JPH0878046A - Sodium-sulfur cell - Google Patents

Sodium-sulfur cell

Info

Publication number
JPH0878046A
JPH0878046A JP6215100A JP21510094A JPH0878046A JP H0878046 A JPH0878046 A JP H0878046A JP 6215100 A JP6215100 A JP 6215100A JP 21510094 A JP21510094 A JP 21510094A JP H0878046 A JPH0878046 A JP H0878046A
Authority
JP
Japan
Prior art keywords
sodium
solid electrolyte
electrolyte tube
active material
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6215100A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kurashima
吉彦 蔵島
Hiromochi Tsuji
博以 辻
Akihiro Bito
章博 尾藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP6215100A priority Critical patent/JPH0878046A/en
Publication of JPH0878046A publication Critical patent/JPH0878046A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a sodium-sulfur cell of such construction that a cathode active material can be restrained from suddenly reacting with sodium so as to prevent the material from leaking out of the cell in the case where a solid electrolyte tube is damaged by the abnormal condition of the cell and the cathode active material accordingly enters an anode chamber via the solid electrolyte tube. CONSTITUTION: A sodium-sulfur cell has an insulating ring 2 connectively fixed to the upper end of a cylindrical cathode container 1, with a solid electrolyte tube 3 which a sodium ion can selectively be transmitted and connected to the internal circumferential plane of the container 1. An anode chamber 6 in the solid electrolyte tube 3 has a cartridge 8 storing sodium as an anode active material arranged. A cathode chamber 4 between the cathode container 1 and the solid electrolyte tube 3 has sulfur as a cathode active material stored. A partition wall 7 is arranged between the solid electrolyte tube 3 and the cartridge 8, and it has a copper reactant 12 readily reacting with sulfur and sodium polysulfide placed upon its upper end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 この発明は、二次電池として電
力貯蔵などに利用されるナトリウム−硫黄電池に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sodium-sulfur battery used as a secondary battery for power storage and the like.

【0002】[0002]

【従来の技術】 一般に、ナトリウム−硫黄電池におい
ては、有底円筒状をなす陽極容器の上端にアルファアル
ミナよりなるリング状の絶縁体が取付固定され、この絶
縁体の内周面にベータアルミナよりなる有底円筒状の固
体電解質管がガラス接合される。この固体電解質管は、
ナトリウムイオンを選択的に透過するものであり、この
固体電解質管内の陰極室に陰極活物質としてのナトリウ
ムを収容する収容容器が配置される。また、前記陽極容
器と固体電解質管との間の陽極室には陽極活物質として
の硫黄が収容される。
2. Description of the Related Art Generally, in a sodium-sulfur battery, a ring-shaped insulator made of alpha alumina is attached and fixed to the upper end of a bottomed cylindrical anode container, and the inner peripheral surface of this insulator is made of beta alumina. The bottomed cylindrical solid electrolyte tube is glass-bonded. This solid electrolyte tube is
A sodium ion is selectively permeated, and an accommodating container for accommodating sodium as a cathode active material is arranged in the cathode chamber in the solid electrolyte tube. Further, sulfur as an anode active material is accommodated in the anode chamber between the anode container and the solid electrolyte tube.

【0003】この収容容器は、ステンレス鋼で密閉状に
形成され、容器内上部には窒素ガスが加圧状態で封入さ
れ、容器内下部にはナトリウムが収容されている。そし
て、ナトリウムが窒素ガスの圧力により、容器底部のナ
トリウム流通孔から流出される。
This container is formed of stainless steel in a hermetically sealed manner, nitrogen gas is sealed under pressure in the upper part of the container, and sodium is contained in the lower part of the container. Then, sodium is discharged from the sodium flow hole at the bottom of the container by the pressure of nitrogen gas.

【0004】放電時には収容容器内のナトリウムは、窒
素ガスの圧力でナトリウム流通孔より陰極室内へ供給さ
れ、ナトリウムイオンとなって固体電解質管を透過す
る。このナトリウムイオンは陽極室内で硫黄と反応し、
多硫化ナトリウムを生成する。逆に、充電時には陽極室
内で多硫化ナトリウムが分解し、生成したナトリウムイ
オンが固体電解質管を透過して陰極室内へ移動する。さ
らに、ナトリウムはナトリウム流通孔を通過して収容容
器内へ戻る。
At the time of discharge, the sodium in the container is supplied into the cathode chamber through the sodium flow hole by the pressure of nitrogen gas, becomes sodium ions, and permeates the solid electrolyte tube. This sodium ion reacts with sulfur in the anode chamber,
This produces sodium polysulfide. On the contrary, at the time of charging, sodium polysulfide is decomposed in the anode chamber, and the generated sodium ions permeate the solid electrolyte tube and move to the cathode chamber. Further, sodium passes through the sodium flow hole and returns into the storage container.

【0005】[0005]

【発明が解決しようとする課題】 ところが、電池の過
充電などの理由により固体電解質管が損傷を受けて亀裂
が生じた場合、その亀裂部から硫黄や多硫化ナトリウム
などの陽極活物質が陰極室側へ浸入し、陰極室内の多量
のナトリウムと反応するおそれがある。その場合、陽極
活物質とナトリウムとが爆発的に反応し、活物質が電池
の外部へ漏出するおそれがあるという問題があった。
However, when the solid electrolyte tube is damaged due to overcharge of the battery or the like and a crack is generated, the anode active material such as sulfur or sodium polysulfide is discharged from the cracked portion into the cathode chamber. There is a risk that it may enter the side and react with a large amount of sodium in the cathode chamber. In that case, there is a problem that the positive electrode active material and sodium react explosively and the active material may leak out of the battery.

【0006】この発明はこのような従来技術に存在する
問題に着目してなされたものである。その目的とすると
ころは、異常事態により固体電解質管が損傷を受け、陽
極活物質が固体電解質管を介して陰極室内に浸入した場
合、陽極活物質がナトリウムと急激に反応するのを抑制
し、活物質が電池の外部へ漏出するのを防止できるナト
リウム−硫黄電池を提供することにある。
The present invention has been made by paying attention to the problems existing in the prior art. Its purpose is to suppress the sudden reaction of the anode active material with sodium when the solid electrolyte tube is damaged due to an abnormal situation and the anode active material enters the cathode chamber through the solid electrolyte tube, An object of the present invention is to provide a sodium-sulfur battery that can prevent the active material from leaking to the outside of the battery.

【0007】[0007]

【課題を解決するための手段】 上記目的を達成するた
めに、請求項1に記載の発明のナトリウム−硫黄電池で
は、隔壁の上端に硫黄又は多硫化ナトリウムと反応する
金属よりなる反応体を配置したものである。
In order to achieve the above object, in the sodium-sulfur battery of the invention according to claim 1, a reactant made of a metal that reacts with sulfur or sodium polysulfide is arranged at the upper end of the partition wall. It was done.

【0008】また、請求項2に記載の発明では、請求項
1に記載の発明において、前記金属はリング状に形成さ
れ、隔壁の上端に係合されている。さらに、請求項3に
記載の発明では、請求項1に記載の発明において、前記
硫黄又は多硫化ナトリウムと反応する金属は、銅、銀又
はニッケルである。
According to a second aspect of the present invention, in the first aspect, the metal is formed in a ring shape and is engaged with the upper end of the partition wall. Furthermore, in the invention of claim 3, in the invention of claim 1, the metal that reacts with the sulfur or sodium polysulfide is copper, silver or nickel.

【0009】[0009]

【作用】 請求項1に記載の発明では、隔壁の上端に硫
黄又は多硫化ナトリウムと反応する金属製の反応体が配
置されている。このため、固体電解質管に亀裂が生じて
その亀裂部から硫黄や多硫化ナトリウムなどの陽極活物
質が陰極室側へ浸入した場合、その陽極活物質はナトリ
ウムと反応する前に金属製の反応体と反応する。従っ
て、陽極活物質と金属との反応生成物が障壁となって、
陽極活物質の陰極室側へのさらなる浸入が防止される。
According to the first aspect of the invention, a metallic reactant that reacts with sulfur or sodium polysulfide is arranged at the upper end of the partition wall. Therefore, when a crack occurs in the solid electrolyte tube and the anode active material such as sulfur or sodium polysulfide infiltrates into the cathode chamber side from the cracked portion, the anode active material is a metallic reactant before reacting with sodium. Reacts with. Therefore, the reaction product of the anode active material and the metal serves as a barrier,
Further infiltration of the anode active material into the cathode chamber side is prevented.

【0010】あるいは、陽極活物質と金属との反応熱に
より、固体電解質管の接合支持部が破損され、陽極室内
の不活性ガスが陰極室内へ導入される。このため、陰極
室内のナトリウムはそのガス圧により収容容器内に戻さ
れ、陽極活物質とナトリウムとの異常な反応が防止され
る。
Alternatively, the heat of reaction between the anode active material and the metal damages the joint support of the solid electrolyte tube, and the inert gas in the anode chamber is introduced into the cathode chamber. Therefore, sodium in the cathode chamber is returned to the inside of the container due to the gas pressure, and an abnormal reaction between the anode active material and sodium is prevented.

【0011】[0011]

【実施例】 以下に、この発明を具体化した実施例につ
いて図面に従って説明する。図2に示すように、陽極容
器1はアルミニウムにより形成され、有底円筒状をなし
ている。絶縁体としての絶縁リング2は、アルファアル
ミナにより形成され、陽極容器1の上端縁に接合固定さ
れている。ベータアルミナよりなる固体電解質管3は、
有底円筒状をなし、その上端が絶縁リング2の内周面に
ガラス半田により接合され、陰極活物質としてのナトリ
ウムイオンが透過可能になっている。陽極室4は陽極容
器1と固体電解質管3との間に形成され、陽極活物質と
しての硫黄Sが含浸された陽極マット5が収容されてい
る。陰極室6は、固体電解質管3の内側に形成されてい
る。有底円筒状をなすアルミニウム製の隔壁7は固体電
解質管3の内側に設けられ、固体電解質管3破損時の陽
極活物質と陰極活物質との急激な反応を防止する。
Embodiments Embodiments embodying the present invention will be described below with reference to the drawings. As shown in FIG. 2, the anode container 1 is made of aluminum and has a bottomed cylindrical shape. The insulating ring 2 as an insulator is formed of alpha alumina and is joined and fixed to the upper end edge of the anode container 1. The solid electrolyte tube 3 made of beta alumina is
It has a bottomed cylindrical shape, and its upper end is joined to the inner peripheral surface of the insulating ring 2 by glass solder so that sodium ions as a cathode active material can pass through. The anode chamber 4 is formed between the anode container 1 and the solid electrolyte tube 3 and accommodates an anode mat 5 impregnated with sulfur S as an anode active material. The cathode chamber 6 is formed inside the solid electrolyte tube 3. The bottomed cylindrical aluminum partition 7 is provided inside the solid electrolyte tube 3 to prevent a sudden reaction between the anode active material and the cathode active material when the solid electrolyte tube 3 is damaged.

【0012】ナトリウムの収容容器としてのカートリッ
ジ8は、密閉状態に形成され、内部にナトリウムNaが
収容されている。ナトリウム流通孔9は、カートリッジ
8の底部に透設されるとともに、カートリッジ8内上部
空間には窒素ガスGが加圧状態で封入されている。そし
て、放電時には、窒素ガスGの圧力により、ナトリウム
Naがナトリウム流通孔9より陰極室6内へ流出され
る。陰極蓋10は絶縁リング2の上端に接合固定されて
いる。コイルスプリング11はカートリッジ8の上面と
陰極蓋10の内面間に装着され、カートリッジ8の浮き
上がりを防止している。
The cartridge 8 as a container for containing sodium is formed in a sealed state and contains sodium Na therein. The sodium flow hole 9 is transparently provided at the bottom of the cartridge 8, and nitrogen gas G is sealed in the upper space of the cartridge 8 under pressure. Then, at the time of discharging, the pressure of the nitrogen gas G causes sodium Na to flow out from the sodium flow hole 9 into the cathode chamber 6. The cathode lid 10 is bonded and fixed to the upper end of the insulating ring 2. The coil spring 11 is mounted between the upper surface of the cartridge 8 and the inner surface of the cathode lid 10 to prevent the cartridge 8 from floating.

【0013】円環状をなす銅(Cu)製の反応体12
は、隔壁7とほぼ同等の厚みを有し、隔壁7の上端面上
に載置されている。この反応体12は硫黄(S)や多硫
化ナトリウム(Na2 X )などの陽極活物質との反応
性が極めて高く、反応により銅と硫黄との反応生成物で
ある硫化銅(Cu2 S、CuS)が形成される。陽極端
子13は陽極容器1の上部に固着され、陰極端子14は
陰極蓋10に固着されている。
Reactor 12 made of copper (Cu) having an annular shape
Has a thickness almost equal to that of the partition wall 7 and is placed on the upper end surface of the partition wall 7. This reactant 12 has extremely high reactivity with an anode active material such as sulfur (S) or sodium polysulfide (Na 2 S X ), and copper sulfide (Cu 2 S 2 ) which is a reaction product of copper and sulfur by the reaction. , CuS) is formed. The anode terminal 13 is fixed to the upper portion of the anode container 1, and the cathode terminal 14 is fixed to the cathode lid 10.

【0014】そして、放電時にはカートリッジ8内のナ
トリウムNaが、窒素ガスGの圧力でナトリウム流通孔
9より陰極室6内へ供給され、ナトリウムイオンとして
固体電解質管3を透過する。このナトリウムイオンは陽
極室4内で硫黄Sと反応し、多硫化ナトリウムを生成す
る。逆に、充電時には陽極室4内で多硫化ナトリウムが
分解し、生成したナトリウムイオンが固体電解質管3を
透過して陰極室6内へ戻る。さらに、ナトリウムNaは
ナトリウム流通孔9を通過してカートリッジ8内へ至
る。二次電池であるナトリウム−硫黄電池においては、
このような充放電反応が繰り返し行われる。
At the time of discharging, the sodium Na in the cartridge 8 is supplied into the cathode chamber 6 through the sodium flow hole 9 under the pressure of the nitrogen gas G, and permeates the solid electrolyte tube 3 as sodium ions. This sodium ion reacts with sulfur S in the anode chamber 4 to produce sodium polysulfide. On the contrary, at the time of charging, sodium polysulfide is decomposed in the anode chamber 4, and the generated sodium ions permeate the solid electrolyte tube 3 and return to the cathode chamber 6. Further, sodium Na passes through the sodium flow hole 9 and reaches the inside of the cartridge 8. In the sodium-sulfur battery, which is a secondary battery,
Such charge / discharge reaction is repeated.

【0015】さて、図1に示すように、この実施例で
は、隔壁7の上端に硫黄S又は多硫化ナトリウムと容易
に反応する銅製の反応体12が配置されている。このた
め、過充電などの異常により固体電解質管3に亀裂が入
り、その亀裂部15から硫黄Sや多硫化ナトリウムなど
の陽極活物質が陰極室6側へ浸入した場合、その陽極活
物質は図1に矢印で示すように、隔壁7の上端を乗り越
えてカートリッジ8側へ流入する。このとき、陽極活物
質はナトリウムNaと反応する前に前記反応体12と接
触して反応する。
As shown in FIG. 1, in this embodiment, a copper reactant 12 which easily reacts with sulfur S or sodium polysulfide is arranged at the upper end of the partition wall 7. Therefore, when the solid electrolyte tube 3 is cracked due to an abnormality such as overcharge, and the anode active material such as sulfur S or sodium polysulfide enters the cathode chamber 6 side through the cracked portion 15, the anode active material is As indicated by the arrow in FIG. 1, it flows over the upper end of the partition wall 7 to the cartridge 8 side. At this time, the anode active material contacts and reacts with the reactant 12 before reacting with sodium Na.

【0016】そして、陽極活物質と銅との反応生成物で
ある硫化銅が陽極活物質の移動に対する障壁となり、陽
極活物質の陰極6側へのさらなる浸入が防止される。そ
の結果、硫黄SとナトリウムNaとの急激な反応が防止
され、活物質が電池外へ漏れるおそれが防止される。
Copper sulfide, which is a reaction product of the positive electrode active material and copper, serves as a barrier against the movement of the positive electrode active material and prevents the positive electrode active material from further entering the cathode 6 side. As a result, the rapid reaction between sulfur S and sodium Na is prevented, and the risk of the active material leaking out of the battery is prevented.

【0017】また、このとき陽極活物質と銅とが反応す
る際の高い反応熱により、固体電解質管3のガラス半田
による接合部を起点として固体電解質管3にもクラック
16が生じる。このため、陽極室4内の陽極マット5の
上部空間に存在した圧力の高い窒素ガスGが固体電解質
管3の損傷部を介して陰極室6内へ流入される。その結
果、陰極室6内のナトリウムNaはそのガス圧によりカ
ートリッジ8内に戻され、陽極活物質とナトリウムNa
との異常な反応が防止される。
Further, at this time, cracks 16 are also generated in the solid electrolyte tube 3 starting from the joint portion of the solid electrolyte tube 3 by the glass solder due to high reaction heat when the anode active material and copper react. Therefore, the high pressure nitrogen gas G existing in the upper space of the anode mat 5 in the anode chamber 4 flows into the cathode chamber 6 through the damaged portion of the solid electrolyte tube 3. As a result, the sodium Na in the cathode chamber 6 is returned to the inside of the cartridge 8 by its gas pressure, and the anode active material and sodium Na
The abnormal reaction with is prevented.

【0018】なお、この発明は前記実施例に限定される
ものではなく、例えば次のように構成を任意に変更して
具体化してもよい。 (イ)反応体12を硫黄Sや多硫化ナトリウムとの反応
性に富む銀(Ag)、ニッケル(Ni)、鉄(Fe)、亜鉛
(Zn)等を使用すること。この場合、銀、ニッケル等
は硫黄や多硫化ナトリウムと反応して硫化銀、硫化ニッ
ケル、硫化鉄、硫化亜鉛となる。 (ロ)図3(a)に示すように、隔壁7の上端外周面に
段差部17を形成し、その段差部17に円環状をなす反
応体12を係合させること。この構成により、反応体1
2を隔壁7に対して確実に固定することができる。
The present invention is not limited to the above embodiment, but may be embodied by arbitrarily changing the configuration as follows, for example. (A) As the reactant 12, silver (Ag), nickel (Ni), iron (Fe), zinc (Zn), etc., which are highly reactive with sulfur S and sodium polysulfide, are used. In this case, silver, nickel, etc. react with sulfur and sodium polysulfide to form silver sulfide, nickel sulfide, iron sulfide, zinc sulfide. (B) As shown in FIG. 3 (a), a step portion 17 is formed on the outer peripheral surface of the upper end of the partition wall 7, and the annular reactant 12 is engaged with the step portion 17. With this configuration, the reactant 1
2 can be securely fixed to the partition wall 7.

【0019】また、図3(b)に示すように、隔壁7の
上端外周面に段差部18を形成するとともに、反応体1
2の下端内周面に係合段差部19を設け、この係合段差
部19を隔壁7の段差部18に係合させること。さら
に、図3(c)に示すように、隔壁7の上端面に凸部2
0を設け、反応体12の底部に凹部21を設けて反応体
12を隔壁7に係合させること。これらの構成によっ
て、反応体12を隔壁7に対して確実に固定でき、しか
も反応体12を隔壁7よりさらに上方に位置させること
ができる。 (ハ)隔壁7の上端外周面に銅箔を1回又は複数回巻付
けること。 (ニ)反応体12を隔壁7に対して溶融して接合した
り、反応体12を所定間隔をおいて間欠的に配置するこ
と。
Further, as shown in FIG. 3B, a step portion 18 is formed on the outer peripheral surface of the upper end of the partition wall 7 and the reactant 1
The engaging step portion 19 is provided on the inner peripheral surface of the lower end of 2, and the engaging step portion 19 is engaged with the step portion 18 of the partition wall 7. Further, as shown in FIG. 3C, the convex portion 2 is formed on the upper end surface of the partition wall 7.
0, and a recess 21 is provided at the bottom of the reactant 12 to engage the reactant 12 with the partition wall 7. With these configurations, the reactant 12 can be reliably fixed to the partition 7, and the reactant 12 can be positioned above the partition 7. (C) Winding the copper foil around the upper end outer peripheral surface of the partition wall 7 once or plural times. (D) Melting and joining the reactant 12 to the partition wall 7, or disposing the reactant 12 intermittently at a predetermined interval.

【0020】ちなみに、前記実施例より把握される請求
項以外の技術的思想について、その効果とともに以下に
記載する。 (1)隔壁の上端部に段差状の係合部を設け、この係合
部に前記金属よりなる反応体を係合させる請求項2に記
載のナトリウム−硫黄電池。このように構成すれば、金
属を隔壁に確実に保持することができる。 (2)陽極室の上部空間に陰極室内のガス圧より高い圧
力で不活性ガスを充填した請求項1に記載のナトリウム
−硫黄電池。このように構成することにより、固体電解
質管の損傷時において陽極室の不活性ガスを陰極室に導
入して、陰極室内のナトリウムを収納容器内に戻すこと
ができる。
By the way, technical ideas other than the claims understood from the above embodiment will be described below together with their effects. (1) The sodium-sulfur battery according to claim 2, wherein a step-like engaging portion is provided at an upper end portion of the partition wall, and the reactant made of the metal is engaged with the engaging portion. According to this structure, the metal can be reliably held by the partition wall. (2) The sodium-sulfur battery according to claim 1, wherein the upper space of the anode chamber is filled with an inert gas at a pressure higher than the gas pressure in the cathode chamber. With this configuration, when the solid electrolyte tube is damaged, the inert gas in the anode chamber can be introduced into the cathode chamber, and the sodium in the cathode chamber can be returned to the storage container.

【0021】[0021]

【発明の効果】 以上詳述したように、請求項1に記載
のナトリウム−硫黄電池の発明によれば、異常事態によ
り固体電解質管が損傷を受け、陽極活物質が固体電解質
管を介して陰極室内に浸入した場合、陽極活物質がナト
リウムと反応する前に反応体と反応して、さらなる陽極
活物質の浸入を防止することができる。従って、陽極活
物質がナトリウムと急激に反応するのを効果的に抑制す
ることができ、活物質が電池の外部へ漏出するのを防止
することができる。
As described above in detail, according to the invention of the sodium-sulfur battery described in claim 1, the solid electrolyte tube is damaged due to an abnormal situation, and the anode active material becomes the cathode through the solid electrolyte tube. When it enters the room, it can react with the reactant before the anode active material reacts with sodium to prevent further infiltration of the anode active material. Therefore, it is possible to effectively prevent the anode active material from rapidly reacting with sodium, and prevent the active material from leaking to the outside of the battery.

【0022】さらに、陰極室内に浸入した陽極活物質が
反応体と反応し、その反応熱により固体電解質管の接合
支持部が破損して陽極室内の不活性ガスが陰極室へ導入
され、ナトリウムが収容容器内に収容されて、陽極活物
質とナトリウムとの急激な反応を防止することができ
る。
Furthermore, the anode active material that has penetrated into the cathode chamber reacts with the reactant, and the reaction heat destroys the joint support portion of the solid electrolyte tube, and the inert gas in the anode chamber is introduced into the cathode chamber, so that sodium is generated. It is housed in a container and can prevent a rapid reaction between the anode active material and sodium.

【0023】また、請求項2の発明によれば、金属製の
反応体はリング状に形成され、隔壁の上端に係合されて
いるため、異常事態において陽極活物質を金属よりなる
反応体と容易に、しかも確実に反応させることができ
る。
Further, according to the invention of claim 2, since the metallic reactant is formed in a ring shape and is engaged with the upper end of the partition wall, the anode active material is made of the metallic reactant in an abnormal situation. The reaction can be performed easily and surely.

【0024】加えて、請求項3の発明によれば、金属
は、銅、銀又はニッケルであるため、この金属は硫黄又
は多硫化ナトリウムとの反応性に優れ、しかも反応熱が
高い。
In addition, according to the invention of claim 3, since the metal is copper, silver or nickel, this metal has excellent reactivity with sulfur or sodium polysulfide and has a high reaction heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明を具体化した実施例のナトリウム−
硫黄電池を示す要部拡大断面図である。
FIG. 1 is a graph showing an example of sodium embodying the present invention.
It is a principal part expanded sectional view which shows a sulfur battery.

【図2】 ナトリウム−硫黄電池の全体を示す断面図で
ある。
FIG. 2 is a cross-sectional view showing the entire sodium-sulfur battery.

【図3】 (a)〜(c)は、この発明の隔壁と金属製
の反応体との係合関係の別例を示す断面図である。
3 (a) to 3 (c) are cross-sectional views showing another example of the engagement relationship between the partition wall of the present invention and the metallic reactant.

【符号の説明】[Explanation of symbols]

1…陽極容器、2…絶縁体としての絶縁リング、3…固
体電解質管、4…陽極室、6…陰極室、7…隔壁、8…
収容容器としてのカートリッジ、12…金属製の反応
体、S…硫黄、Na…ナトリウム。
DESCRIPTION OF SYMBOLS 1 ... Anode container, 2 ... Insulating ring as an insulator, 3 ... Solid electrolyte tube, 4 ... Anode chamber, 6 ... Cathode chamber, 7 ... Partition wall, 8 ...
Cartridge as a container, 12 ... Metal reactant, S ... Sulfur, Na ... Sodium.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽極容器内に絶縁体を介してナトリウム
イオンを選択的に透過する固体電解質管を配置し、この
固体電解質管内の陰極室に陰極活物質としてのナトリウ
ムを収容する収容容器を配置するとともに、前記陽極容
器と固体電解質管との間の陽極室に陽極活物質としての
硫黄を収容し、かつ固体電解質管と収容容器との間に隔
壁を備えたナトリウム−硫黄電池において、 前記隔壁の上端に硫黄又は多硫化ナトリウムと反応する
金属よりなる反応体を配置したナトリウム−硫黄電池。
1. A solid electrolyte tube for selectively permeating sodium ions through an insulator is arranged in an anode container, and a container for containing sodium as a cathode active material is arranged in a cathode chamber in the solid electrolyte tube. In addition, in the sodium-sulfur battery containing sulfur as an anode active material in the anode chamber between the anode container and the solid electrolyte tube, and having a partition between the solid electrolyte tube and the container, the partition wall A sodium-sulfur battery in which a reactant made of a metal that reacts with sulfur or sodium polysulfide is arranged at the upper end of the.
【請求項2】 前記反応体はリング状に形成され、隔壁
の上端に係合されている請求項1に記載のナトリウム−
硫黄電池。
2. The sodium-ion according to claim 1, wherein the reactant is formed in a ring shape and is engaged with the upper end of the partition wall.
Sulfur battery.
【請求項3】 前記硫黄又は多硫化ナトリウムと反応す
る金属は、銅、銀又はニッケルである請求項1に記載の
ナトリウム−硫黄電池。
3. The sodium-sulfur battery according to claim 1, wherein the metal that reacts with sulfur or sodium polysulfide is copper, silver or nickel.
JP6215100A 1994-09-08 1994-09-08 Sodium-sulfur cell Pending JPH0878046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6215100A JPH0878046A (en) 1994-09-08 1994-09-08 Sodium-sulfur cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6215100A JPH0878046A (en) 1994-09-08 1994-09-08 Sodium-sulfur cell

Publications (1)

Publication Number Publication Date
JPH0878046A true JPH0878046A (en) 1996-03-22

Family

ID=16666758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6215100A Pending JPH0878046A (en) 1994-09-08 1994-09-08 Sodium-sulfur cell

Country Status (1)

Country Link
JP (1) JPH0878046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488621A (en) * 2021-06-30 2021-10-08 肇庆市华师大光电产业研究院 Preparation method of high-performance sodium-sulfur battery positive electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488621A (en) * 2021-06-30 2021-10-08 肇庆市华师大光电产业研究院 Preparation method of high-performance sodium-sulfur battery positive electrode material

Similar Documents

Publication Publication Date Title
US3946751A (en) Cell casing with a hermetic mechanical seal and a hermetically sealed sodium-sulfur cell
US3891462A (en) Galvanic cell structure
US5254415A (en) Stacked cell array bipolar battery with thermal sprayed container and cell seal
EP0441592A2 (en) Air-assisted alkaline cells
US4957830A (en) Rechargeable metal oxide-hydrogen battery
KR101078788B1 (en) battery
GB2083686A (en) Electrochemical storage cell
US4657830A (en) Sodium-sulfur storage battery
US3064065A (en) Fusion-sealed metal-encased rechargeable alkaline battery cell
US3416964A (en) Fusion-sealed metal-enclosed rechargeable battery cells
US3421945A (en) Fusion-sealed metal-enclosed rechargeable battery cell
US3377201A (en) Spiral battery cell
US4794056A (en) Coiled electrode assembly cell construction with telescopic terminal tab
US3960596A (en) Battery casing and hermetically sealed sodium-sulfur battery
US4207386A (en) Electrochemical storage cell
JP3193319B2 (en) Sodium-sulfur battery
JPH0878046A (en) Sodium-sulfur cell
US4590136A (en) Electrochemical storage cell of the alkali metal and chalcogen type
US5354628A (en) Hermetically sealed cell comprising liquid active material
JP3744788B2 (en) Sealed battery and manufacturing method thereof
JP2683027B2 (en) High-temperature dischargeable primary battery with alkaline electrolyte
JPS62113358A (en) Spiral electrode type cell
US3216860A (en) Electric storage battery electrode assembly
KR100572223B1 (en) Sealed battery
JP2825868B2 (en) Cylindrical alkaline battery