JPH0871901A - Curved surface polishing method - Google Patents

Curved surface polishing method

Info

Publication number
JPH0871901A
JPH0871901A JP23035194A JP23035194A JPH0871901A JP H0871901 A JPH0871901 A JP H0871901A JP 23035194 A JP23035194 A JP 23035194A JP 23035194 A JP23035194 A JP 23035194A JP H0871901 A JPH0871901 A JP H0871901A
Authority
JP
Japan
Prior art keywords
polishing
polished
abrasive grain
curved surface
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23035194A
Other languages
Japanese (ja)
Inventor
Hiromi Oshima
弘巳 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Precision Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP23035194A priority Critical patent/JPH0871901A/en
Publication of JPH0871901A publication Critical patent/JPH0871901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

PURPOSE: To provide a curved surface polishing method by which an object to be polisheed is polished in a specific corved shape within the minimum polishing time, in the polishing of a hard material such as a metallic meterial, a ceramics material, etc. CONSTITUTION: Polishing heads 2, 4 are formed with polishing dishes 2a, 4a having polishing action surfaces 2b, 4b respective integrated with each other. An object 103 to be polished made of a metallic material, which is formed into a metallic mold used for the press molding of a glass lens, is mostly formed in a recessed spherically shaped 103a which is close to a desired shape, and is fixedly retained by a fixed supporting base 102. The object 103 to be polished, which is integrated with the fixed supporting base 102, is swingably and rotatively moved by wooden pestle motion due to the swing of a tommy bar 101. Plural polishing processes are executed while plural polishing heads corresponding to respective diameters of abrasive grains are exchanged so as to diminish the diameters of abrasive grains, so that the object 103 to be polished can be polished in a specific curved shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、ガラスレンズ
のプレス成形に用いる金型を形成するため、所定の硬質
材料を、例えば凹球面等の曲面形状に研磨加工する曲面
研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curved surface polishing method for polishing a predetermined hard material into a curved surface such as a concave spherical surface in order to form a mold used for press molding of glass lenses.

【0002】[0002]

【従来の技術】従来より、ガラスレンズの形成におい
て、所定のガラス材料を例えば凸球面形状とする場合
に、凹球面に形成された皿形状の研磨ヘッドを用いて、
被研磨物であるガラス材料の被研磨面と研磨ヘッドの研
磨作用面である研磨皿面との間に、所定の研磨剤を介在
させた状態で、ガラス材料と研磨ヘッドとを相対運動さ
せて、該ガラス材料を研磨加工するようにした研磨方法
は、すでに知られている。また、研磨剤として、例えば
アルミナ、酸化セリウム、ダイヤモンドスラリー等の粒
状の砥粒を混入した液状のものが用いられる。これらの
研磨剤は、混入されている砥粒の平均粒径により区別さ
れている。
2. Description of the Related Art Conventionally, in forming a glass lens, when a predetermined glass material is formed into a convex spherical surface, for example, a dish-shaped polishing head formed into a concave spherical surface is used.
The glass material and the polishing head are moved relative to each other with a predetermined abrasive interposed between the surface to be polished of the glass material, which is the object to be polished, and the polishing dish surface, which is the polishing action surface of the polishing head. A polishing method for polishing the glass material is already known. Further, as the abrasive, for example, a liquid one in which granular abrasive particles such as alumina, cerium oxide, diamond slurry, etc. are mixed is used. These abrasives are distinguished by the average particle size of the mixed abrasive grains.

【0003】このようなガラス材料の研磨方法として、
砥粒径の異なる研磨剤を用いて、例えば、砂かけ(荒ず
り、中仕上、仕上)およびポリッシュからなる工程のよ
うに、複数の段階の研磨工程により、ガラス材料を所定
の球面形状とするとともに鏡面化する方法が一般的に採
用されている。これを図4により説明する。図4は、研
磨工程を示したもので、砂かけ工程は、荒ずりs1、中
仕上s2、仕上s3の3段階の工程から構成され、各段
階の工程で用いられる研磨剤は、順に砥粒径が小さくな
るように異なった粒径のものが選択される。この例で
は、アルミナ#500、アルミナ#800、アルミナ#
1000となっている。この例では、砂かけ工程では、
研磨ヘッドとして鋳物が用いられ、荒ずりs1、中仕上
s2、仕上s3の3段階の工程で同一の研磨ヘッドを用
いて行われ、最後のポリッシュ工程s4では、研磨ヘッ
ドとしてピッチが、砥粒として酸化セリウムが用いられ
る。
As a method of polishing such a glass material,
Using a polishing agent with different abrasive grain diameters, the glass material is made into a predetermined spherical shape by a plurality of stages of polishing process, for example, a process consisting of sanding (roughing, medium finishing, finishing) and polishing. Along with this, a method of forming a mirror surface is generally adopted. This will be described with reference to FIG. FIG. 4 shows a polishing step. The sanding step is composed of three steps of roughening s1, intermediate finishing s2, and finishing s3. The abrasive used in each step is abrasive grains in order. Different particle sizes are selected to reduce the diameter. In this example, alumina # 500, alumina # 800, alumina #
It is 1000. In this example, in the sanding process,
Casting is used as the polishing head, and the same polishing head is used in the three steps of rough s1, medium finishing s2, and finishing s3. In the final polishing step s4, the pitch is used as the polishing head and the abrasive grains are used. Cerium oxide is used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ような研磨方法により、金属材料やセラミック材料等の
いわゆる硬質材料を球面形状に研磨すると、次のような
不都合な点を有するものであった。まず、研磨剤として
通常ダイヤモンドが用いられるが、ガラス材料の研磨に
比べて研磨に要する時間がかなり長い。また、同一の研
磨ヘッドを用いて行われる荒ずりs1、中仕上s2、仕
上s3の3段階の砂かけ工程において、この3段階の順
に、用いる研磨剤の砥粒径を小さくすると、ガラス材料
の研磨では問題とならなかった、被研磨物の中心部やそ
の近傍の研磨皿のもっとも強く当たる部分で研磨量が大
となる現象を無視することができなく、このため、所望
の形状とするまでの研磨時間が増大したり、さらには所
望の形状に研磨できない場合があった。これは、ガラス
材料の研磨においては、研磨剤は砥粒がアルミナであり
砥粒含有率が大きく、研磨ヘッドと被研磨物との間の間
隙を大きくしていわばクッション効果として作用するの
に対して、研磨剤の砥粒がダイヤモンドの場合には、間
隙が小さくクッション効果が小さいことにも起因してい
る。
However, when a so-called hard material such as a metal material or a ceramic material is polished into a spherical shape by the above-described polishing method, it has the following disadvantages. First, although diamond is usually used as an abrasive, the time required for polishing is considerably longer than that for polishing a glass material. Further, in the three-step sanding process of rough s1, medium finishing s2, and finishing s3 performed using the same polishing head, if the abrasive grain size of the polishing agent used is reduced in the order of these three steps, It is not possible to ignore the phenomenon that the polishing amount becomes large at the center of the object to be polished and the part where it hits the strongest of the polishing dish in the vicinity, which was not a problem in polishing. In some cases, the polishing time was increased, and further, it could not be polished into a desired shape. This is because, in the polishing of glass materials, the abrasive has a large abrasive grain content because the abrasive grains are alumina, and acts as a cushion effect if the gap between the polishing head and the object to be polished is increased. In addition, when the abrasive grains of the abrasive are diamond, it also results from the fact that the gap is small and the cushioning effect is small.

【0005】従って、ガラスレンズのプレス成形に用い
る金型を形成するための硬質材料においては、上述のよ
うな研磨方法は不都合なものであった。以下に詳述す
る。図5において、301は被研磨物で、金型となる硬
質材料である。301aは被研磨面で、あらかた凹球面
形状に加工されている。302は研磨ヘッドである。3
02aは研磨作用面である。まず、図5(A)に示すよ
うに、砥粒径a[μm]の研磨剤を用いて研磨が行われ
る。303は砥粒径a[μm]の砥粒であり、例えば砥
粒としてアルミナ#500が用いられる。ここで、研磨
ヘッド302の研磨作用面302aの曲率r1 [μm]
は、被研磨物の仕上がるべき曲率r0 [μm](すなわ
ち設計曲率)から砥粒径a[μm]を差し引いた値とな
るように設定されている。すなわち、r1 [μm]=
(r0 −a)[μm]である。このように構成されてい
て、研磨ヘッドと被研磨物とを相対運動させて、被研磨
物が研磨される。
Therefore, the above-mentioned polishing method is inconvenient for a hard material for forming a mold used for press molding of glass lenses. The details will be described below. In FIG. 5, reference numeral 301 denotes an object to be polished, which is a hard material used as a mold. Reference numeral 301a denotes a surface to be polished, which is processed into a roughly concave spherical surface. 302 is a polishing head. Three
Reference numeral 02a is a polishing surface. First, as shown in FIG. 5A, polishing is performed using an abrasive having an abrasive grain size a [μm]. Reference numeral 303 is an abrasive grain having an abrasive grain size a [μm], and for example, alumina # 500 is used as the abrasive grain. Here, the curvature r 1 [μm] of the polishing surface 302 a of the polishing head 302
Is set to a value obtained by subtracting the abrasive grain size a [μm] from the curvature r 0 [μm] (that is, the design curvature) to be finished for the object to be polished. That is, r 1 [μm] =
(R 0 −a) [μm]. With such a configuration, the polishing head and the object to be polished are relatively moved to polish the object to be polished.

【0006】次に、図5(B)に示すように、砥粒径b
[μm]の研磨剤を用いて研磨が行われる。ここで、b
<aとなるように、bの値が選択される。403は砥粒
径b[μm]の砥粒であり、例えば砥粒としてアルミナ
#800が用いられる。同様に、研磨ヘッドと被研磨物
とを相対運動させて、被研磨物が研磨される。ここで、
同一の研磨ヘッド302を用いているので、その研磨作
用面302aの曲率は同じくr1 [μm]であり、従っ
て、砥粒径b[μm]の研磨剤を用いたときの有効曲率
2 [μm]は、r2 [μm]=(r1 +b)[μm]
となり、図5(B)の点線で示した曲線となり、従っ
て、前述のr1 [μm]=(r0 −a)[μm]より、
2 [μm]=(r0 −a+b)[μm]となる。一
方、本来なされるべき曲率はr0 [μm]で、前述の有
効曲率r2 [μm]との差は(r2 −r0 )[μm]=
(b−a)[μm]<0、すなわち、r2 <r0 とな
り、 有効曲率r2 [μm]の方が、本来なされるべき
曲率r0 [μm]より小さいので、同一の研磨ヘッド3
02を用いて研磨すると、いわゆる中当たり現象とな
り、所望の形状とは異なって、r2 [μm]=(r0
a+b)[μm]という曲率の形状、すなわち、図5
(B)の一点鎖線で示したような形状に形成されてしま
う。このため、これを考慮して調整しながら研磨を行う
必要が生じることとなり、従って、研磨時間の増大とな
り不都合であった。また、この調整の限界を越えた状況
において、研磨不能となる事態も発生したりした。
Next, as shown in FIG. 5B, the abrasive grain size b
Polishing is performed using a [μm] abrasive. Where b
The value of b is selected so that <a. Reference numeral 403 is an abrasive grain having an abrasive grain size b [μm], and for example, alumina # 800 is used as the abrasive grain. Similarly, the polishing head and the object to be polished are relatively moved to polish the object to be polished. here,
Since the same polishing head 302 is used, the curvature of its polishing surface 302a is also r 1 [μm], and therefore the effective curvature r 2 [when using an abrasive having an abrasive grain size b [μm] is r 2 [ μm] is r 2 [μm] = (r 1 + b) [μm]
Next, will curve shown by the dotted line of FIG. 5 (B), therefore, from the foregoing r 1 [μm] = (r 0 -a) [μm],
r 2 [μm] = (r 0 −a + b) [μm]. On the other hand, the curvature to be originally made is r 0 [μm], and the difference from the above-mentioned effective curvature r 2 [μm] is (r 2 −r 0 ) [μm] =
(B−a) [μm] <0, that is, r 2 <r 0 , and the effective curvature r 2 [μm] is smaller than the originally intended curvature r 0 [μm], so the same polishing head 3 is used.
When polishing with 02, a so-called center hit phenomenon occurs, and unlike the desired shape, r 2 [μm] = (r 0
a + b) [μm] curvature shape, that is, FIG.
(B) The shape is formed as shown by the alternate long and short dash line. For this reason, it becomes necessary to carry out polishing while adjusting in consideration of this, and therefore the polishing time is increased, which is inconvenient. Further, in a situation where this adjustment limit was exceeded, there were cases where polishing became impossible.

【0007】本発明は、このような点に鑑みてなされた
ものであり、その目的とするところは、金属材料やセラ
ミック材料等の硬質材料の研磨において、最小限の研磨
時間で被研磨物を所定の曲面形状となるように研磨する
曲面研磨方法を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to polish an object to be polished in a minimum polishing time in polishing a hard material such as a metal material or a ceramic material. It is an object of the present invention to provide a curved surface polishing method that polishes to a predetermined curved surface shape.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の曲面研磨方法は、研磨剤を介在させた状態
で被研磨物と研磨ヘッドとを相対運動させて被研磨物を
所定の曲面形状に研磨する曲面研磨方法において、砥粒
径の異なる複数種の研磨剤と、各砥粒径に対応した研磨
作用面に変更可能な研磨ヘッドとを用い、後段の研磨工
程における砥粒径が前段の研磨工程における砥粒径より
も小となるように研磨ヘッドの研磨作用面を変更させて
複数の研磨工程を施すことにより被研磨物を所定の曲面
形状に研磨するようにしたものである。また、本発明の
他の曲面研磨方法は、研磨作用面の変更は、各砥粒径に
対応した研磨作用面を有する複数の研磨ヘッドを用い
て、各砥粒径に対応させて研磨ヘッドを交換することに
より行うようにしたものである。
In order to achieve the above object, the method for polishing a curved surface of the present invention is designed such that the polishing target and the polishing head are moved relative to each other with the polishing agent intervening. In the curved surface polishing method for polishing to a curved surface shape, a plurality of types of abrasives having different abrasive particle diameters and a polishing head capable of changing the polishing action surface corresponding to each abrasive particle diameter are used, and the abrasive grains in the subsequent polishing step are used. The polishing work surface of the polishing head is changed so that the diameter is smaller than the grain size in the previous polishing step, and a plurality of polishing steps are performed to polish the object to be polished into a predetermined curved surface shape. Is. Further, in another curved surface polishing method of the present invention, the polishing action surface is changed by using a plurality of polishing heads each having a polishing action surface corresponding to each abrasive grain size, and adjusting the polishing head corresponding to each abrasive grain size. This is done by exchanging them.

【0009】[0009]

【作用】各砥粒径に対応した研磨作用面を有する研磨ヘ
ッドを複数設け、複数の段階の研磨工程により、被研磨
物が所定の曲面形状に研磨される。
A plurality of polishing heads having a polishing action surface corresponding to each abrasive grain size are provided, and the object to be polished is polished into a predetermined curved shape by a plurality of stages of polishing process.

【0010】[0010]

【実施例】本発明は、種々の構成の曲面研磨装置にて可
能であるが、好適なる一実施例として、ガラスレンズの
プレス成形に用いる金型を形成するための曲面研磨装置
に適用した場合について説明する。そこで、本発明の特
徴的な部分についての説明に先立って、まず、曲面研磨
装置の全体的な構成について、図1を用いて説明する。
図1は、本発明に用いられる曲面研磨装置を模式的に示
した概略側面図である。
The present invention can be applied to a curved surface polishing apparatus having various configurations, but as a preferred embodiment, when the present invention is applied to a curved surface polishing apparatus for forming a mold used for press molding of glass lenses. Will be described. Therefore, before describing the characteristic part of the present invention, first, the overall configuration of the curved surface polishing apparatus will be described with reference to FIG.
FIG. 1 is a schematic side view schematically showing a curved surface polishing apparatus used in the present invention.

【0011】101はカンザシで、一方端の先端部10
1aには、固定支持台102に固定保持された被研磨物
103が取付られている。カンザシ101は被研磨物1
03と連係的に作動可能になっている。104は重り
で、図においてカンザシ101の上部側に配され、被研
磨物103側へ押圧力を付与するとともに調整可能に重
力負荷として作用する。105は基台で、図示しない本
体機構に固定されている。106はカンザシ支持台で、
支軸107にて基台105に調整可能に取付けられると
ともに固定可能になっている。108は安全ストッパー
腕で、ストッパー係止部109に係止されることによ
り、カンザシ支持台106が支軸107を回転軸として
左旋して先端側のカンザシ101が落下する等の事故を
防止する。
Reference numeral 101 designates a kanzashi, which has a tip portion 10 at one end.
An object 103 to be polished, which is fixedly held by a fixed support 102, is attached to the la 1a. Kanzashi 101 is the object to be polished 1
It is possible to operate in cooperation with 03. Reference numeral 104 denotes a weight, which is arranged on the upper side of the arrow 101 in the drawing, applies a pressing force to the object 103 side and adjustably acts as a gravity load. A base 105 is fixed to a main body mechanism (not shown). 106 is a kanzashi support,
The support shaft 107 is adjustably attached and fixed to the base 105. Reference numeral 108 denotes a safety stopper arm, which is locked to the stopper locking portion 109, thereby preventing an accident such as the kanzashi support base 106 turning counterclockwise about the spindle 107 as a rotation axis and the tip side of the kanzashi 101 falling.

【0012】110はカンザシ前進移動ネジで、図1に
おいてカンザシ101を左右方向に移動させて、左右方
向の位置を調整する。111はカンザシ前進移動固定ネ
ジで、カンザシ前進移動ネジ110でカンザシ101の
左右方向の位置を調整した後、該位置に固定する。11
2はカンザシ上下移動固定ネジで、図1においてカンザ
シ101の上下方向の位置を調整した後、該位置に固定
する。113はカンザシ振り幅固定ネジで、カンザシ1
01の先端部101a側の振り幅を調整するため基台1
05及びカンザシ支持台106内に設けられている伝達
ベルト等の伝達機構を所定の状態に設定した後、該伝達
機構をその状態に固定する。
Reference numeral 110 denotes a kanzashi forward movement screw, which moves the kanzashi 101 in the left-right direction in FIG. 1 to adjust the position in the left-right direction. Reference numeral 111 denotes a kanzashi forward movement fixing screw, which adjusts the position of the kanzashi 101 in the left-right direction by means of the kanzashi forward movement fixing screw 110 and then fixes the position. 11
The numeral 2 is a vertical movement fixing screw for adjusting the vertical position of the arrow 101 in FIG. 1 and then fixing it. 113 is a screw for fixing the swing width, which is 1
01 for adjusting the swing width of the tip portion 101a side
05 and the transmission mechanism such as a transmission belt provided in the Kanzashi support 106 are set in a predetermined state, and then the transmission mechanism is fixed in that state.

【0013】114は駆動機構で、図示しない本体側の
モータの回転駆動により作動する。この作動は前述伝達
機構に伝達されてカンザシ101が揺動するようになっ
ている。115はひとつの研磨ヘッドで、図示しない本
体側の回転機構部に交換可能に装着されていて、該回転
機構により回転駆動させられる。研磨ヘッド115は、
この実施例では、研磨皿115aが研磨ヘッド115に
一体に形成されている。115bは研磨作用面で、この
実施例では凸球面形状となっている。被研磨物103
は、この実施例では、ガラスレンズのプレス成形に用い
る金型となる金属材料で、所望の形状に近い凹球面形状
103aにあらかた形成されている。カンザシ101の
先端部101aは凸球形状に形成され、固定支持台10
2側は、先端部101aの球径よりわずか大なる径の凹
球面形状に形成されていて、互いに回転運動が可能にな
っている。従って、カンザシ101の揺動によりみそ摺
り運動がなされ、該運動に従い、固定支持台102が揺
動回転し、固定支持台102と一体の被研磨物103が
同様に揺動回転運動をする。これにより研磨処理がなさ
れる。なお、研磨ヘッド115の研磨作用面115bと
被研磨物103の被研磨面103aとの間に研磨剤11
6を介在させた状態で研磨処理が行われる。
Reference numeral 114 is a drive mechanism, which is operated by rotational driving of a motor (not shown) on the main body side. This operation is transmitted to the above-mentioned transmission mechanism so that the kanzashi 101 swings. Reference numeral 115 denotes one polishing head, which is replaceably mounted on a rotating mechanism portion on the main body side (not shown), and is rotationally driven by the rotating mechanism. The polishing head 115 is
In this embodiment, the polishing dish 115a is formed integrally with the polishing head 115. A polishing surface 115b has a convex spherical surface in this embodiment. Workpiece 103
In this embodiment, is a metallic material that becomes a mold used for press molding of a glass lens, and is roughly formed into a concave spherical surface shape 103a close to a desired shape. The tip 101a of the kanzashi 101 is formed in a convex spherical shape, and the fixed support 10
The second side is formed in a concave spherical surface shape having a diameter slightly larger than the spherical diameter of the tip portion 101a, and can rotate with respect to each other. Therefore, the rocking motion of the kanzashi 101 causes a rubbed motion, and the fixed support base 102 rocks and rotates in accordance with the motion, and the object 103 to be ground integrated with the fixed support base 102 also rocks and rotates. Thereby, the polishing process is performed. In addition, the polishing agent 11 is provided between the polishing surface 115 b of the polishing head 115 and the surface 103 a of the object 103 to be polished.
The polishing process is performed with 6 interposed.

【0014】以上の曲面研磨装置では、被研磨物103
が凹球面形状に形成される場合にて説明しており、一般
的に、凹球面形状となる物の方をカンザシ機構に取付け
るという例に従って被研磨物103をカンザシ101に
取付ける構成としたが、研磨ヘッド115をカンザシ1
01に取り付ける構成とした曲面研磨装置としてもよ
い。
In the above curved surface polishing apparatus, the object 103 to be polished is
Is described as having a concave spherical shape, and generally, the object 103 to be polished is attached to the Kanzashi 101 according to an example in which an object having a concave spherical shape is attached to the Kanzashi mechanism. 1 for polishing head 115
The curved surface polishing device may be configured to be attached to No. 01.

【0015】次に、研磨工程について、図2を用いて説
明する。図2においては、被研磨物をカンザシ機構に取
付けた構成としている。図2(A)は、研磨工程の第1
段階目を示す。まず、図2(A)に示すように、砥粒径
A[μm]の研磨剤を用いて研磨が行われる。1は砥粒
径A[μm]の砥粒であり、例えば砥粒としてダイヤモ
ンドが用いられる。この工程で用いられる研磨ヘッド2
は、研磨皿2aが研磨ヘッド2に一体に形成されてい
て、凸球面形状の研磨作用面2bを有しており、研磨作
用面2bの曲率R2b[μm]は、被研磨物の仕上がるべ
き曲率R0 [μm](すなわち設計曲率)から砥粒径A
[μm]を差し引いた値となるように設定されている。
すなわち、R2b[μm]=(R0 −A)[μm]であ
る。このように構成されていて、研磨ヘッドと被研磨物
とを相対運動させて、被研磨物が研磨される。
Next, the polishing process will be described with reference to FIG. In FIG. 2, the object to be polished is attached to the knitting mechanism. FIG. 2A shows the first polishing step.
The stage is shown. First, as shown in FIG. 2A, polishing is performed using an abrasive having an abrasive grain size A [μm]. Reference numeral 1 is an abrasive grain having an abrasive grain size A [μm], and for example, diamond is used as the abrasive grain. Polishing head 2 used in this step
Has a polishing dish 2a formed integrally with the polishing head 2 and has a polishing surface 2b having a convex spherical shape, and the curvature R 2b [μm] of the polishing surface 2b should be the finish of the object to be polished. From the curvature R 0 [μm] (that is, the design curvature) to the abrasive grain size A
The value is set to be a value obtained by subtracting [μm].
That is, R 2b [μm] = (R 0 −A) [μm]. With such a configuration, the polishing head and the object to be polished are relatively moved to polish the object to be polished.

【0016】次に、図2(B)に示すように、砥粒径B
[μm]の研磨剤を用いて、第2の段階の研磨が行われ
る。なお、B<Aとなるように研磨剤が選択される。3
は砥粒径B[μm]の砥粒であり、例えば砥粒としてダ
イヤモンドが用いられる。第2の段階では、研磨ヘッド
4が用いられる。研磨ヘッド4は、研磨ヘッド2と同様
に、研磨皿4aが研磨ヘッド4に一体に形成されてい
て、凸球面形状の研磨作用面4bを有しているが、研磨
作用面4bの曲率は、研磨ヘッド2の研磨作用面2bの
曲率とは異なっている。すなわち、研磨ヘッド4の研磨
作用面4bの曲率R4b[μm]は、被研磨物の仕上がる
べき曲率R0 [μm](すなわち設計曲率)から砥粒径
B[μm]を差し引いた値となるように設定されてい
る。すなわち、R4b[μm]=(R0 −B)[μm]で
ある。そして、同様に、研磨ヘッドと被研磨物とを相対
運動させて、被研磨物が研磨される。
Next, as shown in FIG. 2B, the abrasive grain size B
The second stage polishing is performed using a [μm] abrasive. The abrasive is selected so that B <A. Three
Is an abrasive grain having an abrasive grain size B [μm], and for example, diamond is used as the abrasive grain. In the second stage, the polishing head 4 is used. Similar to the polishing head 2, the polishing head 4 has a polishing dish 4a formed integrally with the polishing head 4 and has a polishing action surface 4b having a convex spherical surface shape, but the curvature of the polishing action surface 4b is It is different from the curvature of the polishing action surface 2b of the polishing head 2. That is, the curvature R 4b [μm] of the polishing action surface 4b of the polishing head 4 is a value obtained by subtracting the abrasive grain size B [μm] from the curvature R 0 [μm] (that is, the design curvature) to finish the object to be polished. Is set. That is, R 4b [μm] = (R 0 −B) [μm]. Then, similarly, the polishing head and the object to be polished are relatively moved to polish the object to be polished.

【0017】以上のように、砥粒径の異なる複数種の研
磨剤に対し、各砥粒径に対応した研磨作用面を有する複
数の研磨ヘッドを用意して、後段の研磨工程における砥
粒径が前段の研磨工程における砥粒径よりも小となるよ
うに、各砥粒径に対応させて研磨ヘッドを交換すること
により、複数の研磨工程を行うことにより、被研磨物を
所定の曲面形状、この実施例では球面形状に研磨するこ
とができる。すなわち、研磨ヘッドの研磨作用面すなわ
ち研磨皿の曲率をR、被研磨物の仕上がるべき曲率すな
わち被研磨物の設計曲率をW、そして砥粒径をrとする
と、R=W−rとなる研磨ヘッドをあらかじめ作成して
おいて、研磨ヘッドを交換して複数の研磨工程を施せば
よい。
As described above, for a plurality of types of abrasives having different abrasive grain sizes, a plurality of polishing heads having a polishing surface corresponding to each abrasive grain size are prepared, and the abrasive grain sizes in the subsequent polishing step are prepared. Is smaller than the abrasive grain size in the previous polishing step, by exchanging the polishing head for each abrasive grain size and performing a plurality of polishing steps, the object to be polished has a predetermined curved surface shape. In this embodiment, it can be polished into a spherical shape. That is, R is W = r, where R is the curvature of the polishing surface of the polishing head, that is, the curvature of the polishing dish, W is the curvature to be the object to be polished, that is, the designed curvature of the object to be polished, and the abrasive grain size is r. The head may be prepared in advance, the polishing head may be replaced, and a plurality of polishing steps may be performed.

【0018】このようにして、例えば図3に示すような
研磨工程を施すことにより、所望の凸球面形状となる。
図3は、研磨工程を示したもので、ラップ工程は、S1
荒仕上、S2中仕上、S3仕上の3段階の工程から構成
され、各段階の工程で用いられる研磨剤は、順に砥粒径
が小さくなるように異なった粒径のものが選択される。
この例では、第1段階S1の荒仕上ではダイヤモンド5
μm又は15μm、第2段階S2の中仕上ではダイヤモ
ンド3μm、第3段階S3の仕上ではダイヤモンド1μ
mが用いられる。この実施例では、ラップ工程(S1〜
S3)では、研磨ヘッドとして鋳物が用いられ、荒仕上
S1、中仕上S2、仕上S3の3段階の工程において、
それぞれの砥粒径に対応させた研磨ヘッドを用いて行わ
れ、最後のポリッシュ工程S4では、研磨ヘッドとして
ポリウレタンが、砥粒としてダイヤモンド1μm又はコ
ロイダルシリカが用いられる。
In this way, a desired convex spherical surface shape is obtained by performing the polishing process as shown in FIG. 3, for example.
FIG. 3 shows the polishing step, and the lapping step is S1.
It comprises three steps of rough finishing, S2 medium finishing and S3 finishing. The abrasives used in each step are selected to have different particle diameters so that the abrasive particle diameter becomes smaller in order.
In this example, diamond 5 is used in the rough finishing of the first stage S1.
μm or 15 μm, diamond 3 μm for intermediate finishing of the second stage S2, diamond 1 μ for finishing of the third stage S3
m is used. In this embodiment, the lapping process (S1 to
In S3), a casting is used as a polishing head, and in a three-step process of rough finishing S1, intermediate finishing S2, and finishing S3,
The polishing is performed by using a polishing head corresponding to each abrasive grain size. In the final polishing step S4, polyurethane is used as the polishing head and diamond 1 μm or colloidal silica is used as the abrasive grains.

【0019】この実施例においては、加工時間が従来と
比較して60〜70%の削減ができる。また、形状変化
(バラツキ)は、従来は2μm程度あったものが、1μ
m程度以下に抑えることができる。
In this embodiment, the processing time can be reduced by 60 to 70% as compared with the conventional case. In addition, the change in shape (variation) was about 2 μm in the past, but 1 μm.
It can be suppressed to about m or less.

【0020】また、上述のように、本発明の曲面研磨方
法は、砥粒径の異なる複数種の研磨剤より選択した研磨
剤を供給する供給手段と、各砥粒径に対応した研磨作用
面を有する複数の研磨ヘッドより選択した研磨ヘッドに
交換可能な交換手段とを備えた曲面研磨装置を用いるこ
とにより、被研磨物を所望の球面形状とすることができ
る。
Further, as described above, in the curved surface polishing method of the present invention, the supply means for supplying the polishing agent selected from a plurality of types of polishing agents having different polishing particle diameters, and the polishing action surface corresponding to each polishing particle diameter. By using the curved surface polishing apparatus provided with the replacement means capable of replacing the polishing head selected from the plurality of polishing heads having the above, it is possible to make the object to be polished into a desired spherical shape.

【0021】[0021]

【発明の効果】上述のように、本発明においては、砥粒
径の異なる複数種の研磨剤と、各砥粒径に対応した研磨
作用面に変更可能な研磨ヘッドとを用い、後段の研磨工
程における砥粒径が前段の研磨工程における砥粒径より
も小となるように研磨ヘッドの研磨作用面を変更させて
複数の研磨工程を施すことにより被研磨物を所定の曲面
形状に研磨するようにした曲面研磨方法とすることによ
り、また他の方法として、研磨作用面の変更は、各砥粒
径に対応した研磨作用面を有する複数の研磨ヘッドを用
いて、各砥粒径に対応させて研磨ヘッドを交換すること
により行うようにした曲面研磨方法とすることにより、
金属材料やセラミック材料等の硬質材料の研磨におい
て、最小限の研磨時間で被研磨物を所定の曲面形状とす
ることができる。
As described above, according to the present invention, a plurality of types of abrasives having different abrasive grain sizes and a polishing head capable of changing the polishing action surface corresponding to each abrasive grain size are used, and the subsequent polishing step is performed. The object to be polished is polished into a predetermined curved surface shape by changing the polishing surface of the polishing head so that the abrasive grain size in the process is smaller than the abrasive grain size in the preceding polishing process and performing a plurality of polishing processes. With this curved surface polishing method, or as another method, the polishing action surface can be changed by using a plurality of polishing heads each having a polishing action surface corresponding to each abrasive grain size. By using the curved surface polishing method which is performed by replacing the polishing head,
In polishing a hard material such as a metal material or a ceramic material, the object to be polished can have a predetermined curved surface shape in a minimum polishing time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる曲面研磨装置を模式的に示
した概略側面図である。
FIG. 1 is a schematic side view schematically showing a curved surface polishing apparatus used in the present invention.

【図2】本発明の一実施例を示し、研磨要部を示す概略
断面図である。
FIG. 2 is a schematic cross-sectional view showing an essential part of polishing according to one embodiment of the present invention.

【図3】本発明の一実施例を示し、研磨工程を示すフロ
ーチャート図である。
FIG. 3 is a flowchart showing an embodiment of the present invention and showing a polishing step.

【図4】従来例を示し、研磨工程を示すフローチャート
図である。
FIG. 4 is a flowchart showing a conventional example and showing a polishing process.

【図5】従来例を示し、研磨要部を示す概略断面図であ
る。
FIG. 5 is a schematic cross-sectional view showing a conventional example and a polishing main part.

【符号の説明】[Explanation of symbols]

1、3 砥粒 2、4 研磨ヘッド 2a、4a 研磨皿 2b、4b 研磨作用面 101 カンザシ 101a 先端部 102 固定支持台 103 被研磨物 103a 被研磨面 1, 3 Abrasive grains 2, 4 Polishing heads 2a, 4a Polishing plates 2b, 4b Polishing action surface 101 Kanzashi 101a Tip part 102 Fixed support base 103 Polishing object 103a Polishing surface

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 研磨剤を介在させた状態で被研磨物と研
磨ヘッドとを相対運動させて被研磨物を所定の曲面形状
に研磨する曲面研磨方法において、 砥粒径の異なる複数種の研磨剤と、各砥粒径に対応した
研磨作用面に変更可能な研磨ヘッドとを用い、後段の研
磨工程における砥粒径が前段の研磨工程における砥粒径
よりも小となるように研磨ヘッドの研磨作用面を変更さ
せて複数の研磨工程を施すことにより前記被研磨物を所
定の曲面形状に研磨することを特徴とした曲面研磨方
法。
1. A curved surface polishing method for polishing an object to be polished into a predetermined curved surface shape by relatively moving the object to be polished and a polishing head with an abrasive interposed, wherein a plurality of types of polishing having different abrasive grain sizes are used. Agent and a polishing head capable of changing the polishing action surface corresponding to each abrasive grain size, so that the abrasive grain size in the subsequent polishing step is smaller than the abrasive grain size in the previous polishing step. A method of polishing a curved surface, characterized in that the object to be polished is polished into a predetermined curved surface shape by changing a polishing surface and performing a plurality of polishing steps.
【請求項2】 研磨作用面の変更は、各砥粒径に対応し
た研磨作用面を有する複数の研磨ヘッドを用いて、各砥
粒径に対応させて研磨ヘッドを交換することにより行う
こととした請求項1記載の曲面研磨方法。
2. The polishing action surface is changed by using a plurality of polishing heads each having a polishing action surface corresponding to each abrasive grain size and exchanging the polishing heads corresponding to each abrasive grain size. The curved surface polishing method according to claim 1.
JP23035194A 1994-08-31 1994-08-31 Curved surface polishing method Pending JPH0871901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23035194A JPH0871901A (en) 1994-08-31 1994-08-31 Curved surface polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23035194A JPH0871901A (en) 1994-08-31 1994-08-31 Curved surface polishing method

Publications (1)

Publication Number Publication Date
JPH0871901A true JPH0871901A (en) 1996-03-19

Family

ID=16906502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23035194A Pending JPH0871901A (en) 1994-08-31 1994-08-31 Curved surface polishing method

Country Status (1)

Country Link
JP (1) JPH0871901A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909641A (en) * 2012-11-09 2013-02-06 昆山市大金机械设备厂 Dome polishing device
CN105322065A (en) * 2014-07-08 2016-02-10 兆远科技股份有限公司 Curve-surface substrate manufacture method and forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102909641A (en) * 2012-11-09 2013-02-06 昆山市大金机械设备厂 Dome polishing device
CN105322065A (en) * 2014-07-08 2016-02-10 兆远科技股份有限公司 Curve-surface substrate manufacture method and forming device

Similar Documents

Publication Publication Date Title
KR100416446B1 (en) Wafer edge polishing method and apparatus
JP2000015557A (en) Polishing device
JP2003151935A (en) Polishing pad conditioner of chemical mechanical polisher, and method of conditioning polishing pad
JP2003521816A (en) Grinding pins for grinding machines with a choice of resin bond consisting of coarse and fine grit
EP1348517B1 (en) Cylindrical grinder
KR20170096624A (en) Glass plate chamfering device, glass plate chamfering method, and glass plate production method
JP2004050345A (en) Processing device for outer periphery of thin plate-like work
JP2011194552A (en) Compound surface grinding apparatus with workpiece support device
JPH0871901A (en) Curved surface polishing method
JPH05185371A (en) Device to recover rotating precision grinding tool
JP3290235B2 (en) Polishing method and polishing device
US5498198A (en) Grinding machine
JP2901875B2 (en) Truing method of super abrasive grinding wheel
JP2003291069A (en) Grinding wheel for grinder and grinding method using grinding wheel
KR100380559B1 (en) Barrel finishing machine and method thereof
JP4455271B2 (en) Polishing method and apparatus
JP3630950B2 (en) Manufacturing method of spherical lens
JP2006123133A (en) Truing method
JP2001252870A (en) Method for grinding and dressing grinding wheel
JPH0890403A (en) Grinding of optical element and device therefor
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same
KR102381559B1 (en) Grinding system
JP2003109923A (en) Device for polishing semiconductor wafer
JP2002066920A (en) Truing/dressing method and device for diamond grinding wheel
JP2000108003A (en) Spherical surface generating device of diamond pellet for grinding glass lens