
るようになっている。
The differentiators 18 and 20 differentiate the voltage signal Va of the differential amplifier 38 and the voltage signal Vb of the amplifier 44 indicating the currents Ia and Ib, respectively, and output the differentiated voltage signals Va and Ib. Temporal change rate dIa / dt, d
A voltage signal of a level corresponding to Ib / dt is output. In this case, each of the differentiators 18, 20 has an integrator,
Fine pulse-shaped signals included in the voltage signals Va and Vb are removed. Also, each differentiator 18, 2
The output of 0 has its positive and negative polarities inverted with respect to the actual differential value.

【0154】前記第1の有効除電電流検出手段25は、
微分器18の出力を入力する正のピークホールド器60
により構成され、前記指示値加工手段53により生成さ
れる正側高電圧指示値信号VC2+ のレベルが、指数関数
的に減少する微小時間内における電流Iaの時間的変化
率dIa/dtの最大値に相当するレベルの電圧信号V
1+を前記比較器51に出力する。ここで、図6を参照し
て上記のように正側高電圧指示値信号VC2+ のレベル
が、指数関数的に減少する時間内においては、正の高電
圧V+ は、前記(28)式の形となり、その時間内にお
ける時間的変化率dIa/dtは、前記(3)’式に表
したように、正側有効除電電流I1+の大きさを示すもの
となる。そして、上記のように正側高電圧指示値信号V
C2+ のレベルが、指数関数的に減少する時間は充分に短
い時間であるので、その間では、時間的変化率dIa/
dtは略一定であると考えてよい。従って、前記正のピ
ークホールド器60から出力される電圧信号V1+は、正
側有効除電電流I1+の検出値を示すものとなり、これに
より、該正側有効除電電流I1+が検出される。
The first effective static elimination current detecting means 25 is
Positive peak hold device 60 for inputting the output of the differentiator 18
The maximum value of the temporal change rate dIa / dt of the current Ia within a minute time in which the level of the positive side high voltage instruction value signal V C2 + generated by the instruction value processing means 53 exponentially decreases. Voltage signal V of a level corresponding to
1+ is output to the comparator 51. Here, as described above with reference to FIG. 6, within the time period during which the level of the positive-side high-voltage command value signal V C2 + exponentially decreases, the positive high-voltage V + is expressed by the equation (28). The temporal change rate dIa / dt within that time indicates the magnitude of the positive-side effective static elimination current I 1+ , as expressed in the equation (3) ′. Then, as described above, the positive side high voltage instruction value signal V
The time at which the level of C2 + exponentially decreases is sufficiently short, so that the rate of temporal change dIa /
It may be considered that dt is substantially constant. Therefore, the voltage signal V 1+ output from the positive peak hold device 60 shows the detected value of the positive side effective static elimination current I 1+ , and the positive side effective static elimination current I 1+ is detected by this. To be done.

【0155】これと同様に、前記第1の電極・筐体間無
効電流検出手段27は、微分器20の出力を入力とする
正のピークホールド器61により構成され、該ピークホ
ールド器61から前記(5)’式に従って、正側電極・
筐体間無効電流I2+の検出値を示す電圧信号V2+が出力
される。
Similarly, the first electrode-chassis reactive current detection means 27 is composed of a positive peak hold device 61 which receives the output of the differentiator 20 as input, and the peak hold device 61 outputs the positive peak hold device 61. According to the equation (5) ', the positive electrode
Voltage signal V 2+ indicating the detected value of the inter-chassis reactive current I 2+ is output.

【0156】前記第2の有効除電電流検出手段26は、
前記差動増幅器38により得られる電圧信号Vaのレベ
ル(電流Ia)から前記ピークホールド器60により得
られる電圧信号V1+のレベル(正側有効除電電流I1+
検出値)を減算する減算器62を備えている。この場
合、差動増幅器38の電圧信号Vaは微小変動を伴うも
のであるため、抵抗及びコンデンサから成るフィルタ6
3を介して電圧信号Vaの平均レベルが減算器62に与
えられる。そして、減算器62は、前記(22)式に従
った減算演算を行うことで、負側有効除電電流I1-の大
きさを示すレベルの電圧信号V1-を前記比較器45に出
力する。
The second effective static elimination current detecting means 26 is
Subtraction for subtracting the level of the voltage signal V 1+ (detection value of the positive side effective static elimination current I 1+ ) obtained by the peak hold unit 60 from the level of the voltage signal Va obtained by the differential amplifier 38 (current Ia) The container 62 is provided. In this case, since the voltage signal Va of the differential amplifier 38 is accompanied by a minute fluctuation, the filter 6 including a resistor and a capacitor is used.
The average level of the voltage signal Va is given to the subtractor 62 via 3. Then, the subtractor 62 outputs the voltage signal V 1− at the level indicating the magnitude of the negative side effective static elimination current I 1− to the comparator 45 by performing the subtraction operation according to the equation (22). .

【0157】これと同様に、前記第2の電極・筐体間無
効電流検出手段28は、減算器64を備え、該減算器6
4は、前記増幅器44からフィルタ65を介して入力さ
れる電圧信号Vbのレベル(電流Ib)から前記ピーク
ホールド器61から入力される電圧信号V2+のレベル
(正側電極・筐体間無効電流I2+の検出値)を前記(2
3)式に従って減算し、これにより負側電極・筐体間無
効電流I2-の大きさを示すレベルの電圧信号V2-を出力
する。
Similarly, the second electrode-casing reactive current detecting means 28 is provided with a subtracter 64, and the subtracter 6
4 is the level of the voltage signal V 2+ input from the peak hold device 61 from the level (current Ib) of the voltage signal Vb input from the amplifier 44 through the filter 65 (invalid between the positive electrode and the housing). The detected value of the current I 2+ ) is the above (2
Subtraction is performed according to the equation (3), and as a result, a voltage signal V 2− having a level indicating the magnitude of the reactive current I 2− between the negative electrode and the housing is output.

【0158】前記電極間無効電流検出手段31は、前記
差動増幅器41により得られる電圧信号VS+のレベル
(全放電電流IS+)から、前記ピークホールド器60,
61によりそれぞれ得られる電圧信号V1+,V2+のレベ
ル(正側有効除電電流I1+及び正側電極・筐体間無効電
流I2+の検出値)を減算する減算器66を備えている。
この場合、差動増幅器41の電圧信号VS+は微小変動を
伴うものであるため、抵抗及びコンデンサから成るフィ
ルタ67を介して電圧信号VS+の平均レベルが減算器6
6に与えられる。そして、減算器66は、前記(26)
式に従った減算演算を行うことで、電極間無効電流I3
の大きさを示すレベルの電圧信号V3 を出力する。尚、
このように電極間無効電流I3 を求めるための減算演算
は、差動増幅器42により得られる電圧信号VS-のレベ
ル(全放電電流IS-)から、前記減算器62,64によ
りそれぞれ得られる電圧信号V1-,V2-のレベル(負側
有効除電電流I1-及び負側電極・筐体間無効電流I2-
検出値)を前記(27)式に従って減算することで行う
ようにしてもよい。
The inter-electrode reactive current detecting means 31 determines the peak hold unit 60, from the level (total discharge current I S + ) of the voltage signal V S + obtained by the differential amplifier 41.
A subtracter 66 for subtracting the levels of the voltage signals V 1+ and V 2+ respectively obtained by 61 (the positive side effective static elimination current I 1+ and the detection value of the positive side electrode-chassis reactive current I 2+ ) ing.
In this case, since the voltage signal V S + of the differential amplifier 41 is accompanied by a minute fluctuation, the average level of the voltage signal V S + is subtracted by the subtractor 6 via the filter 67 including a resistor and a capacitor.
6 given. Then, the subtractor 66 uses the above (26)
By performing the subtraction operation according to the formula, the inter-electrode reactive current I 3
The voltage signal V 3 of the level indicating the magnitude of the signal is output. still,
In this way, the subtraction operation for obtaining the inter-electrode reactive current I 3 is obtained by the subtracters 62 and 64 from the level (total discharge current I S− ) of the voltage signal V S− obtained by the differential amplifier 42, respectively. By subtracting the levels of the voltage signals V 1− and V 2− (the detected values of the negative side effective static elimination current I 1− and the negative side electrode-chassis reactive current I 2− ) according to the equation (27). You may do it.

【0159】前記正側設定器23は、前記比較器51が
ピークホールド器60の電圧信号V 1+のレベル(正側有
効除電電流I1+の検出値)と比較する設定電圧V1S+
正側有効除電電流I1+の設定値として生成するもので、
図示しない可変抵抗等を用いたボリューム調整操作を行
うことで、任意の設定電圧V1S+ を設定可能に構成され
ている。
In the positive side setting device 23, the comparator 51 is
Voltage signal V of peak hold device 60 1+Level (with positive side)
Effective static elimination current I1+Set value V to be compared with1S +To
Positive side effective static elimination current I1+Is generated as the setting value of
Performs volume adjustment operation using a variable resistor (not shown)
The desired set voltage V1S +Configured to be configurable
ing.

【0160】前記負側設定器24は、負側有効除電電流
1-の設定値を正側有効除電電流I 1+に対して適当な割
合(比率)でもって、前記比較器45に設定するもの
で、負側有効除電電流I1-の検出値を示す前記減算器6
2の電圧信号V1-を可変抵抗68により降圧して比較器
45に入力すると共に、正側有効除電電流I1+の検出値
を示すピークホールド器60の電圧信号V1+をそのまま
比較器45に入力する構成とされている。これにより、
比較器45には、負側有効除電電流I1-の設定値が正側
有効除電電流I1+に対して可変抵抗68の抵抗値により
定まる比率でもって設定され、このとき、その比率は可
変抵抗68の抵抗値の調整操作を行うことで任意に設定
可能とされている。
The negative side setting device 24 is a negative side effective static elimination current.
I1-Set the value of the positive side effective static elimination current I 1+Suitable for
What is set in the comparator 45 according to the ratio (ratio)
Then, the negative side effective static elimination current I1-The subtractor 6 indicating the detected value of
2 voltage signal V1-Is reduced by the variable resistor 68 and the comparator
45 and the positive side effective static elimination current I1+Detection value of
Showing the voltage signal V of the peak hold device 601+As is
The input is made to the comparator 45. This allows
In the comparator 45, the negative side effective static elimination current I1-Is set to the positive side
Effective static elimination current I1+With respect to the resistance value of the variable resistor 68
It is set by a fixed ratio, and at that time, the ratio is acceptable
Arbitrarily set by adjusting the resistance value of variable resistor 68
It is possible.

【0161】前記警報手段32は、正側高電圧生成回路
3に前記加算器54から付与される正側高電圧指示値信
号VC3+ のレベルを、その許容最大レベルとしてあらか
じめ設定された最大電圧レベルV+MAXと比較する比較器
69と、VC3+ のレベルが最大電圧レベルV+MAX以上と
なったとき、比較器69の出力に応じて警報を発する警
報器70とにより構成されている。
The alarm means 32 uses the level of the positive side high voltage instruction value signal V C3 + given from the adder 54 to the positive side high voltage generation circuit 3 as a maximum voltage level preset as its allowable maximum level. a comparator 69 for comparing the V + MAX, when V C3 + level becomes the maximum voltage level V + MAX above, is constituted by the alarm device 70 for issuing an alarm in response to the output of the comparator 69.

【0162】これと同様に警報手段33は、比較器71
と警報器72とにより構成され、負側高電圧生成回路4
に前記加算器50から付与される負側高電圧指示値信号
C2 - のレベルがその許容最大レベルとしてあらかじめ
設定された最大電圧レベルV -MAX以上となったとき、比
較器71の出力に応じて警報器72から警報を発する構
成とされている。
Similarly, the alarm means 33 includes a comparator 71.
And the alarm device 72, and the negative side high voltage generation circuit 4
Negative side high voltage instruction value signal given from the adder 50 to
VC2 -The level of
Set maximum voltage level V -MAXWhen the above is reached, the ratio
A structure for issuing an alarm from the alarm device 72 according to the output of the comparator 71
It is said to be successful.

【0163】また、前記警報手段34は、正側電極・筐
体間無効電流I2+を示す前記ピークホールド器61の電
圧信号V2+のレベルと、正側全放電電流IS+を示す前記
差動増幅器41の電圧信号VS+を所定の比率でもって降
圧してなる電圧レベルとを比較する比較器73と、V2+
のレベル(正側電極・筐体間無効電流I2+)が電圧信号
S+のレベル(全放電電流IS+)に対して所定の比率以
上となったとき、比較器73の出力に応じて警報を発す
る警報器74とにより構成されている。
[0163] The warning means 34, the indicating the level of the voltage signal V 2+ of the peak hold circuit 61 indicating the reactive current I 2+ between positive electrode and the casing, a positive total discharge current I S + A comparator 73 for comparing the voltage signal V S + of the differential amplifier 41 with a voltage level obtained by stepping it down at a predetermined ratio, and V 2+
When the level (reactive current I 2+ between the positive electrode and the case) exceeds a predetermined ratio with respect to the level (total discharge current I S + ) of the voltage signal V S + , according to the output of the comparator 73. And an alarm device 74 for issuing an alarm.

【0164】これと同様に警報手段35は、比較器75
と警報器76とにより構成され、前記減算器64の電圧
信号V2-のレベル(負側電極・筐体間無効電流I2-)が
差動増幅器42の電圧信号VS-のレベル(全放電電流I
S-)対して所定の比率以上となったとき、比較器75の
出力に応じて警報器76から警報を発する構成とされて
いる。
Similarly, the alarm means 35 includes a comparator 75.
And a warning device 76, the level of the voltage signal V 2− of the subtractor 64 (negative side electrode / casing reactive current I 2− ) is the level of the voltage signal V S− of the differential amplifier 42 (total Discharge current I
S- ) is equal to or higher than a predetermined ratio, an alarm is issued from an alarm device 76 according to the output of the comparator 75.

【0165】また、前記警報手段36は、電極間無効電
流I3 を示す前記減算器66の電圧信号V3 と正側及び
負側全放電電流IS+,IS-を示す前記差動増幅器41,
42の電圧信号VS+,VS-をそれぞれ所定の比率でもっ
て降圧してなる電圧レベルとをそれぞれ比較する一対の
比較器77,78と、V3 のレベル(電極間無効電流I
3 )がVS+又はVS-のレベル(全放電電流IS+又は
S-)に対してそれぞれ所定の比率以上となったとき、
比較器77又は78の出力に応じて警報を発する警報器
79とにより構成されている。
Further, the alarm means 36 is arranged so that the voltage signal V 3 of the subtracter 66 indicating the inter-electrode reactive current I 3 and the differential amplifier 41 indicating the positive side and negative side total discharge currents I S + and I S-.
42 and a pair of comparators 77 and 78 for respectively comparing the voltage signals V S + and V S− of 42 with a voltage level obtained by stepping them down at a predetermined ratio, respectively, and a level of V 3 (interelectrode reactive current I
3 ) becomes a predetermined ratio or more with respect to the level of V S + or V S- (total discharge current I S + or I S- ), respectively,
It is configured by an alarm device 79 which issues an alarm according to the output of the comparator 77 or 78.

【0166】尚、前記各警報手段32〜36の警報器7
0,72,74,76,79は、図示しない表示器やラ
ンプ、ブザー等を用いて構成されている。
The alarm device 7 of each of the above-mentioned alarm means 32 to 36.
0, 72, 74, 76, 79 are configured by using an unillustrated indicator, lamp, buzzer, or the like.

【0167】また、警報手段34,36には、前記電圧
信号VS+が差動増幅器41から前記フィルタ67を介し
て与えられ、これと同様に、警報手段35,36には、
前記電圧信号VS-が差動増幅器42からフィルタ67と
同一構成の図示しないフィルタを介して与えられる。
The voltage signal V S + is applied to the alarm means 34 and 36 from the differential amplifier 41 via the filter 67. Similarly, the alarm means 35 and 36 are
The voltage signal V S− is supplied from the differential amplifier 42 through a filter (not shown) having the same structure as the filter 67.

【0168】次に、本実施例の除電装置の全体的作動を
説明する。
Next, the overall operation of the static eliminator of this embodiment will be described.

【0169】本実施例の除電装置においては、まず、正
側設定器23を操作することで、正側有効除電電流I1+
の設定値を示す設定電圧V1S+ が比較器51に設定さ
れ、また、負側設定器24の可変抵抗68の抵抗値を調
整することで、負側有効除電電流I1-の設定値が正側有
効除電電流I1+に対して可変抵抗68の抵抗値により定
まる比率でもって比較器45に設定される。このとき、
可変抵抗68の抵抗値の調整に際しては、正側有効除電
電流I1+の設定値を設定した状態で、本実施例の除電装
置を実際に稼働させる共に、正負のイオンの生成量を両
放電電極1,2の前方で図示しない帯電プレートモニタ
を用いて確認し、正負のイオンの生成量のバランスがと
れるように可変抵抗68の抵抗値の調整する。
In the static eliminator of this embodiment, first, by operating the positive side setter 23, the positive side effective static erasing current I 1+
The set voltage V 1S + indicating the set value of is set in the comparator 51, and by adjusting the resistance value of the variable resistor 68 of the negative side setter 24, the set value of the negative side effective static elimination current I 1− becomes positive. It is set in the comparator 45 at a ratio determined by the resistance value of the variable resistor 68 with respect to the side effective static elimination current I 1+ . At this time,
When adjusting the resistance value of the variable resistor 68, the static eliminator of this embodiment is actually operated while the positive side effective static erasing current I 1+ is set, and both positive and negative ion generation amounts are discharged. Confirmation is made in front of the electrodes 1 and 2 using a charging plate monitor (not shown), and the resistance value of the variable resistor 68 is adjusted so that the positive and negative ion generation amounts are balanced.

【0170】このような設定を行った状態で、除電装置
を起動すると、正側指示値生成手段52は、比較器51
の出力に応じて正側高電圧指示値信号VC1+ を生成す
る。このとき、初期段階においては、比較器51は高レ
ベルん信号を出力し、このため、正側高電圧指示値信号
C1+ は、抵抗55の抵抗値及びコンデンサ56の容量
とにより定まる時定数(1秒程度)でもって比較的緩や
かに増加していく。そして、該正側高電圧指示値信号V
C1+ は、前述したように指示値加工手段53により、該
信号VC1+ に指数関数的微小変動を生ぜしめてなる正側
高電圧指示値信号VC2+ (図6参照)に加工され、さら
に、該信号VC2+ が、そのレベルを加算器54により正
側高電圧生成回路3に適合するレベルに補正された後
に、該高電圧生成回路3に付与される。これにより、正
側放電電極1には、高電圧生成回路3から正側高電圧指
示値信号VC2+ のレベルに比例した正の高電圧V+ が付
与され、放電を開始する。
When the static eliminator is started with the above settings, the positive side instruction value generating means 52 causes the comparator 51 to operate.
Generates a positive-side high-voltage instruction value signal V C1 + according to the output of At this time, in the initial stage, the comparator 51 outputs a high level signal, and therefore the positive high voltage indication value signal V C1 + is a time constant (determined by the resistance value of the resistor 55 and the capacitance of the capacitor 56 ( It will increase relatively slowly in about 1 second). Then, the positive side high voltage instruction value signal V
As described above, C1 + is processed into the positive-side high-voltage command value signal V C2 + (see FIG. 6) by causing the signal V C1 + to undergo exponential minute fluctuations by the command value processing means 53, and further the signal is processed. V C2 + is applied to the high voltage generation circuit 3 after its level is corrected by the adder 54 to a level suitable for the positive side high voltage generation circuit 3. As a result, a positive high voltage V + proportional to the level of the positive high voltage instruction value signal V C2 + is applied to the positive discharge electrode 1 from the high voltage generation circuit 3 to start discharging.

【0171】また、負側にあっては、負側指示値生成手
段46により、正側高電圧指示値信号VC1+ と同様に初
期段階において緩やかに増加する負側高電圧指示値信号
C1 - が生成され、この信号VC1- が、そのレベルを加
算器50により負側高電圧生成回路4に適合するレベル
に補正された後に、該高電圧生成回路4に付与される。
これにより、負側放電電極2には、高電圧生成回路4か
ら正側高電圧指示値信号VC1- のレベルに比例した負の
高電圧V- が付与され、放電を開始する。
[0171] Further, in the negative side, the negative side by an instruction value generating means 46, the negative high voltage instruction value signal V C1 which increases gradually in the same manner as the initial stage the + positive high voltage instruction value signal V C1 - Is generated, the level of this signal V C1- is corrected by the adder 50 to a level suitable for the negative side high voltage generation circuit 4, and then applied to the high voltage generation circuit 4.
As a result, a negative high voltage V − that is proportional to the level of the positive high voltage instruction value signal V C1 is applied to the negative discharge electrode 2 from the high voltage generation circuit 4, and discharge is started.

【0172】このような放電が開始すると、各放電電極
1,2には、各有効除電電流I1+,I1-、各電極・筐体
間無効電流I2+,I2-及び電極間無効電流I3 を併せて
なる全放電電流IS+,IS-が流れる。
When such a discharge is started, the effective discharge currents I 1+ and I 1- , the reactive currents I 2+ and I 2- between the electrodes and the case, and the electrodes between the electrodes are discharged to the discharge electrodes 1 and 2. The total discharge currents I S + and I S-, which are the combined reactive current I 3 , flow.

【0173】この時、両有効除電電流I1+,I1-の差分
の電流Iaが外部接地用抵抗11に流れ、これが、有効
電流検出差分検出手段17により検出されて、その検出
値に相当するレベルの電圧信号Vaが差動増幅器38か
ら微分器18に出力される。そして、微分器18は、電
圧信号Vaを微分することで、電流Iaの時間的変化率
dIa/dtを求め、それをピークホールド器60に出
力する。
At this time, the current Ia, which is the difference between the two effective static elimination currents I 1+ and I 1- , flows through the external grounding resistor 11, and this is detected by the active current detection difference detection means 17 and corresponds to the detected value. The voltage signal Va of the level to be output is output from the differential amplifier 38 to the differentiator 18. Then, the differentiator 18 obtains the temporal change rate dIa / dt of the current Ia by differentiating the voltage signal Va and outputs it to the peak hold unit 60.

【0174】この場合、放電電極1に付与される高電圧
+ は、指数関数的微小変動を生じたものであるため、
電流Ia(電圧信号Va)も上記微小変動に追従するよ
うな微小変動を生じている。そして、前述したように微
分器18は電圧信号Vaを微分値の極性を反転させるも
のであるため、ピークホールド器60は、高電圧V+
指数関数的に微小減少する微小期間T(図6参照)にお
ける電流Iaの時間的変化率dIa/dtに相当するレ
ベルの電圧信号V1+を出力する。また、該期間Tにおい
ては、高電圧V+ は前記(28)式に示すような形で表
される。従って、ピークホールド器60から出力される
電圧信号V1+は、前記(3)’式に従って該期間Tにお
ける正側有効除電電流I1+の検出値を示すものとなり、
該ピークホールド器60により、高電圧V+ が指数関数
的に微小減少する毎に有効除電電流I1+が検出されるこ
ととなる。
In this case, since the high voltage V + applied to the discharge electrode 1 has undergone an exponential minute fluctuation,
The current Ia (voltage signal Va) also has minute fluctuations that follow the minute fluctuations. Since the differentiator 18 as described above is intended to invert the polarity of the differential value voltage signal Va, the peak hold circuit 60 is minute period T of the high voltage V + is small decreases exponentially (Fig. 6 The voltage signal V 1+ having a level corresponding to the temporal change rate dIa / dt of the current Ia in the reference signal is output. Further, during the period T, the high voltage V + is represented by the form shown in the equation (28). Therefore, the voltage signal V 1+ output from the peak hold device 60 indicates the detected value of the positive-side effective static elimination current I 1+ in the period T according to the equation (3) ′.
The peak hold device 60 detects the effective static elimination current I 1+ each time the high voltage V + exponentially slightly decreases.

【0175】このようにピークホールド器60により得
られる電圧信号V1+は有効除電電流I1+の検出値として
比較器51に与えられる。このため、正側指示値生成手
段52は、有効除電電流I1+の検出値を示す電圧信号V
1+のレベルが、正側設定器23により比較器51に与え
られた有効除電電流I1+の設定値を示す設定電圧V1S +
に合致するようなレベルでもって正側高電圧指示値信号
C1+ を生成する。そして、該信号VC1+ に指示値加工
手段53により指数関数的微小変動を生ぜしめてなる正
側高電圧指示値信号VC2+ が加算器54を介して正側高
電圧生成回路3に付与される。これにより、放電電極1
に付与される高電圧V+ は、有効除電電流I1+がその設
定値に合致するように、換言すれば、有効除電電流I1+
により生成される除電に寄与する正のイオンの生成量が
有効除電電流I1+の設定値で示される設定量になるよう
に、高電圧V+ が制御される。
As described above, the voltage signal V 1+ obtained by the peak hold device 60 is given to the comparator 51 as a detection value of the effective static elimination current I 1+ . Therefore, the positive-side instruction value generating means 52 uses the voltage signal V indicating the detected value of the effective static elimination current I 1+.
The level of 1+ is the set voltage V 1S + indicating the set value of the effective static elimination current I 1+ given to the comparator 51 by the positive side setter 23.
To generate the positive-side high-voltage instruction value signal V C1 + . Then, + the signal V C1 positive side high voltage instruction value comprising caused exponential slight change in response to an instruction value processing unit 53 to the + signal V C2 is applied via an adder 54 to the positive side high voltage generating circuit 3. Thereby, the discharge electrode 1
The high voltage V + applied to the effective static elimination current I 1+ is equal to the set value, in other words, the effective static elimination current I 1+.
The high voltage V + is controlled so that the amount of positive ions generated by that which contributes to the static elimination becomes the set amount indicated by the set value of the effective static elimination current I 1+ .

【0176】また、上記のようにピークホールド器60
により得られた電圧信号V1+(有効除電電流I1+の検出
値)が減算器62に与えられると共に、有効電流差分検
出手段17の差動増幅器38から得られた電圧信号Va
(電流Ia)がフィルタ63を介して減算器62に与え
られ、この時、該減算器62は、前記(22)式に従っ
て減算演算を行うことで、負側有効除電電流I1-の検出
値を示す電圧信号V2-を出力し、これにより有効除電電
流I1-が検出される。そして、該電圧信号V2-は可変抵
抗68を介して比較器45に与えられる。
Further, as described above, the peak hold unit 60
The voltage signal V 1+ (detection value of the effective static elimination current I 1+ ) obtained by the above is given to the subtractor 62, and the voltage signal Va obtained from the differential amplifier 38 of the effective current difference detection means 17 is given.
(Current Ia) is given to the subtractor 62 via the filter 63, and at this time, the subtractor 62 performs the subtraction operation according to the equation (22) to detect the detected value of the negative side effective static elimination current I 1− . the outputs of 2-voltage signal V shown, this effective neutralization current I 1-is detected by. Then, the voltage signal V 2− is given to the comparator 45 via the variable resistor 68.

【0177】このとき、比較器45には、ピークホール
ド器60から電圧信号V1+(有効除電電流I1+の検出
値)も付与されており、このため、負側指示値生成手段
46は、有効除電電流I1-の検出値を示す電圧信号V1-
のレベルが、正側有効除電電流I1+の検出値を示す電圧
信号V1+に可変抵抗68の抵抗値により定まる所定の比
率でもって合致するように負側高電圧指示値信号VC1-
を生成する。そして、該信号VC1- が加算器50を介し
て負側高電圧生成回路4に付与される。これにより、放
電電極2に付与される高電圧V- は、負側有効除電電流
1-が正側有効除電電流I1+に対して所定の比率でもっ
て合致するように、換言すれば、負側有効除電電流I1-
により生成される除電に寄与する負のイオンの生成量が
有効除電電流I1+により生成される除電に寄与する正の
イオンの生成量とバランスするように、高電圧V- が制
御される。尚、一般に、負側有効除電電流I1-と正側有
効除電電流I1+とが同じであっても、正のイオンは負の
イオンに較べて除電に寄与する効果が小さく、このた
め、負側有効除電電流I1-を正側有効除電電流I1+より
も小さく設定することで正負のイオンがバランスする。
At this time, the voltage signal V 1+ (detection value of the effective static elimination current I 1+ ) is also given to the comparator 45 from the peak hold device 60, and therefore the negative side instruction value generating means 46 is , the voltage signal indicating the effective charge removing current I detected value of the 1-V 1-
The negative side high voltage indicating value signal V C1- so that the level of the positive side effective voltage V1 + indicates the detected value of the positive side effective static elimination current I 1+ with a predetermined ratio determined by the resistance value of the variable resistor 68.
Generate Then, the signal V C1− is applied to the negative side high voltage generation circuit 4 via the adder 50. Thereby, the high voltage V applied to the discharge electrode 2 is such that the negative side effective static elimination current I 1− matches the positive side effective static elimination current I 1+ at a predetermined ratio, in other words, Negative side effective static elimination current I 1-
The high voltage V is controlled so that the generation amount of negative ions generated by the above and contributing to the static elimination balances with the generation amount of the positive ions generated by the effective static elimination current I 1+ that contributes to the static elimination. In general, even if the negative side effective static elimination current I 1− and the positive side effective static elimination current I 1+ are the same, positive ions have a smaller effect of contributing to static elimination than negative ions. By setting the negative side effective static elimination current I 1− to be smaller than the positive side effective static elimination current I 1+ , positive and negative ions are balanced.

【0178】一方、かかる作動時において、正側有効除
電電流I1+の検出の場合と同様に、筐体接地用抵抗12
を流れる電流Ibが電極・筐体間無効電流差分検出手段
19により検出され、さらに、微分器20を介してピー
クホールド器61から前記(5)’式に従って、正側電
極・筐体間無効電流I2+の検出値を示す電圧信号V2+
出力される。さらに、負側有効除電電流I1-の検出の場
合と同様に、電圧信号V2+と増幅器44の電圧信号Vb
とから減算器64により、前記(23)式に従って、負
側電極・筐体間無効電流I2-の検出値を示す電圧信号V
2-が得られる。また、差動増幅器41の電圧信号V
S+(全放電電流IS+)と、ピークホールド器60の電圧
信号V1+(正側有効除電電流I1+の検出値)と、ピーク
ホールド器61の電圧信号V2+(正側電極・筐体間無効
電流I2+の検出値)とから減算器66により、前記(2
6)式に従って、電極間無効電流I3 を示す電圧信号V
3 が得られる。
On the other hand, at the time of such an operation, as in the case of detecting the positive side effective static elimination current I 1+ , the case grounding resistor 12
A current Ib flowing through is detected by the electrode / chassis reactive current difference detection means 19, and further from the peak hold device 61 via the differentiator 20 according to the above equation (5) ′, the positive electrode / chassis reactive current. A voltage signal V 2+ indicating the detected value of I 2+ is output. Further, similarly to the case of detecting the negative side effective static elimination current I 1− , the voltage signal V 2+ and the voltage signal Vb of the amplifier 44 are detected.
And the subtracter 64 calculates the voltage signal V indicating the detected value of the reactive current I 2− between the negative electrode and the housing according to the equation (23).
2- is obtained. In addition, the voltage signal V of the differential amplifier 41
S + (total discharge current I S + ), voltage signal V 1+ of peak hold device 60 (detection value of positive side effective static elimination current I 1+ ), and voltage signal V 2+ of peak hold device 61 (positive electrode / The detected value of the reactive current I 2+ between the housings) and the (2
According to the equation 6), the voltage signal V indicating the inter-electrode reactive current I 3
You get 3 .

【0179】そして、前記警報手段34は、ピークホー
ルド器61の電圧信号V2+レベルが差動増幅器41の電
圧信号VS+のレベルに対して所定の比率を越えたとき、
換言すれば、正側電極・筐体間無効電流I2+の全放電電
流IS+に占める割合が異常に高くなったときには、比較
器73の出力に応じて警報器74から警報を発する。
When the voltage signal V 2+ level of the peak hold unit 61 exceeds a predetermined ratio with respect to the level of the voltage signal V S + of the differential amplifier 41, the alarm means 34 outputs:
In other words, when the ratio of the reactive current I 2+ between the positive electrode and the housing to the total discharge current I S + becomes abnormally high, the alarm 74 issues an alarm according to the output of the comparator 73.

【0180】同様に、警報手段35は、減算器64の電
圧信号V2-と差動増幅器42の電圧信号VS-とを基に、
負側電極・筐体間無効電流I2-の全放電電流IS-に占め
る割合が異常に高くなったときには、比較器75の出力
に応じて警報器76から警報を発する。
Similarly, the alarm means 35, based on the voltage signal V 2− of the subtractor 64 and the voltage signal V S− of the differential amplifier 42,
When the ratio of the negative side electrode-chassis reactive current I 2 − to the total discharge current I S − becomes abnormally high, the alarm device 76 issues an alarm according to the output of the comparator 75.

【0181】このように警報手段34,35による警報
が発せられる状態は、放電電極1,2と筐体7との絶縁
不良等の原因が考えられ、該警報によりそのような異常
が把握される。
The state in which the alarm means 34, 35 issue an alarm in this manner is considered to be the cause of insulation failure between the discharge electrodes 1, 2 and the housing 7, and such an alarm can detect such an abnormality. ..

【0182】また、警報手段36は、減算器66の電圧
信号V3 と差動増幅器41の電圧信号VS+とを基に、あ
るいは電圧信号V3 と差動増幅器42の電圧信号VS-
を基に、電極間無効電流I3 の全放電電流IS+又はIS-
に占める割合が異常に高くなったときには、比較器77
又は78の出力に応じて警報器79から警報を発する。
このような警報が発せられる状態は、放電電極1,2間
の漏れ電流がある状態を示し、該警報によりそのような
異常が把握される。
Further, the alarm means 36 is based on the voltage signal V 3 of the subtractor 66 and the voltage signal V S + of the differential amplifier 41, or the voltage signal V 3 and the voltage signal V S- of the differential amplifier 42. Based on the total discharge current I S + or I S- of the reactive current I 3 between the electrodes
When the ratio of the
Alternatively, an alarm is issued from an alarm device 79 according to the output of 78.
The state in which such an alarm is issued indicates a state in which there is a leakage current between the discharge electrodes 1 and 2, and such an abnormality is grasped by the alarm.

【0183】また、微小変動を生ぜしめた正側高電圧指
示値信号VC2+ のレベルを加算器54により補正してな
る正側高電圧指示値信号VC3+ は、警報手段32に与え
られ、該警報手段32は、正側高電圧指示値信号VC3+
のレベルが最大電圧レベルV+MAX以上となると、比較器
69の出力に応じて警報器70から警報を発する。この
ような警報が発せられる状態は、高電圧V+ を高くして
も有効除電電流I1+がその設定値まで上昇することがで
きない状態であるので、放電電極1の汚れ等の原因が考
えられ、上記警報により、放電電極1の清掃等を使用者
に促すことができる。
Further, the positive side high voltage instruction value signal V C3 + obtained by correcting the level of the positive side high voltage instruction value signal V C2 + which has caused a minute change by the adder 54 is given to the alarm means 32, and The alarm means 32 uses the positive side high voltage instruction value signal V C3 +.
When the level of is higher than the maximum voltage level V + MAX , the alarm 70 issues an alarm according to the output of the comparator 69. The state in which such an alarm is issued is a state in which the effective static elimination current I 1+ cannot rise to the set value even if the high voltage V + is increased, and therefore the cause of contamination of the discharge electrode 1 is considered. Then, the alarm can prompt the user to clean the discharge electrode 1 or the like.

【0184】同様に、負側高電圧指示値信号VC2- は警
報手段33に与えられ、該警報手段33は、負側高電圧
指示値信号VC2- のレベルが最大電圧レベルV-MAX以上
となると、比較器71の出力に応じて警報器72から警
報を発する。これにより、放電電極2の清掃等を使用者
に促すことができる。
Similarly, the negative side high voltage indicating value signal V C2- is given to the alarm means 33, and the alarm means 33 makes the level of the negative side high voltage indicating value signal V C2- higher than the maximum voltage level V -MAX. Then, the alarm 72 issues an alarm according to the output of the comparator 71. This can prompt the user to clean the discharge electrode 2 and the like.

【0185】以上説明したように、本実施例の除電装置
においては、各有効除電電流I1+,I1-を検出すること
で、除電に寄与する正負のイオンの生成量を把握して、
それらを所望の生成量に制御することができ、従って正
負のイオンバランスを良好なものとして帯電体(図示し
ない)の除電を確実に行うことができる。そして、この
とき、各有効除電電流I1+,I1-は、それらの総量が検
出されるので、その検出を確実に行うことができ、従っ
て、正負のイオンの生成量を確実に所望の生成量に制御
することができる。
As described above, in the static eliminator of this embodiment, by detecting each effective static elimination current I 1+ , I 1- , the amount of positive and negative ions contributing to the static elimination can be grasped,
It is possible to control them to a desired production amount, and therefore it is possible to surely remove the charge of the charged body (not shown) by making the positive and negative ion balance good. At this time, since the total amount of each of the effective static elimination currents I 1+ and I 1− is detected, the detection can be surely performed, and thus the positive and negative ion generation amounts can be surely set to desired values. The production amount can be controlled.

【0186】また、各有効除電電流I1+,I1-の検出に
加えて、各電極・筐体間無効電流I 2+,I2-や電極間無
効電流I3 をも検出することで、放電状態の良否や装置
の異常等を的確に監視することができる。
Further, each effective static elimination current I1+, I1-To detect
In addition, reactive current I between each electrode and housing 2+, I2-Or between electrodes
Effective current I3By also detecting the
Can be accurately monitored.

【0187】また、有効除電電流I1+や電極・筐体間無
効電流I2+を検出するために、高電圧指示値信号Vc1+
に生ぜしめる微小変動を指数関数的微小変動としたこと
で、微分器18,20やピークホールド器60,61を
用いた極めて簡単な構成で有効除電電流I1+や電極・筐
体間無効電流I2+を検出することができる。
Further, in order to detect the effective static elimination current I 1+ and the reactive current I 2+ between the electrode and the case, the high voltage instruction value signal V c1 +
Since the minute fluctuations that occur in the above are made into the exponential minute fluctuations, the effective static elimination current I 1+ and the reactive current between the electrode and the case are extremely simple with the differentiators 18 and 20 and the peak hold devices 60 and 61. I 2+ can be detected.

【0188】尚、本実施例においては、正側高電圧指示
値信号VC1+ に微小変動を生ぜしめて、dV+ /dt≫
dV- /dtの条件を満たすようにしたが、これと逆
に、dV- /dt≫dV- /dtの条件を満たすように
負側高電圧指示値信号VC1- に微小変動を生ぜしめ、本
実施例と同様の微分器やピークホルード器を用いて負側
有効除電電流I1-や負側電極・筐体間無効電流I2-を検
出するようにしてもよい。
In this embodiment, a slight fluctuation is generated in the positive side high voltage instruction value signal V C1 + , and dV + / dt >>
dV - was a / dt condition is satisfied, conversely therewith, dV - / dt»dV - / dt conditions to meet to the negative high voltage instruction value signal V C1- caused a slight change, It is also possible to detect the negative side effective static elimination current I 1− and the negative side electrode-chassis reactive current I 2− by using a differentiator or a peak holder similar to that of this embodiment.

【0189】また、本実施例においては、各有効除電電
流I1+,I1-の検出に加えて、各電極・筐体間無効電流
2+,I2-や電極間無効電流I3 をも検出するようにし
たが、各有効除電電流I1+,I1-のみを検出し、あるい
は、各有効除電電流I1+,I 1-と各電極・筐体間無効電
流I2+,I2-のみを検出するようにすることも可能であ
る。例えば各有効除電電流I1+,I1-のみを検出する場
合には、本実施例において、負側放電電流検出手段30
や、電極・筐体間無効電流差分検出手段19、微分器2
0、ピークホールド器61、減算器31,64、警報手
段34〜36を削除すればよい。また、各有効除電電流
1+,I1-と各電極・筐体間無効電流I 2+,I2-のみを
検出する場合には、減算器66や警報手段36を削除す
ればよい。
Further, in this embodiment, each effective charge removal is performed.
Flow I1+, I1-In addition to the detection of
I2+, I2-And reactive current between electrodes I3To detect
However, each effective static elimination current I1+, I1-Detect only, yes
Is the effective static elimination current I1+, I 1-And reactive current between each electrode and housing
Flow I2+, I2-It is also possible to detect only
It For example, each effective static elimination current I1+, I1-Place to detect only
In this embodiment, the negative side discharge current detection means 30
And electrode / casing reactive current difference detection means 19 and differentiator 2
0, peak hold device 61, subtractors 31, 64, alarm hand
The steps 34-36 may be deleted. Also, each effective static elimination current
I1+, I1-And reactive current I between each electrode and housing 2+, I2-Only
When detecting, the subtractor 66 and the alarm means 36 are deleted.
Just do it.

【0190】また、本実施例においては、放電電流に含
まれる無効電流を各電極・筐体間無効電流I2+,I2-
電極間無効電流I3 とに分けて検出するようにしたが、
それらを併せて各放電電極1,2における総無効電流を
検出するようにすることも可能である。この場合には、
例えば本実施例において、電極・筐体間無効電流差分検
出手段19や微分器20、ピークホールド器61、減算
器64、警報手段34,35等を削除し、差動増幅器4
1の電圧信号VS+(全放電電流IS+)からピークホール
ド器60の電圧信号V1+(有効除電電流I1+)を減算す
る減算器と、差動増幅器42の電圧信号VS-(全放電電
流IS-)から減算器62の電圧信号V1-(有効除電電流
1-)を減算する減算器とを備えれば、それらの減算器
により各放電電極1,2における総無効電流を検出する
ことができる。
Further, in the present embodiment, the reactive current contained in the discharge current is detected separately by the reactive currents I 2+ and I 2− between the electrodes and the housing and the reactive current I 3 between the electrodes. But,
It is also possible to detect the total reactive current in each of the discharge electrodes 1 and 2 together. In this case,
For example, in the present embodiment, the differential current difference detecting means 19 between the electrode and the housing, the differentiator 20, the peak hold device 61, the subtracter 64, the alarm means 34, 35, etc. are deleted, and the differential amplifier 4 is removed.
1 and a subtracter for subtracting the voltage signal V 1+ (effective static elimination current I 1+ ) of the peak hold device 60 from the voltage signal V S + (total discharge current I S + ) and the voltage signal V S- (of the differential amplifier 42) If a subtracter that subtracts the voltage signal V 1− (effective static elimination current I 1− ) of the subtractor 62 from the total discharge current I S− ) is provided, the total invalidity in each of the discharge electrodes 1 and 2 is obtained by those subtractors. Current can be detected.

【0191】また、本実施例においては、本発明の第1
の態様に対応して筐体7が導電材料からなる場合につい
て説明したが、本発明の第3の態様に対応して筐体が絶
縁材料からなる場合にも本実施例と同様の除電装置を構
成することができる。この場合には、例えば本実施例に
おいて、筐体接地用抵抗12や、電極・筐体間無効電流
差分検出手段19や微分器20、ピークホールド器6
1、減算器64、警報手段34,35を削除し、各高電
圧生成回路3,4を除く差動増幅器38等の回路を任意
の適所に接地すればよい。該接地は、例えば筐体が放電
電極1,2と反対側の面部に金属部分を備える場合に
は、該金属部分に行う。尚、この場合には、減算器66
は、差動増幅器41の電圧信号VS+(全放電電流IS+
からピークホールド器60の電圧信号V1+(有効除電電
流I1+)のみを減算する構成とする。
Further, in the present embodiment, the first aspect of the present invention
The case where the casing 7 is made of a conductive material has been described in accordance with the above aspect. However, even when the casing is made of an insulating material in accordance with the third aspect of the present invention, a static eliminator similar to this embodiment can be used. Can be configured. In this case, for example, in the present embodiment, the case grounding resistor 12, the electrode / case reactive current difference detection means 19, the differentiator 20, and the peak hold device 6 are provided.
1, the subtractor 64, the alarm means 34 and 35 may be deleted, and the circuits such as the differential amplifier 38 other than the high voltage generation circuits 3 and 4 may be grounded at any appropriate places. The grounding is performed on the metal portion, for example, when the housing has a metal portion on the surface opposite to the discharge electrodes 1 and 2. In this case, the subtractor 66
Is the voltage signal V S + of the differential amplifier 41 (total discharge current I S + ).
The voltage signal V 1+ (effective static elimination current I 1+ ) of the peak hold device 60 is subtracted from the above.

【0192】また、本実施例においては、高電圧制御手
段21,22や微分手段18,20、有効除電電流検出
手段25,26、電極・筐体間無効電流検出手段27,
28、電極間無効電流検出手段31を回路的に構成した
が、これらをマイクロコンピュータを用いて構成するこ
とも可能であることはもちろんである。
Further, in this embodiment, the high voltage control means 21, 22 and the differentiating means 18, 20, the effective static elimination current detecting means 25, 26, the electrode / casing reactive current detecting means 27,
28, the inter-electrode reactive current detecting means 31 is constructed in a circuit, but it goes without saying that these may be constructed using a microcomputer.

【0193】また、本実施例においては、各高電圧生成
回路3,4により直流の高電圧V+,V- を生成するよ
うにしたが、各トランス5,6の二次側コイルに整流用
のダイオードを接続すれば、各トランス5,6の一次側
に付与する電圧を比較的低周波数(例えば20〜30k
Hz)の交流電圧としてもよい。この場合には、電流I
aやIb、IS1+ 、IS1- は半波の直流となるが、それ
らは、各増幅器38,44,41,42の入力側に設け
たフィルタ37,43,39,40により平滑化するこ
とができ、従って、電流IaやIb、IS1+ 、IS1-
検出して前記各有効除電電流I1+,I1-等を検出するこ
とができる。
Further, in this embodiment, the high voltage generation circuits 3 and 4 generate the high DC voltages V + and V , but the secondary side coils of the transformers 5 and 6 are used for rectification. If the diode of is connected, the voltage applied to the primary side of each transformer 5, 6 will be at a relatively low frequency (for example, 20 to 30 k).
Alternatively, an AC voltage of (Hz) may be used. In this case, the current I
Although a, Ib, I S1 + and I S1− are half-wave DC, they should be smoothed by the filters 37, 43, 39, 40 provided on the input side of the amplifiers 38, 44, 41, 42. Therefore, the currents Ia, Ib, I S1 + , I S1- can be detected to detect the effective static elimination currents I 1+ , I 1-, etc.

【0194】次に、本発明の第2の態様の具体的な実施
例を図2及び図7を参照して説明する。図7は本実施例
の除電装置の回路構成図である。
Next, a concrete embodiment of the second aspect of the present invention will be described with reference to FIGS. FIG. 7 is a circuit configuration diagram of the static eliminator of this embodiment.

【0195】本実施例の除電装置は、図2に示した除電
装置と基本構成は同一であり、正側及び負側放電電極
1,2と、正側及び負側高電圧生成回路3,4と、正側
及び負側トランス5,6と、導電材料から成る筐体7
と、一対の外部接地用抵抗13,14と、一対の筐体接
地用抵抗15,16とが備えられており、これらの接続
構成は図2の除電装置と同一である。尚、各高電圧生成
回路3,4は、前述の図5の除電装置のものと同一であ
り、それらの接地部は対応するトランス5,6の二次側
コイルの接地端に接続されている。
The static eliminator of this embodiment has the same basic configuration as that of the static eliminator shown in FIG. 2, and has positive and negative discharge electrodes 1 and 2 and positive and negative high voltage generating circuits 3 and 4. And the positive and negative side transformers 5 and 6, and a housing 7 made of a conductive material.
2, a pair of resistors 13 and 14 for external grounding, and a pair of resistors 15 and 16 for grounding the housing, and the connection configuration of these is the same as that of the static eliminator of FIG. The high voltage generating circuits 3 and 4 are the same as those of the static eliminator shown in FIG. 5 described above, and their ground portions are connected to the ground ends of the secondary coils of the corresponding transformers 5 and 6. .

【0196】そして、本実施例の除電装置は、前述の図
5の除電装置と同様に高電圧制御手段21,22、微分
手段18,20、有効除電電流検出手段25,26、電
極・筐体間無効電流検出手段27,28、電極間無効電
流検出手段31、設定手段23,24及び警報手段32
〜36を備えている。これらの構成は図5の除電装置の
ものと全く同一であり、ここではその詳細な説明は省略
する。
The static eliminator of this embodiment is similar to the static eliminator of FIG. 5 described above, in which the high voltage control means 21 and 22, the differentiating means 18 and 20, the effective static eliminator current detecting means 25 and 26, the electrodes and the casing. Inter-electrode reactive current detection means 27, 28, inter-electrode reactive current detection means 31, setting means 23, 24 and alarm means 32.
Equipped with ~ 36. These configurations are exactly the same as those of the static eliminator of FIG. 5, and detailed description thereof will be omitted here.

【0197】一方、本実施例の除電装置は、外部接地用
抵抗13,14の電圧の差により両有効除電電流I1+
1-の差分の電流Iaを検出する有効電流差分検出手段
80と、筐体接地用抵抗15,16の電圧の差により両
電極・筐体間無効電流I2+,I2-の差分の電流Ibを検
出する電極・筐体間無効電流差分検出手段81と、外部
接地用抵抗13及び筐体接地用抵抗15の電圧の和によ
り放電電極1の全放電電流IS+を検出する正側放電電流
検出手段82と、外部接地用抵抗14及び筐体接地用抵
抗16の電圧の和により放電電極2の全放電電流IS-
検出する負側放電電流検出手段83とを備えている。こ
れらの手段80〜83を構成する後述の各回路は筐体7
に接地されている。
On the other hand, in the static eliminator of this embodiment, the effective static elimination currents I 1+ , I 1+ ,
The effective current difference detection means 80 for detecting the current Ia of the difference between I 1− and the difference between the reactive currents I 2+ and I 2− between the electrodes and the case due to the difference in voltage between the housing grounding resistors 15 and 16. Positive side discharge for detecting the total discharge current I S + of the discharge electrode 1 by the sum of the voltage of the electrode / chassis reactive current difference detection means 81 for detecting the current Ib and the voltage of the external grounding resistor 13 and the casing grounding resistor 15. The current detection means 82 and the negative side discharge current detection means 83 for detecting the total discharge current I S− of the discharge electrode 2 based on the sum of the voltages of the external grounding resistance 14 and the housing grounding resistance 16 are provided. Each circuit to be described later, which constitutes these means 80 to 83, is the case 7
Grounded to.

【0198】有効電流差分検出手段80は、各外部接地
用抵抗13,14の両端にそれぞれ接続されたフィルタ
対84,85と、各対のフィルタ84,85の出力を入
力とする差動増幅器86,87と、差動増幅器86から
外部接地用抵抗13の電流Icに比例したレベルでもっ
て出力される電圧信号Vcを、差動増幅器87から外部
接地用抵抗14の電流Idに比例したレベルでもって出
力される電圧信号Vdを減算する減算器88とにより構
成され、外部接地用抵抗13,14の電圧の差、すなわ
ち電流Iaに相当するレベルの電圧信号Vaを前記(3
0)式に従って減算器88から得る構成としている。
The active current difference detecting means 80 includes a pair of filters 84 and 85 connected to both ends of each of the external grounding resistors 13 and 14, and a differential amplifier 86 which receives the outputs of the filters 84 and 85 of each pair. , 87 and the voltage signal Vc output from the differential amplifier 86 at a level proportional to the current Ic of the external grounding resistor 13, and at a level proportional to the current Id of the external grounding resistor 14 from the differential amplifier 87. And a subtracter 88 for subtracting the output voltage signal Vd, and outputs the voltage signal Va at a level corresponding to the difference between the voltages of the external grounding resistors 13 and 14, that is, the current Ia (3).
The configuration is obtained from the subtractor 88 according to the equation (0).

【0199】これと同様に、電極・筐体間無効電流差分
検出手段81は、各筐体接地用抵抗15,16の筐体7
と反対側の端部にそれぞれ接続されたフィルタ89,9
0と、各フィルタ89,90の出力を入力とする増幅器
91,92と、増幅器91から筐体接地用抵抗15の電
流Ieに比例したレベルでもって出力される電圧信号V
eを、増幅器92から外部接地用抵抗16の電流Ifに
比例したレベルでもって出力される電圧信号Vfを減算
する減算器93とにより構成され、筐体接地用抵抗1
5,16の電圧の差、すなわち電流Ibに比例したレベ
ルの電圧信号Vbを前記(31)式に従って減算器93
から得る構成としている。
Similarly, the reactive current difference detecting means 81 between the electrode and the case is constituted by the case 7 of the case grounding resistors 15 and 16.
And filters 89 and 9 respectively connected to the ends on the opposite side to
0, amplifiers 91 and 92 that receive the outputs of the filters 89 and 90, and a voltage signal V that is output from the amplifier 91 at a level proportional to the current Ie of the housing grounding resistor 15.
e is composed of a subtractor 93 for subtracting the voltage signal Vf output from the amplifier 92 at a level proportional to the current If of the external grounding resistor 16, and the housing grounding resistor 1
The difference between the voltages of 5 and 16, that is, the voltage signal Vb having a level proportional to the current Ib is subtracted by the subtractor 93 according to the equation (31).
The configuration is obtained from.

【0200】また、正側放電電流検出手段82は、差動
増幅器86の電圧信号Vcと増幅器91の電圧信号Ve
とを加算する加算器94により構成され、正側トランス
5側に接続された外部接地用抵抗13及び筐体接地用抵
抗15の電圧の和、すなわち、正側全放電電流IS+に比
例したレベルの電圧信号VS+を前記(32)式に従って
加算器94から得る構成としている。
The positive side discharge current detecting means 82 has the voltage signal Vc of the differential amplifier 86 and the voltage signal Ve of the amplifier 91.
And a sum of the voltages of the external grounding resistor 13 and the chassis grounding resistor 15 connected to the positive side transformer 5 side, that is, a level proportional to the positive side total discharge current I S +. Of the voltage signal V S + is obtained from the adder 94 according to the equation (32).

【0201】これと同様に、負側放電電流検出手段83
は、差動増幅器87の電圧信号Vdと増幅器92の電圧
信号Vfとを加算する加算器95により構成され、負側
トランス6側に接続された外部接地用抵抗14及び筐体
接地用抵抗16の電圧の和、すなわち、負側全放電電流
S-に比例したレベルの電圧信号VS-を前記(33)式
に従って加算器95から得る構成としている。
Similarly to this, the negative side discharge current detecting means 83
Is composed of an adder 95 that adds the voltage signal Vd of the differential amplifier 87 and the voltage signal Vf of the amplifier 92, and is connected to the negative transformer 6 side by the external grounding resistor 14 and the chassis grounding resistor 16. The voltage signal V S− having a level proportional to the sum of the voltages, that is, the negative-side total discharge current I S− is obtained from the adder 95 according to the equation (33).

【0202】かかる構成の除電装置にあっては、図5の
除電装置と電流Ia,Ib及び全放電電流IS+,IS-
検出手法が相違するだけで、他の作動は、図5の除電装
置と全く同一である。すなわち、各有効除電電流I1+
1-が各有効除電電流検出手段25,26により検出さ
れ、それにより、除電に寄与する正負のイオンの生成量
を把握して、それらを所望の生成量に制御することがで
き、従って正負のイオンバランスを良好なものとして帯
電体(図示しない)の除電を確実に行うことができる。
そして、このとき、各有効除電電流I1+,I1-は、それ
らの総量が検出されるので、その検出を確実に行うこと
ができ、従って、正負のイオンの生成量を確実に所望の
生成量に制御することができる。
The static eliminator having such a configuration is different from the static eliminator of FIG. 5 only in the method of detecting the currents Ia, Ib and the total discharge currents I S + , I S- , and other operations are the same as those of FIG. It is exactly the same as the static eliminator. That is, each effective static elimination current I 1+ ,
I 1− is detected by each of the effective static elimination current detecting means 25 and 26, whereby the production amount of positive and negative ions contributing to the static elimination can be grasped and controlled to a desired production amount, and therefore positive and negative. It is possible to surely remove the charge of the charged body (not shown) by improving the ion balance of the above.
At this time, since the total amount of each of the effective static elimination currents I 1+ and I 1− is detected, the detection can be surely performed, and thus the positive and negative ion generation amounts can be surely set to desired values. The production amount can be controlled.

【0203】また、各有効除電電流I1+,I1-の検出に
加えて、各電極・筐体間無効電流I 2+,I2-や電極間無
効電流I3 が各電極・筐体間無効電流検出手段27,2
8や電極間無効電流検出手段31により検出され、それ
らの検出値を基に、警報手段32〜36を用いて放電状
態の良否や装置の異常等を的確に監視することができ
る。
Further, each effective static elimination current I1+, I1-To detect
In addition, reactive current I between each electrode and housing 2+, I2-Or between electrodes
Effective current I3Is a reactive current detecting means 27, 2 between each electrode and the case
8 or the inter-electrode reactive current detection means 31 detects the
Based on the detected value from the
It is possible to accurately monitor the health of the device and abnormalities of the device.
It

【0204】また、有効除電電流I1+や電極・筐体間無
効電流I2+を検出するために、高電圧指示値信号Vc1+
に生ぜしめる微小変動は、正側高電圧制御手段21によ
りを指数関数的微小変動とされるので、前記微分器1
8,20やピークホールド器60,61を用いた極めて
簡単な構成で有効除電電流I1+や電極・筐体間無効電流
2+を検出することができる。
Further, in order to detect the effective static elimination current I 1+ and the reactive current I 2+ between the electrode and the case, the high voltage instruction value signal V c1 +
Since the minute fluctuation caused by the positive side high voltage control means 21 is regarded as an exponential minute fluctuation, the differentiator 1
The effective static elimination current I 1+ and the reactive current I 2+ between the electrode and the case can be detected with an extremely simple configuration using the 8, 20 and the peak hold devices 60, 61.

【0205】尚、本実施例においては、正側高電圧指示
値信号VC1+ に微小変動を生ぜしめて、dV+ /dt≫
dV- /dtの条件を満たすようにしたが、図5の除電
装置の場合と同様に、dV- /dt≫dV- /dtの条
件を満たすように負側高電圧指示値信号VC1- に微小変
動を生ぜしめて、負側有効除電電流I1-や負側電極・筐
体間無効電流I2-を検出するようにしてもよい。
In this embodiment, a slight fluctuation is generated in the positive side high voltage instruction value signal V C1 + , and dV + / dt >>
dV - / dt was the condition is satisfied, as in the case of the static eliminator of Fig. 5, dV - / dt»dV - / dt conditions satisfying way C1- to the negative side high voltage instruction value signal V It is also possible to cause a slight change to detect the negative side effective static elimination current I 1− and the negative side electrode-chassis reactive current I 2− .

【0206】また、各有効除電電流I1+,I1-のみを検
出し、あるいは、各有効除電電流I 1+,I1-と各電極・
筐体間無効電流I2+,I2-のみを検出するようにするこ
とも可能である。例えば各有効除電電流I1+,I1-のみ
を検出する場合には、本実施例において、負側放電電流
検出手段83や、減算器93、微分手段20、電極・筐
体間無効電流検出手段27,28、電極間無効電流検出
手段31、警報手段34〜36を削除すればよい。ま
た、各有効除電電流I1+,I1-と各電極・筐体間無効電
流I2+,I2-のみを検出する場合には、電極間無効電流
検出手段31や警報手段36を削除すればよい。
In addition, each effective static elimination current I1+, I1-Only inspect
Output or each effective static elimination current I 1+, I1-And each electrode
Inter-casing reactive current I2+, I2-Only to detect
Both are possible. For example, each effective static elimination current I1+, I1-only
In this example, the negative side discharge current
Detecting means 83, subtractor 93, differentiating means 20, electrodes / casing
Inter-body reactive current detection means 27, 28, Inter-electrode reactive current detection
The means 31 and the alarm means 34 to 36 may be deleted. Well
Also, each effective static elimination current I1+, I1-And reactive current between each electrode and housing
Flow I2+, I2-When detecting only the
The detection means 31 and the alarm means 36 may be deleted.

【0207】また、図5の除電装置の場合と同様に、各
放電電極1,2における総無効電流を検出するようにす
ることも可能である。この場合には、例えば本実施例に
おいて、減算器93や微分手段20、電極・筐体間無効
電流検出手段27,28、警報手段34,35等を削除
し、加算器94の電圧信号VS+(全放電電流IS+)から
第1の有効除電電流検出手段25の電圧信号V1+(有効
除電電流I1+)を減算する減算器と、加算器95の電圧
信号VS-(全放電電流IS-)から第2の有効除電電流検
出手段26の電圧信号V1-(有効除電電流I1-)を減算
する減算器とを備えれば、それらの減算器により各放電
電極1,2における総無効電流を検出することができ
る。
As in the case of the static eliminator of FIG. 5, it is also possible to detect the total reactive current in each of the discharge electrodes 1, 2. In this case, for example, in the present embodiment, the subtractor 93, the differentiating means 20, the electrode / casing reactive current detecting means 27, 28, the alarm means 34, 35, etc. are deleted, and the voltage signal V S + of the adder 94 is deleted. A subtracter for subtracting the voltage signal V 1+ (effective static elimination current I 1+ ) of the first effective static elimination current detection means 25 from the (total discharge current I S + ) and the voltage signal V S− of the adder 95 (total discharge) If a subtracter for subtracting the voltage signal V 1− (effective static elimination current I 1− ) of the second effective static elimination current detection means 26 from the current I S− ) is provided, each of the discharge electrodes 1, 2 The total reactive current in 2 can be detected.

【0208】また、本実施例においては、本発明の第2
の態様に対応して筐体7が導電材料からなる場合につい
て説明したが、本発明の第4の態様に対応して筐体が絶
縁材料からなる場合にも本実施例と同様の除電装置を構
成することができる。この場合には、例えば本実施例に
おいて、筐体接地用抵抗15,16や、減算器93、微
分手段20、電極・筐体間無効電流検出手段27,2
8、警報手段34,35を削除し、各高電圧生成回路
3,4を除く回路を任意の適所に接地すればよい。尚、
この場合には、電極間無効電流検出手段31は、加算器
94の電圧信号VS+(全放電電流IS+)から第1の有効
除電電流検出手段25の電圧信号V1+(有効除電電流I
1+)のみを減算する構成とする。
In the present embodiment, the second aspect of the present invention is used.
The case where the housing 7 is made of a conductive material has been described in accordance with the above aspect. However, even when the housing is made of an insulating material in accordance with the fourth aspect of the present invention, a static eliminator similar to this embodiment can be used. Can be configured. In this case, for example, in the present embodiment, the housing grounding resistors 15 and 16, the subtractor 93, the differentiating means 20, the electrode / casing reactive current detecting means 27 and 2 are provided.
8. The alarm means 34 and 35 may be deleted, and the circuits other than the high voltage generation circuits 3 and 4 may be grounded at any suitable places. still,
In this case, the inter-electrode reactive current detection means 31 uses the voltage signal V S + (total discharge current I S + ) of the adder 94 to calculate the voltage signal V 1+ (effective discharge current I S + ) of the first effective charge removal current detection means 25.
1+ ) only is subtracted.

【0209】また、本実施例においても、高電圧制御手
段21,22や微分手段18,20、有効除電電流検出
手段25,26、電極・筐体間無効電流検出手段27,
28、電極間無効電流検出手段31をマイクロコンピュ
ータを用いて構成することも可能であることはもちろん
である。
Also in the present embodiment, the high voltage control means 21, 22 and the differentiating means 18, 20, the effective static elimination current detecting means 25, 26, the electrode / casing reactive current detecting means 27,
Of course, the inter-electrode reactive current detection means 31 can be configured by using a microcomputer.

【0210】また、本実施例においても、各トランス
5,6の二次側コイルに整流用のダイオードを接続すれ
ば、各トランス5,6の一次側に付与する電圧を比較的
低周波数(例えば20〜30kHz)の交流電圧として
もよい。
Also in this embodiment, if a rectifying diode is connected to the secondary coil of each transformer 5, 6, the voltage applied to the primary side of each transformer 5, 6 will be at a relatively low frequency (eg, An alternating voltage of 20 to 30 kHz) may be used.

【0211】ところで、以上説明した各実施例において
は、前記正側高電圧指示値信号VC1 + に生ぜしめる微小
変動を指数関数的微小変動とし、前記(3)’,
(5)’式に従って電流Ia,Ibの時間的変化率dI
a/dt,dIb/dtにより直接的に正側有効除電電
流I1+及び正側電極・筐体間無効電流I2+を検出するよ
うにしたが、上記微小変動を他の種類の微小変動とし、
前記(3),(5)式における高電圧V+ とその時間的
変化率dV+ /dtとの比の値K+ を用いて正側有効除
電電流I1+及び正側電極・筐体間無効電流I2+を検出す
ることも可能である。次に、このような検出を行う本発
明の実施例を図8及び図9を参照して説明する。図8は
本実施例の除電装置の回路構成図、図9は本実施例の除
電装置の作動を説明するための線図である。
By the way, in each of the embodiments described above, the minute fluctuation caused in the positive-side high-voltage command value signal V C1 + is defined as an exponential minute fluctuation, and the above-mentioned (3) ′,
The rate of change dI of the currents Ia and Ib with time according to the equation (5) ′
The positive side effective static elimination current I 1+ and the positive side electrode-chassis reactive current I 2+ are detected directly by a / dt and dIb / dt. age,
Using the value K + of the ratio between the high voltage V + and the temporal change rate dV + / dt in the above equations (3) and (5), the positive side effective static elimination current I 1+ and the positive side electrode / chassis are used. It is also possible to detect the reactive current I 2+ . Next, an embodiment of the present invention that performs such detection will be described with reference to FIGS. 8 and 9. FIG. 8 is a circuit configuration diagram of the static eliminator of this embodiment, and FIG. 9 is a diagram for explaining the operation of the static eliminator of this embodiment.

【0212】尚、本実施例においては、本発明の第1の
態様と対応して、前記図1及び図5の除電装置と同じ接
続構成でもって外部接地用抵抗等を備えており、ここで
は、それらの抵抗の図示を省略する。また、図5の除電
装置のものと同一構成のものについては同一の参照符号
を付して説明する。
Incidentally, in this embodiment, corresponding to the first mode of the present invention, an external grounding resistor and the like are provided with the same connection configuration as the static eliminator of FIG. 1 and FIG. 5 here. , Illustration of these resistors is omitted. Further, the same components as those of the static eliminator of FIG. 5 will be described with the same reference numerals.

【0213】図8において、本実施例の除電装置は、図
5の除電装置と同様に放電電極1,2と、高電圧生成回
路3,4と、トランス5,6と、筐体7と、放電電流検
出手段29,30と、有効電流差分検出手段17と、電
極・筐体間無効電流差分検出手段19と、微分器(微分
手段)18,20と、第2の有効除電電流検出手段26
と、第2の電極・筐体間無効電流検出手段27と、電極
間無効電流検出手段31と、負側高電圧制御手段22
と、設定手段23,24と、警報手段32〜36を備え
ている。これらの構成は図5の除電装置のものと全く同
一であり、ここではその詳細な説明は省略する。
In FIG. 8, the static eliminator of this embodiment is similar to the static eliminator of FIG. 5, in which the discharge electrodes 1 and 2, the high voltage generating circuits 3 and 4, the transformers 5 and 6, the casing 7, Discharge current detecting means 29, 30, active current difference detecting means 17, electrode / casing reactive current difference detecting means 19, differentiator (differentiating means) 18, 20, and second effective charge eliminating current detecting means 26.
A second electrode-chassis reactive current detection means 27, an inter-electrode reactive current detection means 31, and a negative high voltage control means 22.
And setting means 23 and 24, and alarm means 32 to 36. These configurations are exactly the same as those of the static eliminator of FIG. 5, and detailed description thereof will be omitted here.

【0214】一方、本実施例の除電装置は、図5の除電
装置のものと異なる構成の第1の有効除電電流検出手段
96、第1の電極・筐体間無効電流検出手段97及び正
側高電圧制御手段98を備え、さらに、前記(3),
(5)式における高電圧V+ とその時間的変化率dV+
/dtとの比の値K+ を求める演算手段99を備えてい
る。
On the other hand, the static eliminator of this embodiment is different from that of the static eliminator of FIG. 5 in that the first effective static eliminator current detecting means 96, the first electrode-chassis reactive current detecting means 97 and the positive side. A high voltage control means 98, further comprising the above (3),
The high voltage V + and its temporal change rate dV + in the equation (5)
The calculation means 99 for obtaining the value K + of the ratio with / dt is provided.

【0215】正側高電圧制御手段98は、後述するよう
に有効除電電流検出手段96から与えられる正側有効除
電電流I1+の検出値と前記設定手段23により与えられ
る設定値とを比較する比較器(比較手段)51と、該比
較器51の出力から正側高電圧指示値信号VC1+ を生成
する正側指示値生成手段52と、正側高電圧指示値信号
C1+ に微小変動を生ぜしめてなる正側高電圧指示値信
号VC2+ を生成する指示値加工手段100と、正側高電
圧指示値信号VC2+ のレベルを高電圧生成回路3に適合
するレベルに補正する加算器54とを備えている。ここ
で、比較器51、正側指示値生成手段52及び加算器5
4は図5の除電装置のものと同一構成であり、正側指示
値生成手段52は抵抗55及びコンデンサ56から成る
時定数回路により構成されている。従って、正側指示値
生成手段52により生成される正側高電圧指示値信号V
C1+ のレベルは、図5の除電装置と同様に、正側有効除
電電流I1+がその設定値に一致するように緩やかに増減
するものとなる。
The positive side high voltage control means 98 compares the detected value of the positive side effective static elimination current I 1+ given by the effective static elimination current detecting means 96 with the set value given by the setting means 23 as described later. a comparator (comparison means) 51, a positive indication value generating means 52 for generating a positive side high voltage instruction value signal V C1 + from the output of the comparator 51, a slight change in the + positive high voltage instruction value signal V C1 an instruction value processing unit 100 for generating a positive high voltage instruction value signal V C2 + comprising caused, an adder 54 for correcting the level compatible with the positive high voltage instruction value signal V C2 + level of the high voltage generating circuit 3 Is equipped with. Here, the comparator 51, the positive side instruction value generating means 52, and the adder 5
4 has the same structure as that of the static eliminator of FIG. 5, and the positive side instruction value generating means 52 is composed of a time constant circuit composed of a resistor 55 and a capacitor 56. Therefore, the positive side high voltage instruction value signal V generated by the positive side instruction value generating means 52.
Similar to the static eliminator of FIG. 5, the level of C1 + gradually increases or decreases so that the positive side effective static neutralization current I 1+ matches its set value.

【0216】指示値加工手段100は、正弦波信号を生
成する正弦波発生回路101と、正側指示値生成手段5
2により生成された正側高電圧指示値信号VC1+ と正弦
波発生回路101の出力とを入力とする上下限判定器1
02と、上下限判定器102の出力をサンプル/ホール
ド信号として正弦波発生回路101の出力をサンプルホ
ールドするサンプルホールド器103とにより構成さ
れ、正弦波発生回路101は、正側指示値生成手段52
の時定数に較べて充分短い周期でもって正弦波信号を生
成する。
The indicated value processing means 100 includes a sine wave generating circuit 101 for generating a sine wave signal and a positive side indicated value generating means 5.
Upper and lower limit judgment device 1 which receives as input the positive side high voltage indication value signal V C1 + generated by 2 and the output of the sine wave generation circuit 101
02 and a sample and hold unit 103 that samples and holds the output of the sine wave generation circuit 101 using the output of the upper and lower limit decision unit 102 as a sample / hold signal.
A sine wave signal is generated with a cycle sufficiently shorter than the time constant of.

【0217】上下限判定器102は、正弦波信号のレベ
ルが正側高電圧指示値信号VC1+ のレベルに対して所定
の上限値及び下限値を越える毎にホールド信号をサンプ
ルホールド器103に出力するものであり、これによ
り、サンプルホールド器103からは、正側高電圧指示
値信号VC1+ のレベルが略一定とみなせる微小時間内に
おいて図9に示すような信号VC2+ が出力される。従っ
て、前記上限値及び下限値の巾を正側高電圧指示値信号
C1+ のレベルに較べて充分小さなものに設定しておく
ことで、該信号VC2+ は、正側高電圧指示値信号VC1+
に微小変動を繰り返し生ぜしめた形の正側高電圧指示値
信号VC2+ となり、これが図5の除電装置と同様に前記
加算器54を介して正側高電圧生成回路3に付与され
る。そして、該高電圧生成回路3は、正側高電圧指示値
信号VC2+ に比例したレベルの高電圧V+ を放電電極1
に付与する。
The upper and lower limit determination unit 102 outputs a hold signal to the sample and hold unit 103 every time the level of the sine wave signal exceeds a predetermined upper limit value and lower limit value with respect to the level of the positive side high voltage instruction value signal V C1 +. As a result, the sample-and-hold device 103 outputs the signal V C2 + as shown in FIG. 9 within a minute time in which the level of the positive-side high-voltage command value signal V C1 + is considered to be substantially constant. Therefore, by setting the widths of the upper limit value and the lower limit value to be sufficiently smaller than the level of the positive side high voltage instruction value signal V C1 + , the signal V C2 + becomes the positive side high voltage instruction value signal V. C1 +
The positive side high voltage instruction value signal V C2 + has a form in which a minute fluctuation is repeatedly generated, and this is given to the positive side high voltage generation circuit 3 via the adder 54 as in the static eliminator of FIG. Then, the high voltage generation circuit 3 generates a high voltage V + having a level proportional to the positive side high voltage instruction value signal V C2 +.
Given to.

【0218】前記演算手段99は、サンプルホールド器
103から得られる正側高電圧指示値信号VC2+ を平滑
化するフィルタ104と、正側高電圧指示値信号VC2+
を微分する微分器105と、該微分器105の出力を入
力とする正のピークホールド器106と、フィルタ10
4及びピークホールド器106の出力信号のレベルの比
を求める割算器107とにより構成され、ピークホール
ド器106は、正側高電圧指示値信号VC2+ が微小減少
する時間T(図9参照)における正側高電圧指示値信号
C2+ の時間的変化率、すなわち高電圧V+ の時間的変
化率dV+ /dtに相当するレベルの電圧信号を割算器
107に出力する。そして、フィルタ104は、高電圧
+ の平均レベルに相当する正側高電圧指示値信号V
C2+ の平均レベルを割算器107に出力する。
The arithmetic means 99 has a filter 104 for smoothing the positive side high voltage instruction value signal V C2 + obtained from the sample and hold unit 103, and a positive side high voltage instruction value signal V C2 +.
Differentiator 105 for differentiating, a positive peak hold device 106 having an output of the differentiator 105 as an input, and a filter 10
4 and a divider 107 for obtaining the ratio of the output signal levels of the peak hold device 106, and the peak hold device 106 has a time T (see FIG. 9) at which the positive side high voltage instruction value signal V C2 + slightly decreases. The voltage signal of a level corresponding to the temporal change rate of the positive side high voltage instruction value signal V C2 + at, that is, the temporal change rate dV + / dt of the high voltage V + is output to the divider 107. Then, the filter 104 outputs the positive side high voltage instruction value signal V corresponding to the average level of the high voltage V +.
The average level of C2 + is output to the divider 107.

【0219】これにより割算器107は、微小時間T内
における高電圧V+ とその時間的変化率dV+ /dtと
の比の値K+ を示すレベルの電圧信号VK+を生成し、該
比の値K+ が得られることとなる。
As a result, the divider 107 generates a voltage signal V K + having a level indicating the value K + of the ratio between the high voltage V + and the temporal change rate dV + / dt within the minute time T. A ratio value K + will be obtained.

【0220】前記第1の有効除電電流検出手段96は、
前記微分器18の出力を入力とするピークホールド器1
08と、該ピークホールド器108の出力及び前記割算
器107の出力を乗算する乗算器109とにより構成さ
れ、ピークホールド器108は、前記図5の除電装置の
場合と同様に、正側高電圧指示値信号VC2+ が微小減少
する時間T(図9参照)における電流Iaの時間的変化
率dIa/dtに相当するレベルの電圧信号を乗算器1
09に出力する。
The first effective static elimination current detecting means 96 is
Peak hold device 1 which receives the output of the differentiator 18
08 and a multiplier 109 that multiplies the output of the peak hold unit 108 and the output of the divider 107. The multiplier 1 outputs a voltage signal of a level corresponding to the temporal change rate dIa / dt of the current Ia at the time T (see FIG. 9) at which the voltage instruction value signal V C2 + slightly decreases.
It outputs to 09.

【0221】これにより、乗算器109は、前記(3)
式に従って、正側有効除電電流I1+を検出し、その検出
値を示すレベルの電圧信号V1+を高電圧制御手段98の
比較器51等に出力する。
As a result, the multiplier 109 has the above (3)
According to the equation, the positive side effective static elimination current I 1+ is detected, and the voltage signal V 1+ of the level indicating the detected value is output to the comparator 51 of the high voltage control means 98 or the like.

【0222】これと同様に、前記第1の電極・筐体間無
効電流検出手段97は、微分器20の出力側に設けられ
たピークホールド器110と乗算器111とにより構成
され、乗算器111から、前記(5)式に従って、正側
電極・筐体間無効電流I2+の検出値を示す電圧信号V2+
を警報手段34等に出力する構成としている。
Similarly, the first electrode-chassis reactive current detecting means 97 is composed of a peak hold device 110 and a multiplier 111 provided on the output side of the differentiator 20, and the multiplier 111. From the above, the voltage signal V 2+ indicating the detected value of the reactive current I 2+ between the positive electrode and the housing is calculated according to the equation (5).
Is output to the alarm means 34 and the like.

【0223】このように、本実施例の除電装置において
は、正側高電圧指示値信号VC2+ の微小変動を指数関数
的微小変動とせずに、前記比の値K+ を求めることで、
前記(3),(5)式に従って正側有効除電電流I1+
び正側電極・筐体間無効電流I2+を検出することができ
る。そして、それらの検出値から、前記図5の除電装置
と全く同様にして負側有効除電電流I1-や、負側電極・
筐体間無効電流I2-、電極間無効電流I3 が検出され、
従って、イオンバランスの制御や放電状態の監視等を図
5の除電装置の場合と同様に行うことができる。
As described above, in the static eliminator of this embodiment, the value K + of the ratio is obtained by determining the minute fluctuation of the positive side high voltage instruction value signal V C2 + as an exponential minute fluctuation.
The positive side effective static elimination current I 1+ and the positive side electrode-chassis reactive current I 2+ can be detected according to the equations (3) and (5). Then, based on those detected values, the negative side effective static elimination current I 1− and the negative side electrode
The reactive current I 2 − between the casings and the reactive current I 3 between the electrodes are detected,
Therefore, the ion balance control, the discharge state monitoring, and the like can be performed in the same manner as in the case of the static eliminator of FIG.

【0224】尚、本実施例においては、本発明の第1の
態様に対応させて説明したが、例えば本発明の第2の態
様に対応する図7の実施例においても本実施例と同様の
構成を適用することができる。この場合には、本実施例
における放電電流検出手段29,30、有効電流差分検
出手段17及び電極・筐体間無効電流差分検出手段19
に代えて、図7の実施例における放電電流検出手段8
2,83、有効電流差分検出手段80及び電極・筐体間
無効電流差分検出手段81を備えればよい。
Although the present embodiment has been described in association with the first aspect of the present invention, for example, the embodiment of FIG. 7 corresponding to the second aspect of the present invention is also similar to the present embodiment. Configurations can be applied. In this case, the discharge current detection means 29, 30, the active current difference detection means 17 and the electrode-chassis reactive current difference detection means 19 in this embodiment.
Instead of the discharge current detecting means 8 in the embodiment of FIG.
2, 83, active current difference detecting means 80, and electrode / casing reactive current difference detecting means 81 may be provided.

【0225】また、本実施例においては、正側の比の値
+ を求める場合について説明したが、負側の高電圧V
+ に微小変動を生ぜしめて、負側の比の値K- を求める
場合も同様に行うことができる。
In this embodiment, the case where the positive side ratio value K + is obtained has been described, but the negative side high voltage V
+ To be caused a slight change, the negative ratio of the value K - can be performed similarly when seeking.

【0226】また、本実施例においては、正側高電圧指
示値信号VC1+ に微小変動を生ぜしめるために、正弦波
信号を用いたが、これに限らず、三角波やのこぎり波
等、各種の波形信号を用いることができる。
Further, in the present embodiment, the sine wave signal is used in order to cause a slight fluctuation in the positive side high voltage instruction value signal V C1 +, but the present invention is not limited to this, and various kinds of waves such as a triangular wave and a sawtooth wave are used. Waveform signals can be used.

【0227】また、本実施例においては、筐体7が導電
材料からなる場合について説明したが、前記図5や図7
の除電装置の場合と同様に、筐体7が絶縁材料からなる
場合においても本実施例と同様の除電装置を構成するこ
とができ、さらに、図5や図7の除電装置において説明
したような各種の変形態様が可能である。
Further, although the case where the housing 7 is made of a conductive material has been described in the present embodiment, the case shown in FIG.
As in the case of the static eliminator, the static eliminator similar to that of the present embodiment can be configured even when the housing 7 is made of an insulating material, and further, as described in the static eliminator of FIGS. 5 and 7. Various modifications are possible.

【0228】[0228]

【発明の効果】上記の説明から明らかなように、本発明
によれば、筐体の材質が導電材料及び絶縁材料のいずれ
であっても、外部接地用抵抗等を適切に接続すると共
に、前記(1),(2)の関係を微小時間づづ満たすよ
うに各高電圧生成回路から各放電電極に付与する高電圧
+ ,V- を制御することで、各放電電極に流れる放電
電流のうち、除電に寄与する正負のイオンを生成する正
側及び負側有効除電電流を簡単な構成で検出することが
でき、従って、各有効除電電流を制御することで、除電
に寄与する正負のイオンの生成を制御することができ
る。そして、各有効除電電流は、その総量が検出される
ので、その検出を確実に行うことができ、従って、除電
に寄与する正負のイオンの総生成量を確実に所望通りに
制御することができる。
As is apparent from the above description, according to the present invention, regardless of whether the casing material is a conductive material or an insulating material, an external grounding resistor or the like is appropriately connected, and By controlling the high voltages V + and V applied to each discharge electrode from each high voltage generation circuit so that the relationship of (1) and (2) is satisfied for each minute, the discharge current flowing in each discharge electrode is controlled. , The positive and negative side effective static elimination currents that generate positive and negative ions contributing to static elimination can be detected with a simple configuration. Therefore, by controlling each effective static elimination current, the positive and negative ions contributing to static elimination can be Generation can be controlled. Then, since the total amount of each effective static elimination current is detected, the detection can be reliably performed, and thus the total production amount of positive and negative ions contributing to static elimination can be surely controlled as desired. .

【0229】さらに、筐体接地用抵抗等を適切に接続す
ることで、筐体が導電材料であるか絶縁材料であるかに
応じて、各電極・筐体間無効電流や電極間無効電流をも
簡単な構成で検出することができ、それらの検出を行う
ことで、放電状態の良否等、除電装置の作動状態を適切
に監視することができる。
Further, by properly connecting the case grounding resistor and the like, the reactive current between each electrode and the case and the reactive current between the electrodes can be determined depending on whether the case is a conductive material or an insulating material. Can be detected with a simple configuration, and by performing these detections, the operating state of the static eliminator, such as whether or not the discharge state is good, can be appropriately monitored.

【0230】また、各高電圧生成回路の制御に際して
は、各高電圧V+ ,V- の値を指示する各高電圧指示値
を前記微小時間を含む小時間内において略一定となるよ
うに生成すると共に、一方の高電圧指示値に前記微小時
間内において微小変動を生ぜしめることで、比較的簡単
な構成で前記(1),(2)の関係を満たすように各高
電圧V+ ,V- を制御することができ、従って、前述の
効果を奏する除電装置を簡単に構成することができる。
Further, in controlling each high voltage generation circuit, each high voltage instruction value for instructing the value of each high voltage V + , V is generated so as to be substantially constant within a small time including the minute time. At the same time, by causing a minute fluctuation in one of the high voltage indication values within the minute time, each of the high voltages V + and V can satisfy the relations (1) and (2) with a relatively simple configuration. - it can be controlled, thus, it is possible to easily configure static eliminator with the effects described above.

【0231】特に、前記微小変動を指数関数的微小変動
とすることで、外部接地用抵抗の電圧から検出される両
有効除電電流の差分の電流Iaの時間的変化率dIa/
dtを求めれば、その時間的変化率dIa/dtにより
直接的に一方の有効除電電流を検出することができ、各
有効除電電流を検出するための構成を極めて簡単なもの
とすることができる。また、そのような指数関数的微小
変動は、抵抗及びコンデンサからなる極めて簡単な時定
数回路を用いて構成することができる。従って、前述の
効果を奏する除電装置を簡単且つ安価な構成で提供する
ことができる。
In particular, by setting the minute fluctuations to be exponential minute fluctuations, the temporal change rate dIa / dIa /
If dt is obtained, one effective static elimination current can be directly detected by the temporal change rate dIa / dt, and the configuration for detecting each effective static elimination current can be made extremely simple. Further, such an exponential minute fluctuation can be configured by using an extremely simple time constant circuit composed of a resistor and a capacitor. Therefore, it is possible to provide a static eliminator having the above-mentioned effects with a simple and inexpensive structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の態様の基本原理を説明するため
の説明図。
FIG. 1 is an explanatory diagram for explaining a basic principle of a first aspect of the present invention.

【図2】本発明の第2の態様の基本原理を説明するため
の説明図。
FIG. 2 is an explanatory diagram for explaining a basic principle of a second aspect of the present invention.

【図3】本発明の第3の態様の基本原理を説明するため
の説明図。
FIG. 3 is an explanatory diagram for explaining a basic principle of a third aspect of the present invention.

【図4】本発明の第4の態様の基本原理を説明するため
の説明図。
FIG. 4 is an explanatory diagram for explaining a basic principle of a fourth aspect of the present invention.

【図5】本発明の第1の態様の一実施例の除電装置の回
路構成図。
FIG. 5 is a circuit configuration diagram of a static eliminator according to an embodiment of the first aspect of the present invention.

【図6】図5の除電装置の作動を説明するための線図。FIG. 6 is a diagram for explaining the operation of the static eliminator of FIG.

【図7】本発明の第2の態様の一実施例の除電装置の回
路構成図。
FIG. 7 is a circuit configuration diagram of a static eliminator according to an embodiment of the second aspect of the present invention.

【図8】本発明の第1の態様の他の実施例の除電装置の
回路構成図。
FIG. 8 is a circuit configuration diagram of a static eliminator according to another embodiment of the first aspect of the present invention.

【図9】図8の除電装置の作動を説明するための線図。9 is a diagram for explaining the operation of the static eliminator of FIG.

【符号の説明】[Explanation of symbols]

1,2…放電電極、3,4…高電圧生成回路、5,6…
トランス、7…筐体、10…外部接地部、11,13,
14…外部接地用抵抗、12,15,16…筐体接地用
抵抗、17,80…有効電流差分検出手段、18…第1
の微分手段、19,81…電極・筐体間無効電流差分検
出手段、20…第2の微分手段、21,22,98…高
電圧制御手段、25,96…第1の有効除電電流検出手
段、26…第2の有効除電電流検出手段、27,97…
第1の電極・筐体間無効電流検出手段、28…第2の電
極・筐体間無効電流検出手段、29,30,82,83
…放電電流検出手段、31…電極間無効電流検出手段、
46,52…指示値生成手段、53,100…指示値加
工手段、58…抵抗、59…コンデンサ。
1, 2 ... Discharge electrodes, 3, 4 ... High-voltage generation circuit, 5, 6 ...
Transformer, 7 ... Housing, 10 ... External grounding portion, 11, 13,
14 ... External grounding resistance, 12, 15, 16 ... Casing grounding resistance, 17, 80 ... Active current difference detecting means, 18 ... First
Differentiating means, 19, 81 ... Electrode / casing reactive current difference detecting means, 20 ... Second differentiating means 21, 22, 98 ... High voltage control means, 25, 96 ... First effective static elimination current detecting means , 26 ... Second effective static elimination current detecting means, 27, 97 ...
First electrode / casing reactive current detecting means, 28 ... Second electrode / casing reactive current detecting means, 29, 30, 82, 83
... discharge current detection means, 31 ... inter-electrode reactive current detection means,
46, 52 ... Indication value generating means, 53, 100 ... Indication value processing means, 58 ... Resistor, 59 ... Capacitor.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】正側放電電極及び負側放電電極と、各放電
電極にそれぞれ二次側コイルの一端を接続してなる正側
トランス及び負側トランスと、各トランスを介して各放
電電極に正の高電圧及び負の高電圧を生成・付与する正
側高電圧生成回路及び負側高電圧生成回路と、前記放電
電極を外方に向けて該放電電極、前記トランス及び高電
圧生成回路を収納した導電材料から成る筐体とを備えた
除電装置において、 前記正側トランス及び負側トランスの二次側コイルの接
地端である他端を互いに接続せしめると共に、その接続
部を前記筐体の外部の外部接地部に外部接地用抵抗を介
して接続し、さらに、両トランスの二次側コイルの接地
端の接続部に前記筐体を接続し、 各放電電極の放電時に流れる電流のうち、除電に寄与す
るイオンを生成する正側有効除電電流(I1+) 及び負側
有効除電電流(I1-)の差(Ia=I1+−I1-)を前記
外部接地用抵抗に生じる電圧により検出する有効電流差
分検出手段と、 前記各放電電極に前記各高電圧生成回路により付与され
る正側高電圧(V+ )及び負側高電圧(V- )の時間的
変化率(dV+ /dt及びdV- /dt)が 【数1】 の関係を微小時間づづ繰り返し満たし、且つ、該微小時
間内における前記正側高電圧(V+ )及び負側高電圧
(V- )の変化量(ΔV+ ,ΔV- )が ΔV+ ≪V+ 及びΔV- ≪V- ……(2) の関係を満たすように各高電圧生成回路を制御する高電
圧制御手段と、 前記微小時間内において前記有効電流差分検出手段によ
り得られた両有効除電電流(I1+,I1-)の差(Ia)
の時間的変化率(dIa/dt)を求める微分手段と、 前記両有効除電電流(I1+,I1-)の一方の有効除電電
流(I1+又はI1-)を 【数2】 の関係式を用いて求める第1の有効除電電流検出手段
と、 他方の有効除電電流(I1-又はI1+)を、前記有効電流
差分検出手段により得られた両有効除電電流(I1+,I
1-)の差(Ia=I1+−I1-)と前記第1の有効除電電
流検出手段により得られた正側有効除電電流(I1+) 又
は負側有効除電電流(I1-)とから減算演算又は加算演
算により求める第2の有効除電電流検出手段とを備え、 各有効除電電流検出手段により得られた各有効除電電流
(I1+,I1-)を制御することにより、除電に寄与する
正負のイオンの生成を制御することを特徴とする除電装
置。
1. A positive-side discharge electrode and a negative-side discharge electrode, a positive-side transformer and a negative-side transformer in which one end of a secondary-side coil is connected to each discharge electrode, and each discharge electrode via each transformer. A positive-side high-voltage generating circuit and a negative-side high-voltage generating circuit that generate and give a positive high voltage and a negative high voltage, and the discharge electrode, the transformer, and the high-voltage generating circuit with the discharge electrode facing outward. In a static eliminator provided with a housing made of a conductive material that is housed, the other ends of the secondary coils of the positive side transformer and the negative side transformer, which are grounding ends, are connected to each other, and the connecting portion is connected to the casing. It is connected to an external external grounding part through an external grounding resistance, and the case is connected to the connection part of the grounding ends of the secondary coils of both transformers. Generates ions that contribute to static elimination Positive effective charge removing current (I 1+) and negative effective charge removing current (I 1-) of the difference (Ia = I 1+ -I 1-) is detected by a voltage generated in the external grounding resistor effective current difference detection time rate of change of (dV + / dt and dV - means a positive side high voltage (V +) and negative high voltage is applied to the each discharge electrodes by the respective high voltage generating circuit (V) - / dt ) Is [Equation 1] Of the positive side high voltage (V + ) and the negative side high voltage (V ) within the minute time, the change amounts (ΔV + , ΔV ) are ΔV + << V + and ΔV - «V - ...... and the high voltage control means for controlling each high voltage generating circuit so as to satisfy the relation (2), both active neutralization current obtained by the effective current difference detection means in said short time Difference between (I 1+ , I 1− ) (Ia)
The differential means for obtaining the temporal change rate (dIa / dt) of the effective static elimination current (I 1+ or I 1− ) of both the effective static elimination currents (I 1+ , I 1− ) Of the first effective charge removing current detecting means for determining by using the relational expression, the other effective neutralizing current (I 1-or I 1+), and both active neutralization current obtained by the effective current difference detecting means (I 1 + , I
1− ) (Ia = I 1+ −I 1− ) and the positive side effective static elimination current (I 1+ ) or negative side effective static elimination current (I 1− ) obtained by the first effective static elimination current detection means. ) And second effective static elimination current detection means obtained by subtraction calculation or addition arithmetic operation, and controlling each effective static elimination current (I 1+ , I 1- ) obtained by each effective static elimination current detection means. A static eliminator that controls generation of positive and negative ions that contribute to static elimination.
【請求項2】前記両トランスの二次側コイルの接地端の
接続部に前記筐体を筐体接地用抵抗を介して接続し、 各放電電極の放電時に流れる電流のうち、正側放電電極
及び負側放電電極と前記筐体との間でそれぞれ流れる正
側電極・筐体間無効電流(I2+)及び負側電極・筐体間
無効電流(I2-)の差(Ib=I2+−I2-)を前記筐体
接地用抵抗に生じる電圧により検出する電極・筐体間無
効電流差分検出手段と、 前記微小時間内において前記電極・筐体間無効電流差分
検出手段により得られた両電極・筐体間無効電流
(I2+,I2-)の差(Ib)の時間的変化率(dIb/
dt)を求める第2の微分手段と、 前記両電極・筐体間無効電流(I2+,I2-)の一方の電
極・筐体間無効電流(I1+又はI2-)を 【数3】 の関係式を用いて求める第1の電極・筐体間無効電流検
出手段と他方の電極・筐体間無効電流(I2-又はI2+
を、前記電極・筐体間無効電流差分検出手段により得ら
れた両電極・筐体間無効電流(I2+,I2-)の差(Ib
=I2+−I2-)と前記第1の電極・筐体間無効電流検出
手段により得られた正側電極・筐体間無効電流(I2+)
又は負側電極・筐体間無効電流(I2-)とから減算演算
又は加算演算により求める第2の電極・筐体間無効電流
検出手段とを備えたことを特徴とする請求項1記載の除
電装置。
2. The positive side discharge electrode of the current flowing at the time of discharge of each discharge electrode, wherein the case is connected to a connection part of the ground ends of the secondary side coils of the both transformers via a case grounding resistor. And a difference (Ib = I) between the reactive current (I 2+ ) between the positive electrode and the housing and the reactive current (I 2− ) between the negative electrode and the housing that respectively flow between the negative discharge electrode and the housing. 2+ −I 2− ) is detected by the electrode / chassis reactive current difference detection means for detecting the voltage generated in the case grounding resistance, and the electrode / case reactive current difference detection means within the minute time. Change rate (dIb /) of the difference (Ib) in the reactive current (I 2+ , I 2− ) between the two electrodes and the housing
a second differentiating means for obtaining dt), and a reactive current (I 1+ or I 2− ) between one electrode and the case of the reactive current (I 2+ , I 2− ) between the electrodes and the case Number 3] The first electrode-chassis reactive current detection means and the other electrode-chassis reactive current (I 2− or I 2+ )
Is a difference (Ib) between the reactive currents (I 2+ , I 2− ) between the electrodes and the housing obtained by the reactive current difference detecting means between the electrodes and the housing.
= I 2+ −I 2− ) and the reactive current between the positive electrode and the housing (I 2+ ) obtained by the first-electrode-to-housing reactive current detection means.
Or a second electrode-chassis reactive current detection means which is obtained by subtraction calculation or addition calculation from the negative side electrode-chassis reactive current (I 2- ). Static eliminator.
【請求項3】少なくとも前記両放電電極のうちの一方の
放電電極の全放電電流(IS+又はI S-)を検出する放電
電流検出手段と、 該放電電流検出手段により得られた全放電電流(IS+
はIS-)からこれに対応する前記有効除電電流(I1+
はI1-)及び電極・筐体間無効電流(I2+又はI2-)を
減算することにより前記両放電電極間で流れる電極間無
効電流(I3 )を求める電極間無効電流検出手段とを備
えたことを特徴とする請求項2記載の除電装置。
3. At least one of the discharge electrodes
Total discharge current of discharge electrode (IS +Or I S-) To detect discharge
Current detection means and the total discharge current (IS +or
Is IS-) Corresponding to the effective static elimination current (I1+or
Is I1-) And the reactive current between the electrode and the housing (I2+Or I2-)
By subtracting, there is no gap between the electrodes that flows between the two discharge electrodes.
Effective current (I3) Is provided between the electrodes.
The static eliminator according to claim 2, which is obtained.
【請求項4】正側放電電極及び負側放電電極と、各放電
電極にそれぞれ二次側コイルの一端を接続してなる正側
トランス及び負側トランスと、各トランスを介して各放
電電極に正の高電圧及び負の高電圧を生成・付与する正
側高電圧生成回路及び負側高電圧生成回路と、前記放電
電極を外方に向けて該放電電極、前記トランス及び高電
圧生成回路を収納した導電材料から成る筐体とを備えた
除電装置において、 前記正側トランス及び負側トランスの二次側コイルの接
地端である他端を直列に接続された一対の外部接地用抵
抗を介して互いに接続すると共に、両外部接地用抵抗の
中点を前記筐体の外部の外部接地部に接続し、さらに、
少なくとも一方のトランスの二次側コイルの接地端と前
記外部接地用抵抗との接続部に前記筐体を接続し、 各放電電極の放電時に流れる電流のうち、除電に寄与す
るイオンを生成する正側有効除電電流(I1+) 及び負側
有効除電電流(I1-)の差(Ia=I1+−I1-)を前記
一対の外部接地用抵抗にそれぞれ生じる電圧の差により
検出する有効電流差分検出手段と、 前記各放電電極に前記各高電圧生成回路により付与され
る正側高電圧(V+ )及び負側高電圧(V- )の時間的
変化率(dV+ /dt及びdV- /dt)が 【数4】 の関係を微小時間づづ繰り返し満たし、且つ、該微小時
間内における前記正側高電圧(V+ )及び負側高電圧
(V- )の変化量(ΔV+ ,ΔV- )が ΔV+ ≪V+ 及びΔV- ≪V- ……(2) の関係を満たすように各高電圧生成回路を制御する高電
圧制御手段と、 前記微小時間内において前記有効電流差分検出手段によ
り得られた両有効除電電流(I1+,I1-)の差(Ia)
の時間的変化率(dIa/dt)を求める微分手段と、 前記両有効除電電流(I1+,I1-)の一方の有効除電電
流(I1+又はI1-)を 【数5】 の関係式を用いて求める第1の有効除電電流検出手段
と、 他方の有効除電電流(I1-又はI1+)を、前記有効電流
差分検出手段により得られた両有効除電電流(I1+,I
1-)の差(Ia=I1+−I1-)と前記第1の有効除電電
流検出手段により得られた正側有効除電電流(I1+) 又
は負側有効除電電流(I1-)とから減算演算又は加算演
算により求める第2の有効除電電流検出手段とを備え、 各有効除電電流検出手段により得られた各有効除電電流
(I1+,I1-)を制御することにより、除電に寄与する
正負のイオンの生成を制御することを特徴とする除電装
置。
4. A positive-side discharge electrode and a negative-side discharge electrode, a positive-side transformer and a negative-side transformer each of which is connected to one end of a secondary-side coil, and each discharge electrode via each transformer. A positive-side high-voltage generating circuit and a negative-side high-voltage generating circuit that generate and give a positive high voltage and a negative high voltage, and the discharge electrode, the transformer, and the high-voltage generating circuit with the discharge electrode facing outward. In a static eliminator provided with a housing made of a conductive material housed therein, the other end, which is the ground end of the secondary coil of the positive transformer and the negative transformer, is connected in series via a pair of external grounding resistors. Connected to each other, the middle point of both external grounding resistors is connected to the external grounding portion outside the casing, and
The casing is connected to the connection between the grounding end of the secondary coil of at least one of the transformers and the external grounding resistor, and a positive electrode that generates ions that contribute to static elimination, out of the current that flows during discharge of each discharge electrode, is generated. The difference (Ia = I 1+ −I 1− ) between the side effective static elimination current (I 1+ ) and the negative side effective static elimination current (I 1− ) is detected by the difference between the voltages generated in the pair of external grounding resistors. Active current difference detection means, and the rate of change with time (dV + / dt) of the positive side high voltage (V + ) and the negative side high voltage (V ) applied to each of the discharge electrodes by each of the high voltage generating circuits. dV - / dt) is [number 4] Of the positive side high voltage (V + ) and the negative side high voltage (V ) within the minute time, the change amounts (ΔV + , ΔV ) are ΔV + << V + and ΔV - «V - ...... and the high voltage control means for controlling each high voltage generating circuit so as to satisfy the relation (2), both active neutralization current obtained by the effective current difference detection means in said short time Difference between (I 1+ , I 1− ) (Ia)
Differentiating means for obtaining the time change rate (dIa / dt) of the effective static elimination current (I 1+ or I 1− ) of both effective static elimination currents (I 1+ , I 1− ) Of the first effective charge removing current detecting means for determining by using the relational expression, the other effective neutralizing current (I 1-or I 1+), and both active neutralization current obtained by the effective current difference detecting means (I 1 + , I
1− ) (Ia = I 1+ −I 1− ) and the positive side effective static elimination current (I 1+ ) or negative side effective static elimination current (I 1− ) obtained by the first effective static elimination current detection means. ) And second effective static elimination current detection means obtained by subtraction calculation or addition arithmetic operation, and controlling each effective static elimination current (I 1+ , I 1- ) obtained by each effective static elimination current detection means. A static eliminator that controls generation of positive and negative ions that contribute to static elimination.
【請求項5】前記両トランスの二次側コイルの接地端と
前記一対の外部接地用抵抗との接続部にそれぞれ各別の
筐体接地用抵抗を介して前記筐体を接続し、 各放電電極の放電時に流れる電流のうち、正側放電電極
及び負側放電電極と前記筐体との間でそれぞれ流れる正
側電極・筐体間無効電流(I2+)及び負側電極・筐体間
無効電流(I2-)の差(Ib=I2+−I2-)を前記各筐
体接地用抵抗に生じる電圧の差により検出する電極・筐
体間無効電流差分検出手段と、 前記微小時間内において前記電極・筐体間無効電流差分
検出手段により得られた両電極・筐体間無効電流
(I2+,I2-)の差(Ib)の時間的変化率(dIb/
dt)を求める第2の微分手段と、 前記両電極・筐体間無効電流(I2+,I2-)の一方の電
極・筐体間無効電流(I2+又はI2-)を 【数6】 の関係式を用いて求める第1の電極・筐体間無効電流検
出手段と、 他方の電極・筐体間無効電流を、前記電極・筐体間無効
電流差分検出手段により得られた両電極・筐体間無効電
流(I2+,I2-)の差(Ib=I2+−I2-)と前記第1
の電極・筐体間無効電流検出手段により得られた正側電
極・筐体間無効電流(I2+) 又は負側電極・筐体間無効
電流(I2-)とから減算演算又は加算演算により求める
第2の電極・筐体間無効電流検出手段とを備えたことを
特徴とする請求項4記載の除電装置。
5. The casings are connected to the connecting portions of the grounding ends of the secondary side coils of the both transformers and the pair of external grounding resistors through the respective casing grounding resistors, and each discharge is performed. Among the currents that flow when the electrodes are discharged, the reactive current (I 2+ ) between the positive side electrode and the case and the negative side electrode and the case that respectively flow between the positive side discharge electrode and the negative side discharge electrode and the case. An electrode / chassis reactive current difference detecting means for detecting a difference (Ib = I 2+ −I 2− ) in the reactive current (I 2− ) by a difference in voltage generated in the resistances for grounding the respective casings; The time change rate (dIb /) of the difference (Ib) between the reactive currents (I 2+ , I 2 − ) between the electrodes and the housing, which is obtained by the reactive current difference detecting means between the electrodes and the housing within the time.
a second differentiating means for obtaining dt), and a reactive current (I 2+ or I 2− ) between one electrode and the case of the reactive current (I 2+ , I 2− ) between both electrodes and the case Number 6] The first electrode-chassis reactive current detection means obtained by using the relational expression of and the other electrode-chassis reactive current is obtained by the electrode-chassis reactive current difference detection means. The difference (Ib = I 2+ −I 2 − ) between the reactive currents (I 2+ , I 2− ) between the cases and the first
Subtraction operation or addition operation from the positive current between the positive electrode and the housing (I 2+ ) or the negative current between the negative electrode and the housing (I 2− ) obtained by the reactive current detection means between the electrode and the housing 5. The static eliminator according to claim 4, further comprising: a second electrode-casing reactive current detection means obtained by
【請求項6】少なくとも前記両放電電極のうちの一方の
放電電極の全放電電流(IS+又はI S-)を検出する放電
電流検出手段と、 該放電電流検出手段により得られた全放電電流(IS+
はIS-)からこれに対応する前記有効除電電流(I1+
はI1-)及び電極・筐体間無効電流(I2+又はI2-)を
減算することにより前記両放電電極間で流れる電極間無
効電流(I3 )を求める電極間無効電流検出手段とを備
えたことを特徴とする請求項5記載の除電装置。
6. At least one of the two discharge electrodes
Total discharge current of discharge electrode (IS +Or I S-) To detect discharge
Current detection means and the total discharge current (IS +or
Is IS-) Corresponding to the effective static elimination current (I1+or
Is I1-) And the reactive current between the electrode and the housing (I2+Or I2-)
By subtracting, there is no gap between the electrodes that flows between the two discharge electrodes.
Effective current (I3) Is provided between the electrodes.
The static eliminator according to claim 5, which is obtained.
【請求項7】正側放電電極及び負側放電電極と、各放電
電極にそれぞれ二次側コイルの一端を接続してなる正側
トランス及び負側トランスと、各トランスを介して各放
電電極に正の高電圧及び負の高電圧を生成・付与する正
側高電圧生成回路及び負側高電圧生成回路と、前記放電
電極を外方に向けて該放電電極、前記トランス及び高電
圧生成回路を収納した絶縁材料から成る筐体とを備えた
除電装置において、 前記正側トランス及び負側トランスの二次側コイルの接
地端である他端を互いに接続せしめると共に、その接続
部を前記筐体の外部の外部接地部に外部接地用抵抗を介
して接続し、 各放電電極の放電時に流れる電流のうち、除電に寄与す
るイオンを生成する正側有効除電電流(I1+) 及び負側
有効除電電流(I1-)の差(Ia=I1+−I1-)を前記
外部接地用抵抗に生じる電圧により検出する有効電流差
分検出手段と、 前記各放電電極に前記各高電圧生成回路により付与され
る正側高電圧(V+ )及び負側高電圧(V- )の時間的
変化率(dV+ /dt及びdV- /dt)が 【数7】 の関係を微小時間づづ繰り返し満たし、且つ、該微小時
間内における前記正側高電圧(V+ )及び負側高電圧
(V- )の変化量(ΔV+ ,ΔV- )が ΔV+ ≪V+ 及びΔV- ≪V- ……(2) の関係を満たすように各高電圧生成回路を制御する高電
圧制御手段と、 前記微小時間内において前記有効電流差分検出手段によ
り得られた両有効除電電流(I1+,I1-)の差(Ia)
の時間的変化率(dIa/dt)を求める微分手段と、 前記両有効除電電流(I1+,I1-)の一方の有効除電電
流(I1+又はI1-)を 【数8】 の関係式を用いて求める第1の有効除電電流検出手段
と、 他方の有効除電電流(I1-又はI1+)を、前記有効電流
差分検出手段により得られた両有効除電電流(I1+,I
1-)の差(Ia=I1+−I1-)と、前記第1の有効除電
電流検出手段により得られた正側有効除電電流(I1+)
又は負側有効除電電流(I1-)とから減算演算又は加算
演算により求める第2の有効除電電流検出手段を備え、 各有効除電電流検出手段により得られた各有効除電電流
(I1+,I1-)を制御することにより、除電に寄与する
正負のイオンの生成を制御することを特徴とする除電装
置。
7. A positive-side discharge electrode and a negative-side discharge electrode, a positive-side transformer and a negative-side transformer in which one end of a secondary-side coil is connected to each discharge electrode, and each discharge electrode via each transformer. A positive-side high-voltage generating circuit and a negative-side high-voltage generating circuit that generate and give a positive high voltage and a negative high voltage, and the discharge electrode, the transformer, and the high-voltage generating circuit with the discharge electrode facing outward. In a static eliminator provided with a housing made of an insulating material housed therein, the other ends of the secondary side coils of the positive side transformer and the negative side transformer, which are grounding ends, are connected to each other, and the connecting portion is connected to the casing. Positive side effective charge removal current (I 1+ ) and negative side effective charge removal that generate ions that contribute to charge removal from the current that flows when discharging each discharge electrode by connecting to an external grounding part via an external grounding resistor. Difference in current (I 1− ) (Ia = I 1 + −I 1− ) by means of a voltage generated in the resistance for external grounding, effective current difference detection means, and a positive side high voltage (V + ) applied to each discharge electrode by each high voltage generation circuit, The negative side high voltage (V ) changes with time (dV + / dt and dV / dt) are as follows: Of the positive side high voltage (V + ) and the negative side high voltage (V ) within the minute time, the change amounts (ΔV + , ΔV ) are ΔV + << V + and ΔV - «V - ...... and the high voltage control means for controlling each high voltage generating circuit so as to satisfy the relation (2), both active neutralization current obtained by the effective current difference detection means in said short time Difference between (I 1+ , I 1− ) (Ia)
Differentiating means for obtaining a temporal change rate (dIa / dt) of the effective static elimination current (I 1+ or I 1- ) of both effective static elimination currents (I 1+ , I 1- ) Of the first effective charge removing current detecting means for determining by using the relational expression, the other effective neutralizing current (I 1-or I 1+), and both active neutralization current obtained by the effective current difference detecting means (I 1 + , I
1− ) (Ia = I 1+ −I 1− ), and the positive side effective static elimination current (I 1+ ) obtained by the first effective static elimination current detection means.
Alternatively, a second effective static elimination current detection means for obtaining by subtraction calculation or addition calculation from the negative side effective static elimination current (I 1− ) is provided, and each effective static elimination current (I 1+ , A static eliminator characterized by controlling the generation of positive and negative ions that contribute to static elimination by controlling I 1− ).
【請求項8】正側放電電極及び負側放電電極と、各放電
電極にそれぞれ二次側コイルの一端を接続してなる正側
トランス及び負側トランスと、各トランスを介して各放
電電極に正の高電圧及び負の高電圧を生成・付与する正
側高電圧生成回路及び負側高電圧生成回路と、前記放電
電極を外方に向けて該放電電極、前記トランス及び高電
圧生成回路を収納した絶縁材料から成る筐体とを備えた
除電装置において、 前記正側トランス及び負側トランスの二次側コイルの接
地端である他端を直列に接続された一対の外部接地用抵
抗を介して互いに接続すると共に、両外部接地用抵抗の
中点を前記筐体の外部の外部接地部に接続し、 各放電電極の放電時に流れる電流のうち、除電に寄与す
るイオンを生成する正側有効除電電流(I1+) 及び負側
有効除電電流(I1-)の差(Ia=I1+−I1-)を前記
一対の外部接地用抵抗に生じる電圧の差により検出する
有効電流差分検出手段と、 前記各放電電極に前記各高電圧生成回路により付与され
る正側高電圧(V+ )及び負側高電圧(V- )の時間的
変化率(dV+ /dt及びdV- /dt)が 【数9】 の関係を微小時間づづ繰り返し満たし、且つ、該微小時
間内における前記正側高電圧(V+ )及び負側高電圧
(V- )の変化量(ΔV+ ,ΔV- )が ΔV+ ≪V+ 及びΔV- ≪V- ……(2) の関係を満たすように各高電圧生成回路を制御する高電
圧制御手段と、 前記微小時間内において前記有効電流差分検出手段によ
り得られた両有効除電電流(I1+,I1-)の差(Ia)
の時間的変化率(dIa/dt)を求める微分手段と、 前記両有効除電電流(I1+,I1-)の一方の有効除電電
流(I1+又はI1-)を 【数10】 の関係式を用いて求める第1の有効除電電流検出手段
と、 他方の有効除電電流(I1-又はI1+)を、前記有効電流
差分検出手段により得られた両有効除電電流(I1+,I
1-)の差(Ia=I1+−I1-)と前記第1の有効除電電
流検出手段により得られた正側有効除電電流(I1+) 又
は負側有効除電電流(I1-)とから減算演算又は加算演
算により求める第2の有効除電電流検出手段を備え、 各有効除電電流検出手段により得られた各有効除電電流
(I1+,I1-)を制御することにより、除電に寄与する
正負のイオンの生成を制御することを特徴とする除電装
置。
8. A positive side discharge electrode and a negative side discharge electrode, a positive side transformer and a negative side transformer in which one end of a secondary side coil is connected to each discharge electrode, and each discharge electrode is connected via each transformer. A positive-side high-voltage generating circuit and a negative-side high-voltage generating circuit that generate and give a positive high voltage and a negative high voltage, and the discharge electrode, the transformer, and the high-voltage generating circuit with the discharge electrode facing outward. In a static eliminator provided with a housing made of an insulating material housed therein, the other end, which is the ground end of the secondary coil of the positive transformer and the negative transformer, is connected in series via a pair of external grounding resistors. Connected to each other, and the middle point of both external grounding resistors is connected to the external grounding part outside the casing, and positive side effective to generate ions that contribute to static elimination in the current flowing at the time of discharge of each discharge electrode. neutralization current (I 1+) and negative effective The effective current difference detecting means for detecting the difference in DENDEN flow (I 1-) of the difference (Ia = I 1+ -I 1-) the voltage generated in the pair of external grounding resistors, each said each discharge electrode The time change rates (dV + / dt and dV / dt) of the positive side high voltage (V + ) and the negative side high voltage (V ) given by the high voltage generation circuit are as follows. Of the positive side high voltage (V + ) and the negative side high voltage (V ) within the minute time, the change amounts (ΔV + , ΔV ) are ΔV + << V + and ΔV - «V - ...... and the high voltage control means for controlling each high voltage generating circuit so as to satisfy the relation (2), both active neutralization current obtained by the effective current difference detection means in said short time Difference between (I 1+ , I 1− ) (Ia)
And a differential means for obtaining a temporal change rate (dIa / dt) of the effective static elimination current (I 1+ or I 1− ) of both the effective static elimination currents (I 1+ , I 1− ) Of the first effective charge removing current detecting means for determining by using the relational expression, the other effective neutralizing current (I 1-or I 1+), and both active neutralization current obtained by the effective current difference detecting means (I 1 + , I
1− ) (Ia = I 1+ −I 1− ) and the positive side effective static elimination current (I 1+ ) or negative side effective static elimination current (I 1− ) obtained by the first effective static elimination current detection means. ) And second effective static elimination current detecting means obtained by subtraction calculation or addition arithmetic operation, and by controlling each effective static elimination current (I 1+ , I 1- ) obtained by each effective static elimination current detecting means, A static eliminator that controls generation of positive and negative ions that contribute to static elimination.
【請求項9】少なくとも前記両放電電極のうちの一方の
放電電極の全放電電流(IS+又はI S-)を検出する放電
電流検出手段と、 該放電電流検出手段により得られた全放電電流(IS+
はIS-)から前記有効除電電流(I1+又はI1-)を減算
することにより前記両放電電極間で流れる電極間無効電
流(I3 )を求める電極間無効電流検出手段とを備えた
ことを特徴とする請求項7又は8記載の除電装置。
9. At least one of the two discharge electrodes
Total discharge current of discharge electrode (IS +Or I S-) To detect discharge
Current detection means and the total discharge current (IS +or
Is IS-) To the effective static elimination current (I1+Or I1-) Subtracted
By doing so, the inter-electrode reactive current flowing between the discharge electrodes is
Flow (I3) For detecting the reactive current between electrodes
The static eliminator according to claim 7 or 8, characterized in that.
【請求項10】前記各高電圧生成回路は、前記高電圧制
御手段から与えられる正側高電圧指示値及び負側高電圧
指示値に応じた高電圧(V+ ,V- )を生成する回路で
あって、 前記高電圧制御手段は、前記正側高電圧指示値及び負側
高電圧指示値を前記微小時間を含む小時間内において略
一定として生成する正側指示値生成手段及び負側指示値
生成手段と、 該正側指示値生成手段又は負側指示値生成手段により生
成された正側高電圧指示値又は負側高電圧指示値に微小
変動を前記微小時間づづ繰り返し生ぜしめる指示値加工
手段とを備え、 該指示値加工手段により微小変動を生ぜしめた正側高電
圧指示値又は負側高電圧指示値をこれに対応する高電圧
生成回路に付与すると共に、他の高電圧指示値をこれに
対応する高電圧生成回路に前記負側指示値生成手段又は
正側指示値生成手段から付与することにより、前記
(1),(2)の関係を満たすように各高電圧生成回路
を制御することを特徴とする請求項1乃至9のいずれか
に記載の除電装置。
10. Each of the high voltage generation circuits generates a high voltage (V + , V ) corresponding to a positive side high voltage instruction value and a negative side high voltage instruction value given from the high voltage control means. Wherein the high-voltage control means generates the positive-side high-voltage instruction value and the negative-side high-voltage instruction value as substantially constant within a small time including the minute time, and a positive-side instruction value generating means and a negative-side instruction. Value generating means and instruction value processing for repeatedly producing minute fluctuations in the positive side high voltage instruction value or the negative side high voltage instruction value generated by the positive side instruction value generating means or the negative side instruction value generating means at the minute time intervals. Means for providing a positive side high voltage instruction value or a negative side high voltage instruction value, which has caused a minute variation by the instruction value processing means, to a corresponding high voltage generation circuit, and another high voltage instruction value. The negative voltage to the corresponding high voltage generation circuit. 10. The high voltage generating circuits are controlled so as to satisfy the relationship of (1) and (2) by giving from the instruction value generating means or the positive side instruction value generating means. The static eliminator according to any one.
【請求項11】前記指示値加工手段による前記正側高電
圧指示値又は負側高電圧指示値の微小変動は、前記
(3),(4)の関係式における正側高電圧(V+ )と
その時間的変化率dV+ /dtとの比の値又は負側高電
圧(V- )とその時間的変化率dV - /dtとの比の値
が一定となる指数関数的微小変動であり、 前記第1の有効除電電流検出手段は、前記(3),
(4)の関係式における前記比の値を一定値として、前
記微分手段により得られた前記時間的変化率(dIa/
dt)により前記正側有効除電電流(I1+) 又は負側有
効除電電流(I1-)を求めることを特徴とする請求項1
0記載の除電装置。
11. The positive side high voltage by the indicated value processing means
A slight change in the pressure indication value or the negative side high voltage indication value is
Positive side high voltage (V in the relational expressions (3) and (4)+)When
The rate of change dV with time+Value of ratio with / dt or negative high voltage
Pressure (V-) And its rate of change dV with time -Value of ratio with / dt
Is a small exponentially small variation, and the first effective static elimination current detecting means is
If the value of the ratio in the relational expression (4) is set to a constant value,
The temporal change rate (dIa /
dt), the positive side effective static elimination current (I1+) Or with negative side
Effective static elimination current (I1-) Is obtained.
The static eliminator according to item 0.
【請求項12】前記正側指示値生成手段及び負側指示値
生成手段は、前記正側高電圧指示値及び負側高電圧指示
値をこれに対応したレベルの指示値信号として生成し、 前記指示値加工手段は、抵抗及びコンデンサから成る時
定数回路を用いて前記指示値信号のレベルに指数関数的
微小変動を生ぜしめることを特徴とする請求項11記載
の除電装置。
12. The positive side instruction value generating means and the negative side instruction value generating means generate the positive side high voltage instruction value and the negative side high voltage instruction value as an instruction value signal having a level corresponding to the positive side high voltage instruction value and the negative side high voltage instruction value, respectively. 12. The static eliminator according to claim 11, wherein the instruction value processing means uses a time constant circuit made up of a resistor and a capacitor to cause an exponential minute change in the level of the instruction value signal.
JP21139994A 1994-09-05 1994-09-05 Static eliminator Expired - Fee Related JP3647905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21139994A JP3647905B2 (en) 1994-09-05 1994-09-05 Static eliminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21139994A JP3647905B2 (en) 1994-09-05 1994-09-05 Static eliminator

Publications (2)

Publication Number Publication Date
JPH0878183A true JPH0878183A (en) 1996-03-22
JP3647905B2 JP3647905B2 (en) 2005-05-18

Family

ID=16605330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21139994A Expired - Fee Related JP3647905B2 (en) 1994-09-05 1994-09-05 Static eliminator

Country Status (1)

Country Link
JP (1) JP3647905B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092888A (en) * 2004-09-24 2006-04-06 Kasuga Electric Works Ltd Alarm device of blast type ion generator
JP2006253151A (en) * 1998-09-18 2006-09-21 Illinois Tool Works Inc <Itw> Method for controlling positive and negative ion output current, balancing method, electric ionization device, and ionization system and circuit
JP2008124035A (en) * 2008-01-07 2008-05-29 Keyence Corp Static eliminator
WO2008099515A1 (en) * 2007-02-13 2008-08-21 Kazuo Okano Testing method and testing device for corona discharge type ionizer
JP2009125725A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
JP2011054579A (en) * 2010-12-10 2011-03-17 Keyence Corp Static eliminator
JP2011142109A (en) * 2011-04-22 2011-07-21 Keyence Corp Static eliminating apparatus
US8587917B2 (en) 2011-04-08 2013-11-19 Keyence Corporation Static eliminator and static elimination control method
CN114698212A (en) * 2020-12-31 2022-07-01 上海安平静电科技有限公司 Method for facilitating miniaturization of static elimination device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092804A1 (en) * 1998-09-18 2012-04-19 Illinois Tool Works Inc. Low Voltage Modular Room Ionization System
US7391599B2 (en) 1998-09-18 2008-06-24 Illinois Tool Works Inc. Low voltage modular room ionization system
US8861166B2 (en) 1998-09-18 2014-10-14 Illinois Tool Works, Inc. Low voltage modular room ionization system
US7924544B2 (en) 1998-09-18 2011-04-12 Illinois Tool Works Inc. Low voltage modular room ionization system
JP2006253151A (en) * 1998-09-18 2006-09-21 Illinois Tool Works Inc <Itw> Method for controlling positive and negative ion output current, balancing method, electric ionization device, and ionization system and circuit
JP2012064593A (en) * 1998-09-18 2012-03-29 Illinois Tool Works Inc <Itw> Method of controlling positive and negative ion output currents, method of balancing the ion output currents, electric ionization device, and ionization system and circuit
JP2010199086A (en) * 1998-09-18 2010-09-09 Illinois Tool Works Inc <Itw> Balancing method of positive ion output current and negative ion output current, and electric ionization device
US7161788B2 (en) 1998-09-18 2007-01-09 Illinois Tool Works Inc. Low voltage modular room ionization system
JP2006092888A (en) * 2004-09-24 2006-04-06 Kasuga Electric Works Ltd Alarm device of blast type ion generator
WO2008099515A1 (en) * 2007-02-13 2008-08-21 Kazuo Okano Testing method and testing device for corona discharge type ionizer
KR101272669B1 (en) * 2007-02-13 2013-06-10 가즈오 오카노 Testing method and testing device for corona discharge type ionizer
JP2009125725A (en) * 2007-11-27 2009-06-11 Panasonic Electric Works Co Ltd Electrostatic atomization apparatus
JP2008124035A (en) * 2008-01-07 2008-05-29 Keyence Corp Static eliminator
JP2011054579A (en) * 2010-12-10 2011-03-17 Keyence Corp Static eliminator
US8587917B2 (en) 2011-04-08 2013-11-19 Keyence Corporation Static eliminator and static elimination control method
JP2011142109A (en) * 2011-04-22 2011-07-21 Keyence Corp Static eliminating apparatus
CN114698212A (en) * 2020-12-31 2022-07-01 上海安平静电科技有限公司 Method for facilitating miniaturization of static elimination device

Also Published As

Publication number Publication date
JP3647905B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
JP4328858B2 (en) Bipolar ion generation method and apparatus
JP2004104923A (en) Method and apparatus for detecting insulation resistance
JPH0878183A (en) Static eliminator
CN104115350A (en) An ionization monitoring device and method
JPH11218554A (en) Leak detector of electric vehicle
TWI616118B (en) Methods for optimizing performance of a static neutralizing power supply and static neutralizing apparatus
CN106463915B (en) Self balancing micropulse ionizes blower
IL208218A (en) Method of automatic ion balance control in bipolar ion generators and device thereof
KR20190086556A (en) The control system of the micro-pulse ionizer blower which is equalized
JP2709030B2 (en) Method and apparatus for detecting cleaning time of electric dust collector
US10983147B2 (en) Monitoring apparatus and method for monitoring an AC voltage source, which is DC-decoupled from a reference potential
US11959951B2 (en) Method for estimating the insulation resistance of a high-voltage circuit in an electric or hybrid motor vehicle
JP2019198174A (en) Charging control device
JP2005077348A (en) Discharge performance evaluation device and discharge performance evaluation method
KR20200143343A (en) Method and apparatus for correcting measurement error in battery management system
KR102425984B1 (en) Active ionization control with closed loop feedback and interleaved sampling
JP3014867B2 (en) Discharge detection device in vacuum equipment using discharge
JPH0668398U (en) Discharge monitoring device in static eliminator
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JP3391310B2 (en) Insulation resistance measuring device for capacitive electronic components
JP2546571B2 (en) Spark discharge detection method and device for high voltage electrode of electrostatic coating device
JPH0765261A (en) Human body detecting device
JP2597861Y2 (en) Ion concentration measurement device
JPS6324611Y2 (en)
KR102533878B1 (en) Method and apparatus for correcting measurement error in battery management system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Effective date: 20050210

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080218

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120218

LAPS Cancellation because of no payment of annual fees