JPH0878004A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JPH0878004A JPH0878004A JP6210935A JP21093594A JPH0878004A JP H0878004 A JPH0878004 A JP H0878004A JP 6210935 A JP6210935 A JP 6210935A JP 21093594 A JP21093594 A JP 21093594A JP H0878004 A JPH0878004 A JP H0878004A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- positive electrode
- active material
- secondary battery
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池の正
極活物質の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a positive electrode active material for a non-aqueous electrolyte secondary battery.
【0002】[0002]
【従来の技術】リチウムを負極活物質に用いた非水電解
液二次電池は、高電圧,高エネルギー密度であることか
ら、携帯用電子機器の電源としてだけでなく、分散型電
力貯蔵用の電池としても注目され、開発が盛んである。
実用化された電池も一部あるが、電池容量,充放電サイ
クル寿命、更には信頼性等まだ充分とはいえない。2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium as a negative electrode active material has a high voltage and a high energy density. Therefore, it is not only used as a power source for portable electronic devices but also for distributed power storage. It has attracted attention as a battery and is being actively developed.
Although some batteries have been put to practical use, the battery capacity, charge / discharge cycle life, and reliability are still insufficient.
【0003】従来から、非水電解液二次電池について
は、遷移金属酸化物,遷移金属カルコゲン化物、あるい
はリチウム含有遷移金属酸化物などの正極活物質を用い
た電池が多く提案されている。これらの正極活物質の中
でもLiCoO2,LiNiO2あるいはLiFeO2は
電池電圧が高く高エネルギー密度が期待されている(特
開平5−174872 号)。しかしながら、充放電サイクル寿
命が充分でなく信頼性の高い電池は得られていない。こ
れらの中でも、LiCoO2 は比較的安定な性能が得ら
れるとされているが、特にCoは資源量が少ないため、
コストが極めて高いという課題もある。携帯用電子機器
の電源あるいは分散型電力貯蔵用電池のいずれの用途に
用いるにしても、低コストでありしかも信頼性の高い非
水電解質二次電池の開発が急がれる。Conventionally, as non-aqueous electrolyte secondary batteries, many batteries using a positive electrode active material such as a transition metal oxide, a transition metal chalcogenide, or a lithium-containing transition metal oxide have been proposed. Among these positive electrode active materials, LiCoO 2 , LiNiO 2 or LiFeO 2 is expected to have a high battery voltage and a high energy density (Japanese Patent Laid-Open No. 5-174872). However, a battery having a sufficient charge / discharge cycle life and high reliability has not been obtained. Among these, LiCoO 2 is said to be able to obtain relatively stable performance, but especially Co has a small amount of resources, so
There is also a problem that the cost is extremely high. Whether used as a power source for portable electronic devices or a distributed power storage battery, development of a low-cost and highly reliable non-aqueous electrolyte secondary battery is urgent.
【0004】層状化合物であるLiCoO2,LiNi
O2、及びLiFeO2 系の活物質を正極活物質に用い
た場合に、充分なサイクル寿命が得られないのは、次の
ように考えられる。これらの活物質は遷移金属と酸素で
形成された層状構造の層間にリチウムイオンが存在した
構造をしており、遷移金属の価数は変化しやすく、リチ
ウムイオンは挿入脱離しやすい。このため、正極活物質
として利用される。しかしながら、この反面充放電サイ
クルを繰り返す毎に層間のリチウムイオンが全く脱離し
てしまい、層間の結合力が低下し、結晶構造が破壊され
ていく。充放電サイクル寿命が得られないのは、このよ
うな結晶構造の破壊が主な原因と考えられる。リチウム
と遷移金属とからなる複合酸化物では、上述したような
正極活物質の結晶構造の劣化を防ぐことは基本的に困難
である。また、仮りにLiCoO2,LiNiO2 で安
定な性能が得られても、これらの活物質では一般に普及
させるにはコスト的な課題をなお解決せねばならない。Layered compounds LiCoO 2 and LiNi
The reason why sufficient cycle life cannot be obtained when O 2 and LiFeO 2 based active materials are used as the positive electrode active material is considered as follows. These active materials have a structure in which lithium ions are present between layers of a layered structure formed by a transition metal and oxygen, the valence of the transition metal is likely to change, and lithium ions are easily inserted and desorbed. Therefore, it is used as a positive electrode active material. However, on the other hand, every time the charge / discharge cycle is repeated, the lithium ions between the layers are completely desorbed, the bonding force between the layers is reduced, and the crystal structure is destroyed. The main reason why the charge / discharge cycle life cannot be obtained is the destruction of the crystal structure. It is basically difficult to prevent the above-described deterioration of the crystal structure of the positive electrode active material in the composite oxide composed of lithium and a transition metal. Further, even if stable performance is obtained with LiCoO 2 and LiNiO 2 , cost problems still have to be solved in order to popularize these active materials.
【0005】[0005]
【発明が解決しようとする課題】リチウムと遷移金属か
らなる複合酸化物では、充放電サイクルの繰返しにより
正極活物質の結晶構造が破壊され、充分なサイクル寿命
が得られない問題と共に活物質が高価であるという問題
がある。本発明の目的は、低コストでしかも充放電サイ
クルの対して安定な正極活物質を提供することである。In the case of a composite oxide composed of lithium and a transition metal, the crystal structure of the positive electrode active material is destroyed due to repeated charge and discharge cycles, and a sufficient cycle life cannot be obtained, and the active material is expensive. There is a problem that is. An object of the present invention is to provide a positive electrode active material that is low in cost and stable with respect to charge / discharge cycles.
【0006】[0006]
【課題を解決するための手段】本発明は、リチウムまた
はリチウムイオンを吸蔵できる負極と、リチウム含有鉄
複合酸化物を活物質とした正極、及びリチウム塩を溶解
している非水溶媒からなる、非水電解質二次電池におい
て、該正極活物質が元素周期律表の3B族元素を添加し
たリチウム含有鉄複合酸化物であることを特徴とする。The present invention comprises a negative electrode capable of occluding lithium or lithium ions, a positive electrode using a lithium-containing iron composite oxide as an active material, and a non-aqueous solvent in which a lithium salt is dissolved. The non-aqueous electrolyte secondary battery is characterized in that the positive electrode active material is a lithium-containing iron composite oxide to which a Group 3B element of the periodic table of elements is added.
【0007】また、リチウム含有鉄複合酸化物が、化学
式LiFe1-yMyO2(M=Al,Ga,In;0<y
≦0.5 )で表されることを特徴とする。The lithium-containing iron composite oxide has a chemical formula of LiFe 1-y M y O 2 (M = Al, Ga, In; 0 <y
≦ 0.5).
【0008】また、LiFe1-yMyO2 で表される正極
活物質の構造が空間群R3d 5 の結晶構造を有することを
特徴とする。Further, the structure of the positive electrode active material represented by LiFe 1-y M y O 2 has a crystal structure of space group R 3d 5 .
【0009】上述の課題を解決するためには、結晶内に
おけるリチウムイオンの拡散係数を保ったままで、リチ
ウムイオンが完全に脱離しない低コストの化合物の設計
が必要である。リチウムと遷移金属とからなる複合酸化
物では、リチウムイオンの脱離に応じて遷移金属の価数
が変化するため、電池充電電圧を少し高くするだけで容
易にリチウムイオンの完全脱離が生じ得る。このため層
間のリチウムが完全になくなり、層間の構造保持困難と
なり充分なサイクル寿命が得られなくなる。リチウムイ
オンの結晶内での拡散機能を低下させずに、層間のリチ
ウムの完全脱離を防ぐには、結晶構造内に価数変化を生
じない典型元素を添加することが有効である。結晶内に
存在する遷移金属の価数変化量に応じたリチウムイオン
が脱離した後は、典型元素が価数変化しないために、そ
れ以上のリチウムイオンは電池電圧を高くしても脱離し
なくなる。即ち、一部のリチウムイオンは常に層間に残
っており、層間の結合力が失われないために、充放電を
繰り返しても結晶構造が安定に保持できる。In order to solve the above-mentioned problems, it is necessary to design a low-cost compound in which the diffusion coefficient of lithium ions in the crystal is maintained and the lithium ions are not completely desorbed. In a complex oxide composed of lithium and a transition metal, the valence of the transition metal changes according to the desorption of the lithium ion, so that the complete desorption of the lithium ion can easily occur by slightly increasing the battery charging voltage. . For this reason, the lithium between layers is completely lost, and it becomes difficult to maintain the structure between layers, and a sufficient cycle life cannot be obtained. In order to prevent the complete desorption of lithium between layers without lowering the diffusion function of lithium ions in the crystal, it is effective to add a typical element that does not change the valence in the crystal structure. After the desorption of the lithium ion according to the valence change of the transition metal existing in the crystal, the valence of the typical element does not change, so more lithium ions do not desorb even if the battery voltage is increased. . That is, a part of the lithium ions always remains between the layers, and the bonding force between the layers is not lost, so that the crystal structure can be stably maintained even when charging and discharging are repeated.
【0010】以上の観点から種々検討した結果、リチウ
ム含有鉄複合酸化物に典型元素としてイオン半径の大き
さが鉄イオンに比較的近く、しかも価数が3価であるA
l,Ga,Inなどの3B族の元素を添加することが構
造を安定する上で効果のあることが判明した。また、資
源豊富な鉄を用いることでコストの課題も解決される。
3B族の元素の中でもAlはそのイオン半径が0.68
Å であり、Feのイオン半径0.69Å に極めて近い
値を示している。3B族元素のいずれを添加しても効果
はあるが、中でもイオン半径がFeに近いAlを添加す
るのが好適である。また、Alは資源的にも豊富なこと
から、コストの面からも好ましい。As a result of various investigations from the above viewpoints, the lithium-containing iron composite oxide has a ionic radius relatively close to that of iron ions as a typical element, and has a valence of 3
It was found that the addition of 3B group elements such as l, Ga and In is effective in stabilizing the structure. In addition, cost problems can be solved by using iron that is rich in resources.
Among the elements of the 3B group, Al has an ionic radius of 0.68.
Å, which is extremely close to the ionic radius of Fe of 0.69Å. Although any of the 3B group elements is effective, it is preferable to add Al having an ionic radius close to that of Fe. Also, Al is abundant in terms of resources, and is therefore preferable in terms of cost.
【0011】FeのサイトにAlを置換してもイオン半
径がほぼ同じであるため、層状構造は保たれるので、リ
チウムイオンの拡散機能が損われることはない。Alの
置換量が増えるに従って層間に残るリチウムイオン量は
増え、構造の安定性は増すが逆に活物質の容量密度は小
さくなる。Alを添加しない場合、グラムあたり活物質
の理論容量密度は283Ah/kgであり、半分のFeの
サイトをAlに置換すると理論容量密度は167Ah/
kgとなる。高エネルギー密度というリチウム二次電池の
特長を活かすには、150Ah/kg以上の正極活物質の
重量あたりの容量密度が必要とされている。結晶構造の
安定性及び容量密度の観点からAlのFeに対する置換
量は0.5 以下が望ましい。Even if Al is substituted for the Fe site, the ionic radius is substantially the same, so that the layered structure is maintained and the diffusion function of lithium ions is not impaired. As the substitution amount of Al increases, the amount of lithium ions remaining between layers increases, and the stability of the structure increases, but conversely the capacity density of the active material decreases. When Al is not added, the theoretical capacity density of the active material per gram is 283 Ah / kg, and when half of the Fe sites are replaced with Al, the theoretical capacity density is 167 Ah / kg.
It becomes kg. In order to take advantage of the high energy density of the lithium secondary battery, a capacity density per positive electrode active material weight of 150 Ah / kg or more is required. From the viewpoint of the stability of the crystal structure and the capacity density, the substitution amount of Al for Fe is preferably 0.5 or less.
【0012】本発明に用いられる層状構造のLiFe
1-yMyO2は、NaFe1-yMyO2をLiの溶融塩に浸漬
しイオン交換することにより得られる。一方、NaFe1-yM
yO2はNa塩,Fe塩、及びM塩を混合焼成することに
より合成できる。イオン交換により得たLiFe1-yMy
O2 正極活物質を用いて正極を構成するには、アセチレ
ンブラックのような導電性付与粉末を添加混練し、アル
ミニウム製あるいはステンレス鋼製等の支持体に塗布す
る。負極には黒鉛系炭素材,非晶質系炭素材,リチウム
金属あるいはリチウム合金等のいずれを用いても本発明
の目的は達成される。Layered structure of LiFe used in the present invention
1-y M y O 2 is obtained by immersing the NaFe 1-y M y O 2 in a molten salt of Li ion exchange. On the other hand, NaFe 1-y M
y O 2 can be synthesized by mixing and baking Na salt, Fe salt, and M salt. LiFe 1-y M y obtained by ion exchange
To form a positive electrode using an O 2 positive electrode active material, a conductivity-imparting powder such as acetylene black is added and kneaded, and the mixture is applied to a support made of aluminum or stainless steel. The object of the present invention can be achieved regardless of whether a graphite-based carbon material, an amorphous carbon material, lithium metal, or lithium alloy is used for the negative electrode.
【0013】さらに電解質としては、プロピレンカーボ
ネート、2−メチルテトラヒドロフラン,ジオキソレ
ン,テトラヒドロフラン、1,2−ジメトキシエタン,
エチレンカーボネート、γ−ブチロラクトン,ジメチル
スルホキシド,アセトニトリル,ホルムアミド,ジメチ
ルホルムアミド,ニトロメタン等より選ばれた1種以上
の非プロトン性極性有機溶媒に、LiClO4,LiA
lCl4,LiBF4, LiPF6,LiAsF6、等の
リチウム塩を溶解させた有機電解液またはリチウムイオ
ンを伝導イオンとする固体電解質あるいは溶融塩等一般
に炭素材料あるいはリチウム金属を負極活物質として用
いた電池で使用される既知の電解質を用いることができ
る。また、電池の構成上の必要性に応じて微孔性セパレ
ータを用いても本発明の効果はなんら損なわれない。Further, as the electrolyte, propylene carbonate, 2-methyltetrahydrofuran, dioxolene, tetrahydrofuran, 1,2-dimethoxyethane,
LiClO 4 , LiA in one or more kinds of aprotic polar organic solvents selected from ethylene carbonate, γ-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylformamide, nitromethane and the like.
An organic electrolyte solution in which a lithium salt such as lCl 4 , LiBF 4 , LiPF 6 , LiAsF 6 or the like is dissolved, or a solid electrolyte or a molten salt in which lithium ions are used as conduction ions, etc. Generally, a carbon material or lithium metal is used as a negative electrode active material. Known electrolytes used in batteries can be used. Further, the effect of the present invention is not impaired even if a microporous separator is used depending on the structural requirements of the battery.
【0014】[0014]
【作用】LiFe1-yMyO2 は層状構造をしており、層
間のリチウムは充放電に伴い挿入脱離する。充放電繰り
返すうちに層間のリチウムイオンは脱離してしまい層状
構造が破壊される。Feの一部を3B族の元素Mに置換
することにより、元素Mの置換量に相当する量のリチウ
ムイオンは常に層間に残り、結晶構造が安定に保たれ
る。即ち、元素Mは価数変化しないので、Feの価数変
化量に対応するリチウムイオンが脱離した後は、電気中
性の原理から層間のリチウムはそれ以上層間から脱離し
ない。従って、本発明の正極活物質を用いると、低コス
トでしかもサイクル特性の良好な非水電解液二次電池が
得られる。Function LiFe 1-y M y O 2 has a layered structure, and lithium between layers is inserted and desorbed with charge and discharge. During repeated charging and discharging, lithium ions between layers are desorbed and the layered structure is destroyed. By substituting a part of Fe with the element M of the 3B group, an amount of lithium ions corresponding to the substitution amount of the element M always remains between the layers, and the crystal structure is kept stable. That is, since the valence of the element M does not change, after the lithium ions corresponding to the valence change amount of Fe are desorbed, the lithium between layers is not desorbed from the layers any more due to the principle of electroneutralism. Therefore, by using the positive electrode active material of the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery with low cost and good cycle characteristics.
【0015】[0015]
【実施例】以下に実施例により本発明を説明する。尚、
本発明は、以下の実施例に限定されるものではない。以
下の実施例において、電池の作成及び評価はすべてアル
ゴン雰囲気のグローブボックス中で行った。EXAMPLES The present invention will be described below with reference to examples. still,
The present invention is not limited to the examples below. In the following examples, all batteries were produced and evaluated in a glove box in an argon atmosphere.
【0016】(実施例1)炭酸ナトリウム,酸化鉄、及
び硝酸アルミニウムを所定量ボールミルで混合した後、
大気雰囲気下で1000℃×5時間焼成し、NaFe
1-yAlyO2 の粉末を得た。X線回折により得られたN
aFe1-yAlyO2 が層状の結晶構造を有していること
を確認した。得られた粉末を300℃の溶融硝酸リチウ
ム中で2日間イオン交換することにより、層状構造のL
iFe1-yAlyO2を得た。尚、 LiFe1-yAlyO2粉
末の組成はy=0.1,0.2,0.3,0.4,0.5、
及び0.55 であった。また、比較のためにAlを添加
していないy=0の組成のものも炭酸ナトリウム,酸化
鉄、合成した。Example 1 After mixing a predetermined amount of sodium carbonate, iron oxide, and aluminum nitrate with a ball mill,
Baked at 1000 ° C. for 5 hours in the air atmosphere to give NaFe
A powder of 1-y Al y O 2 was obtained. N obtained by X-ray diffraction
It was confirmed that aFe 1-y Al y O 2 had a layered crystal structure. The powder obtained was subjected to ion exchange in molten lithium nitrate at 300 ° C. for 2 days to obtain L having a layered structure.
iFe 1-y Al y O 2 was obtained. The composition of the LiFe 1-y Al y O 2 powder was y = 0.1, 0.2, 0.3, 0.4, 0.5,
And 0.55. For comparison, sodium carbonate and iron oxide having a composition of y = 0 to which Al was not added were also synthesized.
【0017】これらの正極材料用いて正極を作成し、こ
れにセパレータ及び負極を重ね合わせて試験用の電池を
構成した。正極材料LiFe1-yAlyO2 にエチレン−
プロピレン−ジエン共重合体(EPDM)の4.0wt
% キシレン溶液をバインダーとして、さらにアセチレ
ンブラックを9.0wt% 導電材として添加した。これ
らを混練したペースト状をSUS430製のエキスパン
ドメタルに塗布し、室温で真空乾燥して正極を得た。負
極にはLi−Pb−La合金粉末を用いた。Li−Pb
−La合金の組成は原子比で3.5:1.0:0.03 で
ある。電解液としては、LiPF6の1.0M濃度のプロ
ピレンカーボネート(PC)と1,2−ジメトキシエタ
ン(DME)の混合溶媒溶液を用いた。セパレータには
ポリプロピレン製の不織布と微細孔性のフィルムを重ね
て使用した。充放電試験は定電流で行い電流密度は0.
05mA/cm2 とした。終止電圧は充電時4.5V,放
電時2.5V とした。また、正極活物質の重量当たりの
容量密度が100Ah/kg以下になったときのサイクル
数をもってサイクル寿命の指標とした。表1には試験し
た各試験電池の1サイクル目の容量密度,サイクル寿命
を示した。A positive electrode was prepared using these positive electrode materials, and a separator and a negative electrode were superposed on the positive electrode to construct a test battery. Ethylene cathode material LiFe 1-y Al y O 2 -
4.0 wt of propylene-diene copolymer (EPDM)
% Xylene solution as a binder and acetylene black as a 9.0 wt% conductive material. A paste obtained by kneading these was applied to an expanded metal made of SUS430 and vacuum dried at room temperature to obtain a positive electrode. Li-Pb-La alloy powder was used for the negative electrode. Li-Pb
The composition of the -La alloy is 3.5: 1.0: 0.03 in atomic ratio. As the electrolytic solution, a mixed solvent solution of propylene carbonate (PC) with a concentration of 1.0 M of LiPF 6 and 1,2-dimethoxyethane (DME) was used. As the separator, a polypropylene non-woven fabric and a microporous film were stacked and used. The charge / discharge test is performed at a constant current and the current density is 0.
It was set to 05 mA / cm 2 . The final voltage was 4.5 V during charging and 2.5 V during discharging. Further, the number of cycles when the capacity density per weight of the positive electrode active material became 100 Ah / kg or less was used as an index of cycle life. Table 1 shows the first cycle capacity density and cycle life of each tested battery.
【0018】[0018]
【表1】 [Table 1]
【0019】表1に示すようにAlを添加していない活
物質を用いた電池1は1サイクル目の容量は190Ah
/kgと大きいがサイクル寿命は109サイクルと短い。
一方、Alを添加したものはAlの添加量が多くなるに
従って1サイクル目の容量は小さくなるが、寿命は延び
ており、電池7を除いていずれも200サイクル以上の
サイクル寿命を示した。電池7の寿命が短いのはもとも
と1サイクル目の容量が133Ah/kgと小さいので、
100Ah/kgに早く達したためと考えられる。高容量
密度というリチウム二次電池の特長を活かすことができ
る正極活物質の重量あたりの容量密度150Ah/kgを
満足できるのはy≦0.5 であった。とりわけ電池2,
3は1サイクル目の容量が大きく、しかもAlで結晶構
造の安定化を図っているため300サイクル近い寿命を
示した。As shown in Table 1, the battery 1 using the active material to which Al was not added had a capacity of 190 Ah in the first cycle.
/ Kg is large, but the cycle life is as short as 109 cycles.
On the other hand, in the case where Al was added, the capacity at the first cycle decreased as the amount of Al added increased, but the service life increased, and all of them except the battery 7 exhibited a cycle life of 200 cycles or more. Since the battery 7 has a short life, the capacity of the first cycle is originally as small as 133 Ah / kg,
It is thought that it reached 100 Ah / kg early. It was y.ltoreq.0.5 that the capacity density of 150 Ah / kg per weight of the positive electrode active material capable of taking advantage of the high capacity density of the lithium secondary battery was satisfied. Especially the battery 2,
Sample No. 3 had a large capacity at the first cycle, and the crystal structure was stabilized by Al.
【0020】(実施例2)炭酸ナトリウム,酸化鉄、及
びシュウ酸ガリウムを所定量ボールミルで混合した後、
大気雰囲気下で900℃×6時間焼成し、NaFe1-y
GayO2 の粉末を得た。X線回折により得られたNa
Fe1-yGayO2 が層状の結晶構造を有していることを
確認した。得られた粉末を300℃の溶融硝酸リチウム
中で2日間イオン交換することにより、層状構造のLi
Fe1-yGayO2 を得た。尚、LiFe1-yGayO2 粉
末の組成はy=0.1,0.2,0.3,0.35、及び
0.4 であった。得られた粉末を用いて実施例1と同様
に試験用の電池を作成し、その正極活物質を評価した。
表2に各試験電池の結果をまとめて示す。尚、表2は比
較のためにGaを添加していない試験電池(実施例1の
電池1)の結果をも合わせて示した。Example 2 After mixing sodium carbonate, iron oxide, and gallium oxalate in predetermined amounts with a ball mill,
Baked at 900 ° C for 6 hours in the air to give NaFe 1-y
A powder of Ga y O 2 was obtained. Na obtained by X-ray diffraction
Fe 1-y Ga y O 2 was confirmed to have a layered crystal structure. The obtained powder was subjected to ion exchange in molten lithium nitrate at 300 ° C. for 2 days to obtain a layered structure of Li.
To obtain a Fe 1-y Ga y O 2 . Incidentally, LiFe 1-y Ga y O 2 composition of the powder is y = 0.1,0.2,0.3,0.35, and was 0.4. A test battery was prepared in the same manner as in Example 1 using the obtained powder, and the positive electrode active material was evaluated.
Table 2 collectively shows the results of each test battery. For comparison, Table 2 also shows the results of the test battery (Battery 1 of Example 1) in which Ga was not added.
【0021】[0021]
【表2】 [Table 2]
【0022】表2に示すようにGaを添加していない正
極活物質を用いた電池1は、1サイクル目の放電容量は
190Ah/kgと大きいが、サイクル寿命は109サイ
クルと短い。しかし、Gaを添加した正極活物質を用い
た電池2〜5はサイクル寿命も良好である。電池6は1
サイクル目の容量が137Ah/kgと小さいためサイク
ル寿命も169サイクルと短い値であった。また、Ga
は実施例1のAlより重いため150Ah/kg以上の重
量容量密度が得られたのはy≦0.35 であった。As shown in Table 2, the battery 1 using the positive electrode active material to which Ga is not added has a large discharge capacity of 190 Ah / kg in the first cycle but a short cycle life of 109 cycles. However, the batteries 2 to 5 using the Ga-added positive electrode active material also have good cycle life. Battery 6 is 1
Since the capacity at the cycle was as small as 137 Ah / kg, the cycle life was a short value of 169 cycles. Also, Ga
Since it is heavier than Al of Example 1, it was y ≦ 0.35 that the weight capacity density of 150 Ah / kg or more was obtained.
【0023】[0023]
【発明の効果】以上説明したように、本発明によれば、
低コストで容量密度が大きくしかもサイクル特性の良好
な正極活物質が調製でき、これにより信頼性の高い非水
電解液二次電池が提供できる。As described above, according to the present invention,
It is possible to prepare a positive electrode active material having a low capacity, a large capacity density, and good cycle characteristics, and thus a highly reliable non-aqueous electrolyte secondary battery can be provided.
Claims (3)
る負極と、リチウム含有鉄複合酸化物を活物質とした正
極、及びリチウム塩を溶解している非水溶媒からなる、
非水電解質二次電池において、該正極活物質が元素周期
律表の3B族元素を添加したリチウム含有鉄複合酸化物
であることを特徴とする非水電解液二次電池。1. A negative electrode capable of occluding lithium or lithium ions, a positive electrode using a lithium-containing iron composite oxide as an active material, and a non-aqueous solvent in which a lithium salt is dissolved.
In the non-aqueous electrolyte secondary battery, the positive electrode active material is a lithium-containing iron composite oxide to which a Group 3B element of the periodic table of elements is added, which is a non-aqueous electrolyte secondary battery.
リチウム含有鉄複合酸化物が、化学式LiFe1-yMyO
2(M=Al,Ga,In;0<y≦0.5 )で表される
ことを特徴とする非水電解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein
The lithium-containing iron composite oxide has a chemical formula of LiFe 1- y My O
2 (M = Al, Ga, In; 0 <y ≦ 0.5) A non-aqueous electrolyte secondary battery.
LiFe1-yMyO2 で表される正極活物質の構造が空間
群R3d 5 の結晶構造を有することを特徴とする非水電解
液二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein
A non-aqueous electrolyte secondary battery, wherein the structure of the positive electrode active material represented by LiFe 1 -y My O 2 has a crystal structure of space group R 3d 5 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6210935A JPH0878004A (en) | 1994-09-05 | 1994-09-05 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6210935A JPH0878004A (en) | 1994-09-05 | 1994-09-05 | Lithium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0878004A true JPH0878004A (en) | 1996-03-22 |
Family
ID=16597527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6210935A Pending JPH0878004A (en) | 1994-09-05 | 1994-09-05 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0878004A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0825661A1 (en) * | 1996-08-23 | 1998-02-25 | Toda Kogyo Corp. | Lithium Battery |
US6083474A (en) * | 1996-08-23 | 2000-07-04 | Toda Kogyo Corporation | Lithium-iron oxide particles and process for producing the same |
US6361756B1 (en) | 1998-11-20 | 2002-03-26 | Fmc Corporation | Doped lithium manganese oxide compounds and methods of preparing same |
US6579475B2 (en) * | 1999-12-10 | 2003-06-17 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
US6582852B1 (en) | 1997-05-15 | 2003-06-24 | Fmc Corporation | Metal oxide containing multiple dopants and method of preparing same |
US6589499B2 (en) | 1998-11-13 | 2003-07-08 | Fmc Corporation | Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same |
JP2014096379A (en) * | 2013-12-25 | 2014-05-22 | Semiconductor Energy Lab Co Ltd | Secondary battery and electronic apparatus |
-
1994
- 1994-09-05 JP JP6210935A patent/JPH0878004A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0825661A1 (en) * | 1996-08-23 | 1998-02-25 | Toda Kogyo Corp. | Lithium Battery |
US6083474A (en) * | 1996-08-23 | 2000-07-04 | Toda Kogyo Corporation | Lithium-iron oxide particles and process for producing the same |
US6270925B1 (en) | 1996-08-23 | 2001-08-07 | Toda Kogyo Corporation | Lithium battery |
US6582852B1 (en) | 1997-05-15 | 2003-06-24 | Fmc Corporation | Metal oxide containing multiple dopants and method of preparing same |
US6794085B2 (en) | 1997-05-15 | 2004-09-21 | Fmc Corporation | Metal oxide containing multiple dopants and method of preparing same |
US6589499B2 (en) | 1998-11-13 | 2003-07-08 | Fmc Corporation | Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same |
US6620400B2 (en) | 1998-11-13 | 2003-09-16 | Fmc Corporation | Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases |
US7074382B2 (en) | 1998-11-13 | 2006-07-11 | Fmc Corporation | Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same |
US6361756B1 (en) | 1998-11-20 | 2002-03-26 | Fmc Corporation | Doped lithium manganese oxide compounds and methods of preparing same |
US6579475B2 (en) * | 1999-12-10 | 2003-06-17 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
US6932922B2 (en) | 1999-12-10 | 2005-08-23 | Fmc Corporation | Lithium cobalt oxides and methods of making same |
JP2014096379A (en) * | 2013-12-25 | 2014-05-22 | Semiconductor Energy Lab Co Ltd | Secondary battery and electronic apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7157252B2 (en) | Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same | |
US6372384B1 (en) | Rechargeable lithium battery comprising substituted lithium titanate electrodes | |
US6872491B2 (en) | Positive electrode active material and lithium ion secondary battery | |
JP5061497B2 (en) | Nonaqueous electrolyte secondary battery | |
JP4963330B2 (en) | Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
US7655356B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2004207120A (en) | Nonaqueous electrolyte secondary battery | |
JP2003036889A (en) | Lithium secondary battery | |
KR20100098301A (en) | Nonaqueous electrolyte secondary battery | |
US6319633B1 (en) | Rechargeable lithium battery | |
JP3120789B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2005259617A (en) | Lithium ion secondary battery | |
JP5176317B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP2015144104A (en) | Nonaqueous electrolyte secondary battery | |
JP2000348722A (en) | Nonaqueous electrolyte battery | |
JP2008305688A (en) | Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode | |
JP5181455B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP2002128526A (en) | Lithium transition metal compound oxide for positive electrode active material for lithium secondary battery and lithium secondary battery using the same | |
JPH11120993A (en) | Nonaqueous electrolyte secondary battery | |
JPH0878004A (en) | Lithium secondary battery | |
JP2002313416A (en) | Non-aqueous electrolyte secondary battery | |
WO2019065196A1 (en) | Nonaqueous electrolyte secondary battery | |
JP3637690B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002203551A (en) | Non-aqueous electrolyte battery | |
JP2002260726A (en) | Nonaqueous electrolyte secondary battery |