JPH0868731A - Method and device for predicting life of plant structure - Google Patents

Method and device for predicting life of plant structure

Info

Publication number
JPH0868731A
JPH0868731A JP6203490A JP20349094A JPH0868731A JP H0868731 A JPH0868731 A JP H0868731A JP 6203490 A JP6203490 A JP 6203490A JP 20349094 A JP20349094 A JP 20349094A JP H0868731 A JPH0868731 A JP H0868731A
Authority
JP
Japan
Prior art keywords
life
hydrogen
sensor
plant
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6203490A
Other languages
Japanese (ja)
Inventor
Hideya Anzai
英哉 安斎
Masaya Takayama
真哉 高山
Toshitaka Kida
利孝 木田
Kiyotomo Nakada
清智 仲田
Jiro Kuniya
治郎 国谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6203490A priority Critical patent/JPH0868731A/en
Publication of JPH0868731A publication Critical patent/JPH0868731A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To predict the life of a structure by installing a sensor part consisting of a same metal material near a plant structure under a corrosive environment and guiding hydrogen through the sensor part after being generated due to corrosion to the outside of the structure and then measuring the amount of transmission of hydrogen in unit time. CONSTITUTION: A plurality of sensor parts formed by the same metal material as that of a plant structure placed under a corrosive environment is provided in an actual environment near the structure for forming a clearance. Hydrogen which is generated due to corrosion is transmitted through each sensor part and is guided to the outside from the structure. The amount of transmitted hydrogen per unit time is measured for cases where there is clearance and there is no clearance at the sensor part and the hydrogen concentration in metal for the presence or absence of clearance is estimated based on the result. A crack tip hydrogen concentration is obtained from the result and the three-axis stress at the crack tip which is assumed in the structure. The time change of crack length is obtained from the time integration of the sum of the crack progress speed of the same metal under the concentration and the crack progress speed due to corrosion solution and the time when the crack reaches a limit depth is obtained, thus predicting life.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は腐食環境に接する構造物
の損傷防止及び寿命延長技術に係り、特に水素の関与す
る応力腐食割れがプラント構造物に生じた場合のプラン
ト構造物の寿命予測方法およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for preventing damage to a structure in contact with a corrosive environment and extending its life, and particularly to a method for predicting the life of a plant structure when stress corrosion cracking involving hydrogen occurs in the plant structure. And its equipment.

【0002】[0002]

【従来の技術】プラント機器及び構造物の有効利用を図
るため、その寿命をできるだけ延長させようとする方向
にあり、構造物を損傷させることなくなるべく長く稼働
する技術が強く望まれている。特に腐食環境に接する構
造物においては、環境によって比較的低い応力で亀裂が
発生、進展する応力腐食割れ(SCC)が問題となる。
このSCCは外見上ほとんど変化がなく徐々に進行する
ことから検知が困難であり、また定期的な検査の際これ
らの発生の恐れのある個所を一つ一つ調べていたのでは
非能率的である。
2. Description of the Related Art In order to make effective use of plant equipment and structures, there is a tendency to extend the life of the equipment as much as possible, and there is a strong demand for a technology that operates as long as possible without damaging the structures. Particularly, in a structure that is in contact with a corrosive environment, stress corrosion cracking (SCC) in which a crack is generated and propagates with a relatively low stress depending on the environment becomes a problem.
Since this SCC has little change in appearance and gradually progresses, it is difficult to detect it. Also, it is inefficient to examine each of these points where they may occur during regular inspection. is there.

【0003】このSCCは、材料、環境及び応力の3つ
の要因がからんだ現象であり、特に環境因子は不明な点
が多く、実験室試験からの寿命推定だけでは評価を誤る
可能性がある。したがって、実機環境に直接試験片を入
れてその挙動より寿命を評価することが多く試みられて
いる。しかし、それらのほとんどが経験的な実験データ
に基づく相関性を基準としており、その適用にはおのず
と限界のあることからより機構に立脚した予測技術の確
立が求められている。
This SCC is a phenomenon involving three factors of material, environment and stress. Especially, there are many unclear points about the environmental factors, and there is a possibility that the estimation may be erroneous only by the life estimation from the laboratory test. . Therefore, it is often attempted to put the test piece directly into the environment of the actual machine and evaluate the life from its behavior. However, most of them are based on the correlation based on empirical experimental data, and their application is naturally limited, so that it is required to establish a prediction technique based on more mechanism.

【0004】たとえば、実機で使用されているものと同
じ材料の亀裂進展をモニタできるセンサを挿入し、その
挙動から炉水環境下でのSCC進展の可能性をその機構
に基づき判断するとともに、炉水水質をコントロールす
るという方法が提案されている(F.P.Ford et al, Pape
r presented to Forth International Symposium onEnv
ironmental Degradation of Materials in Nuclear Pow
er Systems-WaterReactors、 August 6-10, 1989, Je
ykll Island, Gorgia)。
For example, a sensor capable of monitoring the crack growth of the same material as that used in the actual machine is inserted, and the possibility of the SCC development under the reactor water environment is judged based on its behavior based on the mechanism, and A method of controlling water quality has been proposed (FP Ford et al, Pape
r presented to Forth International Symposium on Env
ironmental Degradation of Materials in Nuclear Pow
er Systems-WaterReactors, August 6-10, 1989, Je
ykll Island, Gorgia).

【0005】この方法は亀裂の進展が亀裂先端での新生
面の溶解によって起こることを前提条件として提案され
たものである。しかしながら、実際の割れの機構は溶解
だけとは限らず、とくに腐食反応によって金属中に入り
込む水素の効果については良く知られている。この水素
の効果は温度によって異なり、約450℃以上ではいわ
ゆる水素アタックと呼ばれる水素と炭素との反応による
メタンによる脆化が起こり、それ以下の温度では水素が
直接金属の延性を弱めるいわゆる水素脆化現象が生じ
る。特に水素脆化タイプの割れによる寿命を評価するに
は材料中に侵入した水素の量を知ることが重要である。
This method has been proposed on the premise that crack propagation occurs due to dissolution of a new surface at the crack tip. However, the actual mechanism of cracking is not limited to dissolution, and the effect of hydrogen penetrating into the metal due to the corrosion reaction is well known. The effect of hydrogen depends on the temperature. Above about 450 ° C, so-called hydrogen attack causes embrittlement by methane due to the reaction between hydrogen and carbon, and at temperatures below that, hydrogen directly weakens the ductility of the metal, so-called hydrogen embrittlement. The phenomenon occurs. In particular, in order to evaluate the life due to hydrogen embrittlement type cracking, it is important to know the amount of hydrogen that has penetrated into the material.

【0006】このような水素による割れを予測するた
め、腐食により発生し材料中に侵入、透過してきた水素
を実機の壁面に水素透過検知センサを設けることにより
定量化しようという試みは既になされている。
In order to predict such cracking due to hydrogen, an attempt has already been made to quantify hydrogen that has been generated by corrosion and has penetrated and penetrated into the material by providing a hydrogen permeation detection sensor on the wall surface of the actual machine. .

【0007】[0007]

【発明が解決しようとする課題】しかしながら、実際に
重要なのは割れの内面のような局部的な水素の透過であ
ることが知られている(例えば、山川 他、 鉄と鋼
第74年(1988)第4号、p151)。このため、
上記のように、実機の壁面に水素透過検知センサを設け
る方法での評価にはおのずと限界のあることは否定でき
ない。また、得られた情報に基づき実機の寿命を評価す
る方法も確立しているとは言い難い。したがって、従来
技術では実機において水素により生じるSCCをモニタ
装置し寿命予測を行うことは困難である。
However, it is known that what is actually important is the local permeation of hydrogen such as the inner surface of the crack (for example, Yamakawa et al., Iron and Steel).
74th (1988) No. 4, p151). For this reason,
As described above, it cannot be denied that the evaluation by the method of providing the hydrogen permeation detection sensor on the wall surface of the actual machine has a limit. Moreover, it cannot be said that a method for evaluating the life of the actual machine based on the obtained information has been established. Therefore, in the conventional technique, it is difficult to predict the life by monitoring the SCC generated by hydrogen in the actual machine.

【0008】本発明の目的は、腐食環境にあるプラント
構造物のSCC発生寿命を定量的に把握し、プラント運
転中における環境変化をも考慮して構造物の寿命を予測
することができるプラント構造物の寿命予測方法および
その装置を提供することである。
It is an object of the present invention to quantitatively grasp the SCC generation life of a plant structure in a corrosive environment and predict the life of the structure in consideration of environmental changes during plant operation. An object of the present invention is to provide a method of predicting the life of an object and an apparatus thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明の寿命予測方法は、腐食環境下におかれたプ
ラント構造物と同じ金属材料を用いて構成されたセンサ
部を当該構造物近傍の実環境内に設置し、腐食により発
生し前記センサ部を透過してきた水素を前記構造物より
外部に導いて、水素透過量の単位時間あたりの量を計測
し、その計測結果に基づき前記構造物の環境割れによる
寿命を予測することである。
In order to achieve the above object, the method of predicting the life of the present invention is such that a sensor section constituted by using the same metal material as that of a plant structure placed under a corrosive environment is used. Installed in the actual environment near the object, guide the hydrogen generated by corrosion and transmitted through the sensor unit to the outside from the structure, measure the amount of hydrogen permeation per unit time, and based on the measurement result Predicting the life of the structure due to environmental cracking.

【0010】前記センサ部を2個以上設置するととも
に、そのうち少なくとも一つには隙間を形成しておき、
腐食により発生し前記各センサ部を透過してきた水素を
前記構造物より外部に導いて、透過水素量の単位時間あ
たりの量を前記センサ部に隙間のある場合と無い場合で
同時に計測し、その計測結果に基づき前記構造物の環境
割れによる寿命を予測するようにしても良い。
Two or more of the sensor units are installed, and a gap is formed in at least one of them.
The hydrogen generated by corrosion and permeating through each of the sensor parts is guided to the outside from the structure, and the amount of permeated hydrogen per unit time is measured at the same time with and without a gap in the sensor part, The life of the structure due to environmental cracking may be predicted based on the measurement result.

【0011】また、少なくとも一つには隙間を形成した
2個以上のセンサ部設置しておけば、腐食により発生し
前記各センサ部を透過してきた水素を前記構造物より外
部に導いて、透過水素量の単位時間あたりの量を前記セ
ンサ部に隙間のある場合と無い場合で同時に計測し、そ
の計測結果を基に隙間の有無に対する金属中水素濃度を
推定し、次に、前記推定結果と前記構造物中に想定され
た亀裂先端の3軸応力より亀裂先端水素濃度を計算し、
その亀裂先端水素濃度での同一金属の亀裂進展速度と亀
裂先端の腐食溶解による亀裂進展速度の和の時間積分か
ら亀裂長さの時間変化を求め、それが限界の深さになる
までの時間を計算することができ、これににより、前記
構造物の環境割れによる寿命を予測することもできる。
Further, if two or more sensor portions having a gap formed in at least one of them are installed, hydrogen generated by corrosion and permeating through each of the sensor portions is guided to the outside from the structure and permeated. The amount of hydrogen per unit time is measured at the same time when there is a gap in the sensor part and when there is no gap, and the hydrogen concentration in the metal with respect to the presence or absence of a gap is estimated based on the measurement result. The crack tip hydrogen concentration is calculated from the triaxial stress of the crack tip assumed in the structure,
The time change of the crack length is calculated from the time integration of the sum of the crack growth rate of the same metal at the crack tip hydrogen concentration and the crack growth rate due to corrosion dissolution of the crack tip, and the time until it reaches the limit depth is calculated. It can be calculated, which can also predict the life of the structure due to environmental cracking.

【0012】また、本発明のプラントの運転方法は、上
記寿命予測結果のそれぞれを用いて、プラント構造物の
寿命が所定以上になるよう水質等の運転条件を決定する
ことである。
Further, the plant operating method of the present invention is to determine the operating conditions such as water quality so that the life of the plant structure becomes a predetermined value or longer using each of the above life prediction results.

【0013】さらに、本発明のプラント構造物の寿命予
測装置は、腐食環境下におかれたプラント構造物と同じ
金属材料を用いて構成され、当該構造物近傍の実環境内
に設置されたセンサ部と、腐食により発生し前記センサ
部を透過してきた水素を前記構造物より外部に導く導出
手段と、前記透過水素の単位時間あたりの量を計測する
計測手段と、その計測結果に基づき前記構造物の環境割
れによる寿命を予測する予測手段と、備えたものであ
る。
Further, the plant structure life predicting apparatus of the present invention is constructed by using the same metal material as that of the plant structure placed in a corrosive environment, and the sensor installed in the actual environment near the structure. Section, derivation means for guiding hydrogen generated by corrosion and permeating through the sensor section to the outside from the structure, measuring means for measuring the amount of permeated hydrogen per unit time, and the structure based on the measurement result. It is provided with a predicting means for predicting the life of an object due to environmental cracking.

【0014】また、本発明のプラントの運転装置は、上
記予測手段からの予測結果に基づいて、プラント構造物
の寿命が所定以上になるよう水質等の運転条件を監視し
ながらプラント運転制御を行うものである。
Further, the plant operating apparatus of the present invention controls the plant operation while monitoring the operating conditions such as the water quality so that the life of the plant structure becomes a predetermined value or longer based on the prediction result from the above-mentioned prediction means. It is a thing.

【0015】[0015]

【作用】図1に本発明の寿命予測手順のフローチャート
示す。まず各センサの水素透過量が入力され、それに基
づき評価部位のバルクおよび隙間表面の水素が計算され
る。バルク環境より入ってくる水素による金属表面水素
濃度Cは、金属片の透過水素量Jと、金属片の板厚B
と、その金属片のさらされる温度における水素の格子拡
散係数Dとから以下の式(1)により求めることができ
る。
FIG. 1 shows a flowchart of the life prediction procedure of the present invention. First, the hydrogen permeation amount of each sensor is input, and based on the hydrogen permeation amount, hydrogen in the bulk of the evaluation site and the surface of the gap is calculated. The hydrogen concentration C on the metal surface due to hydrogen entering from the bulk environment is the permeated hydrogen amount J of the metal piece and the plate thickness B of the metal piece.
And the lattice diffusion coefficient D of hydrogen at the temperature to which the metal piece is exposed, can be obtained by the following equation (1).

【0016】 C = B・J/D ……………(1) これと評価部における材料の流動応力σfよりならびに
応力拡大係数値を求め以下の式によりバルク環境より入
ってくる水素による仮想的あるいは非破壊検査によって
推定される評価部(センサ部)における亀裂先端水素濃
度CHBを式(2)より計算する。
C = BJ / D (1) From this and the flow stress σ f of the material in the evaluation part and the stress intensity factor value, the hypothesis due to hydrogen coming from the bulk environment is calculated by the following formula. The crack tip hydrogen concentration C HB in the evaluation part (sensor part) estimated by static or non-destructive inspection is calculated from the equation (2).

【0017】 CHB = C・exp(σkkh/RT) ……………(2) ここで、σkk = (1+π)σf/√3 また、Vhは水素の部分分子容、Rはガス定数である。C HB = C · exp (σ kk V h / RT) (2) where σ kk = (1 + π) σ f / √3 Further, V h is a partial molecular volume of hydrogen, R is a gas constant.

【0018】一方、隙間構造部や、潜在する欠陥などの
局部における金属表面の水素濃度CLは隙間を付与した
金属片を透過してくる水素量を式(1)にいれることに
よって求めることができる。式(3)により局部より入
ってくる水素による亀裂先端水素濃度CHLを計算する。
On the other hand, the hydrogen concentration C L on the metal surface at the gap structure portion or the local portion such as a latent defect can be obtained by inserting the amount of hydrogen that permeates the metal piece provided with the gap into the equation (1). it can. The hydrogen concentration C HL at the crack tip due to hydrogen entering from the local area is calculated by the equation (3).

【0019】 CHL = α・CLexp(σkkh/RT) ……………(3) ここにαは亀裂先端での新生面溶解に伴う水素を考慮し
た補正係数である。このαを計算から求めるのは困難で
あり亀裂進展データにあうように決めるのが現実的であ
る。全体としての亀裂先端水素濃度CHTはCHBとCHL
たすことにより求まる。このCHTおよび評価部における
応力と評価部における想定亀裂の応力拡大係数Kよりデ
ータベースに基づき水素による亀裂進展速度を求める。
一方、亀裂先端の新生面の溶解による亀裂の進展はAn
dresenとFordによって既に与えられており(M
aterial Science and Engineering、 A103(1988) p16
7)、それを用いる。両者の亀裂進展速度を加え時間で積
分することによって亀裂寸法の経時変化を求めそれが限
界値になる時間をもって寿命とする。
C HL = α · C L exp (σ kk V h / RT) (3) Here, α is a correction coefficient in consideration of hydrogen associated with new surface dissolution at the crack tip. It is difficult to obtain this α by calculation, and it is realistic to determine it so as to match the crack growth data. The crack tip hydrogen concentration C HT as a whole is obtained by adding C HB and C HL . From the C HT and the stress in the evaluation part and the stress intensity factor K of the assumed crack in the evaluation part, the crack growth rate by hydrogen is calculated based on the database.
On the other hand, the progress of the crack due to the dissolution of the new surface of the crack tip is
already given by dresen and Ford (M
aterial Science and Engineering, A103 (1988) p16
7), use it. The crack growth rate is added and the two are integrated over time to determine the change over time in the crack size, and the life is defined as the time when it reaches a limit value.

【0020】[0020]

【実施例】以下、本発明の実施例について詳細に説明す
る。 〔実施例1〕水素透過特性と亀裂進展挙動との相関性に
ついての検討結果を示す。材料は、オーステナイトステ
ンレス鋼SUS304に溶体化後621℃/25h+9
50℃/25hの炭化物析出処理をした後、温度約15
0℃で硬さ約Hv320に圧延し、その後500℃/4
hの結晶粒界Cr欠乏処理をしたものを用いた。水素透
過は図2に示す装置を用いて行った。評価用試験片1は
中空円筒試験片を用い、評価セル2内に高温水を循環さ
せ試験した。試験は評価部隙間を付けた場合と付けない
場合について行った。高温水中の試験は図3に示すコン
パクトテンション試験片と呼ばれる試験片を用いて行っ
た。
EXAMPLES Examples of the present invention will be described in detail below. [Example 1] The results of examination on the correlation between hydrogen permeability and crack growth behavior are shown. The material is 621 ° C./25 h + 9 after solution treatment in austenitic stainless steel SUS304.
After the carbide precipitation treatment at 50 ° C / 25h, the temperature is about 15
Rolled to a hardness of about Hv320 at 0 ° C, then 500 ° C / 4
The crystal grain boundary Cr deficiency treatment of h was used. Hydrogen permeation was performed using the apparatus shown in FIG. A hollow cylinder test piece was used as the evaluation test piece 1, and high temperature water was circulated in the evaluation cell 2 for testing. The test was carried out with and without a gap in the evaluation area. The test in high temperature water was performed using a test piece called a compact tension test piece shown in FIG.

【0021】図4は試験結果で、亀裂進展速度と水素透
過挙動の溶存酸素濃度依存性を示している。水素透過は
隙間を付けない場合は認められず、隙間を付けた場合に
のみ認められた。この亀裂進展速度と水素透過量との間
にはよい相関が認められ、本発明の妥当性を示してい
る。
FIG. 4 shows the test results showing the dependence of the crack growth rate and hydrogen permeation behavior on the dissolved oxygen concentration. Hydrogen permeation was not observed without a gap, only with a gap. A good correlation is observed between the crack growth rate and the hydrogen permeation amount, which shows the validity of the present invention.

【0022】〔実施例2〕実施例1の結果を更に定量的
に検討するため実施例1で用いたのと同じ材料を288
℃水素ガス中にて亀裂進展挙動を調べ、亀裂先端水素濃
度を関数として高温水中の亀裂進展挙動と比較した。図
5は高温水素ガス中における亀裂進展速度を亀裂先端水
素濃度及び亀裂先端ひずみ速度を関数として整理したも
のである。高温水素ガス中の亀裂進展速度はこれらのパ
ラメータによりよく整理できる。図6はその結果を活性
溶解と水素透過量をもとに式(3)に基づき計算した水
素による亀裂進展速度と高温水中亀裂進展速度を比較し
たものである。亀裂先端の新生面溶解による亀裂先端水
素の補正係数αを5とすることにより両者は良く一致す
る。
Example 2 In order to quantitatively examine the results of Example 1, the same material as that used in Example 1 was used.
The crack growth behavior was investigated in hydrogen gas at ℃ and compared with the crack growth behavior in high temperature water as a function of hydrogen concentration at the crack tip. FIG. 5 shows the crack growth rate in high temperature hydrogen gas as a function of the crack tip hydrogen concentration and the crack tip strain rate. The crack growth rate in high temperature hydrogen gas can be well organized by these parameters. FIG. 6 compares the results with the crack growth rate by hydrogen and the crack growth rate in high temperature water calculated based on the equation (3) based on the active dissolution and hydrogen permeation amount. By setting the correction coefficient α of hydrogen at the crack tip due to dissolution of the newly formed crack tip to 5, the two agree well.

【0023】〔実施例3〕図7に水素透過量を評価する
金属片の形状及び評価法の例を示す。センサ部3は中空
の円筒型をしており評価部(図の上部)の外径を細くす
ることにより感度と応答性を高めることができる。その
中空部に透過してくる水素量は、中空部とそれに連結し
た測定部導入管5を真空に引き質量分析器に接続する
か、中空部とそれに連結した測定部導入管5を真空に引
いた後封じその内部の真空度の変化を真空計を用いてモ
ニタすることにより行う。
[Embodiment 3] FIG. 7 shows an example of a shape of a metal piece and an evaluation method for evaluating the amount of hydrogen permeation. The sensor unit 3 has a hollow cylindrical shape, and sensitivity and responsiveness can be enhanced by reducing the outer diameter of the evaluation unit (upper part of the drawing). The amount of hydrogen permeating into the hollow portion is evacuated by connecting the hollow portion and the measuring portion introducing pipe 5 connected thereto to a vacuum, or by connecting the hollow portion and the measuring portion introducing pipe 5 connected thereto to a vacuum. After sealing, the change in the degree of vacuum inside the container is monitored by using a vacuum gauge.

【0024】また、評価部に隙間キャップ4を被せるこ
とにより隙間付きのセンサ部を作成することができる。
隙間キャップ4を被せたときに評価部と隙間キャップ4
間には隙間が形成される。
Further, by covering the evaluation portion with the gap cap 4, a sensor portion with a gap can be formed.
When the gap cap 4 is put on, the evaluation portion and the gap cap 4
A gap is formed between them.

【0025】〔実施例4〕図8に水素透過量を評価する
金属片の形状及び評価法の他の例を示す。センサ部6は
円盤型をしており、それをセンサ固定部7に溶接あるい
はOリングを用いて固定する。評価部はセンサ部6であ
り、センサ部6とセンサ固定部7によって中空部が形成
されている。その中空部に透過してくる水素量は、中空
部とそれに連結した測定部導入管8を真空にひき質量分
析器に接続するか、中空部とそれに連結した測定部導入
管8を真空に引いた後封じその内部の真空度の変化を真
空計を用いてモニタすることにより行う。
[Embodiment 4] FIG. 8 shows another example of the shape of the metal piece and the evaluation method for evaluating the hydrogen permeation amount. The sensor unit 6 has a disk shape, and is fixed to the sensor fixing unit 7 by welding or using an O-ring. The evaluation part is the sensor part 6, and the sensor part 6 and the sensor fixing part 7 form a hollow part. The amount of hydrogen permeating into the hollow portion is determined by pulling the hollow portion and the measuring portion introducing pipe 8 connected thereto into a vacuum and connecting it to the mass spectrometer, or by evacuating the hollow portion and the measuring portion introducing pipe 8 connected thereto. After sealing, the change in the degree of vacuum inside the container is monitored by using a vacuum gauge.

【0026】また、センサ部6の上方に隙間キャップ9
を被せることにより隙間付きのセンサ部を作成すること
ができる。隙間キャップ9を被せるたときにセンサ部6
と隙間キャップ9間に隙間が形成される。
A gap cap 9 is provided above the sensor section 6.
It is possible to form a sensor unit with a gap by covering the sensor unit with the cover. When the gap cap 9 is put on, the sensor unit 6
A gap is formed between the gap cap 9 and the gap cap 9.

【0027】〔実施例5〕本発明を軽水炉プラントの応
力腐食割れ寿命評価並びその水質管理に適応した場合に
ついて図9を用いて説明する。センサ10は、炉内構造
物に用いられているステンレス鋼SUS304あるいは
SUS316で実機に用いられているものと同じ系統の
材料が用いられ、少なくとも3本用意する。その内の少
なくとも1本はバルク環境より透過してくる水素量を、
残りのうち少なくとも1本以上はセンサ部に隙間を付与
したものを用いて隙間部より入ってくる水素量を、また
残りのものはセンサ部位外のところから腐食等によって
出て来る水素を校正するためのものである。これらのセ
ンサは、中性子計装管11を通して炉心12に挿入され
る。
[Embodiment 5] A case where the present invention is applied to stress corrosion cracking life evaluation of a light water reactor plant and its water quality control will be described with reference to FIG. The sensor 10 is made of stainless steel SUS304 or SUS316 used for the internal structure of the reactor and is of the same system as that used in the actual machine, and at least three of them are prepared. At least one of them is the amount of hydrogen that permeates from the bulk environment.
At least one of the rest is calibrated for the amount of hydrogen that enters from the gap using a sensor with a gap, and for the rest that is calibrated for hydrogen that comes out from outside the sensor site due to corrosion, etc. It is for. These sensors are inserted into the core 12 through the neutron instrumentation tube 11.

【0028】そして、センサ10を透過してくる水素量
を質量分析器とそれに連結したコンピュータ13により
解析して、評価部の運転履歴より推定される照射量と応
力とをもとに寿命を推定する。
Then, the amount of hydrogen passing through the sensor 10 is analyzed by the mass analyzer and the computer 13 connected thereto, and the life is estimated based on the irradiation amount and the stress estimated from the operation history of the evaluation section. To do.

【0029】図10及び図11はこの寿命診断装置の画
面イメージを炉及び炉内構造材について示したものであ
る。まず図10に示すように、画面上には、実機で評価
の対象となる部位が実機の模式図上に示される。これら
の中より評価したい部位を選定すると、画面上には評価
対象部位についての寿命予測結果が示される。図11
は、図10においてシュラウドを選定した場合の寿命予
測結果である。そこでは、評価対象の名前が示され評価
部位が希望の物と同じことを確認することができる。画
面上には寿命評価に必要な照射量並びに応力を表示する
欄があり、これら各構造物に対する照射量並びに応力に
ついてのデータベースからデータを出力する。必要に応
じてそこにデータあるいは推定値を入力することも可能
である。これらの表示データならびに現状の水素透過デ
ータに基づく推定SCC発生寿命が表示される。同時に
画面上にこれまでの水素透過料の変化と予測余寿命値の
変化が表示され、対策を立てるべきか否かを判断するの
に有益な情報を与える。
FIG. 10 and FIG. 11 show screen images of the life diagnostic apparatus for the furnace and the internal structural materials. First, as shown in FIG. 10, a portion to be evaluated by the actual machine is shown on the screen on the schematic diagram of the actual machine. When the site to be evaluated is selected from these, the life prediction result for the site to be evaluated is displayed on the screen. Figure 11
10 is a life prediction result when a shroud is selected in FIG. There, the name of the evaluation target is shown, and it can be confirmed that the evaluation site is the same as the desired one. There is a column on the screen that displays the dose and stress required for life evaluation, and the data on the dose and stress for these structures are output from the database. It is also possible to enter data or estimated values there as needed. The estimated SCC generation life based on these display data and the current hydrogen permeation data is displayed. At the same time, the change in the hydrogen permeation agent and the change in the estimated remaining life value are displayed on the screen at the same time, giving useful information for determining whether or not countermeasures should be taken.

【0030】また、その値をもとに所定の寿命以上とな
るようにガス及び薬品注入系14によってタービン15
よりの復水の水質を決め、圧力容器16中に給水配管1
7を通してその水を入れ水素透過量が所定の寿命を満足
するよう監視しながらプラント運転することも可能であ
る。なお、図9において、18は原子炉炉水再循環系配
管、19は原子炉炉水浄化系配管、20は切り替え弁、
21は真空ポンプを示している。
Further, based on this value, the turbine 15 is provided by the gas and chemical injection system 14 so as to have a predetermined life or longer.
Determine the water quality of the condensate from the water supply pipe 1 in the pressure vessel 16
It is also possible to put the water in through 7 and operate the plant while monitoring the hydrogen permeation amount so as to satisfy a predetermined life. In FIG. 9, 18 is a reactor water recirculation system piping, 19 is a reactor water purification system piping, 20 is a switching valve,
Reference numeral 21 denotes a vacuum pump.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
腐食環境にあるプラント構造物のSCC発生寿命を定量
的に把握できるととともに、その結果に基づき環境対策
を施すことにより実機のSCC損傷を防止し、損傷事故
に伴う損失を低減してプラント構造物長寿命化を図るこ
とが可能となる。
As described above, according to the present invention,
In addition to being able to quantitatively understand the SCC generation life of a plant structure in a corrosive environment, environmental measures can be taken based on the result to prevent SCC damage to the actual equipment and reduce loss due to damage accidents It is possible to extend the life.

【0032】また、透過水素を構造物より外部に導き出
してから、その透過水素量の単位時間あたりの量を計測
する構成であるので、透過水素量が増加しても減少して
も常に寿命予測可能である。
Further, since the permeated hydrogen is led out from the structure and the amount of permeated hydrogen per unit time is measured, the life is always predicted even if the permeated hydrogen amount increases or decreases. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の寿命予測方法を示したフローチャート
である。
FIG. 1 is a flowchart showing a life prediction method of the present invention.

【図2】評価用試験片をセットするための装置の概略図
である。
FIG. 2 is a schematic view of an apparatus for setting a test piece for evaluation.

【図3】コンパクトテンション試験片の形状と寸法を示
す図である。
FIG. 3 is a diagram showing the shape and dimensions of a compact tension test piece.

【図4】高温水中亀裂進展挙動と水素透過挙動の溶存酸
素濃度依存性を示す図である。
FIG. 4 is a diagram showing the dissolved oxygen concentration dependence of crack growth behavior and hydrogen permeation behavior in high temperature water.

【図5】水素中亀裂進展速度の亀裂先端水素濃度依存性
を示す図である。
FIG. 5 is a diagram showing the dependence of the crack growth rate in hydrogen on the hydrogen concentration at the crack tip.

【図6】高温水中亀裂進展速度の予測値と実測値の比較
結果を示す図である。
FIG. 6 is a diagram showing a comparison result between a predicted value and a measured value of a crack growth rate in high temperature water.

【図7】センサ部の一例を示す図である。FIG. 7 is a diagram illustrating an example of a sensor unit.

【図8】センサ部の他の例を示す図である。FIG. 8 is a diagram showing another example of the sensor unit.

【図9】本発明を軽水炉プラントへ適用した一例を示す
図である。
FIG. 9 is a diagram showing an example in which the present invention is applied to a light water reactor plant.

【図10】寿命予測装置の画面イメージの一例を示す図
である。
FIG. 10 is a diagram showing an example of a screen image of the life prediction apparatus.

【図11】寿命診断装置の画面イメージの他の例を示す
図である。
FIG. 11 is a diagram showing another example of a screen image of the life diagnosis apparatus.

【符号の説明】[Explanation of symbols]

1 水素透過評価用試験片 2 評価セル 3,6 水素透過評価センサ部 4,9 隙間キャップ 5,8 測定部導入管 7 センサ固定部 10 水素透過評価センサ 11 中性子計装管 12 炉心 13 質量分析器およびコンピュータ 14 ガス及び薬品注入系 15 タービン 16 原子炉圧力容器 17 原子炉給水配管 18 原子炉炉水再循環系配管 19 原子炉炉水浄化系配管 20 切り替え弁 21 真空ポンプ 1 Test piece for hydrogen permeation evaluation 2 Evaluation cell 3,6 Hydrogen permeation evaluation sensor section 4,9 Gap cap 5,8 Measuring section introduction tube 7 Sensor fixing section 10 Hydrogen permeation evaluation sensor 11 Neutron instrumentation tube 12 Reactor core 13 Mass spectrometer And computer 14 Gas and chemical injection system 15 Turbine 16 Reactor pressure vessel 17 Reactor water supply piping 18 Reactor water recirculation system piping 19 Reactor water purification system piping 20 Switching valve 21 Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 仲田 清智 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 国谷 治郎 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyotomo Nakata 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Jiro Kuniya 7-chome, Omika-cho, Hitachi-shi, Ibaraki No. 1 in Hitachi, Ltd. Hitachi Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 腐食環境下におかれたプラント構造物と
同じ金属材料を用いて構成されたセンサ部を当該構造物
近傍の実環境内に設置し、腐食により発生し前記センサ
部を透過してきた水素を前記構造物より外部に導いて、
水素透過量の単位時間あたりの量を計測し、その計測結
果に基づき前記構造物の環境割れによる寿命を予測する
プラント構造物の寿命予測方法。
1. A sensor unit made of the same metal material as that of a plant structure placed in a corrosive environment is installed in an actual environment near the structure, and is generated by corrosion and penetrates the sensor unit. Leading hydrogen out of the structure,
A method for predicting the life of a plant structure, which measures the amount of hydrogen permeation per unit time and predicts the life of the structure due to environmental cracks based on the measurement result.
【請求項2】 腐食環境下におかれたプラント構造物と
同じ金属材料を用いて構成されたセンサ部を当該構造物
近傍の実環境内に2個以上設置するとともに、前記セン
サ部のうち少なくとも一つには隙間を形成しておき、腐
食により発生し前記各センサ部を透過してきた水素を前
記構造物より外部に導いて、透過水素量の単位時間あた
りの量を前記センサ部に隙間のある場合と無い場合で同
時に計測し、その計測結果に基づき前記構造物の環境割
れによる寿命を予測するプラント構造物の寿命予測方
法。
2. At least two sensor units, which are made of the same metal material as the plant structure placed in a corrosive environment, are installed in the actual environment near the structure, and at least one of the sensor units is used. First, a gap is formed, and hydrogen generated by corrosion and permeating through each of the sensor parts is guided to the outside from the structure, and the amount of permeated hydrogen per unit time is calculated as A method for predicting the life of a plant structure, in which the life of the structure due to environmental cracks is predicted based on the measurement results obtained by simultaneously measuring the case with and without the case.
【請求項3】 腐食環境下におかれたプラント構造物と
同じ金属材料を用いて構成されたセンサ部を当該構造物
近傍の実環境内に2個以上設置するとともに、前記セン
サ部のうち少なくとも一つには隙間を形成しておき、腐
食により発生し前記各センサ部を透過してきた水素を前
記構造物より外部に導いて、透過水素量の単位時間あた
りの量を前記センサ部に隙間のある場合と無い場合で同
時に計測し、その計測結果を基に隙間の有無に対する金
属中水素濃度を推定し、次に、前記推定結果と前記構造
物中に想定された亀裂先端の3軸応力より亀裂先端水素
濃度を計算し、その亀裂先端水素濃度での同一金属の亀
裂進展速度と亀裂先端の腐食溶解による亀裂進展速度の
和の時間積分から亀裂長さの時間変化を求め、それが限
界の深さになるまでの時間を計算することにより、前記
構造物の環境割れによる寿命を予測するプラント構造物
の寿命予測方法。
3. Two or more sensor units configured by using the same metal material as the plant structure placed in a corrosive environment are installed in an actual environment near the structure, and at least one of the sensor units is provided. First, a gap is formed, and hydrogen generated by corrosion and permeating through each of the sensor parts is guided to the outside from the structure, and the amount of permeated hydrogen per unit time is calculated as Simultaneously measuring with and without the presence, the hydrogen concentration in the metal with respect to the presence or absence of a gap is estimated based on the measurement result, and then from the estimation result and the triaxial stress at the crack tip assumed in the structure The crack tip hydrogen concentration is calculated, and the time change of the crack length is calculated from the time integration of the sum of the crack growth rate of the same metal at the crack tip hydrogen concentration and the crack growth rate due to corrosion dissolution of the crack tip, and that is the limit. Until the depth A method for predicting the life of a plant structure, in which the life of the structure due to environmental cracking is predicted by calculating the time.
【請求項4】 請求項1〜3のいずれかに記載の寿命予
測結果を用いて、プラント構造物の寿命が所定以上にな
るよう水質等の運転条件を決定するプラントの運転方
法。
4. A method of operating a plant, which uses the life prediction result according to any one of claims 1 to 3 to determine an operating condition such as water quality so that the life of the plant structure is equal to or longer than a predetermined value.
【請求項5】 腐食環境下におかれたプラント構造物と
同じ金属材料を用いて構成され、当該構造物近傍の実環
境内に設置されたセンサ部と、腐食により発生し前記セ
ンサ部を透過してきた水素を前記構造物より外部に導く
導出手段と、前記透過水素の単位時間あたりの量を計測
する計測手段と、その計測結果に基づき前記構造物の環
境割れによる寿命を予測する予測手段と、備えたプラン
ト構造物の寿命予測装置。
5. A sensor part, which is constructed by using the same metal material as that of a plant structure placed in a corrosive environment and is installed in an actual environment near the structure, and a sensor part which is generated by corrosion and permeates the sensor part. And a derivation means for guiding hydrogen from the structure to the outside, a measurement means for measuring the amount of permeated hydrogen per unit time, and a prediction means for predicting the life of the structure due to environmental cracking based on the measurement result. , A plant structure life prediction device provided.
【請求項6】 請求項5記載の寿命予測装置において、
前記センサ部は2個以上設けられ、そのうちの少なくと
も一つには隙間が形成され、前記計測手段は、前記セン
サ部に隙間がある場合と無い場合の透過水素量を同時に
計測することを特徴とするプラント構造物の寿命予測装
置。
6. The life prediction apparatus according to claim 5,
Two or more of the sensor units are provided, and a gap is formed in at least one of them, and the measuring unit simultaneously measures the amount of permeated hydrogen when the sensor unit has a gap and when there is no gap. Life prediction system for plant structures.
【請求項7】 請求項6記載の寿命予測装置において、
前記センサ部は一端が閉塞された円筒型に形成され、か
つ円筒型の他端開口部が前記導出手段に接続される一
方、前記センサ部の閉塞部にキャップを被せて閉塞部と
キャップ間に隙間を設けることにより、隙間があるセン
サ部を形成したことを特徴とするプラント構造物の寿命
予測装置。
7. The life prediction apparatus according to claim 6,
The sensor part is formed in a cylindrical shape with one end closed, and the other end opening of the cylindrical shape is connected to the lead-out means, while the closing part of the sensor part is covered with a cap, and between the closing part and the cap. A life predicting apparatus for a plant structure, wherein a sensor portion having a gap is formed by providing the gap.
【請求項8】 請求項5記載の寿命予測装置において、
前記計測手段は、質量分析器または真空計であることを
特徴とするプラント構造物の寿命予測装置。
8. The life prediction device according to claim 5,
A life predicting apparatus for a plant structure, wherein the measuring unit is a mass spectrometer or a vacuum gauge.
【請求項9】 請求項5に記載の予測手段からの予測結
果に基づいて、プラント構造物の寿命が所定以上になる
よう水質等の運転条件を監視しながらプラント運転制御
を行うプラントの運転装置。
9. A plant operating device for performing plant operation control while monitoring operating conditions such as water quality so that the life of the plant structure is at least a predetermined value based on the prediction result from the prediction means according to claim 5. .
JP6203490A 1994-08-29 1994-08-29 Method and device for predicting life of plant structure Pending JPH0868731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6203490A JPH0868731A (en) 1994-08-29 1994-08-29 Method and device for predicting life of plant structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6203490A JPH0868731A (en) 1994-08-29 1994-08-29 Method and device for predicting life of plant structure

Publications (1)

Publication Number Publication Date
JPH0868731A true JPH0868731A (en) 1996-03-12

Family

ID=16475026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6203490A Pending JPH0868731A (en) 1994-08-29 1994-08-29 Method and device for predicting life of plant structure

Country Status (1)

Country Link
JP (1) JPH0868731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062901A (en) * 2000-08-18 2002-02-28 Toshiba Corp Plant operation control device, plant operation control method and storage medium storing plant operation control program
JP2007147397A (en) * 2005-11-25 2007-06-14 Toshiba Corp Method for operating reactor, and instrument and method for surveying the same
JP2012159486A (en) * 2011-02-03 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen embrittlement prediction method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062901A (en) * 2000-08-18 2002-02-28 Toshiba Corp Plant operation control device, plant operation control method and storage medium storing plant operation control program
JP2007147397A (en) * 2005-11-25 2007-06-14 Toshiba Corp Method for operating reactor, and instrument and method for surveying the same
JP2012159486A (en) * 2011-02-03 2012-08-23 Nippon Telegr & Teleph Corp <Ntt> Hydrogen embrittlement prediction method

Similar Documents

Publication Publication Date Title
Arioka et al. Role of cavity formation in crack initiation of cold-worked carbon steel in high-temperature water
Fox An overview of intergranular stress corrosion cracking in BWRs
Chen et al. Stress corrosion crack growth behavior of type 310S stainless steel in supercritical water
He et al. Prediction of creep crack initiation behavior considering constraint effects for cracked pipes
Zhong et al. Fatigue model of domestic 316LN steel in simulated primary coolant environment of CAP1400
Scott et al. Corrosion fatigue of pressure vessel steels in PWR environments—influence of steel sulfur content
Yun et al. The effect of high temperature reactor primary circuit helium on the formation and propagation of surface cracks in alloy 800 H and inconel 617
Cui et al. Comparison of stress corrosion cracking susceptibilities of 308L and 309L cladding layers in high-temperature water with various dissolved oxygen concentrations
JPH0868731A (en) Method and device for predicting life of plant structure
Féron et al. Stress corrosion cracking of Alloy 600: overviews and experimental techniques
Lee et al. On-line monitoring system development for single-phase flow accelerated corrosion
JPH05297181A (en) Method for estimating stress corrosive cracking life of structure, and test device therefor
Tian et al. Experimental study on bond performance and damage detection of corroded reinforced concrete specimens
Andresen et al. Prediction of stress corrosion cracking (SCC) in nuclear power systems
JP2008008750A (en) Corrosive environment determination method of nuclear reactor cooling water, and device therefor
Jeong et al. Chloride-induced stress corrosion cracking tester for austenitic stainless steel
Cui et al. Determining SCC resistance of stainless steel claddings in high-temperature water by constant load crack growth tests and slow strain rate tests
Andresen Corrosion fatigue testing
Hong et al. Environmental fatigue crack growth rate of Type 347 austenitic stainless steel in simulated PWR water conditions
Ramuhalli et al. Material aging and degradation detection and remaining life assessment for plant life management
Van der Merwe et al. Prediction of stress-corrosion cracking using electrochemical noise measurements: A case study of carbon steels exposed to H2O-CO-CO2 environment
Ehrnstén Environmentally-assisted cracking of stainless steels in light water reactors
Giancarli et al. European Research and Development Programme for Water-Cooled Lithium-Lead Blankets Present Status and Future Work
Shack et al. Environmentally Assisted Cracking in Light Water Reactors
Toivonen Stress corrosion crack growth rate measurement in high temperature water using small precracked bend specimens