JPH087226A - Non-magnetic substrate for magnetic head - Google Patents

Non-magnetic substrate for magnetic head

Info

Publication number
JPH087226A
JPH087226A JP6164819A JP16481994A JPH087226A JP H087226 A JPH087226 A JP H087226A JP 6164819 A JP6164819 A JP 6164819A JP 16481994 A JP16481994 A JP 16481994A JP H087226 A JPH087226 A JP H087226A
Authority
JP
Japan
Prior art keywords
magnetic
oxide
substrate
modulus
nio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6164819A
Other languages
Japanese (ja)
Inventor
Ryuichi Nagase
隆一 長瀬
Satoru Suzuki
了 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP6164819A priority Critical patent/JPH087226A/en
Publication of JPH087226A publication Critical patent/JPH087226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Heads (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To prevent the deformation of the substrate and peeling of the magnetic film due to the working at the time of manufacturing a magnetic head from occurring and to improve the yield of the magnetic head by using a non magnetic substrate having a high Young's modulus and a thermal expansion coefficient close to that of the magnetic film structure as a component of the head. CONSTITUTION:The magnetic head is provided with this non magnetic substrate for the magnetic head obtained by dispersing an oxide or non-oxide having a higher Young' s modulus than that of a non magnetic oxide which has a rock salt structure comprising CoO and NiO or NiO as its basic composition, into this non-magnetic oxide. The substrate, for example, has a >=220GPa Young's modulus and a >=120XX10<-7>/ deg.C thermal expansion coefficient. The oxide used is at least one oxide selected from BeO, TiO2 and Cabin. and the non-oxide used is selected from B4d, SiC, carbides of elements of groups 4A, 5A and 6A in the periodic Table, Si3N4, AlN and nitrides, borides and silicides of elements of groups 4A, 5A and 6A in the periodic Table. In this substrate, the oxide or non-oxide is dispersed in the non-magnetic oxide in a particulate or whiskery form.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性膜構造体を蒸着す
るための非磁性の磁気ヘッド用基板に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonmagnetic magnetic head substrate for depositing a magnetic film structure.

【0002】[0002]

【従来の技術】従来この種の磁気ヘッド用非磁性基板用
途にはチタン酸バリウム、チタン酸カルシウム、アルミ
ナ等が使用されていた。しかしながら、その熱膨張係数
が磁性膜構造体と大きく異なっていたため、磁性膜構造
体が剥離しやすく、また磁性膜構造体と基板との熱膨張
係数の差により応力が発生し、基板にクラックが発生す
ることがあった。
2. Description of the Related Art Conventionally, barium titanate, calcium titanate, alumina, etc. have been used for non-magnetic substrates for magnetic heads of this type. However, since the coefficient of thermal expansion was significantly different from that of the magnetic film structure, the magnetic film structure was easily peeled off, and stress was generated due to the difference in the coefficient of thermal expansion between the magnetic film structure and the substrate, and the substrate was cracked. It happened.

【0003】本発明者等は上記の欠点を解決すべく酸化
物系セラミックスについて研究を進め、CoO及びNiOある
いはNiOを基本組成する岩塩型構造の非磁性酸化物系セ
ラミックスが有効であるとして既に開示した。また、Co
O及びNiOまたはNiOを基本組成とした磁気ヘッド用非磁
性基板の製造方法として、以下の工程からなる製造方法
が有効であるとして既に開示した(特公平5-29286)。
すなわち、(1) 原料粉を混合し、ふるい分けを行なう混
合工程、(2) CIP成形した混合粉を仮焼し、粉砕した後
ふるい分けを行なう仮焼工程、(3) 仮焼粉を1μm以下に
微粉砕する工程、(4) 微粉砕粉を20μm以上の球形に造
粒する工程、(5) 造粒粉をCIP成形する工程、(6)成形体
を焼結する工程、(7) 焼結体をHIP処理する工程であ
る。このようにして作製された非磁性基板は、磁性膜構
造体、例えば熱膨張係数が約140×10-7/℃であるFe-Si-
Al合金等が蒸着され磁気ヘッドに加工される。
The present inventors have conducted research on oxide-based ceramics in order to solve the above-mentioned drawbacks, and have already disclosed that non-magnetic oxide-based ceramics of rock salt type structure having a basic composition of CoO and NiO or NiO are effective. did. Also, Co
As a method for manufacturing a non-magnetic substrate for a magnetic head having a basic composition of O and NiO or NiO, it has already been disclosed that a manufacturing method including the following steps is effective (Japanese Patent Publication No. 5-29286).
That is, (1) a mixing step of mixing the raw material powders and sieving, (2) a calcination step of calcination of the CIP-molded mixed powder, crushing after crushing, and (3) a calcination powder of 1 μm or less. Step of pulverizing, (4) Step of granulating finely pulverized powder into a sphere of 20 μm or more, (5) Step of CIP-forming granulated powder, (6) Step of sintering a compact, (7) Sintering This is the process of HIPing the body. The non-magnetic substrate produced in this manner is a magnetic film structure, for example, Fe-Si- having a thermal expansion coefficient of about 140 × 10 -7 / ° C.
An Al alloy or the like is deposited and processed into a magnetic head.

【0004】[0004]

【発明が解決しようとする課題】この焼結体を加工し磁
気ヘッドは作製されるが、ヘッド作製時の加工により基
板が変形するといった問題があった。
Although the magnetic head is manufactured by processing this sintered body, there is a problem that the substrate is deformed by the processing at the time of manufacturing the head.

【0005】[0005]

【課題を解決するための手段】そこで、本発明者等は、
ヘッド作製時に発生する基板の変形は、基板自体の靭性
を向上させることで防止できるとの発想から検討を行な
った結果、CoO及びNiOあるいはNiOを基本組成とする岩
塩型構造の非磁性酸化物に、ヤング率が非磁性酸化物よ
り大きい酸化物または非酸化物を分散することにより、
基板自体のヤング率が向上し、基板の変形に対して有効
であることを見出した。
Therefore, the present inventors have
As a result of studying from the idea that the deformation of the substrate that occurs during head fabrication can be prevented by improving the toughness of the substrate itself, CoO and NiO or NiO is formed into a non-magnetic oxide with a rock-salt structure. , By dispersing an oxide or a non-oxide whose Young's modulus is larger than the non-magnetic oxide,
It has been found that the Young's modulus of the substrate itself is improved and is effective for the deformation of the substrate.

【0006】すなわち、本発明は、CoO及びNiOあるいは
NiOを基本組成とする岩塩型構造の非磁性酸化物に、ヤ
ング率が非磁性酸化物より大きい酸化物または非酸化物
を分散したことを特徴とする磁気ヘッド用非磁性基板で
あり、この非磁性基板のヤング率が220GPa以上でありか
つその熱膨張係数が120×10-7/℃以上である。また、前
記酸化物は、BeO、TiO2、CaTiO3から選択した少なくと
も1種以上、前記非酸化物は、B4C、SiC及び周期表4A、
5A、6A族の炭化物、Si3N4、AlN及び周期表4A、5A、6A族
の窒化物、周期表4A、5A、6A族のホウ化物あるいはケイ
化物から選択した少なくとも1種以上の非酸化物である
ことを特徴とする磁気ヘッド用非磁性基板であり、酸化
物または非酸化物の分散形態が粒子状あるいはウィスカ
ー状である磁気ヘッド用非磁性基板である。
That is, the present invention relates to CoO and NiO or
A non-magnetic substrate for a magnetic head, characterized in that an oxide or non-oxide having a Young's modulus larger than that of a non-magnetic oxide is dispersed in a non-magnetic oxide having a rock salt structure whose basic composition is NiO. The Young's modulus of the magnetic substrate is 220 GPa or more and its thermal expansion coefficient is 120 × 10 -7 / ℃ or more. Further, the oxide is at least one selected from BeO, TiO 2 , and CaTiO 3 , and the non-oxide is B 4 C, SiC and Periodic Table 4A,
5A, 6A carbide, Si 3 N 4 , AlN and 4A, 5A, 6A nitride, 4A, 5A, 6A boride or silicide non-oxidized A non-magnetic substrate for a magnetic head, wherein the oxide or the non-oxide is dispersed in the form of particles or whiskers.

【0007】本発明の理解を容易にするため、以下、本
発明の構成を具体的かつ詳細に説明する。基本組成は、
NiOとCoOとの複合酸化物を意味し、例えば、CoO/NiO
(モル比)=0/100〜80/20で、より好ましくは、磁性膜
構造体の熱膨張係数に近いCoO/NiO(モル比)=3/97〜60
/40である。
In order to facilitate understanding of the present invention, the structure of the present invention will be described in detail below. The basic composition is
Means a composite oxide of NiO and CoO, for example, CoO / NiO
(Molar ratio) = 0/100 to 80/20, and more preferably CoO / NiO (molar ratio) = 3/97 to 60, which is close to the thermal expansion coefficient of the magnetic film structure.
/ 40.

【0008】CoO及びNiOあるいはNiOを基本組成とする
岩塩型構造の非磁性酸化物中に分散させる酸化物として
は、BeO、TiO2、CaTiO3から選択した1種以上、非酸化
物としては、B4C、SiC及び周期表4A、5A、6A族の炭化
物、Si3N4、AlN及び周期表4A、5A、6A族の窒化物、周期
表4A、5A、6A族のホウ化物あるいはケイ化物から選択し
た1種以上である。これらの酸化物または非酸化物は、
ヤング率が大きいセラミック材料であり、かつ非磁性基
板と反応して磁性化合物を生成しない化合物である。非
磁性基板材料中にこれらの酸化物または非酸化物が分散
することでヤング率向上の効果が得られる。
As the oxide to be dispersed in the non-magnetic oxide of rock salt type structure having CoO and NiO or NiO as a basic composition, at least one selected from BeO, TiO 2 and CaTiO 3 , and as the non-oxide, B 4 C, SiC and carbides of Group 4A, 5A, 6A of the periodic table, Si 3 N 4 , AlN and nitrides of Group 4A, 5A, 6A of the periodic table, boride or silicide of Group 4A, 5A, 6A It is 1 or more types selected from. These oxides or non-oxides are
It is a ceramic material having a large Young's modulus and is a compound that does not form a magnetic compound by reacting with a non-magnetic substrate. The effect of improving Young's modulus can be obtained by dispersing these oxides or non-oxides in the non-magnetic substrate material.

【0009】これらセラミック材料の含有率は、ヤング
率が220GPa以上、熱膨張係数が120×10-7/℃以上となる
含有率である。ヤング率が220GPa未満であると、ヘッド
作製時の加工において耐えうるだけの靭性が発現せず、
また熱膨張係数が120×10-7/℃未満であると磁性膜構造
体と大きく異なるため、磁性膜構造体が剥離しやすく、
また磁性膜構造体と基板との熱膨張係数の差により応力
が発生し、基板にクラックが発生しやすくなるからであ
る。上記の酸化物あるいは非酸化物をそれぞれ単独でCo
O-NiO(モル比;CoO/NiO=35/65)に添加したときの含有率
を表1に示す。
The content of these ceramic materials is such that the Young's modulus is 220 GPa or more and the coefficient of thermal expansion is 120 × 10 −7 / ° C. or more. If the Young's modulus is less than 220 GPa, the toughness that can be endured during processing during head production does not appear,
Further, if the thermal expansion coefficient is less than 120 × 10 -7 / ℃, because it is significantly different from the magnetic film structure, the magnetic film structure is easy to peel,
Moreover, stress is generated due to the difference in thermal expansion coefficient between the magnetic film structure and the substrate, and cracks are likely to occur on the substrate. Each of the above oxides or non-oxides is used alone as Co
Table 1 shows the content when added to O-NiO (molar ratio; CoO / NiO = 35/65).

【0010】[0010]

【表1】 [Table 1]

【0011】尚、表1は、CoO-NiO(モル比;CoO/NiO=35/
65)のときの添加量について示しているが、本系では添
加物が系に固溶しないため、熱膨張係数、ヤング率は、
添加物の添加量(体積分率)に対してほぼ線形性を示す。
従って、モル比の異なるCoO-NiOを用いるときは、その
組成の熱膨張係数、ヤング率の値をベースとして換算す
ることにより、最適な添加物の含有率を決定することが
できる。
Table 1 shows CoO-NiO (molar ratio; CoO / NiO = 35 /
The amount of addition in the case of 65) is shown, but since the additives do not form a solid solution in this system, the thermal expansion coefficient and Young's modulus are
Almost linear with respect to the added amount (volume fraction) of the additive.
Therefore, when using CoO-NiO having different molar ratios, the optimum content of the additive can be determined by converting the values of the coefficient of thermal expansion and Young's modulus of the composition as a base.

【0012】なお、これらセラミック材料の分散形態は
いかなるものでもよいが、粒子状あるいはウィスカー状
が好ましい。これは、ウィスカ−を用いることでクラッ
クの伝播形態が変化するため粒子を分散したときより強
靱化がはかれるためである。
Any dispersion form of these ceramic materials may be used, but particles or whiskers are preferable. This is because the use of whiskers changes the propagation form of cracks, so that toughness can be achieved more than when particles are dispersed.

【0013】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【実施例1】市販TiO2粉末を利用し、基本組成をCoO/Ni
O(モル比)=35/65とし、これに対して20vol%、30vol
%、40vol%、50vol%となるようにTiO2粉末をそれぞれ添
加した混合粉を作製した。混合はエタノールを使用した
湿式ボールミルで20時間行なった。この混合粉をN2ガス
中900℃で処理し、仮焼粉を得た。この仮焼粉を、エタ
ノールを使用する湿式ボールミルで40時間粉砕した。こ
の粉砕粉を造粒後CIP成形し、成形体を真空中で1500
℃、300kg/cm2でホットプレス処理した。超音波法によ
るヤング率(GPa)、熱膨張係数(×10-7/℃)を図1に
示した。●がヤング率、○が熱膨張係数である。比較例
として、従来用いられていたCoO/NiO(モル比)=35/65
の基本組成で同様に作製したCoO-NiO基板の評価結果を
併せて図1に示した。
Example 1 A commercially available TiO 2 powder was used and the basic composition was CoO / Ni.
O (molar ratio) = 35/65, against which 20vol%, 30vol
%, 40 vol%, and 50 vol% were added to the TiO 2 powder to prepare mixed powders. The mixing was performed for 20 hours with a wet ball mill using ethanol. This mixed powder was treated in N 2 gas at 900 ° C. to obtain a calcined powder. The calcined powder was crushed for 40 hours with a wet ball mill using ethanol. After granulating this crushed powder, CIP molding is performed and the molded body is 1500
Hot pressing was performed at 300 ° C. and 300 kg / cm 2 . The Young's modulus (GPa) and thermal expansion coefficient (× 10 -7 / ° C) by ultrasonic method are shown in Fig. 1. ● is Young's modulus and ○ is thermal expansion coefficient. As a comparative example, CoO / NiO (molar ratio), which was conventionally used, is 35/65.
FIG. 1 also shows the evaluation results of the CoO-NiO substrate similarly prepared with the above basic composition.

【0014】図1より、TiO2を25vol%以上40vol%以下添
加することにより、ヤング率は220GPa以上と向上しかつ
熱膨張係数も120×10-7/℃以上となる。また、Fe-Si-Al
合金を蒸着し磁気ヘッドに加工した時の加工歩留まり
は、従来、50〜60%であったのが70〜75%と向上している
ことが確認された。
From FIG. 1, by adding 25 vol% or more and 40 vol% or less of TiO 2 , the Young's modulus is improved to 220 GPa or more and the thermal expansion coefficient is also 120 × 10 −7 / ° C. or more. In addition, Fe-Si-Al
It was confirmed that the processing yield when the alloy was vapor-deposited and processed into a magnetic head was 50 to 60% in the past, but improved to 70 to 75%.

【0015】[0015]

【実施例2】実施例1の20vol%、30vol%、40vol%、50vo
l%のTiO2粉末を5vol%、20vol%、35vol%のTiC粉末に変更
した以外は同様に作製しその特性を評価した。その評価
結果を図2に示す。図2より、TiCを8vol%以上32vol%以
下添加することにより、ヤング率は220GPa以上と向上し
かつ熱膨張係数も120×10-7/℃以上となる。また、Fe-S
i-Al合金を蒸着し磁気ヘッドに加工した時の加工歩留ま
りも68〜73%と実施例1と同様に向上した。
[Example 2] 20vol%, 30vol%, 40vol%, 50vo of Example 1
The properties were evaluated in the same manner except that the 1% TiO 2 powder was changed to 5 vol%, 20 vol%, and 35 vol% TiC powder. The evaluation result is shown in FIG. From FIG. 2, by adding TiC in an amount of 8 vol% or more and 32 vol% or less, the Young's modulus is improved to 220 GPa or more and the thermal expansion coefficient is 120 × 10 -7 / ° C or more. Also, Fe-S
The processing yield when the i-Al alloy was vapor deposited and processed into a magnetic head was 68 to 73%, which was also improved as in Example 1.

【0016】[0016]

【実施例3】実施例1の20vol%、30vol%、40vol%、50vo
l%のTiO2粉末を5vol%、15vol%、25vol%のSiCウィスカー
に変更した以外は同様に作製しその特性を評価した。そ
の評価結果を図3に示す。図3より、SiCを8vol%以上20
vol%以下添加することにより、ヤング率は220GPa以上と
向上しかつ熱膨張係数も120×10-7/℃以上となった。ま
た、Fe-Si-Al合金を蒸着し磁気ヘッドに加工した時の加
工歩留まりも70〜75%と実施例1と同様に向上した。
[Example 3] 20vol%, 30vol%, 40vol%, 50vo of Example 1
The properties were evaluated in the same manner except that the 1% TiO 2 powder was changed to 5 vol%, 15 vol%, and 25 vol% SiC whiskers. The evaluation result is shown in FIG. From Figure 3, SiC is 8vol% or more 20
By adding less than vol%, the Young's modulus was improved to 220 GPa or more and the thermal expansion coefficient was 120 × 10 -7 / ℃ or more. Further, the processing yield when the Fe-Si-Al alloy was vapor-deposited and processed into a magnetic head was 70 to 75%, which was improved as in Example 1.

【0017】[0017]

【発明の効果】以上説明したように、本発明による非磁
性基板は高いヤング率を有しかつ磁性膜構造体と近い熱
膨張係数を有するため、ヘッド作製時の加工による基板
の変形や磁性膜の剥がれを防止でき、磁気ヘッドの歩留
まり向上等経済性に利点がある。実施例では、CoO-NiO
の非磁性酸化物について記載したが、CoO-NiOに焼結助
材としてAl2O3等の化合物を添加した系においても同様
の効果が得られる。
As described above, the non-magnetic substrate according to the present invention has a high Young's modulus and a thermal expansion coefficient close to that of the magnetic film structure. Can be prevented from peeling off, which is advantageous in economic efficiency such as improvement in yield of the magnetic head. In the example, CoO-NiO
Although the non-magnetic oxide is described, the same effect can be obtained in a system in which a compound such as Al 2 O 3 is added to CoO—NiO as a sintering aid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1におけるTiO2の添加量に対す
るヤング率、熱膨張係数の依存性を示した図である。
FIG. 1 is a diagram showing the dependence of Young's modulus and thermal expansion coefficient on the amount of TiO 2 added in Example 1 of the present invention.

【図2】本発明の実施例2におけるTiCの添加量に対す
るヤング率、熱膨張係数の依存性を示した図である。
FIG. 2 is a diagram showing the dependence of Young's modulus and coefficient of thermal expansion on the amount of TiC added in Example 2 of the present invention.

【図3】本発明の実施例3におけるSiCの添加量に対す
るヤング率、熱膨張係数の依存性を示した図である。
FIG. 3 is a diagram showing the dependence of Young's modulus and thermal expansion coefficient on the amount of SiC added in Example 3 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 10/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 10/28

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 CoO及びNiOあるいはNiOを基本組成とす
る岩塩型構造の非磁性酸化物に、ヤング率が前記非磁性
酸化物より大きい酸化物または非酸化物を分散したこと
を特徴とする磁気ヘッド用非磁性基板。
1. A magnetic material characterized by dispersing an oxide or a non-oxide having a Young's modulus higher than the non-magnetic oxide in a non-magnetic oxide of rock salt type structure having a basic composition of CoO and NiO or NiO. Non-magnetic substrate for head.
【請求項2】 前記磁気ヘッド用非磁性基板のヤング率
が220GPa以上でありかつその熱膨張係数が120×10-7/℃
以上であることを特徴とする請求項1記載の磁気ヘッド
用非磁性基板。
2. The non-magnetic substrate for the magnetic head has a Young's modulus of 220 GPa or more and a thermal expansion coefficient of 120 × 10 −7 / ° C.
The nonmagnetic substrate for a magnetic head according to claim 1, wherein the above is the case.
【請求項3】 前記酸化物が、BeO、TiO2、CaTiO3から
選択した少なくとも1種以上であることを特徴とする請
求項1または請求項2記載の磁気ヘッド用非磁性基板。
3. The non-magnetic substrate for a magnetic head according to claim 1, wherein the oxide is at least one selected from BeO, TiO 2 , and CaTiO 3 .
【請求項4】 前記非酸化物が、B4C、SiC及び周期表4
A、5A、6A族の炭化物、Si3N4、AlN及び周期表4A、5A、6A
族の窒化物、周期表4A、5A、6A族のホウ化物あるいはケ
イ化物から選択した少なくとも1種以上であることを特
徴とする請求項1または請求項2記載の磁気ヘッド用非
磁性基板。
4. The non-oxide is B 4 C, SiC and periodic table 4
A, 5A, 6A carbides, Si 3 N 4 , AlN and Periodic Table 4A, 5A, 6A
The non-magnetic substrate for a magnetic head according to claim 1 or 2, wherein the non-magnetic substrate is at least one selected from group III nitrides and borides or silicides of groups 4A, 5A and 6A of the periodic table.
【請求項5】 前記酸化物または非酸化物の分散形態が
粒子状あるいはウィスカー状である請求項1、請求項
2、請求項3または請求項4に記載の磁気ヘッド用非磁
性基板。
5. The non-magnetic substrate for a magnetic head according to claim 1, claim 2, claim 3 or claim 4, wherein the oxide or non-oxide is dispersed in the form of particles or whiskers.
JP6164819A 1994-06-24 1994-06-24 Non-magnetic substrate for magnetic head Pending JPH087226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6164819A JPH087226A (en) 1994-06-24 1994-06-24 Non-magnetic substrate for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6164819A JPH087226A (en) 1994-06-24 1994-06-24 Non-magnetic substrate for magnetic head

Publications (1)

Publication Number Publication Date
JPH087226A true JPH087226A (en) 1996-01-12

Family

ID=15800523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6164819A Pending JPH087226A (en) 1994-06-24 1994-06-24 Non-magnetic substrate for magnetic head

Country Status (1)

Country Link
JP (1) JPH087226A (en)

Similar Documents

Publication Publication Date Title
JPH0359027B2 (en)
JPS638071B2 (en)
JPH078748B2 (en) Method for manufacturing silicon nitride sintered body
JPS61291463A (en) Material for high toughness ceramic tool
JP2539018B2 (en) Al Lower 2 O Lower 3 Base ceramics
JPH087226A (en) Non-magnetic substrate for magnetic head
JPH03247554A (en) Manufacture of al2o3-tic sintered body for cutting tool
JPS598670A (en) High tenacity silicon nitride base sintered body
JPH04251416A (en) Nonmagnetic substrate for magnetic head
Ogata et al. Process for Producing Ceramic Composites
KR940011080B1 (en) Thin-film manufacturing method
JPS59232972A (en) Abrasion resistant sialon base ceramics
JPH0523921A (en) Silicone nitride basis sintered body for cutting tool
JPH075385B2 (en) Silicon nitride sintered body and method for producing the same
JPS61186265A (en) Silicon nitride sintered body and manufacture
JPH05129118A (en) Non-magnetic substrate for magnetic head
JPH04269809A (en) Nonmagnetic substrate for magnetic head
JPH0782616B2 (en) Non-magnetic substrate for magnetic head
JPH04269811A (en) Nonmagnetic substrate for magnet head
JPH04273405A (en) Nonmagnetic substrate for magnet head use
JPH0832590B2 (en) Silicon carbide sintered body and manufacturing method thereof
JPH05283230A (en) Nonmagnetic board for magnetic head
JPH0491402A (en) Magnetic substrate for magnetic head use
JPH07291724A (en) Nonmagnetic substrate for magnetic head
JPS60239364A (en) Heat-resistant abrasion-resistant sialon base ceramic