JP2004104923A - Method and apparatus for detecting insulation resistance - Google Patents

Method and apparatus for detecting insulation resistance Download PDF

Info

Publication number
JP2004104923A
JP2004104923A JP2002264582A JP2002264582A JP2004104923A JP 2004104923 A JP2004104923 A JP 2004104923A JP 2002264582 A JP2002264582 A JP 2002264582A JP 2002264582 A JP2002264582 A JP 2002264582A JP 2004104923 A JP2004104923 A JP 2004104923A
Authority
JP
Japan
Prior art keywords
insulation resistance
amplitude level
voltage
signal
resistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002264582A
Other languages
Japanese (ja)
Other versions
JP3957598B2 (en
Inventor
Naohisa Morimoto
森本 直久
Toshihiro Katsuta
勝田 敏宏
Kenji Uchida
内田 健司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Priority to JP2002264582A priority Critical patent/JP3957598B2/en
Publication of JP2004104923A publication Critical patent/JP2004104923A/en
Application granted granted Critical
Publication of JP3957598B2 publication Critical patent/JP3957598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To judge in a short time whether the insulation resistance between a high-voltage circuit and a chassis when a vehicle is started, and detect the insulation resistance with accuracy and stability without the influences of a high-voltage battery while the vehicle is running. <P>SOLUTION: A first coupling capacitor 341 and a second coupling capacitor 342 either ends of which are respectively connected with the total negative portion and the total positive portion of the high-voltage battery 12 are provided. Thus, the offset voltage of a resistor 33 is prevented from being produced due to fluctuation in the voltage of the high-voltage battery. Further, drop in insulation resistance is detected at an insulation resistance detecting portion 381 in a short time. This detection is carried out based on the difference between a first amplitude level computed at some point in time from the peak level of signals sampled by an analog-to-digital converter 37 every half cycle of a signal generated by a signal generator 31, and a second amplitude level computed a half cycle later. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電気自動車(PEV)、ハイブリッド車両(HEV)等の電動車両に塔載される高電圧バッテリである組電池からの直流電力をリレーを介してインバータにより交流電力に変換してモータに供給して走行する電動車両の絶縁抵抗を検出する技術に関する。
【0002】
【従来の技術】
従来より、電気自動車(PEV)や、エンジンとモータを備えたいわゆるハイブリッド車両(HEV)等において、モータを駆動する際の主電源として、その高いエネルギー密度(すなわち、コンパクトにエネルギーを蓄積できる)と高い出力密度の点から、ニッケル−水素(Ni−MH)二次電池が主に使用されている。かかるPEVやHEVには、モータに対して十分な出力を供給できるように、単電池を複数個組み合わせて1つの組電池とし、その組電池が高電圧バッテリとして塔載されている。
【0003】
このようなHEV等は、高電圧バッテリを駆動源としてモータを駆動制御するための高電圧回路と、低電圧バッテリを駆動源として音響機器などの電子機器を駆動するための低電圧回路とを有している。また、高電圧回路には、モータ駆動用のインバータが含まれる。
【0004】
HEV等の電動車両では、人体に対する安全性を確保するため、高電圧回路と車両のシャーシとの間の絶縁抵抗の値が十分大きいかを検出し、漏電により絶縁抵抗の値が低下した場合、ドライバー等に警告する、もしくは高電圧バッテリからの電力を遮断する。
【0005】
図4は、従来の電動車両の部分構成を示す機能ブロック図である。図4において、電動車両100は、モータなどの高電圧負荷11を駆動制御する高電圧回路10と、各種電子機器などの低電圧負荷21を駆動する低電圧回路20と、高電圧回路10とシャーシとの間の絶縁抵抗を検出する絶縁抵抗検出装置300とを有している。
【0006】
高電圧回路10には、高電圧バッテリ12と、高電圧バッテリ12からの電力を高電圧負荷11側に対して導通または遮断する第2のスイッチ部13と、高電圧負荷11を駆動制御するインバータ14と、インバータ14の高電位入力端子とシャーシとの間に接続された抵抗15と、インバータ14の低電位入力端子とシャーシとの間に接続された抵抗16とが含まれる。
【0007】
高電圧バッテリ12は、直列に接続された複数の二次電池(例えば、Ni−MH二次電池)121で構成されており、電動車両100を走行させる駆動源としてのモータを回転駆動させるのに必要な高電圧(例えば、288V)を出力可能としている。第2のスイッチ部13は、リレーなどで構成されており、モータなどの高電圧負荷11を駆動させるのに必要な所定以上の電流容量を有している。インバータ14は、モータ(例えば、3相交流モータ)を回転駆動させるべく、高電圧バッテリ12からの直流電流を交流電流に変換する機能を有し、その入力部には動作を安定化するために、大容量の平滑用コンデンサ141が設けられている。抵抗15(抵抗値R1)と抵抗16(抵抗値R2)は、インバータ14の平滑用コンデンサ141へのプリチャージ終了を充電電圧に基づいて判定するため、大きな抵抗値を有する(なお、充電電圧の検出回路は図示していない)。
【0008】
低電圧回路20には、低電圧バッテリ22と、低電圧負荷21との間の接続制御を可能とする第1のスイッチ部23とが含まれる。
【0009】
低電圧バッテリ22は、直列に接続された複数の二次電池221で構成されており、イルミネーション表示部211や、電子機器としての音響機器212(例えば、ラジオやステレオ)などの低電圧負荷21を駆動させるのに必要な低電圧(例えば、12V)を出力可能としている。第1のスイッチ部23は、イグニッションキースイッチであり、車両全体の電気系統をオン/オフ制御する。第1のスイッチ部23は、第2のスイッチ部13に連動しており、第1のスイッチ部23のオン操作で第2のスイッチ部13もオン動作し、第1のスイッチ部23のオフ操作で第2のスイッチ部13もオフ動作するようになっている。
【0010】
絶縁抵抗検出装置300には、所定周波数(例えば、1Hz)の正弦波または方形波信号を出力する信号発生器31と、信号発生器31からの信号を所定レベルにまで増幅する増幅器32と、高電圧回路10とシャーシとの間の絶縁抵抗(不図示)に応じて、増幅器32からの信号を減衰させるための抵抗33と、抵抗33の一端と高電圧バッテリ12の総マイナス端子との間に接続された結合コンデンサ34と、増幅器32から抵抗33を介した信号の高周波成分を除去する低域通過フィルタ(LPF)35と、LPF35からの信号を所定レベルにまで増幅する増幅器36と、増幅器36からの信号を1周期間隔(例えば、信号周波数を1Hzとした場合、1sec)でデータ更新し、ディジタル信号に変換するA/Dコンバータ37と、A/Dコンバータ37からのディジタル信号を受けるマイクロコンピュータ(μCOM)38とが含まれる。μCOM38には、A/Dコンバータ37からのディジタル信号を所定の閾値と比較して絶縁抵抗の低下有り無しを判定する絶縁抵抗検出部381’が含まれる。
【0011】
また、40は、第1のスイッチ部23のオン操作信号を受けて、絶縁抵抗検出部381’からの検出終了信号が絶縁抵抗の低下無しを示す場合、第2のスイッチ部13をオン状態にし、絶縁抵抗検出部381’からの検出終了信号が絶縁抵抗の低下有りを示す場合、第2のスイッチ部13をオフ状態にするスイッチ制御部である。
【0012】
絶縁抵抗検出部381’は、まず車両起動時に、スイッチ制御部40を介して第2のスイッチ部13をオフ状態のままにし、A/Dコンバータ37からのディジタル信号を所定の閾値と比較し、高電圧バッテリ12とシャーシとの間の絶縁抵抗が所定値(例えば、100kΩ)以下になり、ディジタル信号が低下して閾値以下となった場合に絶縁抵抗の低下を検出し、その検出信号を、スイッチ制御部40に出力するとともに、イルミネーション表示部211に出力し、その表示ランプを点灯させる。
【0013】
スイッチ制御部40は、第1のスイッチ部23のオン操作信号を受けて、絶縁抵抗検出部381’からの検出信号が絶縁抵抗の低下無しを示す場合、第2のスイッチ部13をオン状態にし、絶縁抵抗検出部381’からの検出信号が絶縁抵抗の低下有りを示す場合、第2のスイッチ部13をオフ状態のままにする。
【0014】
車両起動時に、高電圧バッテリ12とシャーシとの間の絶縁抵抗が正常であった場合、第2のスイッチ部13がオン状態となり、高電圧バッテリ12からの直流電力がインバータ14により交流電力に変換され、モータに供給されて電動車両100が走行できる状態になる。車両走行時にも、絶縁抵抗検出部381’は、第2のスイッチ部13からインバータ14までの経路とシャーシとの間の絶縁抵抗が低下していないかを判定する。
【0015】
【発明が解決しようとする課題】
車両起動時に、第2のスイッチ部13をオフ状態にして、高電圧バッテリ12とシャーシとの間の絶縁抵抗の低下がなく、正常であると判定した場合でも、第2のスイッチ部13からインバータ14までの経路とシャーシとの絶縁抵抗が低下している場合がある。
【0016】
この場合、第2のスイッチ部13をオン状態にした瞬間、結合コンデンサ34に充放電電流が流れ、A/Dコンバータ37への入力信号のレベルがA/D変換範囲を超えてしまい、信号レベルがゼロであるとみなされて、絶縁抵抗異常と誤判定されることになる。この問題について、図5A、図5Bおよび図5Cを用いて以下で説明する。
【0017】
図5A、図5B、および図5Cは、それぞれ、インバータ14の入力側とシャーシとの間の絶縁抵抗が正常である場合、インバータ14の高電位入力側とシャーシとの間の絶縁抵抗が低下している場合、およびインバータ14の低電位入力側とシャーシとの間の絶縁抵抗が低下している場合における、A/Dコンバータ37への入力信号の波形図である。
【0018】
インバータ14の高電位入力側とシャーシとの間の絶縁抵抗が異常ではないまでもある程度低下している場合、抵抗15(抵抗値R1)と低下した絶縁抵抗(RL)とが並列に接続され、その合成抵抗値R1//RLが抵抗16の抵抗値R2よりも小さくなる。
【0019】
そのため、第2のスイッチ部13をオン状態にした瞬間、結合コンデンサ34にかかる電圧VCが高電圧バッテリ12の電圧VBの1/2に等しかった平衡状態(図5A)から、結合コンデンサ34にかかる電圧VCが高電圧バッテリ12の電圧VBに等しいという状態になり、抵抗33から結合コンデンサ34、抵抗16を介してシャーシへと結合コンデンサ34を充電する電流が瞬間的に流れ、図5Bに示すように、A/Dコンバータ37への入力信号のバイアスレベルがA/D変換範囲(VT−VB)を大きく下回ってしまう。
【0020】
これにより、結合コンデンサ34への充電がほぼ飽和状態になり、その結果、信号のバイアスレベルがA/Dコンバータ37の変換範囲の中間値(VM)付近に達するまでに、長い時間を要することになる。この結果、絶縁抵抗が異常と判定される程度(例えば、100kΩ)まで低下しているものとして誤検出される可能性がある。
【0021】
一方、インバータ14の低電位入力側とシャーシとの間の絶縁抵抗が異常ではないまでもある程度低下している場合、抵抗16(抵抗値R2)と低下した絶縁抵抗(RL)とが並列に接続され、その合成抵抗値R2//RLが抵抗15の抵抗値R1よりも小さくなる。
【0022】
そのため、第2のスイッチ部13をオン状態にした瞬間、結合コンデンサ34にかかる電圧VCが高電圧バッテリ12の電圧VBの1/2に等しかった平衡状態(図5A)から、結合コンデンサ34にかかる電圧VCがゼロという状態になり、シャーシから抵抗15、結合コンデンサ34を介して抵抗33へと結合コンデンサ34を放電する電流が瞬間的に流れ、図5Cに示すように、A/Dコンバータ37への入力信号のバイアスレベルがA/D変換範囲(VT−VB)を大きく上回ってしまう。
【0023】
この場合も、結合コンデンサ34への放電がほぼ飽和状態になり、その結果、信号のバイアスレベルがA/Dコンバータ37の変換範囲の中間値(VM)付近に達するまでに、長い時間を要することになる。この結果、絶縁抵抗が異常と判定される程度(例えば、100kΩ)まで低下しているものとして誤検出される可能性がある。
【0024】
上記のような誤検出を回避するためには、検出確定時間を長く設定すればよいが、その場合、人体に対する安全性の点からは好ましい対策ではない。
【0025】
また、上記従来例では、A/Dコンバータ37により、増幅器36からの信号を1周期間隔でサンプリングして、絶縁抵抗の低下を判定しているため、判定に要する時間がそれだけ長くなる。
【0026】
上記の問題に加えて、車両走行時に、高電圧バッテリ12に対する充放電が行われ、高電圧バッテリ12の電圧VBが変動するため、結合コンデンサ34を充放電する電流が抵抗33を流れることにより、絶縁抵抗検出部381’による検出精度が悪くなるという問題もある。この問題について、図6A、図6Bおよび図6Cを用いて以下で説明する。
【0027】
図6A、図6Bおよび図6Cは、それぞれ、高電圧バッテリ12の電圧変動がない場合、充電により高電圧バッテリ12の電圧が上昇した場合、および放電により高電圧バッテリ12の電圧が低下した場合における、A/Dコンバータ37への入力信号の波形図である。
【0028】
車両制動時に高電圧バッテリ12への充電が行われると、電圧VBがシャーシの接地電位を中間値として増加し、その増加した電圧分により、抵抗33を介して結合コンデンサ34に充電電流が流れる。充電電流が抵抗33を流れることにより、図6Bに示すように、そのオフセット電圧(抵抗33の抵抗値×充電電流の値)分だけA/Dコンバータ37への入力信号のバイアスレベルが図6Aの状態から下がり、絶縁抵抗を正確に検出することが困難になる。
【0029】
一方、車両加速時や登坂時等に高電圧バッテリ12から放電が行われると、電圧VBがシャーシの接地電位を中間値として減少し、その減少した電圧分により、結合コンデンサ34から抵抗33を介して放電電流が流れる。放電電流が抵抗33を流れることにより、図6Cに示すように、そのオフセット電圧(抵抗33の抵抗値×充電電流の値)分だけA/Dコンバータ37への入力信号のバイアスレベルが図6Aの状態から上がり、やはり絶縁抵抗を正確に検出することが困難になる。
【0030】
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、車両起動時に高電圧回路とシャーシとの間の絶縁抵抗が正常であるか否かをできる限り短い時間で検出し、かつ車両走行中に高電圧バッテリの電圧変動の影響を受けず、絶縁抵抗を正確かつ安定に検出することが可能な絶縁抵抗検出方法および装置を提供することにある。
【0031】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る絶縁抵抗検出方法は、例えばニッケル−水素二次電池を複数個組み合わせて成る組電池(高電圧バッテリ)からの直流電力を、リレー(第2のスイッチ部)を介してインバータにより交流電力に変換してモータに供給する高電圧回路を有する電動車両に適用され、所定周波数(例えば、1Hz)の信号を発生する信号発生器と、信号発生器の出力端子に一端が接続され、高電圧回路(組電池からリレーまでの経路、リレーからインバータまでの経路)とシャーシとの間の絶縁抵抗と協働して、信号発生器の出力信号を減衰させるための抵抗性素子と、抵抗性素子の他端と組電池からリレーまでの経路とを容量結合する容量性素子とを用いて、絶縁抵抗を検出する方法であって、抵抗性素子を介した信号の振幅レベルを半周期(T/2)毎に算出するステップと、ある時点tiで算出した第1の振幅レベルV(i)とその半周期後の時点ti+T/2で算出した第2の振幅レベルV(i+1)とを比較するステップと、比較ステップの結果、第2の振幅レベルV(i+1)が第1の振幅レベルV(i)よりも所定値Vtだけ低下した場合に、絶縁抵抗の低下を検出するステップとを含むことを特徴とする。
【0032】
この絶縁抵抗検出方法によれば、車両起動時に、リレーをオン状態にした際に、リレーからインバータまでの経路とシャーシとの間の絶縁抵抗が正常か異常であるかをできる限り短い時間で判定することができる。
【0033】
本発明に係る絶縁抵抗検出方法において、容量性素子は、抵抗性素子の他端と組電池の一方の端子との間に接続された第1の容量性素子と、抵抗性素子の他端と組電池の他方の端子との間に接続され、第1の容量性素子と同じ容量値を有する第2の容量性素子とからなることが好ましい。
【0034】
これにより、車両走行中に、高電圧バッテリの電圧が変動しても、抵抗性素子に流れる充放電電流を小さくして、抵抗性素子によるオフセット電圧を補償することで、検出対象の信号のバイアスレベルを安定化することができるので、絶縁抵抗を正確に検出することが可能になる。
【0035】
前記の目的を達成するため、本発明に係る絶縁抵抗検出装置は、例えばニッケル−水素二次電池を複数個組み合わせて成る組電池(高電圧バッテリ)からの直流電力を、リレー(第2のスイッチ部)を介してインバータにより交流電力に変換してモータに供給する高電圧回路を有する電動車両における、高電圧回路(組電池からリレーまでの経路、リレーからインバータまでの経路)とシャーシとの間の絶縁抵抗を検出する装置であって、所定周波数(例えば、1Hz)の信号を発生する信号発生器と、信号発生器の出力端子に一端が接続され、絶縁抵抗と協働して信号発生器の出力信号を減衰させるための抵抗性素子と、抵抗性素子の他端と組電池の一方の端子との間に接続された第1の容量性素子と、抵抗性素子の他端と組電池の他方の端子との間に接続され、第1の容量性素子と同じ容量値を有する第2の容量性素子と、抵抗性素子を介した信号の振幅レベルに応じて、絶縁抵抗の低下を検出する絶縁抵抗検出部とを備えたことを特徴とする。
【0036】
この絶縁抵抗検出装置によれば、車両走行中に、高電圧バッテリの電圧が変動しても、抵抗性素子に流れる充放電電流を小さくして、抵抗性素子によるオフセット電圧を補償することで、検出対象の信号のバイアスレベルを安定化することができるので、絶縁抵抗を正確に検出することが可能になる。
【0037】
本発明に係る絶縁抵抗検出装置において、絶縁抵抗検出部は、抵抗性素子を介した信号の振幅レベルを半周期(T/2)毎に算出する手段(A/Dコンバータ、絶縁抵抗検出部)と、ある時点tiで算出した第1の振幅レベルV(i)とその半周期後の時点ti+T/2で算出した第2の振幅レベルV(i+1)とを比較し、比較の結果、第2の振幅レベルV(i+1)が第1の振幅レベルV(i)よりも所定値Vtだけ低下した場合に、絶縁抵抗の低下を検出する手段(絶縁抵抗検出部)とを備えることが好ましい。
【0038】
これにより、車両起動時に、リレーをオン状態にした際に、リレーからインバータまでの経路とシャーシとの間の絶縁抵抗が正常か異常であるかをできる限り短い時間で判定することができる。
【0039】
【発明の実施の形態】
以下、本発明の好適な実施形態について、図面を参照して説明する。
【0040】
図1は、本発明の一実施形態に係る絶縁抵抗検出装置30が適用される電動車両の部分構成を示す機能ブロック図である。なお、図1において、従来例を示す図4と同様の機能および構成を有する部分については、同一の符号を付して説明を省略する。
【0041】
本実施形態が従来例と異なるのは、絶縁抵抗検出装置30に、高電圧バッテリ12の総マイナス部に一端が接続され、抵抗33の他端に他端が接続された、従来と同様の第1の結合コンデンサ341(第1の容量性素子)に加えて、高電圧バッテリ12の総プラス部に一端が接続され、抵抗33の他端に他端が接続された第2の結合コンデンサ342(第2の容量性素子)を設けた点と、従来の絶縁抵抗検出部381’とは機能が異なる絶縁抵抗検出部381を設けた点にある。
【0042】
以下、このように構成された絶縁抵抗の検出装置の動作について、図2を用いて説明する。図2は、本実施形態における絶縁抵抗検出ルーチンの処理手順を示すフローチャートである。
【0043】
図2において、イグニッションキースイッチである第1のスイッチ部23がオン操作されると(S201)、まず、第2のスイッチ部13をオフ状態にしたままで、高電圧バッテリ12側の絶縁抵抗が正常であるかどうかが確認される(S202)。なお、ステップS202での確認処理は、後述するステップS204、S205での処理と同じであるので、ここでは説明を省略する。
【0044】
ステップS202において、高電圧バッテリ12側の絶縁抵抗が正常であると確認されると、μCOM38内の絶縁抵抗検出部381は、スイッチ制御部40を介して、第2のスイッチ部13をオン状態に制御させ(S203)、計時タイマーがスタートされて(S204)、第2のスイッチ部13からインバータ14の入力側までの経路における絶縁抵抗を検出する処理に移行する。
【0045】
信号発生器31からの所定周波数(例えば、1Hz)の信号は、抵抗33(抵抗性素子)、LPF35、増幅器36を介して、μCOM38内のA/Dコンバータ37に入力され、半周期(T/2、例えば、0.5sec)毎のピークレベルがサンプリングされる(S205)。このとき、ピークレベルが正常にサンプリングされているかを判断し(S206)、この判断の結果、ピークレベルがサンプリングできない場合(No)、計時タイマーのカウント値Countが所定値Ct以上であるか否かを判断する(S207)。ここで、ステップS207では、絶縁抵抗が異常と判断できるほど低下している場合に、増幅器36からの信号は、大幅にA/D変換範囲を超えており、結合コンデンサ341、342に対する充放電が飽和レベルに達するまでの時間が、安全性を考慮した規定時間内であるか否かを判断する。
【0046】
ステップS207での判断の結果、カウント値Countが所定値Ct以上である場合(Yes)、後述するステップS211、S212、S213の処理が行われる。一方、ステップS207での判断の結果、カウント値Countが所定値Ct未満である場合、ステップS206、S207を繰り返し、信号のピークレベルがA/D変換範囲に入るまで待つ。
【0047】
ステップS206の判断の結果、ピークレベルが正常にサンプリングされた場合(Yes)、絶縁抵抗検出部381において、ある時点tiにおいて、その時点tiの半周期前(すなわち、時点ti−T/2)の最大または最小ピークレベルと時点tiの最小または最大ピークレベルとの差分から振幅レベルV(i)(第1の振幅レベル)が算出され、続いて、時点tiから半周期後の時点ti+T/2において、その時点ti+T/2の半周期前(すなわち、時点ti)の最小または最大ピークレベルと時点ti+T/2の最大または最小ピークレベルとの差分から振幅レベルV(i+1)(第2の振幅レベル)が算出される(S208)。
【0048】
次に、絶縁抵抗検出部381において、第1の振幅レベルV(i)と第2の振幅レベルV(i+1)とが比較され、V(i)とV(i+1)との差分をとった絶対値が所定値Vth未満であるか否かが判断される(S209)。ステップS209での判断の結果、V(i)とV(i+1)との差分絶対値が所定値Vth以上である場合(No)、絶縁抵抗の値は正常であると判定され(S210)、このルーチンを抜ける。
【0049】
一方、ステップS209での判断の結果、V(i)とV(i+1)との差分絶対値が所定値Vth未満である場合、絶縁抵抗検出部381は、絶縁抵抗が異常であると判定し(S211)、スイッチ制御部40を介して、第2のスイッチ部13をオフ状態に制御させ(S212)、イルミネーション表示部211における異常表示ランプを点灯させる(S213)。
【0050】
上記のステップS210において、絶縁抵抗が正常であると判定されると、車両は走行可能な状態になる。
【0051】
次に、車両走行時に、高電圧バッテリ12に対する充放電による電圧変動があっても、絶縁抵抗を正確かつ安定に検出できる原理について、図3Aおよび図3Bを用いて説明する。図3Aおよび図3Bは、それぞれ、車両走行中に充電により高電圧バッテリ12の電圧が増大した際の、従来例および本実施形態において結合コンデンサに流れる充電電流Icの経路を示す等価回路図である。
【0052】
まず、従来例では、図3Aに示すように、充電により高電圧バッテリ12の電圧が増大した際に、抵抗33(抵抗値R)を介して結合コンデンサ34に充電電流Icが流れる。そのため、オフセット電圧(R×Ic)が発生して、図6Bに示したように、A/Dコンバータ37への入力信号のバイアスレベル(DCレベル)が、A/D変換範囲の中間値VMから下がり、正確な絶縁抵抗を検出することができない。
【0053】
しかし、本実施形態では、図1に示すように、従来と同様の第1の結合コンデンサ341に加えて、高電圧バッテリ12の総プラス部に一端が接続され、抵抗33の他端に他端が接続された第2の結合コンデンサ342を設けている。このため、図3Bに示すように、抵抗R33には、充電電流Icは流れないので、オフセット電圧が発生することがない。よって、A/Dコンバータ37への入力信号のバイアスレベル(DCレベル)は、A/D変換範囲の中間値VMに設定されるので、絶縁抵抗を正確かつ安定に検出することができる。
【0054】
なお、高電圧バッテリ12の電圧が増大する場合について例示および説明したが、放電により高電圧バッテリ12の電圧が減少する場合についても同様に、絶縁抵抗を正確かつ安定に検出することができる。
【0055】
【発明の効果】
以上説明したように、本発明によれば、車両起動時に高電圧回路とシャーシとの間の絶縁抵抗が正常であるか否かをできる限り短い時間で検出し、かつ車両走行中に高電圧バッテリの電圧変動の影響を受けず、絶縁抵抗を正確かつ安定に検出することが可能になる、という格別な効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る絶縁抵抗検出装置が適用される電動車両の部分構成を示す機能ブロック図
【図2】本実施形態における絶縁抵抗検出ルーチンの処理手順を示すフローチャート
【図3A】車両走行中に充電により高電圧バッテリ12の電圧が増大した際の、従来例において結合コンデンサに流れる充電電流Icの経路を示す等価回路図
【図3B】車両走行中に充電により高電圧バッテリ12の電圧が増大した際の、本実施形態において結合コンデンサに流れる充電電流Icの経路を示す等価回路図
【図4】従来の絶縁抵抗検出装置が適用される電動車両の部分構成を示す機能ブロック図
【図5A】インバータ14の入力側とシャーシとの間の絶縁抵抗が正常である場合におけるA/Dコンバータ37への入力信号の波形図
【図5B】インバータ14の高電位入力側とシャーシとの間の絶縁抵抗が低下している場合におけるA/Dコンバータ37への入力信号の波形図
【図5C】インバータ14の低電位入力側とシャーシとの間の絶縁抵抗が低下している場合におけるA/Dコンバータ37への入力信号を波形図
【図6A】従来例において、高電圧バッテリ12の電圧変動がない場合におけるA/Dコンバータ37への入力信号の波形図
【図6B】従来例において、充電により高電圧バッテリ12の電圧が上昇した場合におけるA/Dコンバータ37への入力信号の波形図
【図6C】従来例において、放電により高電圧バッテリ12の電圧が低下した場合におけるA/Dコンバータ37への入力信号の波形図
【符号の説明】
1 電動車両
10 高電圧回路
11 高電圧負荷(モータ)
12 高電圧バッテリ(組電池)
121 二次電池
13 第2のスイッチ部
14 インバータ
141 平滑用コンデンサ
15、16 平滑用コンデンサ141の充電電圧検出用の抵抗
20 低電圧回路
21 低電圧負荷
211 イルミネーション表示部
212 音響機器
22 低電圧バッテリ
23 第1のスイッチ部
30 絶縁抵抗検出装置
31 信号発生器
32、36 増幅器
33 抵抗(抵抗性素子)
341 第1の結合コンデンサ(第1の容量性素子)
342 第2の結合コンデンサ(第2の容量性素子)
35 低域通過フィルタ(LPF)
37 A/Dコンバータ
38 マイクロコンピュータ(μCOM)
381 絶縁抵抗検出部
40 スイッチ制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention converts DC power from a battery pack, which is a high-voltage battery mounted on an electric vehicle such as an electric vehicle (PEV) or a hybrid vehicle (HEV), into AC power by an inverter via a relay through a relay, and converts the DC power into a motor. The present invention relates to a technology for detecting an insulation resistance of an electric vehicle that travels while being supplied.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in an electric vehicle (PEV), a so-called hybrid vehicle (HEV) having an engine and a motor, and the like, a high energy density (that is, energy can be stored compactly) as a main power source for driving the motor. In view of high power density, nickel-hydrogen (Ni-MH) secondary batteries are mainly used. In such PEVs and HEVs, a plurality of cells are combined into one assembled battery so that a sufficient output can be supplied to the motor, and the assembled battery is mounted as a high-voltage battery.
[0003]
Such an HEV or the like has a high-voltage circuit for driving and controlling a motor using a high-voltage battery as a driving source, and a low-voltage circuit for driving electronic devices such as audio equipment using a low-voltage battery as a driving source. are doing. Further, the high-voltage circuit includes an inverter for driving the motor.
[0004]
In an electric vehicle such as an HEV, in order to ensure safety to the human body, it is detected whether or not the value of the insulation resistance between the high-voltage circuit and the chassis of the vehicle is sufficiently large. Warn the driver or shut off the power from the high-voltage battery.
[0005]
FIG. 4 is a functional block diagram showing a partial configuration of a conventional electric vehicle. In FIG. 4, an electric vehicle 100 includes a high-voltage circuit 10 that drives and controls a high-voltage load 11 such as a motor, a low-voltage circuit 20 that drives a low-voltage load 21 such as various electronic devices, a high-voltage circuit 10 and a chassis. And an insulation resistance detecting device 300 for detecting insulation resistance between the two.
[0006]
The high-voltage circuit 10 includes a high-voltage battery 12, a second switch unit 13 that conducts or cuts off power from the high-voltage battery 12 to the high-voltage load 11, and an inverter that drives and controls the high-voltage load 11. 14, a resistor 15 connected between the high potential input terminal of the inverter 14 and the chassis, and a resistor 16 connected between the low potential input terminal of the inverter 14 and the chassis.
[0007]
The high-voltage battery 12 includes a plurality of secondary batteries (for example, Ni-MH secondary batteries) 121 connected in series, and is used to rotationally drive a motor as a drive source for driving the electric vehicle 100. A required high voltage (for example, 288 V) can be output. The second switch section 13 is configured by a relay or the like, and has a predetermined or more current capacity necessary for driving the high-voltage load 11 such as a motor. The inverter 14 has a function of converting a DC current from the high-voltage battery 12 into an AC current in order to rotationally drive a motor (for example, a three-phase AC motor). , A large-capacity smoothing capacitor 141 is provided. The resistor 15 (resistance value R1) and the resistor 16 (resistance value R2) have a large resistance value because the end of precharging of the smoothing capacitor 141 of the inverter 14 is determined based on the charging voltage. The detection circuit is not shown).
[0008]
The low-voltage circuit 20 includes a low-voltage battery 22 and a first switch unit 23 that enables connection control between the low-voltage battery 22 and the low-voltage load 21.
[0009]
The low-voltage battery 22 includes a plurality of rechargeable batteries 221 connected in series. The low-voltage battery 22 includes a low-voltage load 21 such as an illumination display unit 211 and an acoustic device 212 (for example, a radio or a stereo) as an electronic device. A low voltage (for example, 12 V) necessary for driving can be output. The first switch unit 23 is an ignition key switch, and controls on / off of an electric system of the entire vehicle. The first switch unit 23 is interlocked with the second switch unit 13, and when the first switch unit 23 is turned on, the second switch unit 13 is also turned on, and the first switch unit 23 is turned off. Accordingly, the second switch section 13 is also turned off.
[0010]
The insulation resistance detecting device 300 includes a signal generator 31 that outputs a sine wave or a square wave signal of a predetermined frequency (for example, 1 Hz), an amplifier 32 that amplifies a signal from the signal generator 31 to a predetermined level, A resistor 33 for attenuating a signal from the amplifier 32 according to an insulation resistance (not shown) between the voltage circuit 10 and the chassis, and a resistor 33 between one end of the resistor 33 and all negative terminals of the high-voltage battery 12. A coupling capacitor 34 connected thereto, a low-pass filter (LPF) 35 for removing a high-frequency component of the signal from the amplifier 32 via the resistor 33, an amplifier 36 for amplifying the signal from the LPF 35 to a predetermined level, and an amplifier 36 An A / D converter 37 that updates data from the signal at one cycle interval (for example, 1 second when the signal frequency is 1 Hz) and converts the data into a digital signal. Includes a microcomputer (μCOM) 38 which receives the digital signal from the A / D converter 37. The μCOM 38 includes an insulation resistance detection unit 381 ′ that compares the digital signal from the A / D converter 37 with a predetermined threshold to determine whether insulation resistance has decreased.
[0011]
Further, 40 receives the ON operation signal of the first switch unit 23, and sets the second switch unit 13 to the ON state when the detection end signal from the insulation resistance detection unit 381 ′ indicates that the insulation resistance has not decreased. When the detection end signal from the insulation resistance detection unit 381 ′ indicates that the insulation resistance has decreased, the switch control unit turns off the second switch unit 13.
[0012]
The insulation resistance detector 381 ′ first keeps the second switch 13 in the off state via the switch controller 40 at the time of starting the vehicle, compares the digital signal from the A / D converter 37 with a predetermined threshold, When the insulation resistance between the high-voltage battery 12 and the chassis becomes equal to or less than a predetermined value (for example, 100 kΩ) and the digital signal decreases and becomes equal to or less than the threshold value, the decrease in insulation resistance is detected. The signal is output to the switch control unit 40 and is output to the illumination display unit 211 to turn on the display lamp.
[0013]
The switch control unit 40 receives the ON operation signal of the first switch unit 23, and sets the second switch unit 13 to the ON state when the detection signal from the insulation resistance detection unit 381 ′ indicates that the insulation resistance has not decreased. When the detection signal from the insulation resistance detection unit 381 ′ indicates that the insulation resistance has decreased, the second switch unit 13 is kept off.
[0014]
If the insulation resistance between the high-voltage battery 12 and the chassis is normal when the vehicle starts, the second switch unit 13 is turned on, and the DC power from the high-voltage battery 12 is converted into AC power by the inverter 14. Then, the electric vehicle 100 is supplied to the motor and becomes ready to run. Even when the vehicle is running, the insulation resistance detection unit 381 ′ determines whether the insulation resistance between the path from the second switch unit 13 to the inverter 14 and the chassis is reduced.
[0015]
[Problems to be solved by the invention]
When the vehicle is started, the second switch unit 13 is turned off, and even if it is determined that the insulation resistance between the high-voltage battery 12 and the chassis does not decrease and that the high-voltage battery 12 is normal, the second switch unit 13 supplies the inverter to the inverter. In some cases, the insulation resistance between the path up to 14 and the chassis is reduced.
[0016]
In this case, at the moment when the second switch section 13 is turned on, a charge / discharge current flows through the coupling capacitor 34, and the level of the input signal to the A / D converter 37 exceeds the A / D conversion range, and the signal level Is considered to be zero, and it is erroneously determined that the insulation resistance is abnormal. This problem will be described below with reference to FIGS. 5A, 5B, and 5C.
[0017]
5A, 5B, and 5C show that the insulation resistance between the high potential input side of the inverter 14 and the chassis decreases when the insulation resistance between the input side of the inverter 14 and the chassis is normal. FIG. 4 is a waveform diagram of an input signal to the A / D converter 37 when the power supply is turned on and when the insulation resistance between the low potential input side of the inverter 14 and the chassis is reduced.
[0018]
If the insulation resistance between the high-potential input side of the inverter 14 and the chassis is reduced to some extent, if not abnormally, the resistance 15 (resistance R1) and the reduced insulation resistance (RL) are connected in parallel, The combined resistance value R1 // RL becomes smaller than the resistance value R2 of the resistor 16.
[0019]
Therefore, at the moment when the second switch section 13 is turned on, the voltage VC applied to the coupling capacitor 34 changes from the equilibrium state (FIG. 5A) where the voltage VC is equal to の of the voltage VB of the high-voltage battery 12. The voltage VC becomes equal to the voltage VB of the high-voltage battery 12, and the current for charging the coupling capacitor 34 from the resistor 33 to the chassis via the coupling capacitor 34 and the resistor 16 flows instantaneously, as shown in FIG. 5B. In addition, the bias level of the input signal to the A / D converter 37 is significantly lower than the A / D conversion range (VT-VB).
[0020]
As a result, the charging of the coupling capacitor 34 becomes substantially saturated. As a result, it takes a long time until the bias level of the signal reaches the vicinity of the intermediate value (VM) of the conversion range of the A / D converter 37. Become. As a result, there is a possibility that the insulation resistance is erroneously detected as being reduced to a degree determined to be abnormal (for example, 100 kΩ).
[0021]
On the other hand, when the insulation resistance between the low-potential input side of the inverter 14 and the chassis is reduced to some extent, if not abnormal, the resistance 16 (resistance R2) and the reduced insulation resistance (RL) are connected in parallel. Thus, the combined resistance value R2 // RL becomes smaller than the resistance value R1 of the resistor 15.
[0022]
Therefore, at the moment when the second switch section 13 is turned on, the voltage VC applied to the coupling capacitor 34 changes from the equilibrium state (FIG. 5A) where the voltage VC is equal to の of the voltage VB of the high-voltage battery 12. When the voltage VC becomes zero, a current for discharging the coupling capacitor 34 from the chassis to the resistor 33 via the resistor 15 and the coupling capacitor 34 flows instantaneously, and flows to the A / D converter 37 as shown in FIG. 5C. The input signal bias level greatly exceeds the A / D conversion range (VT-VB).
[0023]
Also in this case, the discharge to the coupling capacitor 34 becomes almost saturated, and as a result, it takes a long time until the bias level of the signal reaches the vicinity of the intermediate value (VM) of the conversion range of the A / D converter 37. become. As a result, there is a possibility that the insulation resistance is erroneously detected as being reduced to a degree determined to be abnormal (for example, 100 kΩ).
[0024]
To avoid the erroneous detection as described above, the detection confirmation time may be set longer, but in that case, it is not a preferable measure from the viewpoint of safety for the human body.
[0025]
Further, in the above-described conventional example, since the signal from the amplifier 36 is sampled at one cycle interval by the A / D converter 37 to determine the decrease in insulation resistance, the time required for the determination becomes longer.
[0026]
In addition to the above-mentioned problems, during traveling of the vehicle, charging and discharging of the high-voltage battery 12 is performed, and the voltage VB of the high-voltage battery 12 fluctuates. There is also a problem that the detection accuracy by the insulation resistance detecting unit 381 ′ is deteriorated. This problem will be described below with reference to FIGS. 6A, 6B, and 6C.
[0027]
6A, 6B, and 6C show the case where the voltage of the high voltage battery 12 does not fluctuate, the case where the voltage of the high voltage battery 12 increases due to charging, and the case where the voltage of the high voltage battery 12 decreases due to discharging, respectively. 3 is a waveform diagram of an input signal to the A / D converter 37. FIG.
[0028]
When the high-voltage battery 12 is charged during vehicle braking, the voltage VB increases with the ground potential of the chassis as an intermediate value, and the increased voltage causes a charging current to flow to the coupling capacitor 34 via the resistor 33. When the charging current flows through the resistor 33, as shown in FIG. 6B, the bias level of the input signal to the A / D converter 37 by the offset voltage (the resistance value of the resistor 33 × the value of the charging current) is increased as shown in FIG. From the state, it becomes difficult to accurately detect the insulation resistance.
[0029]
On the other hand, when discharging from the high-voltage battery 12 at the time of vehicle acceleration or climbing a slope, the voltage VB decreases with the ground potential of the chassis as an intermediate value. Discharge current flows. When the discharge current flows through the resistor 33, as shown in FIG. 6C, the bias level of the input signal to the A / D converter 37 by the offset voltage (the resistance value of the resistor 33 × the value of the charging current) is increased as shown in FIG. From the state, it becomes difficult to accurately detect the insulation resistance.
[0030]
The present invention has been made in view of such a problem, and an object thereof is to detect whether or not an insulation resistance between a high-voltage circuit and a chassis is normal at the time of starting a vehicle in a time as short as possible, It is another object of the present invention to provide an insulation resistance detection method and apparatus capable of detecting an insulation resistance accurately and stably without being affected by a voltage fluctuation of a high-voltage battery during running of a vehicle.
[0031]
[Means for Solving the Problems]
In order to achieve the above object, an insulation resistance detecting method according to the present invention provides a method for detecting a DC power from a battery pack (high-voltage battery) formed by combining a plurality of nickel-hydrogen secondary batteries. A signal generator that generates a signal of a predetermined frequency (for example, 1 Hz), which is applied to an electric vehicle having a high-voltage circuit that converts the power into AC power by an inverter via an inverter and supplies the power to the motor, and an output of the signal generator. One end is connected to the terminal to cooperate with the insulation resistance between the high-voltage circuit (path from the battery pack to the relay, path from the relay to the inverter) and the chassis to attenuate the output signal of the signal generator A method for detecting an insulation resistance using a resistive element of the type described above and a capacitive element for capacitively coupling the other end of the resistive element and a path from the battery pack to the relay, comprising the steps of: Calculating the amplitude level for each half cycle (T / 2), a first amplitude level V (i) calculated at a certain time point ti, and a second amplitude level calculated at a time point ti + T / 2 half a cycle after the first amplitude level V (i). Comparing the second amplitude level V (i + 1) with the level V (i + 1) by a predetermined value Vt below the first amplitude level V (i). Detecting a decrease.
[0032]
According to this insulation resistance detection method, when the vehicle is started, when the relay is turned on, it is determined in a short time as to whether the insulation resistance between the path from the relay to the inverter and the chassis is normal or abnormal. can do.
[0033]
In the insulation resistance detection method according to the present invention, the capacitive element includes a first capacitive element connected between the other end of the resistive element and one terminal of the battery pack, and the other end of the resistive element. It is preferable that a second capacitive element is connected between the other terminal of the battery pack and has the same capacitance as the first capacitive element.
[0034]
As a result, even when the voltage of the high-voltage battery fluctuates during running of the vehicle, the charge / discharge current flowing through the resistive element is reduced to compensate for the offset voltage due to the resistive element, thereby biasing the signal to be detected. Since the level can be stabilized, the insulation resistance can be accurately detected.
[0035]
In order to achieve the above object, an insulation resistance detecting device according to the present invention provides a relay (a second switch) using DC power from an assembled battery (high-voltage battery) formed by combining a plurality of nickel-hydrogen secondary batteries, for example. Section) between the high-voltage circuit (the path from the battery pack to the relay, the path from the relay to the inverter) and the chassis in an electric vehicle having a high-voltage circuit that is converted into AC power by the inverter via the inverter and supplied to the motor. A signal generator for generating a signal of a predetermined frequency (for example, 1 Hz), one end of which is connected to an output terminal of the signal generator, and cooperating with the insulation resistance. Resistive element for attenuating the output signal of the above, a first capacitive element connected between the other end of the resistive element and one terminal of the battery pack, the other end of the resistive element and the battery pack The other of A second capacitive element connected between the second capacitive element and the first capacitive element and having the same capacitance value as the first capacitive element; and an insulation for detecting a decrease in insulation resistance according to an amplitude level of a signal passing through the resistive element. And a resistance detector.
[0036]
According to this insulation resistance detection device, even when the voltage of the high-voltage battery fluctuates while the vehicle is running, the charge / discharge current flowing through the resistive element is reduced, and the offset voltage due to the resistive element is compensated for. Since the bias level of the signal to be detected can be stabilized, the insulation resistance can be accurately detected.
[0037]
In the insulation resistance detection device according to the present invention, the insulation resistance detection unit calculates an amplitude level of a signal passing through the resistive element for each half cycle (T / 2) (A / D converter, insulation resistance detection unit) Is compared with a first amplitude level V (i) calculated at a certain time point ti and a second amplitude level V (i + 1) calculated at a time point ti + T / 2 half a cycle later. When the amplitude level V (i + 1) is lower than the first amplitude level V (i) by a predetermined value Vt, it is preferable to include a means (insulation resistance detector) for detecting a decrease in insulation resistance.
[0038]
Thus, when the relay is turned on at the time of starting the vehicle, it is possible to determine in a short time as to whether the insulation resistance between the path from the relay to the inverter and the chassis is normal or abnormal.
[0039]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0040]
FIG. 1 is a functional block diagram showing a partial configuration of an electric vehicle to which an insulation resistance detecting device 30 according to one embodiment of the present invention is applied. In FIG. 1, portions having the same functions and configurations as those in FIG. 4 showing a conventional example are denoted by the same reference numerals, and description thereof will be omitted.
[0041]
The present embodiment is different from the conventional example in that the insulation resistance detecting device 30 has one end connected to the entire minus portion of the high-voltage battery 12 and the other end connected to the other end of the resistor 33, as in the conventional case. In addition to the first coupling capacitor 341 (first capacitive element), a second coupling capacitor 342 (which has one end connected to the total positive portion of the high-voltage battery 12 and the other end connected to the other end of the resistor 33) (A second capacitive element) and an insulation resistance detector 381 having a function different from that of the conventional insulation resistance detector 381 ′.
[0042]
Hereinafter, the operation of the insulation resistance detecting device thus configured will be described with reference to FIG. FIG. 2 is a flowchart illustrating a processing procedure of an insulation resistance detection routine according to the present embodiment.
[0043]
In FIG. 2, when the first switch unit 23, which is an ignition key switch, is turned on (S201), first, the insulation resistance of the high-voltage battery 12 is reduced while the second switch unit 13 is kept off. It is confirmed whether or not it is normal (S202). Note that the confirmation processing in step S202 is the same as the processing in steps S204 and S205 described later, and a description thereof will not be repeated.
[0044]
In step S202, when it is confirmed that the insulation resistance on the high-voltage battery 12 side is normal, the insulation resistance detection unit 381 in the μCOM 38 turns on the second switch unit 13 via the switch control unit 40. Then, the timer is started (S204), and the process proceeds to the process of detecting the insulation resistance in the path from the second switch section 13 to the input side of the inverter 14.
[0045]
A signal of a predetermined frequency (for example, 1 Hz) from the signal generator 31 is input to an A / D converter 37 in the μCOM 38 via a resistor 33 (resistive element), an LPF 35, and an amplifier 36, and a half cycle (T / The peak level is sampled every 2, for example, 0.5 seconds (S205). At this time, it is determined whether or not the peak level is sampled normally (S206). If the result of this determination is that the peak level cannot be sampled (No), it is determined whether or not the count value Count of the clock timer is equal to or greater than a predetermined value Ct. Is determined (S207). Here, in step S207, when the insulation resistance has decreased enough to be judged as abnormal, the signal from the amplifier 36 greatly exceeds the A / D conversion range, and charging / discharging of the coupling capacitors 341 and 342 occurs. It is determined whether the time until the saturation level is reached is within a specified time in consideration of safety.
[0046]
If the result of the determination in step S207 is that the count value Count is equal to or greater than the predetermined value Ct (Yes), the processing of steps S211, S212, and S213 described below is performed. On the other hand, if the result of the determination in step S207 is that the count value Count is less than the predetermined value Ct, steps S206 and S207 are repeated, and the process waits until the signal peak level enters the A / D conversion range.
[0047]
As a result of the determination in step S206, when the peak level has been sampled normally (Yes), the insulation resistance detecting unit 381 determines at a certain time ti a half cycle before the time ti (that is, a time ti-T / 2). An amplitude level V (i) (first amplitude level) is calculated from the difference between the maximum or minimum peak level and the minimum or maximum peak level at time ti, and then at time ti + T / 2, which is a half cycle after time ti. The amplitude level V (i + 1) (second amplitude level) from the difference between the minimum or maximum peak level half a cycle before the time point ti + T / 2 (that is, the time point ti) and the maximum or minimum peak level at the time point ti + T / 2. Is calculated (S208).
[0048]
Next, in the insulation resistance detecting section 381, the first amplitude level V (i) and the second amplitude level V (i + 1) are compared, and the absolute value obtained by calculating the difference between V (i) and V (i + 1) is obtained. It is determined whether the value is less than a predetermined value Vth (S209). If the result of the determination in step S209 is that the absolute value of the difference between V (i) and V (i + 1) is equal to or greater than a predetermined value Vth (No), it is determined that the insulation resistance value is normal (S210). Exit the routine.
[0049]
On the other hand, as a result of the determination in step S209, when the absolute value of the difference between V (i) and V (i + 1) is less than the predetermined value Vth, the insulation resistance detection unit 381 determines that the insulation resistance is abnormal ( (S211), the second switch section 13 is turned off via the switch control section 40 (S212), and the abnormality display lamp in the illumination display section 211 is turned on (S213).
[0050]
If it is determined in step S210 that the insulation resistance is normal, the vehicle is ready to run.
[0051]
Next, the principle that the insulation resistance can be accurately and stably detected even when there is a voltage fluctuation due to charging and discharging of the high-voltage battery 12 during traveling of the vehicle will be described with reference to FIGS. 3A and 3B. FIGS. 3A and 3B are equivalent circuit diagrams showing paths of the charging current Ic flowing through the coupling capacitor in the conventional example and the present embodiment, respectively, when the voltage of the high-voltage battery 12 increases due to charging while the vehicle is traveling. .
[0052]
First, in the conventional example, as shown in FIG. 3A, when the voltage of the high-voltage battery 12 increases due to charging, the charging current Ic flows through the coupling capacitor 34 via the resistor 33 (resistance value R). Therefore, an offset voltage (R × Ic) is generated, and as shown in FIG. 6B, the bias level (DC level) of the input signal to the A / D converter 37 is changed from the intermediate value VM in the A / D conversion range. As a result, the insulation resistance cannot be accurately detected.
[0053]
However, in the present embodiment, as shown in FIG. 1, in addition to the first coupling capacitor 341 as in the related art, one end is connected to the total positive portion of the high-voltage battery 12, and the other end is connected to the other end of the resistor 33. Is connected to the second coupling capacitor 342. Therefore, as shown in FIG. 3B, the charging current Ic does not flow through the resistor R33, so that no offset voltage is generated. Therefore, since the bias level (DC level) of the input signal to the A / D converter 37 is set to the intermediate value VM of the A / D conversion range, the insulation resistance can be detected accurately and stably.
[0054]
Although the case where the voltage of the high-voltage battery 12 increases has been illustrated and described, the insulation resistance can also be accurately and stably detected in the case where the voltage of the high-voltage battery 12 decreases due to discharge.
[0055]
【The invention's effect】
As described above, according to the present invention, it is possible to detect whether or not the insulation resistance between the high-voltage circuit and the chassis is normal at the time of starting the vehicle in the shortest possible time, and In this case, the insulation resistance can be accurately and stably detected without being affected by the voltage fluctuation.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a partial configuration of an electric vehicle to which an insulation resistance detection device according to an embodiment of the present invention is applied. FIG. 2 is a flowchart showing a processing procedure of an insulation resistance detection routine in the embodiment. 3A is an equivalent circuit diagram showing the path of charging current Ic flowing through the coupling capacitor in the conventional example when the voltage of high-voltage battery 12 increases due to charging during vehicle running. FIG. 4 is an equivalent circuit diagram showing the path of the charging current Ic flowing through the coupling capacitor in the present embodiment when the voltage of the reference numeral 12 increases. FIG. 4 is a functional block diagram showing a partial configuration of an electric vehicle to which a conventional insulation resistance detecting device is applied. FIG. 5A is a waveform diagram of an input signal to the A / D converter 37 when the insulation resistance between the input side of the inverter 14 and the chassis is normal. 5B: A waveform diagram of an input signal to the A / D converter 37 when the insulation resistance between the high potential input side of the inverter 14 and the chassis is reduced. [FIG. 5C] The low potential input side of the inverter 14 and the chassis FIG. 6A is a waveform diagram showing an input signal to the A / D converter 37 when the insulation resistance during the period is low. FIG. 6B is a waveform diagram of an input signal in the conventional example when the voltage of the high-voltage battery 12 is increased by charging. FIG. 6C is a waveform diagram of an input signal in the conventional example. Waveform diagram of an input signal to the A / D converter 37 when the voltage of the battery 12 decreases.
1 electric vehicle 10 high voltage circuit 11 high voltage load (motor)
12. High voltage battery (assembled battery)
121 Rechargeable Battery 13 Second Switch Unit 14 Inverter 141 Smoothing Capacitors 15 and 16 Resistor for Charging Voltage Detection of Smoothing Capacitor 141 Low Voltage Circuit 21 Low Voltage Load 211 Illumination Display Unit 212 Sound Equipment 22 Low Voltage Battery 23 First switch unit 30 Insulation resistance detector 31 Signal generator 32, 36 Amplifier 33 Resistance (resistive element)
341 first coupling capacitor (first capacitive element)
342 second coupling capacitor (second capacitive element)
35 Low Pass Filter (LPF)
37 A / D converter 38 Microcomputer (μCOM)
381 Insulation resistance detector 40 Switch controller

Claims (6)

二次電池を複数個組み合わせて成る組電池からの直流電力を、リレーを介してインバータにより交流電力に変換してモータに供給する高電圧回路を有する電動車両に適用され、所定周波数の信号を発生する信号発生器と、前記信号発生器の出力端子に一端が接続され、前記高電圧回路とシャーシとの間の絶縁抵抗と協働して、前記信号発生器の出力信号を減衰させるための抵抗性素子と、前記抵抗性素子の他端と前記組電池から前記リレーまでの経路とを容量結合する容量性素子とを用いて、前記絶縁抵抗を検出する方法であって、
前記抵抗性素子を介した信号の振幅レベルを半周期毎に算出するステップと、ある時点で算出した第1の振幅レベルとその半周期後の時点で算出した第2の振幅レベルとを比較するステップと、
前記比較ステップの結果、前記第2の振幅レベルが前記第1の振幅レベルよりも所定値だけ低下した場合に、前記絶縁抵抗の低下を検出するステップとを含むことを特徴とする絶縁抵抗検出方法。
Applied to an electric vehicle having a high voltage circuit that converts DC power from a battery pack composed of a plurality of secondary batteries into AC power by an inverter via a relay and supplies the AC power to a motor, and generates a signal of a predetermined frequency. A signal generator having one end connected to an output terminal of the signal generator and cooperating with an insulation resistor between the high-voltage circuit and a chassis to attenuate the output signal of the signal generator. A method of detecting the insulation resistance using a capacitive element and a capacitive element that capacitively couples the other end of the resistive element and a path from the battery pack to the relay,
Calculating the amplitude level of the signal passing through the resistive element every half cycle, and comparing the first amplitude level calculated at a certain time point with the second amplitude level calculated at a time point after the half cycle. Steps and
Detecting a decrease in the insulation resistance when the second amplitude level is lower than the first amplitude level by a predetermined value as a result of the comparing step. .
前記容量性素子は、
前記抵抗性素子の他端と前記組電池の一方の端子との間に接続された第1の容量性素子と、
前記抵抗性素子の他端と前記組電池の他方の端子との間に接続され、前記第1の容量性素子と同じ容量値を有する第2の容量性素子とからなることを特徴とする請求項1記載の絶縁抵抗検出方法。
The capacitive element includes:
A first capacitive element connected between the other end of the resistive element and one terminal of the battery pack;
And a second capacitive element connected between the other end of the resistive element and the other terminal of the battery pack and having the same capacitance value as the first capacitive element. Item 2. An insulation resistance detection method according to Item 1.
二次電池を複数個組み合わせて成る組電池からの直流電力を、リレーを介してインバータにより交流電力に変換してモータに供給する高電圧回路を有する電動車両における、前記高電圧回路とシャーシとの間の絶縁抵抗を検出する装置であって、
所定周波数の信号を発生する信号発生器と、
前記信号発生器の出力端子に一端が接続され、前記絶縁抵抗と協働して前記信号発生器の出力信号を減衰させるための抵抗性素子と、
前記抵抗性素子の他端と前記組電池の一方の端子との間に接続された第1の容量性素子と、
前記抵抗性素子の他端と前記組電池の他方の端子との間に接続され、前記第1の容量性素子と同じ容量値を有する第2の容量性素子と、
前記抵抗性素子を介した信号の振幅レベルに応じて、前記絶縁抵抗の低下を検出する絶縁抵抗検出部とを備えたことを特徴とする絶縁抵抗検出装置。
In an electric vehicle having a high-voltage circuit that converts DC power from a battery pack formed by combining a plurality of secondary batteries into AC power by an inverter via a relay and supplies the AC power to a motor, the high-voltage circuit and the chassis A device for detecting insulation resistance between
A signal generator for generating a signal of a predetermined frequency;
One end connected to an output terminal of the signal generator, a resistive element for attenuating an output signal of the signal generator in cooperation with the insulation resistance;
A first capacitive element connected between the other end of the resistive element and one terminal of the battery pack;
A second capacitive element connected between the other end of the resistive element and the other terminal of the battery pack and having the same capacitance value as the first capacitive element;
An insulation resistance detection device, comprising: an insulation resistance detection unit that detects a decrease in the insulation resistance according to an amplitude level of a signal passed through the resistive element.
前記絶縁抵抗検出部は、
前記抵抗性素子を介した信号の振幅レベルを半周期毎に算出する手段と、
ある時点で算出した第1の振幅レベルとその半周期後の時点で算出した第2の振幅レベルとを比較し、比較の結果、前記第2の振幅レベルが前記第1の振幅レベルよりも所定値だけ低下した場合に、前記絶縁抵抗の低下を検出する手段とを備えたことを特徴とする請求項2記載の絶縁抵抗検出装置。
The insulation resistance detection unit,
Means for calculating the amplitude level of the signal through the resistive element every half cycle,
The first amplitude level calculated at a certain time is compared with the second amplitude level calculated at a time half a cycle after the first amplitude level, and as a result of the comparison, the second amplitude level is more predetermined than the first amplitude level. 3. The insulation resistance detecting device according to claim 2, further comprising: means for detecting a decrease in the insulation resistance when the value decreases by a value.
前記二次電池はニッケル−水素二次電池である請求項1記載の絶縁抵抗検出方法。2. The method according to claim 1, wherein the secondary battery is a nickel-hydrogen secondary battery. 前記二次電池はニッケル−水素二次電池である請求項3記載の絶縁抵抗検出装置。The insulation resistance detecting device according to claim 3, wherein the secondary battery is a nickel-hydrogen secondary battery.
JP2002264582A 2002-09-10 2002-09-10 Insulation resistance detection method and apparatus Expired - Lifetime JP3957598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002264582A JP3957598B2 (en) 2002-09-10 2002-09-10 Insulation resistance detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002264582A JP3957598B2 (en) 2002-09-10 2002-09-10 Insulation resistance detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004104923A true JP2004104923A (en) 2004-04-02
JP3957598B2 JP3957598B2 (en) 2007-08-15

Family

ID=32263983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002264582A Expired - Lifetime JP3957598B2 (en) 2002-09-10 2002-09-10 Insulation resistance detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3957598B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101424A (en) * 2005-10-06 2007-04-19 Nippon Soken Inc System mounted with insulation resistance measuring instrument, and vehicle driving system
JP2007108074A (en) * 2005-10-14 2007-04-26 Nissan Motor Co Ltd Earth leakage detecting device
JP2009053133A (en) * 2007-08-29 2009-03-12 Calsonic Kansei Corp Earth fault detection circuit for vehicle
JP2009109278A (en) * 2007-10-29 2009-05-21 Nippon Soken Inc Insulation fault detecting device
JP2009264903A (en) * 2008-04-24 2009-11-12 Denso Corp Lubricating oil determining device
JP2010008356A (en) * 2008-06-30 2010-01-14 Nippon Soken Inc Insulation resistance detecting apparatus and insulation resistance detecting technique
CN101183126B (en) * 2006-11-17 2010-12-15 通用汽车环球科技运作公司 Prognostic for loss of high-voltage isolation
KR101101270B1 (en) * 2010-12-07 2012-01-04 한국 전기안전공사 System for measuring insulation resistance of green car and method therefor
KR101114317B1 (en) 2009-03-23 2012-02-14 에스케이이노베이션 주식회사 Insulation resistance measurement circuit under no influence of battery voltage
KR101114316B1 (en) 2009-03-23 2012-02-14 에스케이이노베이션 주식회사 Insulation resistance measurement circuit using operational amplifier
WO2012029214A1 (en) 2010-08-31 2012-03-08 パナソニック株式会社 Insulation resistance detection device for vehicle
JP2012177695A (en) * 2012-03-23 2012-09-13 Yaskawa Electric Corp Motor driving device
US20130106437A1 (en) * 2011-10-31 2013-05-02 Lear Corporation Insulation resistance monitoring for vehicles with high-voltage power net
CN103999308A (en) * 2011-12-20 2014-08-20 罗伯特·博世有限公司 Protection apparatus, method and power supply system
JP2014522966A (en) * 2012-04-04 2014-09-08 エルジー・ケム・リミテッド Insulation resistance measuring device having self-fault diagnosis function and self-fault diagnostic method using the same
KR101610906B1 (en) 2014-11-17 2016-04-08 현대오트론 주식회사 Apparatus for measuring isolation resistance using capacitor and method thereof
US9772392B2 (en) 2015-02-26 2017-09-26 Lear Corporation Apparatus and method for diagnosing hardware in an insulation resistance monitoring system for a vehicle
CN107643448A (en) * 2017-10-26 2018-01-30 北京广利核系统工程有限公司 Megger test detection means and detection method
JP2018064388A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Power supply system
CN108254702A (en) * 2018-01-25 2018-07-06 常州同惠电子股份有限公司 Resistance simulation device based on multiplying-type digital analog converter
CN108333428A (en) * 2017-12-30 2018-07-27 宁德时代新能源科技股份有限公司 Insulation resistance measuring apparatus and method
CN108627702A (en) * 2017-03-23 2018-10-09 奥迪股份公司 Insulated monitoring device
US10288689B2 (en) 2015-06-19 2019-05-14 Samsung Electronics Co., Ltd. Apparatus and method for detecting current leakage in battery module
WO2020147749A1 (en) * 2019-01-15 2020-07-23 宁德时代新能源科技股份有限公司 Insulation detection circuit and detection method, and battery management system
CN111579872A (en) * 2020-05-22 2020-08-25 上汽通用汽车有限公司 System and method for monitoring automobile insulation resistance in real time
WO2020262084A1 (en) * 2019-06-28 2020-12-30 三洋電機株式会社 Leakage detection device and power system for vehicle
US10882404B2 (en) 2016-10-21 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Earth fault detecting device, and electricity storage system
CN113092973A (en) * 2019-12-23 2021-07-09 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 Insulation monitoring device and method of direct current IT system
CN113841059A (en) * 2019-06-28 2021-12-24 三洋电机株式会社 Electric leakage detection device and power supply system for vehicle
CN113874738A (en) * 2019-10-29 2021-12-31 株式会社Lg新能源 Leakage current detection device, leakage current detection method, and electric vehicle
CN114414965A (en) * 2022-01-25 2022-04-29 海南大学 Vehicle-mounted high-voltage insulation state detection method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507224B (en) * 2011-11-01 2014-08-13 株洲南车时代电气股份有限公司 Alternating-current grid voltage saltation simulator
CN113795763B (en) 2019-10-31 2024-04-02 株式会社Lg新能源 Leakage detection device, leakage detection method and electric vehicle
CN111308258B (en) * 2020-04-09 2021-10-15 上海捷氢科技有限公司 System and method for testing high-low voltage coupling mechanism

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101424A (en) * 2005-10-06 2007-04-19 Nippon Soken Inc System mounted with insulation resistance measuring instrument, and vehicle driving system
JP2007108074A (en) * 2005-10-14 2007-04-26 Nissan Motor Co Ltd Earth leakage detecting device
CN101183126B (en) * 2006-11-17 2010-12-15 通用汽车环球科技运作公司 Prognostic for loss of high-voltage isolation
JP2009053133A (en) * 2007-08-29 2009-03-12 Calsonic Kansei Corp Earth fault detection circuit for vehicle
JP2009109278A (en) * 2007-10-29 2009-05-21 Nippon Soken Inc Insulation fault detecting device
JP2009264903A (en) * 2008-04-24 2009-11-12 Denso Corp Lubricating oil determining device
JP2010008356A (en) * 2008-06-30 2010-01-14 Nippon Soken Inc Insulation resistance detecting apparatus and insulation resistance detecting technique
KR101114316B1 (en) 2009-03-23 2012-02-14 에스케이이노베이션 주식회사 Insulation resistance measurement circuit using operational amplifier
KR101114317B1 (en) 2009-03-23 2012-02-14 에스케이이노베이션 주식회사 Insulation resistance measurement circuit under no influence of battery voltage
US8878543B2 (en) 2010-08-31 2014-11-04 Panasonic Corporation Vehicular insulation resistance detection apparatus
WO2012029214A1 (en) 2010-08-31 2012-03-08 パナソニック株式会社 Insulation resistance detection device for vehicle
JP4917192B1 (en) * 2010-08-31 2012-04-18 パナソニック株式会社 Insulation resistance detector for vehicles
KR101361935B1 (en) 2010-08-31 2014-02-12 파나소닉 주식회사 Insulation resistance detection device for vehicle
KR101101270B1 (en) * 2010-12-07 2012-01-04 한국 전기안전공사 System for measuring insulation resistance of green car and method therefor
CN103091557A (en) * 2011-10-31 2013-05-08 李尔公司 Insulation resistance monitoring for vehicles with high-voltage power net
US20130106437A1 (en) * 2011-10-31 2013-05-02 Lear Corporation Insulation resistance monitoring for vehicles with high-voltage power net
US8878547B2 (en) * 2011-10-31 2014-11-04 Lear Corporation Insulation resistance monitoring for vehicles with high-voltage power net
DE102012219563B4 (en) * 2011-10-31 2015-08-20 Lear Corporation Method and circuit for insulation resistance monitoring for vehicles with high-voltage power network
CN103091557B (en) * 2011-10-31 2016-08-03 李尔公司 The insulation resistance of the vehicle with high-voltage fence is monitored
CN103999308A (en) * 2011-12-20 2014-08-20 罗伯特·博世有限公司 Protection apparatus, method and power supply system
CN103999308B (en) * 2011-12-20 2016-06-15 罗伯特·博世有限公司 Protection equipment, method and energy supplying system
US9705493B2 (en) 2011-12-20 2017-07-11 Robert Bosch Gmbh Protection apparatus, method and power supply system
JP2012177695A (en) * 2012-03-23 2012-09-13 Yaskawa Electric Corp Motor driving device
JP2014522966A (en) * 2012-04-04 2014-09-08 エルジー・ケム・リミテッド Insulation resistance measuring device having self-fault diagnosis function and self-fault diagnostic method using the same
KR101610906B1 (en) 2014-11-17 2016-04-08 현대오트론 주식회사 Apparatus for measuring isolation resistance using capacitor and method thereof
US9772392B2 (en) 2015-02-26 2017-09-26 Lear Corporation Apparatus and method for diagnosing hardware in an insulation resistance monitoring system for a vehicle
US10288689B2 (en) 2015-06-19 2019-05-14 Samsung Electronics Co., Ltd. Apparatus and method for detecting current leakage in battery module
JP2018064388A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Power supply system
CN107933314A (en) * 2016-10-13 2018-04-20 丰田自动车株式会社 Electric power supply system
CN107933314B (en) * 2016-10-13 2020-09-25 丰田自动车株式会社 Power supply system
US10882404B2 (en) 2016-10-21 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Earth fault detecting device, and electricity storage system
CN108627702A (en) * 2017-03-23 2018-10-09 奥迪股份公司 Insulated monitoring device
US11150289B2 (en) 2017-03-23 2021-10-19 Audi Ag Insulation monitor
CN107643448A (en) * 2017-10-26 2018-01-30 北京广利核系统工程有限公司 Megger test detection means and detection method
CN108333428A (en) * 2017-12-30 2018-07-27 宁德时代新能源科技股份有限公司 Insulation resistance measuring apparatus and method
CN108333428B (en) * 2017-12-30 2020-09-18 宁德时代新能源科技股份有限公司 Insulation resistance measuring apparatus and method
CN108254702A (en) * 2018-01-25 2018-07-06 常州同惠电子股份有限公司 Resistance simulation device based on multiplying-type digital analog converter
CN108254702B (en) * 2018-01-25 2020-05-05 常州同惠电子股份有限公司 Resistor simulation device based on multiplication type digital-to-analog converter
US11448683B2 (en) 2019-01-15 2022-09-20 Contemporary Amperex Technology Co., Limited Insulation detection circuit, detection method and battery management system
WO2020147749A1 (en) * 2019-01-15 2020-07-23 宁德时代新能源科技股份有限公司 Insulation detection circuit and detection method, and battery management system
EP3992012A4 (en) * 2019-06-28 2022-08-10 SANYO Electric Co., Ltd. Earth leakage detecting device, and vehicular power supply system
CN113841059A (en) * 2019-06-28 2021-12-24 三洋电机株式会社 Electric leakage detection device and power supply system for vehicle
WO2020262084A1 (en) * 2019-06-28 2020-12-30 三洋電機株式会社 Leakage detection device and power system for vehicle
US11906599B2 (en) 2019-06-28 2024-02-20 Sanyo Electric Co., Ltd. Earth leakage detecting device, and vehicular power supply system
JP7554191B2 (en) 2019-06-28 2024-09-19 三洋電機株式会社 Electric leakage detection device, vehicle power supply system
CN113874738A (en) * 2019-10-29 2021-12-31 株式会社Lg新能源 Leakage current detection device, leakage current detection method, and electric vehicle
US11762022B2 (en) 2019-10-29 2023-09-19 Lg Energy Solution, Ltd. Electric leakage detection apparatus, electric leakage detection method, and electric vehicle
CN113874738B (en) * 2019-10-29 2024-05-07 株式会社Lg新能源 Leakage detection device, leakage detection method, and electric vehicle
CN113092973A (en) * 2019-12-23 2021-07-09 国创新能源汽车智慧能源装备创新中心(江苏)有限公司 Insulation monitoring device and method of direct current IT system
CN111579872A (en) * 2020-05-22 2020-08-25 上汽通用汽车有限公司 System and method for monitoring automobile insulation resistance in real time
CN114414965A (en) * 2022-01-25 2022-04-29 海南大学 Vehicle-mounted high-voltage insulation state detection method
CN114414965B (en) * 2022-01-25 2022-10-18 海南大学 Vehicle-mounted high-voltage insulation state detection method

Also Published As

Publication number Publication date
JP3957598B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
JP3957598B2 (en) Insulation resistance detection method and apparatus
US9255957B2 (en) Earth fault detection circuit and power source device
JP6633585B2 (en) Ground fault detector
JP6698599B2 (en) Ground fault detector
US20040257041A1 (en) Charging and discharging control apparatus for backup battery
JP2021043025A (en) Earth-fault detection device
JP2003194870A (en) Electric leakage detecting device
JP4572777B2 (en) In-vehicle earth insulation circuit leakage detection device
KR20140145635A (en) System and method for inductively charging a battery
US20210148993A1 (en) Ground fault detection device
WO2007026514A1 (en) Insulating resistance detection apparatus
WO2020262083A1 (en) Earth leakage detecting device, and vehicular power supply system
JP2005278241A (en) Capacity adjustment device and adjusting method of battery pack
CN112180263A (en) Battery monitoring device
JP3767150B2 (en) Battery remaining capacity detection device
JP2012138979A (en) Output equalization system of battery pack
JP6136820B2 (en) Battery monitoring device, power storage device, and battery monitoring method
JP2006115640A (en) Adjusting device for capacity of battery pack
JP2003194871A (en) Electric leakage detecting device
JP4548289B2 (en) Battery pack capacity adjustment device
JP2004347372A (en) Coupling capacitor-type electric leak detector for on-vehicle ground-insulated circuit
WO2021199490A1 (en) Electricity leakage detection device and vehicle power supply system
JP2018127085A (en) Ground fault detector and power source system
JP2005253154A (en) Power supply unit
CN112513652A (en) Internal resistance detection device and power supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3957598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term