JPH087352A - Magneto-optical recording medium and manufacture of same - Google Patents

Magneto-optical recording medium and manufacture of same

Info

Publication number
JPH087352A
JPH087352A JP14305294A JP14305294A JPH087352A JP H087352 A JPH087352 A JP H087352A JP 14305294 A JP14305294 A JP 14305294A JP 14305294 A JP14305294 A JP 14305294A JP H087352 A JPH087352 A JP H087352A
Authority
JP
Japan
Prior art keywords
rare earth
film
transition metal
magneto
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14305294A
Other languages
Japanese (ja)
Inventor
Minoru Shimada
稔 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14305294A priority Critical patent/JPH087352A/en
Publication of JPH087352A publication Critical patent/JPH087352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve magnetic characteristic while effectively utilizing a mate rial by improving distribution of film thickness and composition. CONSTITUTION:A plurality of amorphous films 13 formed on a nonmagnetic substrate 11 in such a condition that atomic layers of rare earth RE and transistor metal TM are alternated within the same layer are working as a recording layer. The amorphous film 13 is stacked between an under layer 12 and a protection film 14 formed on the substrate and the protection film 14 is further provided with a formed reflection film 15 and moreover a protection film (UV) 16. RE and TM layers are simultaneously formed using a couple of corresponding target substances by the sputtering method while the substrate 1 1 is rotated. Therefore, two layers are formed to satisfy the relationship that a thickness ratio TM/RE of the rare earth RE and transition metal TR in one unit at the lattice surface interval L of each atomic layer stacked during rotation of the substrate 11 is larger than 1.2 but is smaller than 1.8 (1.2<(TM/RE)<1.8).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光磁気記録媒体および
その製造方法に係り、とくに非晶質材である希土類RE
と遷移金属TMとを多層に積層させた周期多層膜から成
る非晶質材を備えた光磁気記録媒体およびその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magneto-optical recording medium and a method for manufacturing the same, and more particularly to a rare earth RE which is an amorphous material.
The present invention relates to a magneto-optical recording medium provided with an amorphous material composed of a periodic multilayer film in which a transition metal TM and a transition metal TM are laminated in multiple layers, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光記録媒体,光磁気記録媒体,或いはそ
の他の磁気記録媒体等を作製する場合、昨今において
は、磁気特性に優れ且つアモルファス合金特有の優れた
性質を活用し得ることから非晶質材が比較的多く用いら
れている。この内、希土類RE(Rare Eart
h)と遷移金属TM(Transition Meta
l)とを多層に積層させた非晶質合金膜を記録媒体とし
て用いたものは、記録媒体として良好な特性を示し、量
産化レベルにおいても実用的に優れていることが知られ
ている。
2. Description of the Related Art In the case of producing an optical recording medium, a magneto-optical recording medium, or other magnetic recording medium, it has recently been possible to make use of amorphous properties because of its excellent magnetic properties and the unique properties peculiar to amorphous alloys. The quality material is used relatively often. Of these, rare earth RE (Rare Earth)
h) and transition metal TM (Transition Meta)
It is known that a recording medium using an amorphous alloy film obtained by laminating a plurality of layers 1) and 1) exhibits good characteristics as a recording medium and is practically excellent even at a mass production level.

【0003】この常温において非磁性を示す希土類等の
物質を他の磁性材と結合させて上述したような非晶質材
を、磁性材として量産する場合、次の二つの方法が知ら
れている。 .希土類REと遷移金属TMとから成る合金ターゲッ
トを用いてスパッタする方法(1元スパッタ法)。 .希土類REおよび遷移金属TMの二つのターゲット
を用いて同時にスパッタする共スパッタ法を用いる方法
(多元スパッタ法)。
The following two methods are known for mass-producing the above-mentioned amorphous material as a magnetic material by combining a substance such as a rare earth element which is non-magnetic at room temperature with another magnetic material. . . A method of sputtering using an alloy target composed of a rare earth RE and a transition metal TM (one-source sputtering method). . A method using a co-sputtering method in which two targets of rare earth RE and transition metal TM are simultaneously sputtered (multi-source sputtering method).

【0004】の合金ターゲットを用いる方法は、RE
ーTM非晶質膜の膜組成を予め厳格に求め、その膜組成
を得ることが出来るようなターゲット(複合ターゲット
又は合金ターゲット)を用いるものであり、膜作製の再
現性、成膜時の管理という点で優れている。一方、の
2つのターゲットを用いる共スパッタ法によるものは、
成膜時、2つのターゲットの各々のターゲットパワー、
膜の分布等を管理しながら、回転される非磁性基板上に
同時にスパッタによって2つのターゲット物質を成膜す
るものである。この方法では、非磁性基板が1回転する
毎に2つの膜が交互に形成されるものであるから、得ら
れた非晶質膜は見かけ上はもちろん、実質的に積層膜化
された膜組成となる。
The method using the alloy target of RE is
-TM The film composition of the amorphous film is rigorously obtained in advance, and a target (composite target or alloy target) capable of obtaining the film composition is used. It is excellent in that respect. On the other hand, the co-sputtering method using the two targets
Target power of each of the two targets during film formation,
While controlling the distribution of the film and the like, two target materials are simultaneously formed on the rotating non-magnetic substrate by sputtering. According to this method, two films are alternately formed every one rotation of the non-magnetic substrate, so that the obtained amorphous film is of course apparently and has a substantially laminated film composition. Becomes

【0005】[0005]

【発明が解決しようとする課題】上記した合金ターゲッ
トを用いる方法は、上述のような利点を有する反面、タ
ーゲットが高価なこと、及びターゲットの消耗に伴う組
成ずれを生じたときに調整出来ない等の欠点を有し、コ
スト面及び量産面で必ずしも適当な方法とは言えない場
合があった。このような場合には、上述した共スパッタ
法が採用され、この共スパッタ法では、膜が形成される
非磁性基板の回転数及び2つのターゲットのスパッタリ
ングパワー等に応じて希土類REと遷移金属TMとの各
原子層が交互に複数層所定膜厚で積層されることにな
る。
The method using the alloy target described above has the advantages described above, but on the other hand, the target is expensive and cannot be adjusted when the composition shifts due to the consumption of the target. However, there is a case that it is not always an appropriate method in terms of cost and mass production. In such a case, the above-mentioned co-sputtering method is adopted. In this co-sputtering method, the rare earth RE and the transition metal TM are selected depending on the rotation speed of the non-magnetic substrate on which the film is formed and the sputtering power of the two targets. Atomic layers of and are alternately laminated in a predetermined thickness.

【0006】この共スパッタ法において、基板に形成さ
れる膜の原子層厚比(TM/RE)を保って各層を厚く
していくと、膜組成上は変わらないにも係わらず、磁気
特性的には希土類REが何ら関与しない状態、あるいは
希土類が磁性に全く寄与しない状態が生じ、せっかく得
られたRE−TMよりなる非晶質材の磁気特性は大幅に
低下したものとなる。この現象は、例えば、膜を形成す
る基板を支持したパレットを低速で回転させたり、ま
た、ターゲットへのスパッタパワーを高くしたりして一
層当りのRE層厚が極端に厚く堆積したときに現れる。
In this co-sputtering method, when the atomic layer thickness ratio (TM / RE) of the film formed on the substrate is maintained and the thickness of each layer is increased, the magnetic characteristic is improved although the film composition remains unchanged. Occurs in which no rare earth RE is involved, or in which rare earth RE does not contribute to magnetism at all, and the magnetic properties of the amorphous material made of RE-TM thus obtained are significantly deteriorated. This phenomenon appears, for example, when the pallet supporting the substrate on which the film is formed is rotated at a low speed or the sputtering power to the target is increased to deposit an extremely thick RE layer. .

【0007】希土類REは、それ自体では300[K]
あるいはそれ以上の常温においては非磁性であり、強磁
性体である遷移金属TMと組合わせることによって初め
て磁性材としての特性を示す。この希土類REと遷移金
属TMとを共スパッタ法によって結合させるにあたり、
基板を支持したパレットを低速で回転させると、遷移金
属TMの一層当りの原子層厚が厚くなることは勿論、特
に希土類REの一層当りの原子層厚が、高速または中速
でパレットを回転させた場合に比べて大幅に厚くなる。
The rare earth RE itself is 300 [K].
Alternatively, it is non-magnetic at a room temperature higher than that, and exhibits characteristics as a magnetic material only when combined with a transition metal TM which is a ferromagnetic material. In combining the rare earth RE and the transition metal TM by the co-sputtering method,
When the pallet supporting the substrate is rotated at a low speed, the atomic layer thickness per layer of the transition metal TM is increased, and in particular, the atomic layer thickness per layer of the rare earth RE is rotated at a high speed or a medium speed. It is significantly thicker than when

【0008】遷移金属の膜厚を含め、希土類REの原子
層厚が厚くなっても、蛍光X線分析等による組成分析の
結果では、組成としては変化は無い。しかしながら、本
来組成で決まる特性を示さず、層厚の厚さの故に希土類
REが遷移金属TMとの間で磁気作用を得るに必要な、
いわゆる交換相互作用を発揮することが出来ず、せっか
く膜形成された希土類RE膜の一部が磁気特性的には全
く関与しなくなり、RE−TMの膜組成が磁気特性的に
最適な組成から見かけ上は遷移金属リッチな組成に移行
するという不都合な現象が生じる。
Even if the atomic layer thickness of the rare earth RE is increased, including the thickness of the transition metal, there is no change in the composition as a result of the composition analysis by fluorescent X-ray analysis or the like. However, it does not exhibit characteristics that are originally determined by the composition, and because of the thickness of the layer thickness, the rare earth RE is necessary for obtaining a magnetic action with the transition metal TM,
Since the so-called exchange interaction cannot be exerted, a part of the rare-earth RE film formed without any relation is completely unrelated to the magnetic properties, and the film composition of RE-TM is apparently optimum from the magnetic properties. Above, an inconvenient phenomenon of transitioning to a composition rich in transition metal occurs.

【0009】一層当りの希土類REの層厚を厚くした場
合に生じる磁気特性的に関与しない希土類REは、それ
自体が常温で磁性を有さないため、磁気作用には何等寄
与しなくなり、高価な希土類REを無駄にすることにな
るだけでなく、何等寄与しなくなったREがノイズの原
因となり、折角得られた非晶質磁性膜も磁気特性的には
それほど良くないものとなる、という不都合があった。
従って、非晶質材を共スパッタ法で作製する場合、ター
ゲット物質の利用効率及び使用効率が高いという共スパ
ッタ法特有の優れた特徴を十分に活かすことが出来なか
った。また、膜厚分布及び組成分布に関しても、合金タ
ーゲットを用いた場合と比較して劣るものであった。
The rare earth RE, which is generated when the layer thickness of the rare earth RE per layer is increased and does not participate in the magnetic characteristics, has no magnetism at room temperature and therefore does not contribute to the magnetic action and is expensive. Not only is the rare earth RE wasted, but the RE that does not contribute at all causes noise, and the amorphous magnetic film obtained is not so good in terms of magnetic characteristics. there were.
Therefore, when the amorphous material is produced by the co-sputtering method, the excellent characteristics peculiar to the co-sputtering method that the utilization efficiency and the utilization efficiency of the target material are high cannot be fully utilized. Further, the film thickness distribution and the composition distribution were also inferior to the case where the alloy target was used.

【0010】[0010]

【発明の目的】本発明は、係る従来例の有する不都合を
改善し、特に、膜厚分布及び組成分布を改善することに
より材料の有効利用を図りつつ磁気特性を向上させるこ
とのできる非晶質材を有する光磁気記録媒体及びその製
造方法を提供することを、その目的とする。
An object of the present invention is to improve the disadvantages of the conventional example, and particularly to improve the magnetic properties while effectively utilizing the material by improving the film thickness distribution and the composition distribution. It is an object of the present invention to provide a magneto-optical recording medium having a material and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】そこで、請求項1記載の
本発明では、非磁性基盤上に、希土類REと遷移金属T
Mの周期多層膜で構成され当該原子層厚の比を1.2<
(TM/RE)<1.8に設定し且つ一層当たりの希土
類REの平均原子層厚がその原子半径以下に積層された
非晶質膜を設けた、という構成を採っている。
Therefore, in the present invention according to claim 1, a rare earth RE and a transition metal T are provided on a non-magnetic substrate.
The atomic layer thickness ratio is 1.2 <
(TM / RE) <1.8, and an amorphous film is provided in which the average atomic layer thickness of the rare earth RE per layer is equal to or less than the atomic radius thereof.

【0012】請求項2記載の本発明では、希土類REと
してTbを採用し,遷移金属TMとしてFeCoを採用
した、という構成を採っている。
According to the second aspect of the present invention, Tb is used as the rare earth RE and FeCo is used as the transition metal TM.

【0013】請求項3記載の本発明では、非磁性基盤上
に、希土類REと遷移金属TMとを、層状にならないよ
うに交互に入り交じった状態で積層された非晶質膜を設
けた、という構成を採っている。
According to the third aspect of the present invention, an amorphous film is provided on the non-magnetic substrate in which rare earth RE and transition metal TM are alternately laminated so as not to form a layer. Is adopted.

【0014】請求項4記載の本発明では、希土類REと
遷移金属TMの二つのターゲット物質を用いた同時スパ
ッタを、希土類REと遷移金属TMとの原子層厚の比が
1.2<(TM/RE)<1.8となる関係で且つ一層
当りの希土類REの平均原子層厚がその原子半径以下と
なるように、非磁性基板を回転させながら行う、という
構成を採っている。
According to the fourth aspect of the present invention, the co-sputtering using two target materials of rare earth RE and transition metal TM is performed, and the atomic layer thickness ratio of rare earth RE and transition metal TM is 1.2 <(TM. /RE)<1.8, and the structure is such that the non-magnetic substrate is rotated so that the average atomic layer thickness of the rare earth RE per layer is equal to or less than the atomic radius thereof.

【0015】請求項5記載の本発明では、2種のターゲ
ット物質Tb及びFeCoが配置されると共に真空槽内
に装着されたパレットの対面で非磁性基盤を回転させて
いるときに、真空槽内の到達真空度を5x10-5[P
a]以下で且つ不活性ガスの圧力を0.14x10
0[Pa]の状態で、Tbターゲットへの投入電力を2
40[W]で且つFeCoターゲットへの投入電力を1
280[W]でスパッタすることで、非磁性基盤上に記
録層を形成する、という構成を採っている。
According to the fifth aspect of the present invention, when two kinds of target materials Tb and FeCo are arranged and the non-magnetic substrate is rotated on the opposite side of the pallet mounted in the vacuum chamber, the inside of the vacuum chamber is rotated. Ultimate vacuum of 5 × 10 -5 [P
a] or less and an inert gas pressure of 0.14 × 10
In the state of 0 [Pa], the input power to the Tb target is 2
40 [W] and the input power to the FeCo target is 1
The recording layer is formed on the non-magnetic substrate by sputtering at 280 [W].

【0016】本発明では、これらの手段によって、上述
した目的を達成しようとするものである。
The present invention is intended to achieve the above-mentioned object by these means.

【0017】[0017]

【作用】上述した関係で非晶質材の膜を形成すると、そ
れ自体が常温で非磁性の物質が他の磁性物質と磁気的に
結合され、磁性材としての機能を発揮する。例えば、非
晶質材が希土類REと遷移金属TMとからなる場合は、
それ自体が常温で非磁性の希土類REが磁性体である遷
移金属TMと磁気的に結合され、いわゆる交換相互作用
により磁性体としての作用を十分に発揮するようにな
り、磁気特性に寄与しない分布が少なくなる。従って、
磁性体膜としての非晶質材の磁気特性が改善され、高い
レベルに保持される。そして、特に希土類REの一層当
りの平均原子層厚がその原子半径以下と薄い膜組成であ
る場合は、十分に良好な特性が得られる。
When the amorphous material film is formed according to the above-mentioned relationship, the non-magnetic material itself at room temperature is magnetically coupled with other magnetic material, and the function as a magnetic material is exhibited. For example, when the amorphous material is composed of rare earth RE and transition metal TM,
A distribution in which the rare-earth RE itself, which is non-magnetic at room temperature, is magnetically coupled to the transition metal TM, which is a magnetic substance, and sufficiently exhibits its action as a magnetic substance by so-called exchange interaction, which does not contribute to the magnetic characteristics. Is less. Therefore,
The magnetic properties of the amorphous material as the magnetic film are improved and maintained at a high level. Particularly, when the average atomic layer thickness per one layer of the rare earth RE is equal to or less than the atomic radius thereof and the film composition is thin, sufficiently good characteristics can be obtained.

【0018】また、希土類RE層と遷移金属TM層を多
層に積層させて非晶質材を作製するに当たり、その層厚
比を1.2<(TM/RE)<1.8に選定すると、非
晶質材は、薄膜でかつ十分に良好な磁気特性を有するこ
ととなる。
When the amorphous material is produced by laminating the rare earth RE layer and the transition metal TM layer in multiple layers, the layer thickness ratio is selected to be 1.2 <(TM / RE) <1.8. The amorphous material is a thin film and has sufficiently good magnetic properties.

【0019】[0019]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。図1は本実施例の非晶質材(膜)を示すも
ので、光磁気ディスク媒体の一部断面図である。ここで
は、非磁性基板11上に希土類REと遷移金属TMとの
原子層が同一層内で交互に入り交じった状態で複数個構
成されている非晶質膜13が、記録層として作用してい
る。非晶質膜13は、基盤上に形成された下地膜12と
保護膜14との間に積層されていて、保護膜14には反
射膜15が形成され、さらに保護膜(UV)16が形成
されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an amorphous material (film) of this embodiment and is a partial cross-sectional view of a magneto-optical disk medium. Here, the amorphous film 13 composed of a plurality of atomic layers of the rare earth RE and the transition metal TM alternately intermingled in the same layer on the non-magnetic substrate 11 acts as a recording layer. There is. The amorphous film 13 is laminated between the base film 12 and the protective film 14 formed on the substrate, the reflective film 15 is formed on the protective film 14, and the protective film (UV) 16 is further formed. Has been done.

【0020】RE及びTM層は、共スパッタリング法に
より対応する2つのターゲット物質を用いて基板11を
回転させながら同時に層形成される。その層形成の際、
図2(A)に示すように、2つの原子層REとTMとが
層状の構造をとる場合と、図2(B)に示すように、2
つの原子層REとTMとが層状構造とならず、相互に入
り交じり合いながら交互に積層される場合とがある。本
実施例では、2つの原子層REとTMとは1層内で相互
に入り交じり合いながら交互に積層された膜構造(図2
(B))となった非晶質膜13を記録層として採用して
いる。そのため、基板11の一回転で積層される各原子
層の格子面間隔Lに於ける1ユニット内の希土類REと
遷移金属TMとの層厚比が1.2<(TM/RE)<
1.8なる関係式を満足するように2つの層が形成され
ている。
The RE and TM layers are simultaneously formed by the co-sputtering method using two corresponding target materials while rotating the substrate 11. When forming the layer,
As shown in FIG. 2 (A), a case where two atomic layers RE and TM have a layered structure, and as shown in FIG. 2 (B), 2
In some cases, the two atomic layers RE and TM do not have a layered structure and are alternately stacked while intermingling with each other. In this embodiment, two atomic layers RE and TM are alternately laminated in a single layer while intermingling with each other (see FIG. 2).
The amorphous film 13 of (B)) is used as the recording layer. Therefore, the layer thickness ratio between the rare earth RE and the transition metal TM in one unit at the lattice spacing L of each atomic layer laminated by one rotation of the substrate 11 is 1.2 <(TM / RE) <.
Two layers are formed so as to satisfy the relational expression of 1.8.

【0021】これを詳細に説明する。ここでは希土類と
してTbが、また、遷移金属TMとしてFeCoを採用
した。TbとFeCoとは、上述した共スパッタリング
法により2つのターゲット物質を用いて下記に例示した
成膜条件により基板11上に同時に積層される。
This will be described in detail. Here, Tb is used as the rare earth and FeCo is used as the transition metal TM. Tb and FeCo are simultaneously laminated on the substrate 11 by the above-described co-sputtering method using two target materials under the film formation conditions illustrated below.

【0022】図3はその成膜の際に用いられる共スパッ
タリング装置を示す正面の一部断面図であり、図4は図
3に示した共スパッタリング装置の底面図である。真空
槽31内にTbとFeCoの2つのターゲット物質3
2、33を配置すると共に、パレット34のターゲット
32、33の対向面に複数枚の基板11を回転させ、不
活性ガスを真空槽31内に導入後、パレット34を回転
させる。同時に電場をかけるとプラズマ放電が発生し、
スパッタされパレット34の1回転毎に基板11上にT
bとFeCoTiが交互に積層されるというものであ
る。
FIG. 3 is a partial front sectional view showing a co-sputtering apparatus used for film formation, and FIG. 4 is a bottom view of the co-sputtering apparatus shown in FIG. Two target materials 3 of Tb and FeCo are placed in the vacuum chamber 31.
While placing 2 and 33, the plurality of substrates 11 are rotated on the surfaces of the pallets 34 facing the targets 32 and 33, and after introducing the inert gas into the vacuum chamber 31, the pallets 34 are rotated. When an electric field is applied at the same time, plasma discharge occurs,
Each time the pallet 34 is sputtered, T is placed on the substrate 11.
b and FeCoTi are alternately laminated.

【0023】実際には、真空槽31内の到達真空度5x
10-5[Pa]以下、スパッタ時のアルゴンガス圧0.
14x100[Pa]の状態で、Tbターゲットへの投
入電力を240[W],FeCoターゲットへの投入電
力を1280[W]に設定して、108秒間共スパッタ
を行った。
Actually, the ultimate vacuum in the vacuum chamber 31 is 5 ×
10 -5 [Pa] or less, argon gas pressure during sputtering of 0.
In the state of 14 × 10 0 [Pa], the input power to the Tb target was set to 240 [W] and the input power to the FeCo target was set to 1280 [W], and co-sputtering was performed for 108 seconds.

【0024】Tbの原子径を3.56オングストロー
ム、Feの原子径を2.48オングストローム、Coの
原子径を2.50オングストロームとして換算すると1
ユニットの格子面間隔Lにおいて、平均原子総数がTb
1原子層よりも小さな状態で膜厚分布及び組成分布が改
善され、磁気特性的にも最適であることがわかった。図
5は、実際に成膜された非晶質膜13について調べた結
果を示すものである。横軸はディスクの径方向、縦軸は
最内径に於ける膜厚及び組成の規格値を表している。図
5中、実線はTb原子層がTb原子半径よりも小さい場
合、即ち、図2(B)に示したような1層内で相互に入
り交じり合いながら交互に積層された膜構造の場合を示
している。一方、点線は図2(A)に示した積層された
膜構造の場合で、Tb原子層がTb原子半径よりも大き
い場合を示している。この評価からも明らかなように、
本実施例では、膜厚及び組成は共に安定している。
When the atomic diameter of Tb is 3.56 angstroms, the atomic diameter of Fe is 2.48 angstroms, and the atomic diameter of Co is 2.50 angstroms, it is 1
At the lattice spacing L of the unit, the average total number of atoms is Tb.
It was found that the film thickness distribution and the composition distribution were improved in a state smaller than one atomic layer, and the magnetic characteristics were optimal. FIG. 5 shows the result of examining the amorphous film 13 actually formed. The horizontal axis represents the radial direction of the disk, and the vertical axis represents the standard values of film thickness and composition at the innermost diameter. In FIG. 5, the solid line represents the case where the Tb atomic layer is smaller than the Tb atomic radius, that is, the case where the Tb atomic layer has a film structure in which the layers are alternately laminated while intermingling with each other as shown in FIG. 2B. Shows. On the other hand, the dotted line shows the case of the stacked film structure shown in FIG. 2A, in which the Tb atomic layer is larger than the Tb atomic radius. As is clear from this evaluation,
In this embodiment, both the film thickness and the composition are stable.

【0025】Tbの平均原子層厚をTb原子径以下とな
るような膜組成で非晶質膜を作製すると、核格子面間隔
LにおけるTbの原子層が平均層厚3.56オングスト
ローム以下の薄膜であるから遷移金属FeCoと磁気的
に結合し、交換相互作用により本来常温で非磁性のTb
が磁性体としての特性を示す。従って、非晶質膜の各原
子層内にわたって磁性に寄与しないTbは無くなる、従
って、高価なTbを有効利用することができる。また、
磁気特性が安定し、磁気的に安定した良好な磁性体膜が
得られる。また、上述した製造方法に条件を満足させる
ことにより、磁気的に安定した良好な非晶質材、即ち磁
性体膜を効率よく作製することが可能である。
When an amorphous film is produced with a film composition such that the average atomic layer thickness of Tb is not more than the Tb atomic diameter, the atomic layer of Tb at the nuclear lattice spacing L is a thin film having an average layer thickness of 3.56 angstroms or less. Therefore, it is magnetically coupled to the transition metal FeCo, and due to the exchange interaction, Tb which is originally non-magnetic at room temperature.
Shows the characteristics as a magnetic material. Therefore, Tb that does not contribute to magnetism is eliminated in each atomic layer of the amorphous film, and thus expensive Tb can be effectively used. Also,
The magnetic characteristics are stable, and a good magnetic film that is magnetically stable can be obtained. Further, by satisfying the conditions in the above-mentioned manufacturing method, it is possible to efficiently manufacture a good amorphous material that is magnetically stable, that is, a magnetic film.

【0026】[0026]

【発明の効果】本発明は以上のように構成され機能する
ので、これによると、膜厚及び組成に関して広く均一な
非晶質材(膜)が安定して得られる。また、本来常温で
非磁性を示す非金属、希土類等が磁性材である遷移金属
等との原子レベルでの結合により、十分に磁性を発揮す
るようになり、磁性に関与または寄与しない非磁性の希
土類等が無くなる。磁性に関与または寄与しない希土類
等が存在しないので、ノイズの低下を可能にすると共
に、高価な材料の有効利用および材料の節約が可能であ
る。このように、膜厚分布及び組成分布の改善すること
で材料の有効利用を図りつつ磁気特性を向上させること
のできる従来にない非晶質材を有する光磁気記録媒体及
びその製造方法を提供することができる。
Since the present invention is constructed and functions as described above, according to this, an amorphous material (film) having a wide and uniform film thickness and composition can be stably obtained. In addition, non-metals or rare earths which are originally non-magnetic at room temperature become fully magnetized by bonding with a transition metal, which is a magnetic material, at the atomic level, and non-magnetic materials that do not contribute or do not contribute to magnetism. Rare earths are lost. Since there is no rare earth element or the like that does not contribute to or contribute to magnetism, it is possible to reduce noise, and to effectively use expensive materials and save materials. As described above, a magneto-optical recording medium having a non-conventional amorphous material capable of improving magnetic characteristics while effectively utilizing the material by improving the film thickness distribution and the composition distribution, and a manufacturing method thereof are provided. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す光磁気ディスク媒体の
膜構成説明図である。
FIG. 1 is an explanatory diagram of a film structure of a magneto-optical disk medium showing an embodiment of the present invention.

【図2】従来及び本実施例による非晶質膜の断面図であ
り、図2(A)は従来例を示す断面図で、図2(B)は
本実施例による非晶質膜の断面図である。
2A and 2B are cross-sectional views of an amorphous film according to the related art and the present embodiment, FIG. 2A is a cross-sectional view illustrating a conventional example, and FIG. 2B is a cross-section of the amorphous film according to the present embodiment. It is a figure.

【図3】本発明の光磁気ディスク媒体の製造方法の実施
に用いる共スパッタ装置の正面の一部断面図である。
FIG. 3 is a partial front cross-sectional view of a co-sputtering device used for carrying out the method of manufacturing a magneto-optical disk medium of the present invention.

【図4】図3に示した共スパッタ装置の底面図である。FIG. 4 is a bottom view of the co-sputtering device shown in FIG.

【図5】本実施例による非晶質膜13の評価を示し、図
5(A)は膜厚についてのグラフ図であり、図5(B)
は組成についてのグラフ図である。
5 shows evaluation of the amorphous film 13 according to this example, FIG. 5 (A) is a graph of film thickness, and FIG. 5 (B).
[Fig. 3] is a graph of composition.

【符号の説明】[Explanation of symbols]

L 格子面間隔 11 非磁性基板 12 下地膜 13 非晶質膜 14 保護膜 15 反射膜 16 保護膜(UV) 21 RE 22 TM 23 非晶質膜 31 真空槽 32 REターゲット 33 TMターゲット 34 パレット 35 回転軸 36 基板ホルダ L Lattice spacing 11 Non-magnetic substrate 12 Underlayer film 13 Amorphous film 14 Protective film 15 Reflective film 16 Protective film (UV) 21 RE 22 TM 23 Amorphous film 31 Vacuum chamber 32 RE target 33 TM target 34 Palette 35 Rotation Axis 36 substrate holder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基盤上に、希土類REと遷移金属
TMの周期多層膜で構成され当該原子層厚の比を1.2
<(TM/RE)<1.8に設定し且つ一層当たりの希
土類REの平均原子層厚がその原子半径以下に積層され
た非晶質膜を設けて成る光磁気記録媒体。
1. A non-magnetic substrate is composed of a periodic multilayer film of rare earth RE and transition metal TM, and the atomic layer thickness ratio is 1.2.
<(TM / RE) <1.8, and a magneto-optical recording medium provided with an amorphous film laminated such that the average atomic layer thickness of rare earth RE per layer is equal to or less than the atomic radius thereof.
【請求項2】 前記希土類REとしてTbを採用し,前
記遷移金属TMとしてFeCoを採用したことを特徴と
する請求項1記載の光磁気記録媒体。
2. The magneto-optical recording medium according to claim 1, wherein Tb is used as the rare earth RE and FeCo is used as the transition metal TM.
【請求項3】 非磁性基盤上に、前記希土類REと遷移
金属TMとを、層状にならないように交互に入り交じっ
た状態で積層された非晶質膜を設けて成る光磁気記録媒
体。
3. A magneto-optical recording medium comprising an amorphous film in which the rare earth RE and the transition metal TM are alternately laminated so as not to form a layer on a non-magnetic substrate.
【請求項4】 希土類REと遷移金属TMの二つのター
ゲット物質を用いた同時スパッタを、希土類REと遷移
金属TMとの原子層厚の比が1.2<(TM/RE)<
1.8となる関係で且つ一層当りの希土類REの平均原
子層厚がその原子半径以下となるように、非磁性基板を
回転させながら行うことを特徴とした光磁気記録媒体の
製造方法。
4. A co-sputtering using two target materials of rare earth RE and transition metal TM, wherein the atomic layer thickness ratio of rare earth RE and transition metal TM is 1.2 <(TM / RE) <.
A method for manufacturing a magneto-optical recording medium, characterized in that the non-magnetic substrate is rotated such that the average atomic layer thickness of the rare earth RE per layer is 1.8 or less in the relationship of 1.8.
【請求項5】 2種のターゲット物質Tb及びFeCo
が配置されると共に真空槽内に装着されたパレットの対
面で非磁性基盤を回転させているときに、真空槽内の到
達真空度を5x10-5[Pa]以下で且つ不活性ガスの
圧力を0.14x100[Pa]の状態で、Tbターゲ
ットへの投入電力を240[W]で且つFeCoターゲ
ットへの投入電力を1280[W]でスパッタすること
で、非磁性基盤上に記録層を形成することを特徴とした
光磁気記録媒体の製造方法。
5. Two kinds of target materials Tb and FeCo
When the non-magnetic substrate is rotated on the opposite side of the pallet mounted in the vacuum tank, the ultimate vacuum in the vacuum tank is 5 × 10 −5 [Pa] or less and the pressure of the inert gas is A recording layer is formed on the non-magnetic substrate by sputtering with a power of 240 [W] applied to the Tb target and a power of 1280 [W] applied to the FeCo target under the condition of 0.14 × 10 0 [Pa]. A method for manufacturing a magneto-optical recording medium, characterized by:
JP14305294A 1994-06-24 1994-06-24 Magneto-optical recording medium and manufacture of same Pending JPH087352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14305294A JPH087352A (en) 1994-06-24 1994-06-24 Magneto-optical recording medium and manufacture of same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14305294A JPH087352A (en) 1994-06-24 1994-06-24 Magneto-optical recording medium and manufacture of same

Publications (1)

Publication Number Publication Date
JPH087352A true JPH087352A (en) 1996-01-12

Family

ID=15329800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14305294A Pending JPH087352A (en) 1994-06-24 1994-06-24 Magneto-optical recording medium and manufacture of same

Country Status (1)

Country Link
JP (1) JPH087352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036633A1 (en) * 2001-10-25 2003-05-01 Matsushita Electric Industrial Co., Ltd. Method of forming film on optical disk

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271041A (en) * 1985-09-24 1987-04-01 Toshiba Corp Photomagnetic recording medium and its production
JPH02273348A (en) * 1989-04-13 1990-11-07 Nec Corp Magneto-optical recording medium
JPH04163744A (en) * 1990-10-26 1992-06-09 Nec Corp Magnetooptical recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271041A (en) * 1985-09-24 1987-04-01 Toshiba Corp Photomagnetic recording medium and its production
JPH02273348A (en) * 1989-04-13 1990-11-07 Nec Corp Magneto-optical recording medium
JPH04163744A (en) * 1990-10-26 1992-06-09 Nec Corp Magnetooptical recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036633A1 (en) * 2001-10-25 2003-05-01 Matsushita Electric Industrial Co., Ltd. Method of forming film on optical disk

Similar Documents

Publication Publication Date Title
US4539265A (en) Magnetic recording medium
US5552217A (en) Magnetic recording medium and a method for producing it
JPH087352A (en) Magneto-optical recording medium and manufacture of same
JP3133443B2 (en) Magneto-optical recording medium
JPS63106916A (en) Magnetic recording medium
JPH0268716A (en) Production of magnetic disk medium
JP3001313B2 (en) Magneto-optical recording medium
US7087325B2 (en) Magnetic recording medium and production process thereof
JPH04311842A (en) Production of magneto-optical recording medium
JPS63273236A (en) Magneto-optical recording medium
JPS63269354A (en) Magneto-optical recording medium
JPS62128019A (en) Magnetic recording medium
JPH01168858A (en) Amorphous material and its manufacture
JPH0416851B2 (en)
JPH06349662A (en) Forming method of magnetoresistance effect film
JPH0194552A (en) Manufacture of magneto-optical recording medium
JPH1166533A (en) Magnetic recording medium
JPH1166559A (en) Magnetic recording medium and its manufacture
JPS59157826A (en) Production of magnetic recording medium
JPH05335169A (en) Forming method of magnetic thin film
JP2003100543A (en) Method of forming magnetic film
JPH0660448A (en) Magneto-optical recording medium
JPH08329542A (en) Production of magneto-optical recording layer
JPH06282834A (en) Perpendicular magnetic recording medium and manufacture thereof
JPH02215106A (en) Magnetic film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981124